THE LOCAL ZETA FUNCTION FOR THE NON-TRIVIAL CHARACTERS ASSOCIATED WITH THE SINGULAR JORDAN ALGEBRAS

MARGARET M. ROBINSON

(Communicated by William W. Adams)

Abstract. This paper investigates the local integrals

$$
Z_{m}(t, \chi)=\int_{H_{m}\left(O_{C}\right)} \chi(\operatorname{det}(x))|\operatorname{det}(x)|^{s} d x
$$

where O_{C} represents the integers of a composition algebra over a non-archimedean local field K and χ is a non-trivial character on the units in the ring of integers of K extended to K^{*} by setting $\chi(\pi)=1$. The local zeta function for the trivial character is known for all composition algebras C. In this paper, we show in the quaternion case that $Z(t, \chi)=0$ for all non-trivial characters and then compute the local zeta function in the ramified quadratic extension case for χ equal to the quadratic character. In this latter case, $Z(t, \chi)=0$ for any character of order greater than 2 .

1. Introduction

Let K be a finite, algebraic extension of \mathbf{Q}_{p}, O_{K} the ring of integers in K, π the uniformizing element in $O_{K}, \pi O_{K}$ the maximal ideal of $O_{K}, U_{K}=O_{K}-\pi O_{K}$ the group of units in O_{K}, and $O_{K} / \pi O_{K}$ the residue field of K with cardinality q.

With $f(x) \in K\left[x_{1}, x_{2}, \ldots, x_{n}\right]-\{0\}$ a non-constant polynomial over K and χ : $U_{K} \rightarrow \mathbf{C}^{\times}$a character of U_{K} which has been extended to K^{*} by setting $\chi(\pi)=1$, one associates the Igusa local zeta function

$$
Z(s, \chi)=\int_{O_{K}^{n}} \chi(f(x))|f(x)|^{s} d x
$$

for $\operatorname{Re}(s)>0$, where $|\cdot|$ represents the p-adic absolute value on $K, \chi(0)$ is set equal to 0 , and $d x$ denotes the Haar measure on K^{n} normalized so that the measure of O_{K}^{n} is 1 . Igusa [6] showed that this local zeta function has a meromorphic continuation to the whole complex plane and is, in fact, a rational function of $t=q^{-s}$. We write $Z(s, \chi)=Z(t, \chi)$.

Let $K^{\prime}=K(\sqrt{\epsilon})$ be a quadratic unramified extension of K, where ϵ is a nonsquare unit in O_{K}, let $L=K(\sqrt{-\pi})$ be a ramified quadratic extension of K and let $D=K^{\prime} \oplus \sqrt{\pi} K^{\prime}$ be a quaternion division algebra. These vector spaces over K have natural involutions and form composition algebras C over K [2] and are called the singular composition algebras, as they arise for only finitely many primes.

[^0]In addition, we can use the composition algebras and their involutions to form the vector space of $m \times m$ hermitian matrices over $K, H_{m}(C)$. These hermitian matrices are Jordan algebras with norm form equal to the formal determinant of the matrix $[10,5,9]$.

This paper investigates the following integrals:

$$
Z_{m}(t, \chi)=\int_{H_{m}\left(O_{C}\right)} \chi(\operatorname{det}(x))|\operatorname{det}(x)|^{s} d x
$$

where O_{C} represents the integers of the composition algebra. In $[8,11]$ the local zeta functions for the trivial character are given for all composition algebras. In this paper, we quickly show in the quaternion case that $Z(t, \chi)=0$ for all nontrivial characters and then compute the local zeta function in the ramified quadratic extension case for χ equal to the quadratic character. In this case, $Z(t, \chi)=0$ for any character of order greater than 2 .

2. Quaternion case

Before we consider the quaternion case, we need the following simple lemma.
Lemma 1 ([7, page 82]). Suppose that U_{K} acts on K^{n} as a group of measurepreserving homomorphisms in such a way that $f(u \cdot x)=u^{\lambda} f(x)$ for a fixed λ and for all $u \in U_{K}$ and $x \in K^{n}$. Then $Z(t, \chi)=0$ for all χ of order not dividing λ.

Proof. Since $x \rightarrow u \cdot x$ is a measure-preserving transformation and χ is multiplicative, we see immediately that $Z(t, \chi)=\chi(u)^{\lambda} Z(t, \chi)$ for all $u \in U_{K}$. Hence, if $\chi^{\lambda} \neq 1$ then there exists a $u \in U_{K}$ such that $\chi(u)^{\lambda} \neq 1$, which implies that $Z(t, \chi)=0$.

The division algebra D is not isomorphic to a full matrix algebra. For this reason, it is called the twisted case. The quaternion division algebra is isomorphic to a matrix subalgebra with coefficients in K^{\prime} where the isomorphism ϕ is defined as follows for $\alpha \in D\left(\right.$ and $\left.a_{i} \in K\right)$:

$$
\phi: \alpha=a_{1}+\sqrt{\epsilon} a_{2}+\left(a_{3}+\sqrt{\epsilon} a_{4}\right) \sqrt{\pi} \rightarrow\left(\begin{array}{cc}
a_{1}+\sqrt{\epsilon} a_{2} & \pi\left(a_{3}+\sqrt{\epsilon} a_{4}\right) \\
a_{3}-\sqrt{\epsilon} a_{4} & a_{1}-\sqrt{\epsilon} a_{2}
\end{array}\right)
$$

Using this isomorphism, the $m \times m$ hermitian matrices with coefficients in D are isomorphic to a subalgebra of the $2 m \times 2 m$ alternating matrices with coefficients in L by the following prescription. For each entry $x_{i, j}$ in the hermitian matrix $H_{m}(D)$ substitute the 2×2 matrix $\phi\left(x_{i, j}\right)\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$. In this way, we get a linear isomorphism ψ of $H_{m}(D)$ to a subalgebra of $\mathrm{Alt}_{2 m}\left(K^{\prime}\right)$.

For example, the isomorphism ψ is defined as follows for $m=2$:

$$
\left.\begin{array}{rl}
\left(\begin{array}{c}
a_{1} \\
b_{1}
\end{array}+\sqrt{\epsilon} b_{2}+\left(b_{3}+\sqrt{\epsilon} b_{4}\right) \sqrt{\pi}\right. & b_{1}-\sqrt{\epsilon} b_{2}-\left(b_{3}+\sqrt{\epsilon} b_{4}\right) \sqrt{\pi} \\
0 & c_{1}
\end{array}\right)
$$

The Pfaffian of an alternating matrix is the square root of its determinant. If we denote the alternating image of $x \in H_{m}(D)$ by $\psi(x)=A$ then $\operatorname{det}(x)=\operatorname{Pf}(A)$.

In this case, we have a measure-preserving homomorphism for all $u^{\prime} \in U_{K^{\prime}}$ on the vector space of Hermitian matrices over D. For any $x \in H_{m}(D)$ and $u^{\prime} \in U_{K^{\prime}}$,
we define the action $u^{\prime} \cdot x=\left(\begin{array}{ll}u^{\prime} & 0 \\ 0 & 1_{m-1}\end{array}\right) x\left(\begin{array}{cl}\bar{u}^{\prime} & 0 \\ 0 & 1_{m-1}\end{array}\right)$, where \bar{u}^{\prime} is the conjugate of u^{\prime} in $U_{K^{\prime}}$.

Now, $f\left(u^{\prime} \cdot x\right)=\operatorname{det}\left(u^{\prime} \cdot x\right)=N_{K^{\prime} / K}\left(u^{\prime}\right) \operatorname{det}(x)=u f(x)$ for any $u \in U_{K}$ since the norm map is surjective. Finally, we can apply the lemma above with $\lambda=1$ and $f(x)=\operatorname{det}(x)$ to show that $Z_{m}(t, \chi)=0$ for all non-trivial characters χ and for all $m \geq 1$.

3. Ramified quadratic case

In this case, we would like to compute the following integral:

$$
Z_{m}(t, \chi)=\int_{H_{m}\left(O_{L}\right)} \chi(\operatorname{det}(x))|\operatorname{det}(x)|^{s} d x
$$

for χ a non-trivial character on U_{K} and for $(2, q)=1$. For $x \in H_{m}(L)$, we have a measure-preserving homomorphism for all u by defining $u \cdot x=\left(\begin{array}{ll}u & 0 \\ 0 & 1_{m-1}\end{array}\right) x\left(\begin{array}{ll}u & 0 \\ 0 & 1_{m-1}\end{array}\right)$. This action implies that $\operatorname{det}(u \cdot x)=u^{2} \operatorname{det}(x)$. We can now apply Lemma 1 above with $\lambda=2$ and $f(x)=\operatorname{det}(x)$ to show that $Z_{m}(t, \chi)=0$ for all χ of order greater than 2. As mentioned above, the local zeta function for the trivial character χ_{0} is known [11]. Adopting the notation $(a)=\left(1-q^{-a}\right),(a)_{+}=\left(1+q^{-a}\right)$, and $(a, b)=\left(1-q^{-a} t^{b}\right)$, we prove the following theorem.
Theorem 1. For χ the unique quadratic character on U_{K},

$$
Z_{m}(t, \chi)= \begin{cases}\chi(-1)^{m / 2} q^{-m / 2} \prod_{i=1}^{m / 2} \frac{(2 i-1)}{(2 i, 1)}, & m \text { even } \\ 0, & m \text { odd }\end{cases}
$$

Proof. We will outline the proof of this theorem but note that it follows closely the procedure used in [11] to compute the integral in the trivial character case. We need to find the orbital decomposition of $H_{m}\left(O_{L}\right)$, to compute two partial integrals $I_{m, k}(t, \chi)$ and $J_{m, 2 r}(t, \chi)$, to use them and the orbital decompositions of $H_{m}\left(\mathbf{F}_{q}\right)$ and $\operatorname{Alt}_{m}\left(\mathbf{F}_{q}\right)$ to get a recursion relation for $Z_{m}(t, \chi)$, and finally to show that the expression above is the correct closed form solution.

Consider each entry in $H_{m}\left(O_{L}\right)$ modulo $\sqrt{-\pi}$ and then modulo π and see that

$$
H_{m}\left(O_{L}\right)=H_{m}\left(\mathbf{F}_{q}\right) \oplus \sqrt{-\pi} \operatorname{Alt}_{m}\left(\mathbf{F}_{q}\right) \bmod \pi
$$

where $H_{m}\left(\mathbf{F}_{q}\right)$ is the vector space of symmetric matrices over \mathbf{F}_{q} and $\operatorname{Alt}_{m}\left(\mathbf{F}_{q}\right)$ are the skew-symmetric matrices over \mathbf{F}_{q}. The orbital structure of $H_{m}\left(\mathbf{F}_{q}\right)$ for $(q, 2)=1$ under the action of $G=G L_{m}\left(\mathbf{F}_{q}\right)$ defined by $g \cdot a=g a^{t} g$ for $a \in H_{m}\left(\mathbf{F}_{q}\right)$ is as follows:

$$
H_{m}\left(\mathbf{F}_{q}\right)=\{0\} \cup\left[\bigcup_{k=1}^{m} G \cdot \xi_{k}^{1} \cup G \cdot \xi_{k}^{2}\right]
$$

where $\xi_{k}^{1}=\left(\begin{array}{cc}1_{k} & 0 \\ 0 & 0\end{array}\right), \xi_{k}^{2}=\left(\begin{array}{ccc}1_{k-1} & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & 0\end{array}\right)$, and $\varepsilon \in \mathbf{F}_{q}-\left(\mathbf{F}_{q}\right)^{2}$. This follows from the fact that $\alpha_{1} x_{1}^{2}+\alpha_{2} x_{2}^{2}=1$ has solutions in \mathbf{F}_{q} for all $\alpha_{i} \in \mathbf{F}_{q}^{\times}$and that we can diagonalize any quadratic form by an \mathbf{F}_{q}-linear change of variables such that $\alpha_{1} x_{1}^{2}+\alpha_{2} x_{2}^{2}+\cdots+\alpha_{k} x_{k}^{2}=y_{1}^{2}+y_{2}^{2}+\cdots+\alpha_{1} \alpha_{2} \cdots \alpha_{k} y_{k}^{2}$ for $\alpha_{i} \in \mathbf{F}_{q}^{\times}$. Note that any square α_{i} can be absorbed into y_{k} and that the decomposition above is disjoint.

The cardinality of these orbits can be computed using Dickson's formulae for the following groups [1, pages 78,160,94]:

$$
\left|G L_{m}\left(\mathbf{F}_{q}\right)\right|=q^{m^{2}} \prod_{i=1}^{m}(i), \quad\left|S p_{2 r}\left(\mathbf{F}_{q}\right)\right|=q^{r(2 r+1)} \prod_{i=1}^{r}(2 i)
$$

$$
\begin{aligned}
& \left|S O_{m}\left(\xi_{m}^{i}\right)\left(\mathbf{F}_{q}\right)\right|=q^{m(m-1) / 2} \begin{cases}\prod_{j=1}^{(m-1) / 2}(2 i), & m \text { odd }, \\
\left(1-\chi(d) q^{-m / 2}\right) \prod_{j=1}^{m / 2-1}(2 i), & m \text { even }, \\
\left|O_{m}\left(\xi_{m}^{i}\right)\left(\mathbf{F}_{q}\right)\right|=2\left|S O_{m}\left(\xi_{m}^{i}\right)\left(\mathbf{F}_{q}\right)\right|\end{cases}
\end{aligned}
$$

where $d=(-1)^{m(m-1) / 2} \operatorname{det}\left(\xi_{m}^{i}\right)$ for $i=1,2$ and χ is the quadratic character on \mathbf{F}_{q}. Thus, $\left|S O_{2 n}\left(\xi_{2 n}^{i}\right)\left(\mathbf{F}_{q}\right)\right|$ depends on

$$
\chi\left((-1)^{n} \varepsilon\right)=\left\{\begin{array}{cl}
1, & n \text { even, } \varepsilon \in\left(\mathbf{F}_{q}^{\times}\right)^{2}, \\
-1, & n \text { even, } \varepsilon \in\left(\mathbf{F}_{q}^{\times}\right)-\left(\mathbf{F}_{q}^{\times}\right)^{2}, \\
\chi(-1), & n \text { odd, } \varepsilon \in\left(\mathbf{F}_{q}^{\times}\right)^{2}, \\
-\chi(-1), & n \text { odd, } \varepsilon \in\left(\mathbf{F}_{q}^{\times}\right)-\left(\mathbf{F}_{q}^{\times}\right)^{2} .
\end{array}\right.
$$

Note that the stabilizer of ξ_{k}^{i} is the set of all $\left(\begin{array}{cc}g_{11} & g_{12} \\ 0 & g_{22}\end{array}\right) \in G L_{m}\left(\mathbf{F}_{q}\right)$ such that $g_{11} \in O_{k}\left(\xi_{m}^{i}\right)\left(\mathbf{F}_{q}\right), g_{12} \in \operatorname{Mat}_{k, m-k}\left(\mathbf{F}_{q}\right)$, and $g_{22} \in G L_{m-k}\left(\mathbf{F}_{q}\right)$. Thus, we see that

$$
\left|G \cdot \xi_{k}^{i}\right|=\frac{\left|G L_{m}\left(\mathbf{F}_{q}\right)\right|}{\left|G L_{m-k}\left(\mathbf{F}_{q}\right)\right| q^{k(m-k)} 2\left|S O_{k}\left(\xi_{m}^{i}\right)\left(\mathbf{F}_{q}\right)\right|}
$$

In our calculation, we will need the cardinality of $\left|G \cdot \xi_{k}^{1}\right|-\left|G \cdot \xi_{k}^{2}\right|$. We make the convention that if $k=0$ we simply mean the orbit of the 0 matrix, $|G \cdot 0|=1$, and if a product is taken from a larger index to a smaller, we set it equal to 1 . Using the formulae of Dickson with special attention to the case when k is even, we see that

$$
\left|G \cdot \xi_{k}^{1}\right|-\left|G \cdot \xi_{k}^{2}\right|= \begin{cases}1, & k=0 \\ 0, & k \text { odd } \\ \chi(-1)^{k / 2}(A-B), & k \text { even }\end{cases}
$$

where
$A-B$

$$
\begin{aligned}
& =\frac{q^{m^{2}} \prod_{i=1}^{m}(i)}{2 q^{(m-k)^{2}} \prod_{j=1}^{m-k}(j) q^{k(m-k)} q^{k(k-1) / 2} \prod_{i=0}^{k / 2-1}(2 i)}\left(\frac{1}{1-q^{-k / 2}}-\frac{1}{1+q^{-k / 2}}\right) \\
& =q^{k(2 m-k) / 2} \frac{\prod_{i=m-k+1}^{m}(i)}{\prod_{i=1}^{k / 2}(2 i)} .
\end{aligned}
$$

The orbital decomposition of $\operatorname{Alt}\left(\mathbf{F}_{q}\right)$ into disjoint orbits is known [4] to be

$$
\operatorname{Alt}\left(\mathbf{F}_{q}\right)=\{0\} \cup\left\{\bigcup_{k=1}^{\left[\frac{m}{2}\right]} G \cdot\left(\begin{array}{cc}
E_{r} & 0 \\
0 & 0
\end{array}\right)\right\},
$$

where [.] is the greatest integer function and E_{r} is the $2 r \times 2 r$ block matrix with r copies of $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ down the main diagonal and zeros elsewhere. The stabilizer of $\left(\begin{array}{cc}E_{r} & 0 \\ 0 & 0\end{array}\right)$ is the set of all $\left(\begin{array}{cc}g_{11} & g_{12} \\ 0 & g_{22}\end{array}\right) \in G L_{m}\left(\mathbf{F}_{q}\right)$ such that $g_{11} \in S p_{2 r}\left(\mathbf{F}_{q}\right), g_{12} \in$ $\operatorname{Mat}_{2 r, m-2 r}\left(\mathbf{F}_{q}\right)$, and $g_{22} \in G L_{m-2 r}\left(\mathbf{F}_{q}\right)$. Thus, we see that

$$
\left|G \cdot\binom{E_{r}}{0}\right|=q^{r(2 m-2 r-1)} \frac{\prod_{i=1}^{2 r}(m-2 r+i)}{\prod_{l=1}^{r}(2 l)} .
$$

Following the computation of the partial integrals in [8], we see that

$$
\begin{aligned}
I_{m, k}(t, \chi)= & \int_{\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{k}, 0\right)+\sqrt{-\pi} \operatorname{Alt}_{m}\left(\mathbf{F}_{q}\right)+\pi H_{m}\left(O_{L}\right)} \chi(\operatorname{det}(x))|\operatorname{det}(x)|^{s} d x \\
= & \chi\left(\alpha_{1}\right) \ldots \chi\left(\alpha_{k}\right) q^{-k(2 m-k+1) / 2} \\
& \times \int_{\sqrt{-\pi} \operatorname{Alt}_{m-k}\left(\mathbf{F}_{q}\right)+\pi H_{m-k}\left(O_{L}\right)} \chi(\operatorname{det}(x))|\operatorname{det}(x)|^{s} d x
\end{aligned}
$$

and that

$$
\begin{aligned}
J_{m, 2 r}(t, \chi) & =\int_{\sqrt{-\pi}\left(\begin{array}{cc}
E_{r} & 0 \\
0 & 0
\end{array}\right)+\pi H_{m}\left(O_{L}\right)} \chi(\operatorname{det}(x))|\operatorname{det}(x)|^{s} d x \\
& =\chi(-1)^{r} q^{-m^{2}} t^{m-r} Z_{m-2 r}(t, \chi)
\end{aligned}
$$

for $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in U_{K}, 0 \leq k \leq m$, and $0 \leq r \leq[m / 2]$.
Applying the key lemma for orbital decomposition [8] and using the formulae for the cardinality of the orbits of $H_{m}\left(\mathbf{F}_{q}\right)$ and the first partial integral, we find that

$$
\begin{aligned}
& Z_{m}(t, \chi)=\sum_{k=0}^{m}\left(\left|G \cdot \xi_{k}^{1}\right|-\left|G \cdot \xi_{k}^{2}\right|\right) q^{-k(2 m-k+1) / 2} \\
& \times \int_{\sqrt{-\pi} \operatorname{Alt}_{m-k}\left(\mathbf{F}_{q}\right)+\pi H_{m-k}\left(O_{L}\right)} \chi(\operatorname{det}(x))|\operatorname{det}(x)|^{s} d x
\end{aligned}
$$

By our formula for the difference between these orbits, we know that the difference is non-zero only for even values of k, and our formula becomes

$$
\begin{aligned}
Z_{m}(t, \chi)= & \sum_{k=0}^{[m / 2]} \\
& \chi(-1)^{k} q^{-k} \frac{\prod_{i=m-2 k+1}^{m}(i)}{\prod_{i=1}^{k}(2 i)} \\
& \times \int_{\sqrt{-\pi} \operatorname{Alt}_{m-2 k}\left(\mathbf{F}_{q}\right)+\pi H_{m-2 k}\left(O_{L}\right)} \chi(\operatorname{det}(x))|\operatorname{det}(x)|^{s} d x
\end{aligned}
$$

Applying the key lemma again and using the formulae for the cardinality of the orbits of $\operatorname{Alt}_{m-k}\left(\mathbf{F}_{q}\right)$ and the second partial integral, we have that

$$
\begin{aligned}
Z_{m}(t, \chi)= & \sum_{k=0}^{[m / 2]} \chi(-1)^{k} q^{-k} \frac{\prod_{i=m-2 k+1}^{m}(i)}{\prod_{i=1}^{k}(2 i)} \sum_{r=0}^{[(m-2 k) / 2]}\left|G \cdot\left(\begin{array}{cc}
E_{r} & 0 \\
0 & 0
\end{array}\right)\right| \\
& \times \int_{\sqrt{-\pi}\left(\begin{array}{cc}
E_{r} & 0 \\
0 & 0
\end{array}\right)+\pi H_{m-2 k}\left(O_{L}\right)} \chi(\operatorname{det}(x))|\operatorname{det}(x)|^{s} d x \\
= & \sum_{k=0}^{[m / 2]} \chi(-1)^{k} q^{-k} \frac{\prod_{i=m-2 k+1}^{m}(i)}{\prod_{i=1}^{k}(2 i)} \sum_{r=0}^{[(m-2 k) / 2]} q^{r(2 m-4 k-2 r-1)} \\
& \times \frac{\prod_{i=1}^{2 r}(m-2 k-2 r+i)}{\prod_{i=1}^{r}(2 i)} \chi(-1)^{r} q^{-(m-2 k)^{2}} t^{m-2 k-r} \\
& \times Z_{m-2 k-2 r}(t, \chi) .
\end{aligned}
$$

We see immediately from this recursion formula that $Z_{1}(t, \chi)=0$. This then implies, by induction, that $Z_{m}(t, \chi)=0$ for all odd m. To complete the proof of our theorem, we let $m=2 n$, substitute our closed form expression for $Z_{m}(t, \chi)$ into the recursion formula above, divide both sides by $Z_{m}(t, \chi)$, and change the order of
summation by letting $k \rightarrow n-k$. After these steps, the following identity remains to be proven:

$$
\begin{aligned}
1=\sum_{k=0}^{n} & \frac{\prod_{i=1}^{2(n-k)}(2 k+i)}{\prod_{i=1}^{n-k}(2 i)} q^{-4 k^{2}} \frac{\prod_{i=k+1}^{n}(2 i, 1)}{\prod_{i=k+1}^{n}(2 i-1)} \\
& \times \sum_{r=0}^{k} q^{2 r(2 k-r)} t^{2 k-r} \frac{\prod_{i=1}^{2 r}(2 k-2 r+i) \prod_{i=k-r+1}^{k}(2 i, 1)}{\prod_{i=1}^{r}(2 i) \prod_{i=k-r+1}^{k}(2 i-1)}
\end{aligned}
$$

Using the Gauss identity [3] and Lemma 3 in [11] with $x=q^{-2}$, we can show that the inner sum above is precisely $q^{2 k^{2}} t^{k}$. For completeness, we state Lemma 3 in [11] without proof.

Lemma 3 ([11]). For any non-negative integer k, the following identity holds:

$$
1=\sum_{j=0}^{k} x^{j^{2}} t^{j} \prod_{i=1}^{k-j} \frac{\left(1-x^{j+i}\right)}{\left(1-x^{i}\right)} \prod_{i=1}^{k-j}\left(1-x^{j+i} t\right)
$$

Simplifying, our identity becomes:

$$
1=\sum_{k=0}^{n} q^{-2 k^{2}} t^{k} \prod_{i=1}^{n-k} \frac{(2(k+i))}{(2 i)} \prod_{i=k+1}^{n}(2 i, 1)
$$

and another application of Lemma 3 in [11] proves the theorem.

References

1. L.E. Dickson, "Linear Groups with an exposition of the Galois field theory", B.G. Teubner, Leibzig, 1901.
2. H.-D. Ebbinghaus et al., Numbers, Springer-Verlag, New York (1991). MR 91h:00005
3. C.F. Gauss, Hundert Theoreme uber die neuen Transscendenten, Werke III, (1876), 461-469.
4. J. Igusa, On the arithmetic of Pfaffians, Nagoya Math. J. 47 (1972), 169-198. MR 51:12798
5. J. Igusa, Geometry of absolutely admissible representations, Number Theory, Algebraic Geometry and Commutative Algebra, Kinokuniya, Tokyo (1973), 373-452. MR 51:3319
6. J. Igusa, Complex powers and asymptotic expansions. I, J. Reine Angew. Math. 268/269 (1974), 110-130; II, ibid 278/279 (1975), 307-321. MR 53:8018; MR 50:254
7. J. Igusa, Forms of Higher Degree, Tata Inst. Lect. Notes 59, Springer-Verlag (1978). MR 80m:10020
8. J. Igusa, Some results on p-adic complex powers, Amer. J. Math. 106 (1984), 1013-1032. MR 86f:11046
9. J. Igusa, On functional equations of complex powers, Invent. Math. 85 (1986), 1-29. MR 87j:11134
10. N. Jacobson, Structure and representation of Jordan algebras, Amer. Math. Soc. Colloq. Publ. 39 (1969). MR 40:4330
11. M. Robinson, The Igusa local zeta function associated with the singular cases of the determinant and the Pfaffian, J. Number Theory 57 (1996), 385-408.

Department of Mathematics, Statistics, and Computer Science, Mount Holyoke College, South Hadley, Massachusetts 01075

E-mail address: robinson@mhc.mtholyoke.edu

[^0]: Received by the editors July 5, 1994 and, in revised form, March 27, 1995.
 1991 Mathematics Subject Classification. Primary 11R52, 11F85.

