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The Local Structure of Trans-Sasakian Manifolds (*). 

J. C. MARRERO 

Summary. - In this paper, we completely characterize the local stmecture of trans-Sasakian 
manifolds of dimension >1 5 by giving suitable examples. 

O. - Introduct ion.  

An almost Hermitian manifold V is called locally conformal K~hler (1.c.K.) if its 
metric is conformally related to a K~hler metric in some neighbourhood of every point 
of V. Such manifolds have been studied by various authors (see, for instance, [L], 
[GH], [V1], [V2] and [V3]). 

In [0], J. A. 0UBI~A has studied a new class of almost contact metric structure, 
called trans-Sasakian, which is, in some sense, an analogue of a locally conformal 
Kahler structure on an almost Hermitian manifold (see definition in w 1). 

On the other hand, in [ChG] the authors have introduced two subclasses of trans- 
Sasakian structures, the C5 and ~-structures,  which contain the Kenmotsu and 
Sasakian structures, respectively. 

In this paper, we completely characterize the local nature of the trans-Sasakian 
structures on connected differentiahle manifolds of dimension 1> 5. In section 1, we 
recall some results on almost contact metric manifolds. In section 2 and 3, we charac- 
terize the local nature of e5 and C6 structures, respectively (see Theorems 2.1 and 
3.1), by using the techniques of [01]. In section 4 we prove that the trans-Sasakian 
structures are of class e5 or ~ (see Theorem 4.1). Finally, we obtain some examples of 
3-dimensional trans-Sasakian structures which are neither of class C~nor ~6. 

I wish to express my hearty thanks to D. CHINEA for several comments useful in 
the preparation of this paper. 

(*) Entrato in Redazione il 7 agos~o 1989. 
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Work supported by the ,(Consejer/a de Educaci6n del Gobierno de Canarias-. 
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1.  - P r e l i m i n a r i e s .  

Let V be a C ~ almost Hermitian manifold with metric g and almost complex struc- 
ture J. Denote by ~(V) the Lie algebra of C ~ vector fields on V. The K~hler form t~ is 
given by t~(X, Y )=g(X ,  JY); and the Lee form is the 1-form 0 defined by 
O ( X ) = l / ( n - 1 )  ~ ( J X ) ,  where ~ denotes the coderivate, d i m V = 2 n  and 
X, Y e :~(V). 

Recall that V is said to be K~hler if d~ = 0 and N~ = 0 and locally conformal 
K~hler (1.c.K.) if dt~ = 0 At~ and N j  = 0, where N] denotes the Nijenhuis tensor of J. 

On the other hand, let M be a C ~ almost contact metric manifold with metric g and 
almost contact structure (~, ~, v). Then we have, 

~ 2 - - - 1 + 7 ~ ) ~  , 7(~) = ! ,  

g(~X, ~Y) = g(X, Y) - ~(X) 7(Y) , 

for X, Y e 5(M), where I denotes the identity transformation. The fundamental 2- 
form ~ of the almost contact metric manifold (M, ~, ~, v, g) is defined by 
~(X, Y) = g(X, ~Y) for all X, Y e 5(M). 

An almost contact structure (~, ~, v) is said to be normal if the almost complex 
structure J on M x R given by 

(1.1) J(X, a d/dt) = (~X - a~, ~(X) d/dt)  , 

where a is a C ~ function on M x R, is integrable, which is equivalent to the condition 
N~ +2d7 | ~ = 0, where N~ denotes the Nijenhuis torsion of 9 (see [SH1] and 
[SH2]). 

Now, let (?, ~, 7, g) be an almost contact metric structure on M. We define an al- 
most Hermitian structure (J, h) on M x R, where the almost complex structure J is 
given by (1.1) and h is the Riemannian metric following: 

h((X, a d /  dt), (Y, b d /  dt)) = g(X, Y) + ab. 

An almost contact metric structure (~, ~, 7, g) is said to be trans-Sasakian (see [0]) 
if the almost Hermitian structure (J, h) on M x R is 1.c.K. 

In [0], the author proves that (~, ~, 7, g) is a trans-Sasakian structure if and only if 
it is normal and 

(1.2) d~ = 2~ 7 A ~, 

(1.3) d~ = ~ ,  

where ~ = div $/(2n) and fl = 4~(~)/(2n). 
An almost contact metric structure (~, ~, 7, g) is said to be: 

C5 if it is trans-Sasakian with fl = 0; Kenmotsu if it is r with a = 1; ~ if it is 
trans-Sasakian with ~ = 0; Sasakian if it is r with fi = 1; cosymplectic if it is trans- 
Sasakian with a = fl = 0 (see [B2], [ChG] and [K]). 
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We say that  the almost contact s t ructure  (~, ~, ~) has rank r if and only if the 1- 
form ~ has rank r. Consequently, (~, ~, 7) has rank r = 2s if (d~) 8 r 0 and ~ A (dr) 8 = 0, 
and has rank r = 2s + 1 if v A (dr) ~ r 0 and (dr) ~ + 1 = 0. 

Le t  (M, ~, ~, ~, g) be an almost contact metric manifold and ~ a positive differen- 
tiable function on M. We put, 

g' = ~ g + ( 1 - ~ ) ~ |  

Then, (~, ~, ~, g') is also an almost contact metric s t ructure  on M. Moreover,  ff 
(~, ~, v, g) is trans-Sasakian and we denote by r  the fundamental  2-form of the almost 
contact metric s tructure (~, ~, ~, g'), we have: 

(1.4) d~' = (d(ln ~) + (div f/n) 7) A ~', 

(1.5) d~ = (~/~) ~ ' .  

AGREEMENT. - Through the res t  of this paper, M always denotes a (2n + 1)-di- 
mensional (n I> 2) connected manifold unless s tated otherwise. 

2 .  - ~ 5 - s t r u c t u r e s .  

In this section, we describe the local s t ructure .of  manifolds of class ~5. Before, we 
examine the following example: 

EXAMPLE 1. - Let  M be the product manifold L • V, where  L is the circle S 1 or an 
open interval (a', b'), - ~  ~< a ' <  b ' ~  < ~,  and (V,J,G) is a 2n-dimensional K~hlerian 
manifold. Let  E be a nowhere vanishing vector  field on L, E* its dual field of 1-forms 
and z a positive function on L. Pu t  

[~(aE, X) = (0, JX) ,  ~ = (E, 0), ~ = (E*, 0), 

(2.1) ~ [g((aE, X), (bE, Y)) = ~G(X, Y) + ab , 

where  a and b are differentiable functions on M, and X, Y e 9~ (V). Then it is not diffi- 
cult to check that  (~, ~, v,g) is an almost contact metric s t ructure  on M of class 
es. 

We remark  that in the above example the 1-form (div E.) ~ = d(ln ~ ) is closed. We 
generalize this result  for trans-Sasakian manifolds. 

Le t  (~, $, V, g) be a trans-Sasakian s t ructure  on M, then 

LEMMA 2.1. - The 1-form (div~)~ is closed. 

P R O O F .  - From the definition of trans-Sasakian s t ructure  (see (1.2) and (1.3)), we 
obtain 

(2.2) d((div ~) ~,) A �9 = 0, 
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(2.3) d((div r 7) A ~ = (/~ divr v A ~.  

Let  p be a point of M. We shall prove that d((div ~)v)p = 0. If  ~(p) = 0, we deduce 
the result  from the relations (2.2) and (2.3), since dimM~>5. 

Now, we suppose that  ~(p) r 0. Let  U be a neighbourhood of p such that  ~ r 0 on 
U. We can suppose that  ~ > 0 on U. Taking in (1.3) the exterior differential and using 
(1.2), one gets  

(d~ + ~(div ~/n) 7) A ~ = O, 

and since rang ~ > 4  we obtain d~+~(div~/n)r~=O, i.e., d( ln~)=- (d iv~ /n )  
which also proves that  d((div ~.)v)p = 0. u 

Let  (M, z, ~, 7, g) be an almost contact metric manifold of class ~s. Next ,  we prove 
the following structure theorem, which generalizes a similar result  obtained by KEN- 
MOTSU [K] for Kenmotsu manifolds. 

THEOREM 2.1. - The manifold M is locally the product (a', b') x V, where (a', b') 
is an open interval and V is a 2n-dimensional Ki%hlerian manifold, on which the 
structure (9, ~, v,g) is given as in (2.1). 

PROOF. - Fix a point p e M. From Lemma 2.1, there  exists a neighbourhood U' of 
p on which d(ln q) = (div 5./n)v, for a certain positive function q. Put ,  g '=  ( l /q)  g + 
+ (1 - l /q )  7 | 7. F rom the definition of s t ructure of class es and using (1.4) and (1.5), 
@,~,v,g ' )  is cosymplectic on U'. Therefore the point p has a neighbourhood 
U = (a',b') x Vc U' such that (9, ~, 7, g') is given on U by  

~(aE, X)  = (0, J X ) ,  ~ =  (E, 0), v = (E*,  0), 

g'((aE, X), (bE, Y)) = G(X, Y) + ab , 

where  (J, G) is a K~hlerian structure on V, E is a nowhere vanishing vector  field on 
(a', b') and E* its dual (see, for instance, [B1]). Finally, since g = ~g' + (1 - q) 7 | v, 
we see that  the s tructure (~,~,7,g) on U is given as in (2.1). " 

REMARK. - In [K], K. KENMOTSU has proved that  a Kenmotsu manifold is not com- 
pact. However ,  taking in the example 1, L = S I, V a compact K~hler manifold, rj the 
length element of the circle S 1 and q a positive function (not constant) on S 1, we ob- 
tain an almost contact metric s tructure of class c5, which is not Kenmotsu,  on the 
compact manifold M = S 1 x V. 

Finally, we suppose that  (9, ~, 7, g) is an almost contact metric s t ructure  of class Cs 
on a simply connected manifold M. From Lemma 2.1, we have (div ~./n) v = don q) for 
a certain positive function q on M. Put  g '  = ( l /q)  g + (1 - l / q )  7 | 7. Then, (9, ~, V, g') 
is a cosymplectic s tructure on M. Consequently, from Proposition 2.3 of [FM], we 
deduce 
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PROPOSITION 2.1. - A compact simply connected manifold can not admit a 
structure of class es. 

3. - G-s t ruc tu res .  

An almost contact metric s tructure (~, ~, 7, g) on M is said to be ~,-SasaMan (r o R ,  
~, =~ 0) if it is normal and dr~ = r~, where  ~ is the fundamental 2-form (see [JV]). If  
(~, $, 7, g) is Sasakian then it is 1-Sasakian, and if it is r-Sasakian or cosymplectic then 
it is of class Cs. Next ,  we prove the converse. 

LEMMA 3.1. ~- I f  (~, ~, 7, g) is an almost contact metric structure on M of class C6, 
then it is r-Sasakian or cosymplectic. 

PROOF. - Taking in (1.3) the exterior differential, we get  that  dflA ~ = 0 and, 
since M is connected and dim M ~ o, we obtain ~ = ~, = constant. Thus, if r r 0, the 
s t ructure  (~, ~, 7, g) is r-Sasakian and if ~, = 0, it is cosymplectic. [] 

Therefore, a not cosymplectic ~ manifold is essentially a Sasakian manifold. In 
fact, if the s tructure (~, ~, 7, g) is y-Sasakian then the s t ructure  (~, ( l / r )~ ,  rT, reg) is 
Sasakian. 

Now, let M be the product manifold L • V, where  L is the circle S 1 or an open in- 
terval  (a', b'), - ~  ~< a ' <  b'~< ~,  and (V, J ,  G) is an almost Hermitian manifold of di- 
mension 2n. Let  E be a nowhere vanishing vector field on L, E* its dual field of 1- 
forms and oJ a 1-form on V. 

Put ,  

(3.1) { ~(aE, X)  = ( - ~ ( J X ) E ,  JX) ,  E= (E,O), 7 = (E*,~) ,  

g((aE, X),  (bE, Y)) = G(X, Y) + ab + co(X) ~o(Y) + oJ(X) b + co(Y) a, 

where a, b are differentiable functions on M and X, Y e 5 (V). By  straightforward 
verification we can see that  (~, ~, rj, g) is an almost contact metric s t ructure  on M. 
Moreover,  if we denote by N~ and N~ the Nijenhuis tensors of J and ~, respectively,  
and by  t~ the K~thler form of (V,J,G), then it is not difficult to check the 
following: 

~ , O P O S I T I O N  3 . 1 .  

(3.2) N~ ((aE, X),  (bE, Y)) + 2dT((aE, X),  (bE, Y))(E, O) = 

= ((-~o(Nj (X, Y)) - 2&o(JX, JY)  + 2d~(X, Y)) E,  N j  (X, Y)),  

(3.3) ~((aE, X),  (bE, Y)) = t~(X, Y) , 

for X, Y e ~(V) and a, b differentiable functions on M. 
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Next, we describe the local structure of manifolds of class C~. Previously, we ex- 
amine the following example. 

E X A M P L E  2 .  - Let  M, V, L, J, E and E* be as in example 1 and o) a 1-form on V, 
such that  do~ = flQ where fl is constant and t) the K~hler form of (V, J,  G). We define 
9, ~, V and g as in (3.1). Then, from (3.2) and (3.3) we deduce 

a) I f  fl = 0, (9, ~, ~, g) is a cosymplectic structure. 

b) If  ~ :~ 0, (~, ~, V, g) is a/~-Sasakian structure. 
Now, we prove that  the converse holds locally. Le t  (% ~, v, g) be an almost contact 

metric structure of class ~ on M ,  then 

THEOREM 3.1. - The manifold M is locally the product (a', b') x V, where (a', b') 
is an open interval and V is a 2n-dimensional Ki%hlerian manifold, on which the 
structure (~, ~, ~, g) is given as in Example 2. 

PROOF. - Fix a point p e M. Let  U be a coordinate neighbourhood of p, with coordi- 
nates ( x ~  2n) such that  U = ( - a , a )  x V, x ~ is the coordinate on ( -a ,a ) ,  
(x 1, ..., x 2~ ) are the coordinates on V and ~ = a /ax  ~ on U. Let  gij, vi, ~i be the compo- 
nents of g, v and ~ in the coordinates (x ~ x ~, .. . ,  x2~). From Lemma 3.1 we obtain the 
relations 

~ g  = ~ v  = 2 ~  = 0 

where ~ denotes the Lie derivate with respect to ~. Using the above relations we de- 
duce that  the components g~j V~, ~. , j are independent of the coordinate x ~ Therefore 
they  can be used to a description of an almost Hermitian structure on V. Thus, 
define 

2n 

J(a /ax  i) = • ?i(a/ax ~) j =  1 , . . . , 2n ,  
i = l  

G(a/ax ~, o /ax  ~) = g~j - v~vj, i, j = 1, .. . ,  2n .  

I t  is clear tha t  the pair (J, G) is an almost Hermitian structure on V. Moreover, if 
we put 

~(a/axe) = ~i (i = 1, ..., 2n), E = ~/Ox ~ , E* = dx ~ 

then the almost contact metric structure (9, ~, v, g) on U and the almost Hermit ian 
structure (J, G) on V are related by (3.1). Consequently, from relations (3.2) and 
(3.3), we deduce that  (J, G) is a Ki~hler s tructure on V. Finally, from the definition of 
s tructure of class ~ ,  we obtain do~ =,~Q with ~ constant, where t) is the Ki~hler form 
of (V,J ,G).  " 
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4.  - T r a n s - S a s a k i a n  m a n i f o l d s .  

First ,  we s tudy the rank of a trans-Sasakian s tructure 

PROPOSITION 4.1. - Let (M, ~, ~, ~, g) be a t rans-Sasakian mani fo ld  and r the rank  
of  (~, ~, ~). Then r cannot be even. Moreover, i f  r = 2s + 1, then s = 0 or s = n and we 
have 

a) (~, ~, ~, g) is of  class e5 i f  and only i f  s = O. 

b) (~, ~, 7, g) is of  class ~ not cosymplectic i f  and only i f  s = n. 

PROOF. - If  r = 2s, from (1.3), we deduce that  fl =/= 0 at every point. On the other 
hand, since v A (dr) ~ = 0 and v A ~ r 0 we obtain ~ = 0, which is a contradiction. 

The assertion a) is evident. 
Now, we suppose that  r = 2s + 1, s r 0. Then, it is clear that  f l r  0 at every point 

and thus r = 2 n + l .  From Lemma 2.1, the 1-form a V = - ( d i v ~ . / 2 n )  ~ is closed. 
Therefore, by using 1.3, we obtain 

(4.1) d~A~7+~fl~ = 0 ,  

and since v A ~ r  we deduce af t=0,  i.e., a = 0 .  Consequently, the s tructure 
(~, ~, 7, g) is of class ~ not cosymplectic. 

Conversely, if r = 2s + 1 and (~, $, v, g) is of class ~ and it is not cosymplectic then 
/~ r 0 and thus s = n. �9 

Next,  we prove that  a trans-Sasakian structure is of class e5 or ~ .  

THEOREM 4.1. - I f  (~, ~, ~, g) is a t rans-Sasakian structure, it is of  class e5 or ~ .  

PROOF. - Denote by A the following set 

A = {x e M/f l(x)  = 0}, 

where dv = fl~. 

Le t  x0 be a point of A. From Lemma 2.1, 2~v = (dive/n) ~ is a closed 1-form. 
Then, there exists an open neighbourhood U of x0 on which d(lnz) = 2~v, for a certain 
positive function z. Put, 

(4.2) g ' =  (1 / z )g  + ( 1 -  1 / z ) v |  

From relations (1.4), (1.5) and by using the Lemma 3.1 we obtain that  the almost 
contact metric s tructure (~, $, ~, g') is of class ~ and ~/~ = c (c constant). Thus, since 
/~(x0) = 0, c = 0 and therefore U c A. 

Consequently, A is an open subset of M. On the other hand, it is clear 
that  A is closed in M. Therefore, from the connectedness of M, we deduce 
that  A = M  or A = r  If  A = M ,  (~,~,v,g) is of class e5 (in this case M may 
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also be cosymplectic) and if A = r the rank of the structure (9, ~, 7) is 2n + 1 
and hence, using the Proposition 4.1, (9, ~, 7, g) is of class ~ .  [] 

The Theorem 4.1 is not true for dim M = 3. In fact, if (M, 9, ~, 7, g) is a 3-dimen- 
sional Sasakian manifold, and 

g ' =  ~ g + ( 1 - z ) 7 |  

where ~ is a positive function on M, then 

PROPOSITION 4.2. - (9, ~, 7, g') is a t rans-Sasakian structure on M. Moreover, i f  
~(~) r O, then (.z, ~, 7, g') is neither of  class C~ nor ~ ~  

PROOF. - It is clear that (z, ~, 7, g') is a normal structure on M. Moreover, if ~' is 
the fundamental 2-form of the structure (9, ~, r ,g ' ) ,  we deduce, from (1.4) and (1.5), 
that 

(4.3) d~' = d(ln z) A @', 

(4.4) dT'= (1/~) ~ ' .  

Now take a ;o-bassis {Eo, El ,  E2 } for the structure (9, ~, 7, g') and its dual bassis of 
1-forms {E* = 7, E~', E~ }. Then, r = 2E~ A E* and d(ln ~) = ~.(ln ~) 7 + 
+ E1 (ln ~) E* + E2 (ln ~) E~.  Thus, 

(4.5) d~' = 4(ln ~) 7 A @' 

and (9, ~, 7,g')  is a trans-Sasakian structure. Moreover, by using (4.4), we deduce 
that (9, ~, 7, g') is not of class C5. 

On the other hand, from (4.4) and (4.5), (9, ~, 7, g') is of class e6 if and only if 
~(ln~)=0, i.e., ~(~)=0. 

This ends the proof of the proposition. [] 

Next, by using the Proposition 4.2, we give an example of trans-Sasakian struc- 
ture which is neither of class C5 nor ~ .  

Let H(1, 1) be the group of matrices of real numbers of the form 

1 

0 

where x, y, z e R. H(1, 1) is a connected simply connected nilpotent Lie group of di- 
mension 3, which is called Heisenberg group (for an extensive study of Heisenberg 
groups see [H], [CFL]). 

A bassis for the left invariant 1-forms on H(1, 1) is given by 

= dx ,  ~ -= dy ,  y = dz - x dy 
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and its dual bassis of left invariant vector fields on H(1, 1) is given by 

x=ala , Y=atay+ a/a , z= lo . 
Define an almost contact metric structure (9, ~, 7, g) on H(1, 1) by 

~ X = Y ,  ~ Y = - X ,  ~ = Z ,  ~=], ,  

g =  1/2(~|174 y| 

Then, (9, ~, v, g) is a Sasaldan structure on H(1, 1). 
Now, put 

g ' =  e ~ g + ( 1 - e ~ ) r ~ |  

Then, by using the Proposition 4.2 (in this case z =  e~), (~,~,v,g') is a trans- 
Sasakian structure on H(1, 1) which is neither of class C5 nor ~ .  

Finally, since the unit sphere S 3 carries an induced Sasakian structure as orien- 
table hypersurface of R 4 (see, for instance, [B2]), we also can obtain, by using the 
Proposition 4.2, a trans-Sasakian structure on S 3, which is neither of class C5 nor 
e6. 
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