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Abstract. This paper investigates the local integrals

Zm(t, χ) =

∫
Hm(OC)

χ(det(x))| det(x)|sdx

where OC represents the integers of a composition algebra over a non-archime-
dean local field K and χ is a non-trivial character on the units in the ring of
integers of K extended to K∗ by setting χ(π) = 1. The local zeta function for
the trivial character is known for all composition algebras C. In this paper,
we show in the quaternion case that Z(t, χ) = 0 for all non-trivial characters
and then compute the local zeta function in the ramified quadratic extension
case for χ equal to the quadratic character. In this latter case, Z(t, χ) = 0 for
any character of order greater than 2.

1. Introduction

Let K be a finite, algebraic extension of Qp, OK the ring of integers in K, π the
uniformizing element in OK , πOK the maximal ideal of OK , UK = OK − πOK the
group of units in OK , and OK/πOK the residue field of K with cardinality q.

With f(x) ∈ K[x1, x2, ..., xn] − {0} a non-constant polynomial over K and χ :
UK → C× a character of UK which has been extended to K∗ by setting χ(π) = 1,
one associates the Igusa local zeta function

Z(s, χ) =

∫
OnK

χ(f(x))|f(x)|sdx,

for Re(s) > 0, where | · | represents the p-adic absolute value on K, χ(0) is set equal
to 0, and dx denotes the Haar measure on Kn normalized so that the measure ofOnK
is 1. Igusa [6] showed that this local zeta function has a meromorphic continuation
to the whole complex plane and is, in fact, a rational function of t = q−s. We write
Z(s, χ) = Z(t, χ).

Let K ′ = K(
√
ε) be a quadratic unramified extension of K, where ε is a non-

square unit in OK , let L = K(
√
−π) be a ramified quadratic extension of K and

let D = K ′ ⊕
√
πK ′ be a quaternion division algebra. These vector spaces over

K have natural involutions and form composition algebras C over K [2] and are
called the singular composition algebras, as they arise for only finitely many primes.
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In addition, we can use the composition algebras and their involutions to form the
vector space ofm×m hermitian matrices overK, Hm(C). These hermitian matrices
are Jordan algebras with norm form equal to the formal determinant of the matrix
[10, 5, 9].

This paper investigates the following integrals:

Zm(t, χ) =

∫
Hm(OC)

χ(det(x))| det(x)|sdx

where OC represents the integers of the composition algebra. In [8, 11] the local
zeta functions for the trivial character are given for all composition algebras. In
this paper, we quickly show in the quaternion case that Z(t, χ) = 0 for all non-
trivial characters and then compute the local zeta function in the ramified quadratic
extension case for χ equal to the quadratic character. In this case, Z(t, χ) = 0 for
any character of order greater than 2.

2. Quaternion case

Before we consider the quaternion case, we need the following simple lemma.

Lemma 1 ([7, page 82]). Suppose that UK acts on Kn as a group of measure-
preserving homomorphisms in such a way that f(u · x) = uλf(x) for a fixed λ and
for all u ∈ UK and x ∈ Kn. Then Z(t, χ) = 0 for all χ of order not dividing λ.

Proof. Since x → u · x is a measure-preserving transformation and χ is multi-
plicative, we see immediately that Z(t, χ) = χ(u)λZ(t, χ) for all u ∈ UK . Hence,
if χλ 6= 1 then there exists a u ∈ UK such that χ(u)λ 6= 1, which implies that
Z(t, χ) = 0.

The division algebra D is not isomorphic to a full matrix algebra. For this
reason, it is called the twisted case. The quaternion division algebra is isomorphic
to a matrix subalgebra with coefficients in K ′ where the isomorphism φ is defined
as follows for α ∈ D (and ai ∈ K):

φ : α = a1 +
√
εa2 + (a3 +

√
εa4)
√
π →

(
a1 +

√
εa2 π(a3 +

√
εa4)

a3 −
√
εa4 a1 −

√
εa2

)
.

Using this isomorphism, the m ×m hermitian matrices with coefficients in D are
isomorphic to a subalgebra of the 2m×2m alternating matrices with coefficients in
L by the following prescription. For each entry xi,j in the hermitian matrix Hm(D)

substitute the 2×2 matrix φ(xi,j)
(

0
−1

1
0

)
. In this way, we get a linear isomorphism

ψ of Hm(D) to a subalgebra of Alt2m(K ′).
For example, the isomorphism ψ is defined as follows for m = 2:(

a1

b1 +
√
εb2 + (b3 +

√
εb4)
√
π

b1 −
√
εb2 − (b3 +

√
εb4)
√
π

c1

)

→


0 a1 b3 −

√
εb4 b1 −

√
εb2)

−a1 0 −b1 −
√
εb2 −π(b3 +

√
εb4)

−b3 +
√
εb4 b1 +

√
εb2 0 c1

−b1 +
√
εb2 π(b3 +

√
εb4) −c1 0

 .
The Pfaffian of an alternating matrix is the square root of its determinant. If we
denote the alternating image of x ∈ Hm(D) by ψ(x) = A then det(x) = Pf(A).

In this case, we have a measure-preserving homomorphism for all u′ ∈ UK′ on
the vector space of Hermitian matrices over D. For any x ∈ Hm(D) and u′ ∈ UK′ ,
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we define the action u′ · x =
(
u′

0
0
1m−1

)
x
(
ū′

0
0
1m−1

)
, where ū′ is the conjugate of u′

in UK′ .
Now, f(u′ · x) = det(u′ · x) = NK′/K(u′) det(x) = uf(x) for any u ∈ UK since

the norm map is surjective. Finally, we can apply the lemma above with λ = 1 and
f(x) = det(x) to show that Zm(t, χ) = 0 for all non-trivial characters χ and for all
m ≥ 1.

3. Ramified quadratic case

In this case, we would like to compute the following integral:

Zm(t, χ) =

∫
Hm(OL)

χ(det(x))| det(x)|sdx

for χ a non-trivial character on UK and for (2, q) = 1. For x ∈ Hm(L), we have a

measure-preserving homomorphism for all u by defining u·x =
(
u
0

0
1m−1

)
x
(
u
0

0
1m−1

)
.

This action implies that det(u · x) = u2 det(x). We can now apply Lemma 1 above
with λ = 2 and f(x) = det(x) to show that Zm(t, χ) = 0 for all χ of order greater
than 2. As mentioned above, the local zeta function for the trivial character χ0

is known [11]. Adopting the notation (a) = (1 − q−a), (a)+ = (1 + q−a), and
(a, b) = (1− q−atb), we prove the following theorem.

Theorem 1. For χ the unique quadratic character on UK ,

Zm(t, χ) =

{
χ(−1)m/2q−m/2

∏m/2
i=1

(2i−1)
(2i,1) , m even,

0, m odd.

Proof. We will outline the proof of this theorem but note that it follows closely the
procedure used in [11] to compute the integral in the trivial character case. We
need to find the orbital decomposition of Hm(OL), to compute two partial integrals
Im,k(t, χ) and Jm,2r(t, χ), to use them and the orbital decompositions of Hm(Fq)
and Altm(Fq) to get a recursion relation for Zm(t, χ), and finally to show that the
expression above is the correct closed form solution.

Consider each entry in Hm(OL) modulo
√
−π and then modulo π and see that

Hm(OL) = Hm(Fq)⊕
√
−πAltm(Fq) mod π

where Hm(Fq) is the vector space of symmetric matrices over Fq and Altm(Fq)
are the skew-symmetric matrices over Fq. The orbital structure of Hm(Fq) for
(q, 2) = 1 under the action of G = GLm(Fq) defined by g ·a = ga tg for a ∈ Hm(Fq)
is as follows:

Hm(Fq) = {0} ∪
[
m⋃
k=1

G · ξ1
k ∪G · ξ2

k

]

where ξ1
k =

(
1k
0

0
0

)
, ξ2

k =
(

1k−1
0
0

0
ε
0

0
0
0

)
, and ε ∈ Fq − (Fq)

2. This follows from

the fact that α1x
2
1 + α2x

2
2 = 1 has solutions in Fq for all αi ∈ F×q and that we

can diagonalize any quadratic form by an Fq-linear change of variables such that
α1x

2
1 +α2x

2
2 + · · ·+αkx

2
k = y2

1 +y2
2 + · · ·+α1α2 · · ·αky2

k for αi ∈ F×q . Note that any
square αi can be absorbed into yk and that the decomposition above is disjoint.

The cardinality of these orbits can be computed using Dickson’s formulae for the
following groups [1, pages 78,160,94]:

|GLm(Fq)| = qm
2 ∏m

i=1(i), |Sp2r(Fq)| = qr(2r+1)
∏r
i=1(2i),
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|SOm(ξim)(Fq)| = qm(m−1)/2

{ ∏(m−1)/2
j=1 (2i), m odd,

(1− χ(d)q−m/2)
∏m/2−1
j=1 (2i), m even,

|Om(ξim)(Fq)| = 2|SOm(ξim)(Fq)|
where d = (−1)m(m−1)/2 det(ξim) for i = 1, 2 and χ is the quadratic character on
Fq. Thus, |SO2n(ξi2n)(Fq)| depends on

χ((−1)nε) =


1, n even, ε ∈ (F×q )2,
−1, n even, ε ∈ (F×q )− (F×q )2,
χ(−1), n odd, ε ∈ (F×q )2,
−χ(−1), n odd, ε ∈ (F×q )− (F×q )2.

Note that the stabilizer of ξik is the set of all
(
g11

0
g12

g22

)
∈ GLm(Fq) such that

g11 ∈ Ok(ξim)(Fq), g12 ∈ Matk,m−k(Fq), and g22 ∈ GLm−k(Fq). Thus, we see that

|G · ξik| =
|GLm(Fq)|

|GLm−k(Fq)|qk(m−k)2|SOk(ξim)(Fq)|
.

In our calculation, we will need the cardinality of |G · ξ1
k|− |G · ξ2

k|. We make the
convention that if k = 0 we simply mean the orbit of the 0 matrix, |G · 0| = 1, and
if a product is taken from a larger index to a smaller, we set it equal to 1. Using
the formulae of Dickson with special attention to the case when k is even, we see
that

|G · ξ1
k| − |G · ξ2

k| =


1, k = 0,
0, k odd,
χ(−1)k/2 (A−B), k even,

where

A−B

=
qm

2 ∏m
i=1(i)

2q(m−k)2
∏m−k
j=1 (j)qk(m−k)qk(k−1)/2

∏k/2−1
i=0 (2i)

(
1

1− q−k/2 −
1

1 + q−k/2

)

= qk(2m−k)/2

∏m
i=m−k+1(i)∏k/2
i=1(2i)

.

The orbital decomposition of Alt(Fq) into disjoint orbits is known [4] to be

Alt(Fq) = {0} ∪


[m2 ]⋃
k=1

G ·
(
Er
0

0

0

) ,

where [·] is the greatest integer function and Er is the 2r × 2r block matrix with
r copies of

(
0
−1

1
0

)
down the main diagonal and zeros elsewhere. The stabilizer

of
(
Er
0

0
0

)
is the set of all

(
g11

0
g12

g22

)
∈ GLm(Fq) such that g11 ∈ Sp2r(Fq), g12 ∈

Mat2r,m−2r(Fq), and g22 ∈ GLm−2r(Fq). Thus, we see that∣∣∣∣G ·(Er0 0

0

)∣∣∣∣ = qr(2m−2r−1)

∏2r
i=1(m− 2r + i)∏r

l=1(2l)
.
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Following the computation of the partial integrals in [8], we see that

Im,k(t, χ) =

∫
diag(α1,... ,αk,0)+

√
−πAltm(Fq)+πHm(OL)

χ(det(x))| det(x)|sdx

= χ(α1) . . . χ(αk)q−k(2m−k+1)/2

×
∫
√
−πAltm−k(Fq)+πHm−k(OL)

χ(det(x))| det(x)|sdx

and that

Jm,2r(t, χ) =

∫
√
−π(Er0

0
0)+πHm(OL)

χ(det(x))| det(x)|sdx

= χ(−1)rq−m
2

tm−rZm−2r(t, χ)

for α1, α2, . . . , αk ∈ UK , 0 ≤ k ≤ m, and 0 ≤ r ≤ [m/2].
Applying the key lemma for orbital decomposition [8] and using the formulae for

the cardinality of the orbits of Hm(Fq) and the first partial integral, we find that

Zm(t, χ) =
m∑
k=0

(|G · ξ1
k| − |G · ξ2

k|)q−k(2m−k+1)/2

×
∫
√
−πAltm−k(Fq)+πHm−k(OL)

χ(det(x))| det(x)|sdx.

By our formula for the difference between these orbits, we know that the difference
is non-zero only for even values of k, and our formula becomes

Zm(t, χ) =

[m/2]∑
k=0

χ(−1)kq−k
∏m
i=m−2k+1(i)∏k

i=1(2i)

×
∫
√
−πAltm−2k(Fq)+πHm−2k(OL)

χ(det(x))| det(x)|sdx.

Applying the key lemma again and using the formulae for the cardinality of the
orbits of Altm−k(Fq) and the second partial integral, we have that

Zm(t, χ) =

[m/2]∑
k=0

χ(−1)kq−k
∏m
i=m−2k+1(i)∏k

i=1(2i)

[(m−2k)/2]∑
r=0

∣∣∣∣G · (Er0 0

0

)∣∣∣∣
×
∫
√
−π
(
Er
0

0
0

)
+πHm−2k(OL)

χ(det(x))| det(x)|sdx

=

[m/2]∑
k=0

χ(−1)kq−k
∏m
i=m−2k+1(i)∏k

i=1(2i)

[(m−2k)/2]∑
r=0

qr(2m−4k−2r−1)

×
∏2r
i=1(m− 2k − 2r + i)∏r

i=1(2i)
χ(−1)rq−(m−2k)2

tm−2k−r

×Zm−2k−2r(t, χ).

We see immediately from this recursion formula that Z1(t, χ) = 0. This then
implies, by induction, that Zm(t, χ) = 0 for all odd m. To complete the proof of
our theorem, we let m = 2n, substitute our closed form expression for Zm(t, χ) into
the recursion formula above, divide both sides by Zm(t, χ), and change the order of
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summation by letting k → n− k. After these steps, the following identity remains
to be proven:

1 =
n∑
k=0

∏2(n−k)
i=1 (2k + i)∏n−k

i=1 (2i)
q−4k2

∏n
i=k+1(2i, 1)∏n
i=k+1(2i− 1)

×
k∑
r=0

q2r(2k−r)t2k−r
∏2r
i=1(2k − 2r + i)

∏k
i=k−r+1(2i, 1)∏r

i=1(2i)
∏k
i=k−r+1(2i− 1)

.

Using the Gauss identity [3] and Lemma 3 in [11] with x = q−2, we can show that

the inner sum above is precisely q2k2

tk. For completeness, we state Lemma 3 in
[11] without proof.

Lemma 3 ([11]). For any non-negative integer k, the following identity holds:

1 =
k∑
j=0

xj
2

tj
k−j∏
i=1

(1− xj+i)
(1− xi)

k−j∏
i=1

(1− xj+it).

Simplifying, our identity becomes:

1 =
n∑
k=0

q−2k2

tk
n−k∏
i=1

(2(k + i))

(2i)

n∏
i=k+1

(2i, 1)

and another application of Lemma 3 in [11] proves the theorem.
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