Annali di Matematica pura ed applicata (IV), Vol. CLXII (1992), pp. 77-86

The Local Structure of Trans-Sasakian Manifolds (*).

J. C. MARRERO

Summary. – In this paper, we completely characterize the local structure of trans-Sasakian manifolds of dimension ≥ 5 by giving suitable examples.

0. - Introduction.

An almost Hermitian manifold V is called locally conformal Kähler (l.c.K.) if its metric is conformally related to a Kähler metric in some neighbourhood of every point of V. Such manifolds have been studied by various authors (see, for instance, [L], [GH], [V1], [V2] and [V3]).

In [O], J. A. OUBIÑA has studied a new class of almost contact metric structure, called trans-Sasakian, which is, in some sense, an analogue of a locally conformal Kähler structure on an almost Hermitian manifold (see definition in § 1).

On the other hand, in [ChG] the authors have introduced two subclasses of trans-Sasakian structures, the C_5 and C_6 -structures, which contain the Kenmotsu and Sasakian structures, respectively.

In this paper, we completely characterize the local nature of the trans-Sasakian structures on connected differentiable manifolds of dimension ≥ 5 . In section 1, we recall some results on almost contact metric manifolds. In section 2 and 3, we characterize the local nature of C_5 and C_6 structures, respectively (see Theorems 2.1 and 3.1), by using the techniques of [OI]. In section 4 we prove that the trans-Sasakian structures are of class C_5 or C_6 (see Theorem 4.1). Finally, we obtain some examples of 3-dimensional trans-Sasakian structures which are neither of class C_5 nor C_6 .

I wish to express my hearty thanks to D. CHINEA for several comments useful in the preparation of this paper.

^(*) Entrato in Redazione il 7 agosto 1989.

Indirizzo dell'A.: Departamento de Matemática Fundamental, Universidad de la Laguna, La Laguna-Tenerife, Canary Island, Spain.

Work supported by the «Consejería de Educación del Gobierno de Canarias».

1. - Preliminaries.

78

Let V be a C^{∞} almost Hermitian manifold with metric g and almost complex structure J. Denote by $\mathfrak{X}(V)$ the Lie algebra of C^{∞} vector fields on V. The Kähler form Ω is given by $\Omega(X, Y) = g(X, JY)$; and the Lee form is the 1-form θ defined by $\theta(X) = 1/(n-1) \quad \partial \Omega(JX)$, where δ denotes the coderivate, dim V = 2n and $X, Y \in \mathfrak{X}(V)$.

Recall that V is said to be Kähler if $d\Omega = 0$ and $N_J = 0$ and locally conformal Kähler (l.c.K.) if $d\Omega = \theta \wedge \Omega$ and $N_J = 0$, where N_J denotes the Nijenhuis tensor of J.

On the other hand, let M be a C^{∞} almost contact metric manifold with metric g and almost contact structure (φ, ξ, η) . Then we have,

$$\begin{split} \varphi^2 &= -I + \eta \otimes \xi \,, \qquad \eta(\xi) = 1 \,, \\ g(\varphi X, \varphi Y) &= g(X, Y) - \eta(X) \, \eta(Y) \,, \end{split}$$

for $X, Y \in \mathfrak{X}(M)$, where *I* denotes the identity transformation. The fundamental 2form Φ of the almost contact metric manifold $(M, \varphi, \xi, \eta, g)$ is defined by $\Phi(X, Y) = g(X, \varphi Y)$ for all $X, Y \in \mathfrak{X}(M)$.

An almost contact structure (φ, ξ, η) is said to be normal if the almost complex structure J on $M \times \mathbf{R}$ given by

(1.1)
$$J(X, a d/dt) = (\varphi X - a\xi, \eta(X) d/dt),$$

where a is a C^{∞} function on $M \times \mathbf{R}$, is integrable, which is equivalent to the condition $N_{\varphi} + 2d\eta \otimes \xi = 0$, where N_{φ} denotes the Nijenhuis torsion of φ (see [SH1] and [SH2]).

Now, let (φ, ξ, η, g) be an almost contact metric structure on M. We define an almost Hermitian structure (J, h) on $M \times \mathbf{R}$, where the almost complex structure J is given by (1.1) and h is the Riemannian metric following:

$$h((X, a d/dt), (Y, b d/dt)) = g(X, Y) + ab$$
.

An almost contact metric structure (φ, ξ, η, g) is said to be trans-Sasakian (see [O]) if the almost Hermitian structure (J, h) on $M \times \mathbf{R}$ is l.c.K.

In [O], the author proves that (φ, ξ, η, g) is a trans-Sasakian structure if and only if it is normal and

(1.2)
$$d\Phi = 2\alpha\eta \wedge \Phi,$$

$$(1.3) d\eta = \beta \Phi \,,$$

where $\alpha = \operatorname{div} \xi/(2n)$ and $\beta = \delta \Phi(\xi)/(2n)$.

An almost contact metric structure (φ, ξ, η, g) is said to be:

 C_5 if it is trans-Sasakian with $\beta = 0$; Kenmotsu if it is C_5 with $\alpha = 1$; C_6 if it is trans-Sasakian with $\alpha = 0$; Sasakian if it is C_6 with $\beta = 1$; cosymplectic if it is trans-Sasakian with $\alpha = \beta = 0$ (see [B2], [ChG] and [K]).

We say that the almost contact structure (φ, ξ, η) has rank r if and only if the 1form η has rank r. Consequently, (φ, ξ, η) has rank r = 2s if $(d\eta)^s \neq 0$ and $\eta \wedge (d\eta)^s = 0$, and has rank r = 2s + 1 if $\eta \wedge (d\eta)^s \neq 0$ and $(d\eta)^{s+1} = 0$.

Let $(M, \varphi, \xi, \eta, g)$ be an almost contact metric manifold and σ a positive differentiable function on M. We put,

$$g' = \sigma g + (1 - \sigma) \eta \otimes \eta.$$

Then, (φ, ξ, η, g') is also an almost contact metric structure on M. Moreover, if (φ, ξ, η, g) is trans-Sasakian and we denote by Φ' the fundamental 2-form of the almost contact metric structure (φ, ξ, η, g') , we have:

(1.4)
$$d\Phi' = (d(\ln \sigma) + (\operatorname{div} \xi/n) \eta) \wedge \Phi',$$

(1.5)
$$d\eta = (\beta/\sigma) \Phi'$$

AGREEMENT. – Through the rest of this paper, M always denotes a (2n + 1)-dimensional $(n \ge 2)$ connected manifold unless stated otherwise.

2. – C_5 -structures.

In this section, we describe the local structure of manifolds of class C_5 . Before, we examine the following example:

EXAMPLE 1. – Let M be the product manifold $L \times V$, where L is the circle S^1 or an open interval (a', b'), $-\infty \leq a' < b' \leq \infty$, and (V, J, G) is a 2*n*-dimensional Kählerian manifold. Let E be a nowhere vanishing vector field on L, E^* its dual field of 1-forms and σ a positive function on L. Put

(2.1)
$$\begin{cases} \varphi(aE, X) = (0, JX), & \xi = (E, 0), \\ g((aE, X), (bE, Y)) = \sigma G(X, Y) + ab, \end{cases}$$

where a and b are differentiable functions on M, and $X, Y \in \mathfrak{X}(V)$. Then it is not difficult to check that (φ, ξ, η, g) is an almost contact metric structure on M of class \mathcal{C}_5 .

We remark that in the above example the 1-form $(\operatorname{div} \xi) \eta = d(\ln \sigma^n)$ is closed. We generalize this result for trans-Sasakian manifolds.

Let (φ, ξ, η, g) be a trans-Sasakian structure on M, then

LEMMA 2.1. – The 1-form $(\operatorname{div} \xi)_{\eta}$ is closed.

PROOF. – From the definition of trans-Sasakian structure (see (1.2) and (1.3)), we obtain

(2.2)
$$d((\operatorname{div} \xi)\eta) \wedge \Phi = 0,$$

(2.3)
$$d((\operatorname{div} \xi)_{\eta}) \wedge_{\eta} = (\beta \operatorname{div} \xi)_{\eta} \wedge \Phi.$$

80

Let p be a point of M. We shall prove that $d((\operatorname{div} \xi)\eta)_p = 0$. If $\beta(p) = 0$, we deduce the result from the relations (2.2) and (2.3), since dim $M \ge 5$.

Now, we suppose that $\beta(p) \neq 0$. Let U be a neighbourhood of p such that $\beta \neq 0$ on U. We can suppose that $\beta > 0$ on U. Taking in (1.3) the exterior differential and using (1.2), one gets

$$(d\beta + \beta(\operatorname{div} \xi/n) \eta) \wedge \Phi = 0$$
,

and since rang $\Phi \ge 4$ we obtain $d\beta + \beta(\operatorname{div} \xi/n) \eta = 0$, i.e., $d(\ln\beta) = -(\operatorname{div} \xi/n) \eta$ which also proves that $d((\operatorname{div} \xi) \eta)_p = 0$.

Let $(M, \varphi, \xi, \eta, g)$ be an almost contact metric manifold of class \mathcal{C}_5 . Next, we prove the following structure theorem, which generalizes a similar result obtained by KEN-MOTSU [K] for Kenmotsu manifolds.

THEOREM 2.1. – The manifold M is locally the product $(a', b') \times V$, where (a', b') is an open interval and V is a 2n-dimensional Kählerian manifold, on which the structure (φ, ξ, η, g) is given as in (2.1).

PROOF. – Fix a point $p \in M$. From Lemma 2.1, there exists a neighbourhood U' of p on which $d(\ln \sigma) = (\operatorname{div} \xi/n) \eta$, for a certain positive function σ . Put, $g' = (1/\sigma) g + (1-1/\sigma) \eta \otimes \eta$. From the definition of structure of class C_5 and using (1.4) and (1.5), (φ, ξ, η, g') is cosymplectic on U'. Therefore the point p has a neighbourhood $U = (a', b') \times V \subseteq U'$ such that (φ, ξ, η, g') is given on U by

$$\varphi(aE, X) = (0, JX), \quad \xi = (E, 0), \quad \eta = (E^*, 0),$$

 $q'((aE, X), (bE, Y)) = G(X, Y) + ab,$

where (J, G) is a Kählerian structure on V, E is a nowhere vanishing vector field on (a', b') and E^* its dual (see, for instance, [B1]). Finally, since $g = \sigma g' + (1 - \sigma) \eta \otimes \eta$, we see that the structure (φ, ξ, η, g) on U is given as in (2.1).

REMARK. – In [K], K. KENMOTSU has proved that a Kenmotsu manifold is not compact. However, taking in the example 1, $L = S^1$, V a compact Kähler manifold, η the length element of the circle S^1 and σ a positive function (not constant) on S^1 , we obtain an almost contact metric structure of class C_5 , which is not Kenmotsu, on the compact manifold $M = S^1 \times V$.

Finally, we suppose that (φ, ξ, η, g) is an almost contact metric structure of class C_5 on a simply connected manifold M. From Lemma 2.1, we have $(\operatorname{div} \xi/n) \eta = d(\ln \sigma)$ for a certain positive function σ on M. Put $g' = (1/\sigma) g + (1 - 1/\sigma) \eta \otimes \eta$. Then, (φ, ξ, η, g') is a cosymplectic structure on M. Consequently, from Proposition 2.3 of [FM], we deduce

PROPOSITION 2.1. – A compact simply connected manifold can not admit a structure of class C_5 .

3. – C_6 -structures.

An almost contact metric structure (φ, ξ, η, g) on M is said to be γ -Sasakian $(\gamma \in \mathbf{R}, \gamma \neq 0)$ if it is normal and $d\eta = \gamma \Phi$, where Φ is the fundamental 2-form (see [JV]). If (φ, ξ, η, g) is Sasakian then it is 1-Sasakian, and if it is γ -Sasakian or cosymplectic then it is of class C_6 . Next, we prove the converse.

LEMMA 3.1. – If (φ, ξ, η, g) is an almost contact metric structure on M of class C_6 , then it is γ -Sasakian or cosymplectic.

PROOF. – Taking in (1.3) the exterior differential, we get that $d\beta \wedge \Phi = 0$ and, since M is connected and dim $M \ge 5$, we obtain $\beta = \gamma = \text{constant}$. Thus, if $\gamma \neq 0$, the structure $(\varphi, \xi, \gamma, g)$ is γ -Sasakian and if $\gamma = 0$, it is cosymplectic.

Therefore, a not cosymplectic C_6 manifold is essentially a Sasakian manifold. In fact, if the structure (φ, ξ, η, g) is γ -Sasakian then the structure $(\varphi, (1/\gamma)\xi, \gamma\eta, \gamma^2 g)$ is Sasakian.

Now, let *M* be the product manifold $L \times V$, where *L* is the circle S^1 or an open interval $(a', b'), -\infty \leq a' < b' \leq \infty$, and (V, J, G) is an almost Hermitian manifold of dimension 2n. Let *E* be a nowhere vanishing vector field on *L*, E^* its dual field of 1-forms and ω a 1-form on *V*.

Put,

(3.1)
$$\begin{cases} \varphi(aE, X) = (-\omega(JX)E, JX), & \xi = (E, 0), & \eta = (E^*, \omega), \\ g((aE, X), (bE, Y)) = G(X, Y) + ab + \omega(X)\omega(Y) + \omega(X)b + \omega(Y)a, \end{cases}$$

where a, b are differentiable functions on M and $X, Y \in \mathfrak{X}(V)$. By straightforward verification we can see that $(\varphi, \xi, \gamma, g)$ is an almost contact metric structure on M. Moreover, if we denote by N_J and N_{φ} the Nijenhuis tensors of J and φ , respectively, and by Ω the Kähler form of (V, J, G), then it is not difficult to check the following:

PROPOSITION 3.1.

(3.2)
$$N_{\varphi}((aE, X), (bE, Y)) + 2d\eta((aE, X), (bE, Y))(E, 0) =$$

$$= \left(\left(-\omega(N_J(X,Y)) - 2d\omega(JX,JY) + 2d\omega(X,Y) \right) E, N_J(X,Y) \right)$$

(3.3) $\Phi((aE, X), (bE, Y)) = \Omega(X, Y),$

for $X, Y \in \mathfrak{X}(V)$ and a, b differentiable functions on M.

Next, we describe the local structure of manifolds of class C_6 . Previously, we examine the following example.

EXAMPLE 2. – Let M, V, L, J, E and E^* be as in example 1 and ω a 1-form on V, such that $d\omega = \beta\Omega$ where β is constant and Ω the Kähler form of (V, J, G). We define φ, ξ, η and g as in (3.1). Then, from (3.2) and (3.3) we deduce

a) If $\beta = 0$, (φ, ξ, η, g) is a cosymplectic structure.

b) If $\beta \neq 0$, (φ, ξ, η, g) is a β -Sasakian structure.

Now, we prove that the converse holds locally. Let (φ, ξ, η, g) be an almost contact metric structure of class \mathcal{C}_6 on M, then

THEOREM 3.1. – The manifold M is locally the product $(a', b') \times V$, where (a', b') is an open interval and V is a 2n-dimensional Kählerian manifold, on which the structure (φ, ξ, η, g) is given as in Example 2.

PROOF. – Fix a point $p \in M$. Let U be a coordinate neighbourhood of p, with coordinates $(x^0, x^1, \ldots, x^{2n})$ such that $U = (-a, a) \times V$, x^0 is the coordinate on (-a, a), (x^1, \ldots, x^{2n}) are the coordinates on V and $\xi = \partial/\partial x^0$ on U. Let g_{ij} , η_i , φ_j^i be the components of g, η and φ in the coordinates $(x^0, x^1, \ldots, x^{2n})$. From Lemma 3.1 we obtain the relations

$$\mathcal{L}_{\varepsilon}g = \mathcal{L}_{\varepsilon}\eta = \mathcal{L}_{\varepsilon}\varphi = 0$$

where \mathcal{L}_{ξ} denotes the Lie derivate with respect to ξ . Using the above relations we deduce that the components g_{ij} , η_i , φ_j^i are independent of the coordinate x^0 . Therefore they can be used to a description of an almost Hermitian structure on V. Thus, define

$$J(\partial/\partial x^{j}) = \sum_{i=1}^{2n} \varphi_{j}^{i}(\partial/\partial x^{i}) \quad j = 1, \dots, 2n,$$
$$G(\partial/\partial x^{i}, \partial/\partial x^{j}) = g_{ii} - p_{i}p_{i}, \quad i, j = 1, \dots, 2n$$

It is clear that the pair (J, G) is an almost Hermitian structure on V. Moreover, if we put

$$\omega(\partial/\partial x^i) = \eta_i \quad (i = 1, ..., 2n), \quad E = \partial/\partial x^0, \quad E^* = dx^0$$

then the almost contact metric structure (φ, ξ, η, g) on U and the almost Hermitian structure (J, G) on V are related by (3.1). Consequently, from relations (3.2) and (3.3), we deduce that (J, G) is a Kähler structure on V. Finally, from the definition of structure of class C_6 , we obtain $d\omega = \beta\Omega$ with β constant, where Ω is the Kähler form of (V, J, G).

4. - Trans-Sasakian manifolds.

First, we study the rank of a trans-Sasakian structure

PROPOSITION 4.1. – Let $(M, \varphi, \xi, \eta, g)$ be a trans-Sasakian manifold and r the rank of (φ, ξ, η) . Then r cannot be even. Moreover, if r = 2s + 1, then s = 0 or s = n and we have

- a) (φ, ξ, η, g) is of class C_5 if and only if s = 0.
- b) (φ, ξ, η, g) is of class C_6 not cosymplectic if and only if s = n.

PROOF. – If r = 2s, from (1.3), we deduce that $\beta \neq 0$ at every point. On the other hand, since $\eta \wedge (d\eta)^s = 0$ and $\eta \wedge \Phi^n \neq 0$ we obtain $\beta = 0$, which is a contradiction. The assertion a) is evident.

Now, we suppose that r = 2s + 1, $s \neq 0$. Then, it is clear that $\beta \neq 0$ at every point and thus r = 2n + 1. From Lemma 2.1, the 1-form $\alpha \eta = -(\operatorname{div} \xi/2n) \eta$ is closed. Therefore, by using 1.3, we obtain

$$(4.1) d\alpha \wedge \eta + \alpha \beta \Phi = 0,$$

and since $\eta \land \Phi \neq 0$, we deduce $\alpha \beta = 0$, *i.e.*, $\alpha = 0$. Consequently, the structure (φ, ξ, η, g) is of class C_6 not cosymplectic.

Conversely, if r = 2s + 1 and (φ, ξ, η, g) is of class C_6 and it is not cosymplectic then $\beta \neq 0$ and thus s = n.

Next, we prove that a trans-Sasakian structure is of class C_5 or C_6 .

THEOREM 4.1. – If (φ, ξ, η, g) is a trans-Sasakian structure, it is of class C_5 or C_6 .

PROOF. – Denote by A the following set

$$A = \{x \in M/\beta(x) = 0\},\$$

where $d\eta = \beta \Phi$.

Let x_0 be a point of A. From Lemma 2.1, $2\alpha\eta = (\operatorname{div} \xi/n) \eta$ is a closed 1-form. Then, there exists an open neighbourhood U of x_0 on which $d(\ln \sigma) = 2\alpha\eta$, for a certain positive function σ . Put,

(4.2)
$$g' = (1/\sigma)g + (1-1/\sigma)\eta \otimes \eta.$$

From relations (1.4), (1.5) and by using the Lemma 3.1 we obtain that the almost contact metric structure (φ, ξ, η, g') is of class C_6 and $\beta/\sigma = c$ (c constant). Thus, since $\beta(x_0) = 0$, c = 0 and therefore $U \subseteq A$.

Consequently, A is an open subset of M. On the other hand, it is clear that A is closed in M. Therefore, from the connectedness of M, we deduce that A = M or $A = \phi$. If A = M, (φ, ξ, η, g) is of class C_5 (in this case M may also be cosymplectic) and if $A = \phi$ the rank of the structure (φ, ξ, η) is 2n + 1 and hence, using the Proposition 4.1, (φ, ξ, η, g) is of class C_6 .

The Theorem 4.1 is not true for dim M = 3. In fact, if $(M, \varphi, \xi, \eta, g)$ is a 3-dimensional Sasakian manifold, and

$$g' = \sigma g + (1 - \sigma) \eta \otimes \eta,$$

where σ is a positive function on M, then

PROPOSITION 4.2. (φ, ξ, η, g') is a trans-Sasakian structure on M. Moreover, if $\xi(\sigma) \neq 0$, then (φ, ξ, η, g') is neither of class C_5 nor C_6 .

PROOF. – It is clear that (φ, ξ, η, g') is a normal structure on M. Moreover, if Φ' is the fundamental 2-form of the structure (φ, ξ, η, g') , we deduce, from (1.4) and (1.5), that

(4.3)
$$d\Phi' = d(\ln \sigma) \wedge \Phi',$$

$$(4.4) d\eta' = (1/\tau) \Phi' \,.$$

Now take a φ -bassis $\{E_0, E_1, E_2\}$ for the structure (φ, ξ, η, g') and its dual bassis of 1-forms $\{E_0^* = \eta, E_1^*, E_2^*\}$. Then, $\Phi' = 2E_2^* \wedge E_1^*$ and $d(\ln \sigma) = \xi(\ln \sigma)\eta + E_1(\ln \sigma)E_1^* + E_2(\ln \sigma)E_2^*$. Thus,

(4.5)
$$d\Phi' = \xi(\ln \sigma) \eta \wedge \Phi'$$

and (φ, ξ, η, g') is a trans-Sasakian structure. Moreover, by using (4.4), we deduce that (φ, ξ, η, g') is not of class C_5 .

On the other hand, from (4.4) and (4.5), (φ, ξ, η, g') is of class \mathcal{C}_6 if and only if $\xi(\ln \sigma) = 0$, *i.e.*, $\xi(\sigma) = 0$.

This ends the proof of the proposition.

Next, by using the Proposition 4.2, we give an example of trans-Sasakian structure which is neither of class C_5 nor C_6 .

Let H(1, 1) be the group of matrices of real numbers of the form

$$\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix},$$

where $x, y, z \in \mathbf{R}$. H(1, 1) is a connected simply connected nilpotent Lie group of dimension 3, which is called Heisenberg group (for an extensive study of Heisenberg groups see [H], [CFL]).

A bassis for the left invariant 1-forms on H(1, 1) is given by

$$\alpha = dx$$
, $\beta = dy$, $\gamma = dz - x dy$

and its dual bassis of left invariant vector fields on H(1, 1) is given by

$$X = \partial/\partial x$$
, $Y = \partial/\partial y + x\partial/\partial z$, $Z = \partial/\partial z$.

Define an almost contact metric structure (φ, ξ, η, g) on H(1, 1) by

$$\varphi X = Y, \quad \varphi Y = -X, \quad \xi = Z, \quad \eta = \gamma,$$

$$g = 1/2 (\alpha \otimes \alpha + \beta \otimes \beta + \gamma \otimes \gamma).$$

Then, (φ, ξ, η, g) is a Sasakian structure on H(1, 1). Now, put

$$g' = e^z g + (1 - e^z) \eta \otimes \eta.$$

Then, by using the Proposition 4.2 (in this case $\sigma = e^z$), (φ, ξ, η, g') is a trans-Sasakian structure on H(1, 1) which is neither of class C_5 nor C_6 .

Finally, since the unit sphere S^3 carries an induced Sasakian structure as orientable hypersurface of \mathbf{R}^4 (see, for instance, [B2]), we also can obtain, by using the Proposition 4.2, a trans-Sasakian structure on S^3 , which is neither of class C_5 nor C_6 .

REFERENCES

- [B1] D. E. BLAIR, The theory of quasi-Sasakian structures, J. Diff. Geom., 1 (1967), pp. 331-345.
- [B2] D. E. BLAIR, Contact manifolds in Riemannian geometry, Lecture Notes in Math, 509, Springer (1976).
- [CFL] L. A. CORDERO M. FERNANDEZ M. DE LEON, Examples of compact almost contact manifolds admitting neither Sasakian nor cosymplectic structures, Atti. Sem. Mat. Fis. Univ. Modena, 34 (1985-86), pp. 43-54.
- [ChG] D. CHINEA C. GONZALEZ, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl., (IV), 156 (1990), pp. 15-36
- [FM] A. FUJIMOTO H. MUTO, On cosymplectic manifolds, Tensor, 28 (1974), pp. 43-52.
- [GH] A. GRAY L. M. HERVELLA, The sixteen-classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., (IV), 123 (1980), pp. 35-58.
- [H] Y. HARAGUCHI, Sur une généralisation des structures de contact, Thèse, Univ. du Haute Alsace, Mulhouse (1981).
- [JV] D. JANSSENS L. VANHECKE, Almost contact structures and curvature tensor, Kodai Math. J., 4 (1981), pp. 1-27.
- [K] K. KENMOTSU, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), pp. 93-103.
- [L] P. LIBERMANN, Sur les structures presque complexes et autres structures infinitesimales regulieres, Bull. Soc. Mat. France, 83 (1955), pp. 195-224.
- [O] J. OUBIÑA, New classes of almost contact metric structures, Publicationes Mathematicae, 32 (1985), pp. 187-193.
- [Ol] Z. OLSZAK, Normal almost contact metric manifolds of dimension three, Ann. Polon. Math., 47 (1986), no. 1, pp. 41-50.

- [SH1] S. SASAKI Y. HATAKEYAMA, On differentiable manifolds with certain structures which are closely related to almost contact structure II, Tôhoku Math. J., 13 (1961), pp. 281-294.
- [SH2] S. SASAKI Y. HATAKEYAMA, On differentiable manifolds with contact metric structures, J. Math. Soc. Japan, 14 (1962), pp. 249-271.
- [V1] I. VAISMAN, On locally conformal almost Kähler manifolds, Israel J. Math., 24 (1976), pp. 338-351.
- [V2] I. VAISMAN, Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. Roma, 12 (1979), pp. 263-284.
- [V3] I. VAISMAN, Generalized Hopf manifolds, Geometriae Dedicata, 13 (1982), pp. 231-255.