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Locality is among the oldest systems principles in computer science.  It 

was discovered in 1967 during efforts to make early virtual memory 

systems work well.  It is a package of three ideas: (1) computational 

processes pass through a sequence of locality sets and reference only 

within them, (2) the locality sets can be inferred by applying a distance 

function to a program’s address trace observed during a backward 

window, and (3) memory management is optimal when it guarantees 

each program that its locality sets will be present in high-speed 

memory.  Working set memory management was the first exploitation 

of this principle; it prevented thrashing while maintaining near optimal 

system throughput, and eventually it enabled virtual memory systems 

to be reliable, dependable, and transparent.  Many researchers and 

system designers rallied around the effort to understand locality and 

achieve this outcome.  The principle expanded well beyond virtual 

memory systems.  Today it addresses computations that adapt to the 

neighborhoods in which users are situated, ways to infer those 

neighborhoods by observing user actions, and optimizing performance 

for users by being aware of their neighborhoods.  It has influenced the 

design of caches of all sorts, Internet edge servers, spam blocking, 

search engines, e-commerce systems, email systems, forensics, and 

context-aware software.  It remains a rich source of inspirations for 

contemporary research in architecture, caching, Bayesian inference, 

forensics, web-based business processes, context-aware software, and 

network science. 

Peter J. Denning.  The Locality Principle.  In 

Communication Networks and Computer Systems (J. 

Barria, Ed.).  Imperial College Press (2006), 43-67. 



1.  Introduction 

Locality of reference is one of the cornerstones of computer science.  It 

was born from efforts to make virtual memory systems work well.  

Virtual memory was first developed in 1959 on the Atlas system at the 

University of Manchester.  Its superior programming environment 

doubled or tripled programmer productivity.  But it was finicky, its 

performance sensitive to the choice of replacement algorithm and to the 

ways compilers grouped code on to pages.  Worse, when it was coupled 

with multiprogramming, it was prone to thrashing, the near-complete 

collapse of system throughput due to heavy paging.  The locality 

principle guided us in designing robust replacement algorithms, compiler 

code generators, and thrashing-proof systems. It transformed virtual 

memory from an unpredictable to a robust technology that regulated 

itself dynamically and optimized throughput without user intervention.  

Virtual memory became such an engineering triumph that it faded into 

the background of every operating system, where it performs so well at 

managing memory with multithreading and multitasking that no one 

notices. 

The locality principle found application well beyond virtual memory.  

Today it directly influences the design of processor caches, disk 

controller caches, storage hierarchies, network interfaces, database 

systems, graphics display systems, human-computer interfaces, 

individual application programs, search engines, Web browsers, edge 

caches for Web based environments, and computer forensics.  Tomorrow 

it may help us overcome our problems with brittle, unforgiving, 

unreliable, and unfriendly software. 

I will tell the story of this principle, starting with its discovery to 

solve a multimillion-dollar performance problem, through its evolution 

as an idea, to its widespread adoption today.  My telling is highly 

personal because locality, and the attending success of virtual memory, 

was my focus during the first part of my career. 

 

 



2.  Manifestation of a Need (1949-1965) 

In 1949 the builders of the Atlas computer system at University of 

Manchester recognized that computing systems would always have 

storage hierarchies consisting of at least main memory (RAM) and 

secondary memory (disk, drum).  To simplify management of these 

hierarchies, they introduced the page as the unit of storage and transfer.  

Even with this simplification, programmers spent well over half their 

time planning and programming page transfers, then called overlays.  In 

a move to enable programming productivity to at least double, the Atlas 

system builders therefore decided to automate the overlaying process.  

Their “one-level storage system” (later called virtual memory) was part 

of the second-generation Atlas operating system in 1959 [Kilburn].  It 

simulated a large main memory within a small real one.  The heart of 

their innovation was the novel concept that addresses named values, not 

memory locations.  The CPU’s addressing hardware translated CPU 

addresses into memory locations via an updatable page table map (Figure 

1).  By allowing more addresses than locations, their scheme enabled 

programmers to put all their instructions and data into a single address 

space.  The file containing the address space was on the disk; the 

operating system copied pages on demand (at page faults) from that file 

to main memory.  When main memory was full, the operating system 

selected a main memory page to be replaced at the next page fault. 

The Atlas system designers had to resolve two performance 

problems, either one of which could sink the system: translating 

addresses to locations; and replacing loaded pages.  They quickly found a 

workable solution to the translation problem by storing copies of the 

most recently used page table entries in a small high speed associative 

memory, later known as the address cache or the translation lookaside 

buffer.  The replacement problem was a much more difficult conundrum. 

Because the disk access time was about 10,000 times slower than the 

CPU instruction cycle, each page fault added a significant delay to a 

job’s completion time.  Therefore, minimizing page faults was critical to 

system performance.  Since minimum faults means maximum inter-fault 

intervals, the ideal page to replace from main memory is the one that will 

not be used again for the longest time.  To accomplish this, the Atlas  



 

 
Figure 1. The architecture of virtual memory.  The process running on the CPU has 

access to an address space identified by a domain number d.  A full copy of the address 

space is stored on disk as the file AS[d]; only a subset is actually loaded into the main 

memory.  The page table PT[d] has an entry for every page of domain d.  The entry for a 

particular page (i) contains a presence bit P indicating whether the page is in main 

memory or not, a usage bit U indicating whether it has been accessed recently or not, a 

modified bit M indicating whether it has been written into or not, and a frame number FN 

telling which main memory page frame contains the page.  Every address generated by 

the CPU is decomposed into a page number part (i) and a line number part (x).  The 

memory mapping unit (MMU) translates that address into a memory location as follows.  

It accesses memory location d+i, which contains the entry of page i in the page table 

PT[d].  If the page is present (P=1), it generates the memory location by substituting the 

frame number (f) for the page number (i).  If it is not present (P=0), it instead generates a 

page fault interrupt that signals the operating system to invoke the page fault handler 

routine (PFH).  The MMU also sets the use bit (U=1) and on write accesses the modified 

bit (M=1).  The PFH selects a main memory page to replace, if modified copies it to the 

disk in its slot of the address space file AS[d], copies page i from the address space file to 

the empty frame, updates the page table, and signals the CPU to retry the previous 

instruction.  As it searches for a page to replace, the PFH reads and resets usage bits, 

looking for unused pages.  A copy of the most recent translations (from page to frame) is 

kept in the translation lookaside buffer (TLB), enabling the MMU to bypass the page 

table lookup most of the time. 

 



system contained a “learning algorithm” that hypothesized a loop cycle 

for each page, measured each page’s period, and estimated which page 

was not needed for the longest time. 

The learning algorithm was controversial.  It performed well on 

programs with well-defined loops and poorly on many other programs.  

The controversy spawned numerous experimental studies well into the 

1960s that sought to determine what replacement rules might work best 

over the widest possible range of programs.  Their results were often 

contradictory.  Eventually it became apparent that the volatility resulted 

from variations in compiling methods: the way in which a compiler 

grouped code blocks onto pages strongly affected the program’s 

performance under a given replacement strategy. 

Meanwhile, in the early 1960s, the major computer makers were 

drawn to multiprogrammed virtual memory because of its superior 

programming environment.  RCA, General Electric, Burroughs, and 

Univac all included virtual memory in their operating systems.  Because 

a bad replacement algorithm could cost a million dollars of lost machine 

time over the life of a system, they all paid a great deal of attention to 

replacement algorithms. 

Nonetheless, by 1966 these companies were reporting their systems 

were susceptible to a new, unexplained, catastrophic problem they called 

thrashing.  Thrashing seemed to have nothing to do with the choice of 

replacement policy.  It manifested as a sudden collapse of throughput as 

the multiprogramming level rose.  A thrashing system spent most of its 

time resolving page faults and little running the CPU.  Thrashing was far 

more damaging than a poor replacement algorithm.  It scared the 

daylights out of the computer makers. 

The more conservative IBM did not include virtual memory in its 360 

operating system in 1964.  Instead, it sponsored at its Watson laboratory 

one of the most comprehensive experimental systems projects of all time.  

Led by Bob Nelson, Les Belady, and David Sayre, the project team built 

the first virtual-machine operating system and used it to study the 

performance of virtual memory.  (The term “virtual memory” appears to 

have come from this project.)  By 1966 they had tested every 

replacement policy that anyone had ever proposed and a few more they 

invented.  Many of their tests involved the use bits built in to page tables 



(see Figure 1).  By periodically scanning and resetting the bits, the 

replacement algorithm distinguishes recently referenced pages from 

others.  Belady concluded that policies favoring recently used pages 

performed better than other policies; LRU (least recently used) 

replacement was consistently the best performer among those tested 

[Belady]. 

3. Discovery and Propagation of Locality Idea (1966-1980) 

In 1965, I entered my PhD studies at MIT in Project MAC, which was 

just undertaking the development of Multics.  I was fascinated by the 

problems of dynamically allocating scarce CPU and memory resources 

among the many processes that would populate future time-sharing 

systems. 

I set myself a goal to solve the thrashing problem and define an 

efficient way to manage memory with variable partitions.  Solutions to 

these problems would be worth millions of dollars in recovered uptime 

of virtual memory operating systems.  Little did I know that I would have 

to devise and validate a theory of program behavior to accomplish this. 

I learned about the controversies over the viability of virtual memory 

and was baffled by the contradictory conclusions among the 

experimental studies.  All these studies examined individual programs 

assigned to a fixed memory partition managed by a replacement 

algorithm.  They shed no light on the dynamic partitions used in 

multiprogrammed virtual memory systems.  They offered no notion of a 

dynamic, intrinsic memory demand that would tell which pages of the 

program were essential and which were replaceable -- something simple 

like, “this process needs p pages at time t.”  Such a notion was 

incompatible with the fixed-space policies everyone was studying.  I 

began to speak of a process’s intrinsic memory demand as its “working 

set”.  The idea was that paging would be acceptable if the system could 

guarantee that the working set was loaded.  I combed the experimental 

studies looking for clues on how to measure a program’s working set.  

All I could find were data on lifetime curves (mean time between page 

faults as a function of average memory space allocated to a program).  



These data suggested that the mean working set size would be 

significantly smaller than the full program size (Figure 2). 

In an “Aha!” moment in the waning days of 1966, inspired by 

Belady’s observations, I hit on the idea of defining a process’s working 

set as the set of pages used during a fixed-length sampling window in the 

immediate past.  A working set could be measured by periodically 

reading and resetting the use bits in a page table.  The window had to be  

 

 
Figure 2. A program’s lifetime curve plots the mean time between page faults in a virtual 

memory system with a given replacement policy, as a function of the amount of space 

allocated to it by the system.  It has an S-shape.  The knee, defined as the point at which a 

line emanating from the origin is tangent to the curve, is the point of diminishing returns 

for increased memory allocation.  The knee memory size is typically considerably 

smaller than the total program size, indicating that a replacement policy can often do 

quite well with a relatively small memory allocation.  A further significance of the knee 

is that it maximizes the ratio L(x)/x for all points on the curve.  The knee is therefore the 

most desirable target for space allocation: it maximizes the mean time between faults per 

unit of space. 

 



in the virtual time of the process -- time as measured by the number of 

memory references made -- so that the measurement would not be 

distorted by interruptions.  This led to the now-familiar notation: the 

working set W(t,T) is the set of pages referenced in the virtual time 

interval of length T preceding time t [Denning 68a]. 

By spring 1967, I had an explanation for thrashing [Denning 68b].  

Thrashing was the collapse of system throughput triggered by making the 

multiprogramming level too high.  It was counterintuitive because we 

were used to systems that would saturate under heavy load, not shut 

down (Figure 3).  When memory was filled with working sets, any 

further increment in the multiprogramming level would simultaneously 

push all loaded programs into a regime of working set insufficiency, 

where they paged excessively and could not use the CPU efficiently 

 

 

 
Figure 3.  A computer system’s throughput (jobs completed per second) increases with 

multiprogramming level up to a point.  Then it decreases rapidly to throughput so low 

that the system appears to have shut down.  Because everyone was used to systems that 

gradually approach saturation with increasing load, the throughput collapse was 

unexpected.  The thrashing state was “sticky” -- we had to reduce the MPL somewhat 

below the trigger point to get the system to reset.  No one knew how to predict the 

optimal MPL or to find it without falling into thrashing. 



(Figure 4).  I proposed a feedback control mechanism that would limit 

the multiprogramming level by refusing to activate any program whose 

working set would not fit within the free space of main memory.  When 

memory was full, the operating system would defer programs requesting 

activation into a holding queue.  Thrashing would be impossible with a 

working set policy (Figure 5). 

The working set idea was based on an implicit assumption that the 

pages seen in the backward window were highly likely to be used again 

in the immediate future.  Was this assumption justified?  In discussions 

with Jack Dennis (MIT) and Les Belady (IBM), I started using the term 

“locality” for the observed tendency of programs to cluster references to 

small subsets of their pages for extended intervals. We could represent a 

program’s memory demand as a sequence of locality sets and their 

holding times: 

(L1,T2), (L2,T2), (L3,T3), ... , (Li,Ti), ... 

This seemed natural because we knew that programmers planned 

overlays using diagrams that showed subsets and time phases (Figure 6).  

But what was strikingly interesting was that programs showed the 

locality behavior even when it was not explicitly pre-planned.  When 

measuring actual page use, we repeatedly observed many long phases 

with relatively small locality sets (Figure 7).  Each program had its own 

distinctive pattern, like a voiceprint. 

We saw two reasons that this would happen: (1) temporal clustering 

due to looping and executing within modules with private data, and (2) 

spatial clustering due to related values being grouped into arrays, 

sequences, modules, and other data structures.  Both these reasons 

seemed related to the human practice of “divide and conquer” -- breaking 

a large problem into parts and working separately on each.  The locality 

bit maps captured someone’s problem-solving method in action.  These 

underlying phenomena gave us confidence to claim that programs have 

natural sequences of locality sets.  The working set sequence is a 

measurable approximation of a program’s intrinsic locality sequence. 



 

 
Figure 4.  The first rigorous explanation of thrashing argued from efficiency.  The 

efficiency of a program is the ratio of its CPU execution time to its real time.   Real time 

is longer because of page-fault delays.  Denote a program’s execution time by E, the page 

fault rate by m, and the delay for one page fault by D; then the efficiency is E/(E+mED) 

= 1/(1+mD).  For typical values of D -- 10,000 memory cycle times or longer -- the 

efficiency drops very rapidly for a small increase of m above 0.  In a memory filled with 

working sets (high efficiency), loading one more program can squeeze all the others, 

pushing everyone into working set insufficiency, collapsing efficiency.  

 
Figure 5.  A feedback control system can stabilize the multiprogramming level and 

prevent thrashing.  The amount of free space is monitored and fed back to the scheduler.  

The scheduler activates the next waiting program whenever the free space is sufficient for 

its working set.  With such a control, we expected that the multiprogramming level would 

rise to the optimal level and stabilize there. 



 
Figure 6.  Locality sequence behavior diagrammed by programmer during overlay 

planning. 

 

 

 
Figure 7.  Locality sequence behavior observed by sampling use bits during program 

execution.  Programs exhibit phases and localities naturally, even when overlays are not 

pre-planned. 

 

 



As we developed and refined our understanding of locality during the 

1970s, I continued to work with many others to refine the locality idea 

and turn it into a behavioral theory of computational processes 

interacting with storage systems.  By 1980 we articulated the principle as 

a package of three ideas: (1) computational processes pass through a 

sequence of locality sets and reference only within them, (2) the locality 

sets can be inferred by applying a distance function to a program’s 

address trace observed during a backward window, and (3) memory 

management is optimal when it guarantees each program that its locality 

sets will be present in high-speed memory [Denning 80].  A distance 

function D(x,t) measures the distance from a processor to an object x at 

time t.  Distances could be temporal, measuring the time since prior 

reference or access time within a network; spatial, measuring hops in a 

network or address separation in a sequence; or cost, measuring any non-

decreasing accumulation of cost since prior reference.  We said that 

object x is in the locality set at time t if the distance is less than a 

threshold: D(x,t)  T.  The storage system would maximize throughput 

by caching locality sets close to the processor. 

By 1975, the queueing network model had become a useful tool for 

understanding the performance of computing systems, and for predicting 

throughput, response time, and system capacity.  In this model, each 

computing device of the real system is represented as a server with a 

queue; the server processes a job for a random service time and then 

sends it to another server according to a probability distribution for the 

inter-server transition.  The parameters of the model are the mean service 

times for each server, the mean number of times a job visits a server, and 

the total number of jobs circulating in the system.  We began to use these 

models to study how to tell when a computing system had achieved its 

maximum throughput and was on the verge of thrashing.  The results 

were eye-opening. 

In the simplest queueing model of a virtual memory system, there is a 

server representing the CPU and a server representing the paging disk.  A 

job cycles between the CPU and the disk in the pattern 

(CPU, Disk)* CPU 

meaning a series of CPU-Disk cycles followed by a CPU interval before 

completing.  The number of CPU-Disk cycles is the number of page 



faults generated by the system’s replacement policy for the mean 

memory space allocated to jobs.  Queueing network theory told us that 

every server poses a potential bottleneck that imposes an upper limit on 

the system throughput; the actual bottleneck is the server with the 

smallest limit.  We discovered that the well-known thrashing curve 

(Figure 3) is actually the system doing the best it can as the paging-disk 

bottleneck worsens with increasing load (Figure 8.) 

 
Figure 8.  System throughput is constrained by both CPU and disk capacity.  The CPU 

imposes a throughput limit of 1/R, where R is the average running time of programs.  The 

disk imposes a throughput limit of 1/SF, where S is the mean time to do a page swap and 

F is the total number of page faults in a job.  Thrashing is caused by precipitous drop of 

disk capacity as increased load squeezes space and forces more paging.  The crossing 

point occurs when R=SF; since F=R/L (lifetime, L), the crossing is at L=S, i.e., when the 

mean time between faults equals the disk service time of a fault.  Thus a control criterion 

is to allow N to increase until L decreases to S.  Unfortunately, this was not very precise; 

we found experimentally that many systems were already in thrashing when L=S.  

Moreover, the memory size at which L=S may bear no relation to the highly desirable 

lifetime knee (Figure 2). 

 
Once we saw that thrashing is a bottleneck problem, we studied 

whether we could use bottleneck parameters as criteria for load controls 

that prevented thrashing.  One such criterion was called “L=S” because it 

involved monitoring the mean lifetime L between page faults and 



adjusting load to keep that value near the paging disk service time S 

(Figure 8).  This criterion was not very reliable: in some experiments, the 

system would already be thrashing when L=S.  We found that a “knee 

criterion” -- in which the system adjusted load to keep the observed 

lifetime near the knee lifetime (Figure 2) -- was consistently more 

reliable, even though knee lifetime was not close to S.  Unfortunately, it 

is not possible to know the knee lifetime without running the program to 

completion. 

 

 
Figure 9.  System throughput is maximized when the memory space-time consumed by a 

job is minimum.  The memory allocation that does this is near the knee (Figure 2). Our 

experimental studies of working-set windows near the knee of its lifetime curve yielded 

two useful results.  One is that a program’s space-time is likely to be flat (near minimum) 

for a broad range of window sizes.  The picture shows how we defined a “10% 

confidence interval” of window sizes. 

 
Our theory told us that system throughput would be maximum when 

space-time for each job is minimum, confirming our claim that a knee 

criterion would optimize throughput.  How well can a working-set policy 

approach this ideal?  In a line of experimental studies we found that the 



interval of window values that put the space-time within 10% of its 

minimum was quite wide (Figure 9) [Graham].  Then we found that 

many workloads, consisting of a variety of programs, often had global T 

values that fell in all the 10% confidence intervals (Figure 10).  This 

meant that a single, fixed, properly chosen value of T would cause the 

working set policy to maintain system throughput to within 10% of its 

optimum.  The average deviation was closer to 5%. 

 

 
Figure 10.  On comparing the 10% confidence intervals, we found that there was very 

often a global value of T that would put all programs within 10% of their space-time 

minima.  The average deviation from minimum for this value of T was closer to 5%.  The 

conclusion was that systems with a properly adjusted, single global T value would 

achieve a working-set throughput within 5-10% of optimal. 

 
The final question was: is there another policy that would deliver a 

lower space-time per job and therefore a higher optimum throughput?  

Obviously, the VMIN (variable space minimum [Prieve]) would do the 

job; but it requires lookahead.  We discovered that the working set policy 

has exactly the same page-fault sequence as VMIN.  Therefore the 

difference of space-time between WS and VMIN is completely explained 



by working-set “overshooting” in its estimates of locality at the 

transitions between program phases.  Indeed, VMIN unloads pages 

toward the ends of their phases after it sees they will not be referenced in 

the next phase.  Working set cannot tell this until time T after the last 

reference.  Experiments by Alan Smith to clip off these overshoots 

showed only a minor gain [Smith].  We concluded that it would be 

unlikely that anyone would find a non-lookahead policy that was 

noticeably better than working set. 

Thus, by 1976, our theory was validated.  It demonstrated our original 

postulate: that working set memory management would prevent 

thrashing and would allow system throughput to be close to its optimum. 

The problem of thrashing, which originally motivated the working set 

theory, has occurred in other contexts as well as storage management.  It 

can happen in any system where contention for a shared resource can 

overwhelm the processes’ abilities to move forward.  It was observed in 

the first packet-radio communication system, ALOHA, in the late 1960s.  

In this system, the various contenders could overwhelm the shared 

spectrum by retransmitting packets when they discovered their 

transmissions being inadvertently jammed by other transmitters 

[Abramson].  A similar problem occurred in the Ethernet, where it was 

solved by the “back-off” protocol that makes a transmitter wait a random 

time before retrying a transmission [Metcalfe].  A similar problem 

occurred in database systems with the two-phase commit protocol 

[Thomasian].  Under this protocol, transactions try to collect locks on the 

records they will update; but if they find any record already locked, they 

release all their locks and try again.  When too many transactions try to 

collect locks at the same time, they spend most of their time gathering 

and releasing locks. 

Although it is not critical to the theory and conclusions above, it is 

worth noting that the working-set analysis applies even when processes 

share pages.  Among its design objectives, Multics supported 

multiprocess (multithreaded) computations.  The notions of locality and 

working sets had to apply in this environment.  The obvious approach 

was to define a computation’s working set as the union of its constituent 

process working sets.  This approach did not work well in the standard 

paging system architecture (Figure 1) because the use bits that had to be 



OR’d together were in different page tables and a high overhead would 

be needed to locate them.  Fortunately, the idea of capability-based 

addressing, a locality-enhancing architecture articulated by colleagues 

Dennis and Van Horn in 1966 [Dennis], offered a solution (Figure 11).  

Working sets could be measured from the use bits of the set of object 

descriptors. 

The two-level mapping inherent in capability addressing is a principle 

in its own right.  It solved a host of sharing problems in virtual memories 

of multiprocess operating systems [Fabry].  It stimulated a line of 

extraordinarily fault tolerant commercial systems known as “capability 

machines” in the 1970s [Wilkes 72, 79].  The architecture was adopted 

into the run time environments of object oriented programming systems.  

The principle was applied to solving the problem of sharing objects in 

the Internet [Kahn].  Thus the situations in which working sets and 

localities of multithreaded and distributed computations apply are 

ubiquitous today. 

Table 1 summarizes milestones in the development of the locality 

idea. 

 



 
Figure 11.  Two-level mapping enables sharing of objects without prior arrangements 

among the users.  It begins with assigning a unique (over all time) identifying handle h to 

an object; objects can be of any size.  Object h has a single descriptor specifying its status 

in memory: present (P = 0 or 1), used (U = 0 or 1), base address (B, defined only when 

P=1), and length (L).  The descriptors of all known objects are stored in a descriptor table 

DT, a hash table with the handle as a lookup key.   When present, the object is assigned a 

block of contiguous addresses in main memory.  Each computational process operates in 

its own memory domain (such as d1 or d2), which is specified by an object table (OT), an 

adaptation of the page table (Figure 1).  The object table, indexed by an object number 

(such as i or j), retrieves an object’s access code (such as rw) and handle.  The memory 

mapping unit takes an address (i,x), meaning line x of object i, and retrieves the handle 

from the object table; then it looks up the descriptor for the handle in the descriptor table; 

finally it forms the actual memory address b+x provided that x does not exceed the 

object’s size a.  Any number of processes can share h, simply by adding entries pointing 

to h as convenient in their object tables.  Those processes can use any local name (i or j) 

they desire.  If the system needs to relocate the object in memory, it can do so by 

updating the descriptor (in the descriptor table).  All processes will get the correct 

mapping information immediately.  Working sets can be measured from the use bits (U) 

in the descriptor table. 

 



4.  Adoption of Locality Principle (1967-present) 

The locality principle was adopted as an idea almost immediately by 

operating systems, database, and hardware architects.  But it did not 

remain a pure idea for long.  It was adopted into practice, in ever 

widening circles: 

• In virtual memory to organize caches for address translation and to 

design the replacement algorithms. 

• In data caches for CPUs, originally as mainframes and now as 

microchips. 

• In buffers between main memory and secondary memory devices. 

• In buffers between computers and networks. 

• In video boards to accelerate graphics displays. 

• In modules that implement the information-hiding principle. 

• In accounting and event logs in that monitor activities within a 

system. 

• In alias lists that associate longer names or addresses with short 

nicknames. 

• In the “most recently used” object lists of applications. 

• In web browsers to hold recent web pages. 

• In file systems, to organize indexes (e.g., B-trees) for fastest retrieval 

of file blocks. 

• In database systems, to manage record-flows between levels of 

memory. 

• In search engines to find the most relevant responses to queries. 

• In classification systems that cluster related data elements into 

similarity classes. 

• In spam filters, which infer which categories of email are in the 

user’s locality space and which are not. 

• In “spread spectrum” video streaming that bypasses network 

congestion and reduces the apparent distance to the video server. 

• In “edge servers” to hold recent web pages accessed by anyone in an 

organization or geographical region. 

• In the field of computer forensics to infer criminal motives and intent 

by correlating event records in many caches. 



• In the field of network science by defining hierarchies of self-similar 

locality structures within complex power-law networks. 

Table 2 summarizes milestones in the adoption of locality in systems.  

The locality principle is today considered as a fundamental principle for 

systems design. 

5.  Modern Model of Locality: Context Awareness 

As the uses of locality expanded into more areas, our understanding of 

locality has evolved beyond the original idea of clustering of reference.  

Today’s understanding embraces four key ideas that enable awareness of, 

and meaningful response to, the context in which software is situated 

(Figure 12): 

• An observer; 

• Neighborhoods: One or more sets of objects that are most relevant 

to the observer at any given time; 

• Inference: A method of identifying the most relevant objects by 

monitoring the observer’s actions and interactions and other 

information about the observer contained in the environment; and 

• Optimal actions: An expectation that the observer will complete 

work in the shortest time if neighborhood objects are ready 

accessible in nearby caches. 

The observer is the agent who is trying to accomplish tasks with the 

help of software, and who places expectations on its function and 

performance.  In most cases, the observer is the user who interacts with 

software.  In some cases, especially when a program is designed to 

compute a precise, mathematical model, the observer can be built into 

the software itself. 



 
Figure 12.  The modern view of locality is a means of inferring the context of an observer 

using software, so that the software can dynamically adapt its actions to produce optimal 

behavior for the observer. 

 

A neighborhood is a group of objects standing in a particular relation 

to an observer, and valued in some way by the observer.  The historical 

example is the locality set associated with each phase of a program’s 

execution; the observer is the process evoked by the program.  Modern 

examples of neighborhoods include email correspondents, non-spam 

email, colleagues, teammates, objects used in a project, favorite objects, 

user’s web, items of production, texts, and directories. 

Some neighborhoods can be known by explicit declarations; for 

example a user’s file directory, address book, or web pages.  But most 

neighborhoods can only be inferred by monitoring the event sequences of 

an observer’s actions and interactions.  The event sequences can be 



measured either within the software with which the observer is 

interacting, or outside that software, in the run-time system. 

Inference can be any reasonable method that estimates the content of 

neighborhoods, or at least the most relevant parts.  The original working 

estimated locality sets by observing page reference events in a backward 

looking window.  Modern inference is by a variety of methods such as 

Google’s counting of incoming hyperlinks to a web page, connectionist 

networks that learn patterns after being presented with many examples, 

or Bayesian spam filters. 

The optimal actions are taken by the system or the software on behalf 

of the observer.  As with the data collection to support neighborhood 

inference, these actions can come either from inside the software with 

which the observer is interacting, or from outside that software, in the 

run-time system. 

The matrix below shows four quadrants corresponding to the four 

combinations of data collection and locus of action just mentioned.  

Examples of software are named in each quadrant and are summarized 

below. 

 

  ORIGIN OF DATA FOR INFERENCE 

  Inside Outside 

Inside 
Amazon.com, 

Bayesian spam filter 

Semantic web 

Google LOCUS OF 

ADAPTIVE 

ACTION Outside Linkers and loaders 
Working sets, 

Ethernet load control 

 

• Amazon.com; Bayesian spam filters.  This system collects data 

about user purchasing histories and recommends other purchases that 

resemble the user’s previous purchases, or purchases by other, 

similar users.  Bayesian spam filters gather data about which emails 

the user considers relevant and then block irrelevant emails.  (Data 

collection inside, optimal actions inside.) 



• Semantic web; Google.  Semantic web is a set of declarations of 

structural relationships that constitute context of objects and their 

connections.  Programs read and act on it.  Google gathers data from 

the Web and uses it to rank pages that appear to be most relevant to a 

keyword query posed by user.  (Data collection outside, optimal 

actions inside.) 

• Linkers and Loaders.  These workhorse systems gather library 

modules mentioned by a source program and link them together into 

a self-contained executable module.  The libraries are neighborhoods 

of the source program.  (Data collection inside, optimal action 

outside.) 

• Working sets, Ethernet load controls.  Virtual memory systems 

measure working sets and guarantee programs enough space to 

contain them, thereby preventing thrashing.  Ethernet prevents the 

contention resolving protocol from getting overloaded by making 

competing transactions wait longer for retries if load is heavy.  (Data 

collection outside, optimal action outside.) 

In summary, the modern principle of locality is that observers operate 

in one or more neighborhoods that can be inferred from dynamic action 

sequences and static structural declarations.  Systems can optimize the 

observer’s productivity by adapting to the observer’s neighborhoods, 

which they can estimate by distance metrics or other inferences. 

6.  Future Uses of Locality Principle 

Locality principles are certain to remain at the forefront of systems 

design, analysis, and performance.  This is because locality flows from 

human cognitive and coordinative behavior.  The mind focuses on a 

small part of the sensory field and can work most quickly on the objects 

of its attention.  People organize their social and intellectual systems into 

neighborhoods of related objects, and they gather the most useful objects 

of each neighborhood close around them to minimize the time and work 

of using them.  These behaviors are transferred into the computational 

systems we design and into the expectations users have about how their 

systems should interact with them. 



Here are seven modern areas offering challenging research problems 

that locality may be instrumental in solving. 

Architecture.  Computer architects have heavily exploited the 

locality principle to boost the performance of chips and systems.  Putting 

cache memory near the CPU, either on board the same chip or on a 

neighboring chip, has enabled modern CPUs to pass the 1 GHz speed 

mark.  Locality within threaded instruction sequences is being exploited 

by a new generation of multi-core processor chips.  The “system on a 

chip” concept places neighboring functions on the same chip to 

significantly decrease delays of communicating between components.  

Locality is used to compress animated sequences of pictures by detecting 

the common neighborhood behind a sequence and transmitting it once 

and then transmitting the differences.  Architects will continue to 

examine locality carefully to find new ways to speed up chips, 

communications, and systems. 

Caching.  The locality principle is useful wherever there is an 

advantage in reducing the apparent distance from a process to the objects 

it can access.  Objects in the process’s neighborhood are kept in a local 

cache with fast access time.  The performance acceleration of a cache 

generally justifies the modest investment in the cache storage.  Novel 

forms of caching have sprung up in the Internet.  One prominent example 

is edge servers that store copies of web objects near their users.  Another 

example is the clustered databases built by search engines (like Google) 

to instantly retrieve relevant objects from the same neighborhoods as the 

asker.  Similar capabilities are available in MacOS 10.4 (Tiger) and will 

be in Windows 2006 to speed up finding relevant objects. 

Bayesian Inference.  A growing number of inference systems exploit 

Bayes’s principle of conditional probability to compute the most likely 

internal (hidden) states of a system given observable data about the 

system.  Spam filters, for example, use it to infer the email user’s mental 

rules for classifying certain objects as spam.  Connectionist networks use 

it for learning: they internal states that abstract from desired input-output 

pairs shown to the network; the network gradually acquires a capability 

for new action.  Bayesian inference is an exploitation of locality because 

it infers a neighborhood given observations of what a user or process is 

doing. 



Forensics.  The burgeoning field of computer forensics owes much of 

its success to the ubiquity of caches.  They are literally everywhere in an 

operating systems and applications.  By recovering evidence from these 

caches, forensics experts can reconstruct (infer) an amazing amount of a 

criminal’s motives and intent [Farmer].  Criminals who erase data files 

are still not safe because experts use advanced signal-processing methods 

to recover the faint magnetic traces of the most recent files from the disk 

[Carrier].  Learning to draw valid inferences from data in a computer’s 

caches, and from correlated data in caches in other computers with which 

the subject has communicated, is a challenging research problem. 

Web Based Business Processes.  The principle of locality has 

pervaded the design of web based business systems, which allow buyers 

and sellers to engage in transactions using web interfaces to sophisticated 

database systems.  Amazon.com illustrates how a system can infer “book 

interest neighborhoods” of customers and (successfully) recommend 

additional sales.  Many businesses employ customer relationship 

management (CRM) systems that infer “customer interest 

neighborhoods” and allow the company to provide better, more 

personalized service.  Database, network, server, memory, and other 

caches optimize the performance of these systems [Menasce]. 

Context Aware Software.  A growing number of software designers 

are coming to believe that most software failures can be traced to the 

inability of software to be aware of and act on the context in which it 

operates.  The modern locality principle is beginning to enable software 

designers to reconstruct context and thereby to be consistently more 

reliable, dependable, usable, safe, and secure. 

Network Science.  Inspired by A. L. Barabasi, many scientists have 

begun applying statistical mechanics to large random networks, typically 

finding that the distribution of node connections is power law with 

degree -2 to -3 in most cases [Barabasi].  These networks have been 

found to be self-similar, meaning that if all neighborhoods (nodes within 

a maximum distance of each other) are collapsed to single nodes, the 

resulting network has the same power distribution as the original [Song].  

The idea that localities are natural in complex systems is not new; in 

1976 Madison and Batson reported that program localities have self-

similar sub-localities [Madison], and in 1977 P. J. Courtois applied it to 



cluster similar states of complex systems to simplify their performance 

analyses [Courtois].  The locality principle may offer new 

understandings of the structure of complex networks. 

 
Researchers looking for challenging problems can find many in these 

areas and can exploit the principle of locality to solve them. 
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Table 1: Milestones in Development of Locality Idea 

 
1959 Atlas operating system includes first virtual memory; a “learning algorithm” 

replaces pages referenced farthest in the future [30]. 

1961 IBM Stretch supercomputer uses spatial locality to prefetch instructions and 
follow possible branches. 

1965 Wilkes introduces slave memory, later known as CPU cache, to hold most 
recently used pages and significantly accelerate effective CPU speed [46]. 

1966 Belady at IBM Research publishes comprehensive study of virtual memory 

replacement algorithms, showing that those with usage bits outperform 
those without [5].  Corbato reconfirms for Multics [12]. 

1966 Denning proposes working set idea: the pages that must be retained in 
main memory are those referenced during a window of length T preceding 

the current time.  In 1967 he postulates that working set memory 
management will prevent thrashing [14,15,17] 

1968 Denning shows analytically why thrashing precipitates suddenly with any 

increase above a critical threshold of number of programs in memory [15].  
Belady and Denning use term locality for the program behavior property 
working sets measure. 

1969 Sayre, Brawn, and Gustavson at IBM demonstrate that programs with good 

locality are easy to design and cause virtual memory systems to perform 
better than a manually design paging schedule [7, 40] 

1970 Denning gathers all extant results for virtual memory into Computing 

Surveys paper “virtual memory” that was widely used in operating systems 

courses.  This was first coherent scientific framework for designing and 
analyzing dynamic memories [16]. 

1970-71 Mattson, Gecsei, Slutz, and Traiger of IBM publish “stack algorithms”, 

modeling a large class of popular replacement policies including LRU and 
MIN and offering surprisingly simple algorithms for calculating their paging 
functions in virtual memory [33].  Aho, Denning, and Ullman prove a 
principle of optimality for page replacement [2]. 

1971 Hatfield and Gerald demonstrate compiler code generation methods for 
preserving locality in executable files [28].  Ferrari shows even greater 
gains when working sets measure locality [25]. 

1972 Spirn and Denning conclude that locality sequence (phase-transition) 
behavior is the most accurate description of locality [44]. 

1970-74 Abramson, Metcalfe, and Roberts report thrashing in Aloha and Ethernet 
communication systems; load control protocols prevent it [1,35,38] 

1976 Buzen, Courtois, Denning, Gelenbe, and others integrate memory 

management into queueing network models, demonstrating that thrashing 
is caused by the paging disk transitioning into the bottleneck with increasing 

load [3,8,9,13,20,26,31] System throughput is maximum when the average 
working set space-time is minimum [9,27] 



1976 Madison and Batson demonstrate that locality is present in symbolic 

execution strings of programs, concluding that locality is part of human 
cognitive processes transmitted to programs [32].  They show that locality 
sequences have self-similar substructures. 

1976 Prieve and Fabry demonstrate VMIN, the optimal variable-space 

replacement policy [37]; it has identical page faults as working set but lower 
space-time accumulation at phase transitions [17].  

1978 Denning and Slutz define generalized working sets; objects are local when 

their memory retention cost is less than their recovery costs.  The GWS 

models the stack algorithms, space-time variations of working sets, and all 
variable-space optimal replacement algorithms. [21] 

1980 Denning gathers the results of over 200 virtual-memory researchers and 

concludes that working set memory management with a single system-wide 
window size is as close to optimal as can practically be realized [17]. 

1981 Carr and Hennessy offer effective software implementation of working set 
by applying sampling windows in CLOCK algorithm [10]. 

1982-84 Shore reports thrashing in large class of queueing systems [41].  Blake 
offers optimal controls of thrashing [6]. 

1993 Thomasian reports thrashing in two-phase locking systems [45]. 

 
 
 



Table 2: Milestones in Adoption of Locality 

 
1961 IBM Stretch computer uses spatial locality for instruction lookahead. 

1964 Major computer manufacturers (Burroughs, General Electric, RCA, Univac 
but not IBM) introduce virtual memory with their “third generation computing 
systems”.  Thrashing is a significant performance problem. 

1965-1969 Nelson, Sayre, and Belady, at IBM Research built first virtual machine 

operating system; they experiment with virtual machines, contribute 
significant insights into performance of virtual memory, mitigate thrashing 
through load control, and lay groundwork for later IBM virtual machine 
architectures. 

1968 IBM introduces cache memory in 360 series.  Multics adopts “clock”, an 
RLU variant, to protect recently used pages. 

1969-1972 Operating systems researchers demonstrate experimentally that the 

working set policy works as advertised.  They show how to group code 
segments on pages to maximize spatial locality and thus temporal locality 
during execution. 

1972 IBM introduces virtual machines and virtual memory into 370 series.  Bayer 
formally introduces B-tree for organizing large files on disks to minimize 

access time by improving spatial locality.  Parnas introduces information 
hiding, a way of localizing access to variables within modules. 

1978 First BSD Unix includes virtual memory with load controls inspired by 

working set principle; propagates into Sun OS (1984), Mach (1985), and 
Mac OS X (1999). 

1974-79 IBM System R, an experimental relational database system, uses LRU 
managed record caches and B-trees. 

1981 IBM introduces disk controllers containing caches so that database systems 

can get records without a disk access; controllers use LRU but do not cache 
records involved in sequential file accesses. 

early 
1980s 

Chip makers start providing data caches in addition to instruction caches, to 
speed up access to data and reduce contention at memory interface. 

late 1980s Application developers add “most recent files” list to desktop applications, 
allowing users to more quickly resume interrupted tasks. 

1987-1990 Microsoft and IBM develop OS/2 operating systems for PCs, with full 

multitasking and working set managed virtual memory.  Microsoft splits from 
IBM, transforms OS/2 into Windows NT. 

Early 
1990s 

Computer forensics starts to emerge as a field; it uses locality and signal 

processing to recover the most recently deleted files; and it uses multiple 
system and network caches to reconstruction actions of users. 



 
1990-1998 Beginning with Archie, then Gopher, Lykos, Altavista, and finally Google, 

search engines compile caches that enable finding relevant documents 
from anywhere in the Internet very quickly. 

1993 Mosaic (later Netscape) browser uses a cache to store recently accessed 
web pages for quick retrieval by the browser. 

1995 Kahn and Wilensky show a method of digital object identifiers based on the 
locality-enhancing two-level address mapping principle. 

1998 Akamai and other companies provide local web caches (“edge servers”) to 
speed up Internet access and reduce traffic at sources. 

 


