
CHAPTER 4

The Locality Principle

Peter J. Denning

Naval Postgraduate School

Monterey, CA 93943 USA

Email: pjd@nps.edu

Locality is among the oldest systems principles in computer science. It

was discovered in 1967 during efforts to make early virtual memory

systems work well. It is a package of three ideas: (1) computational

processes pass through a sequence of locality sets and reference only

within them, (2) the locality sets can be inferred by applying a distance

function to a program’s address trace observed during a backward

window, and (3) memory management is optimal when it guarantees

each program that its locality sets will be present in high-speed

memory. Working set memory management was the first exploitation

of this principle; it prevented thrashing while maintaining near optimal

system throughput, and eventually it enabled virtual memory systems

to be reliable, dependable, and transparent. Many researchers and

system designers rallied around the effort to understand locality and

achieve this outcome. The principle expanded well beyond virtual

memory systems. Today it addresses computations that adapt to the

neighborhoods in which users are situated, ways to infer those

neighborhoods by observing user actions, and optimizing performance

for users by being aware of their neighborhoods. It has influenced the

design of caches of all sorts, Internet edge servers, spam blocking,

search engines, e-commerce systems, email systems, forensics, and

context-aware software. It remains a rich source of inspirations for

contemporary research in architecture, caching, Bayesian inference,

forensics, web-based business processes, context-aware software, and

network science.

Peter J. Denning. The Locality Principle. In

Communication Networks and Computer Systems (J.

Barria, Ed.). Imperial College Press (2006), 43-67.

1. Introduction

Locality of reference is one of the cornerstones of computer science. It

was born from efforts to make virtual memory systems work well.

Virtual memory was first developed in 1959 on the Atlas system at the

University of Manchester. Its superior programming environment

doubled or tripled programmer productivity. But it was finicky, its

performance sensitive to the choice of replacement algorithm and to the

ways compilers grouped code on to pages. Worse, when it was coupled

with multiprogramming, it was prone to thrashing, the near-complete

collapse of system throughput due to heavy paging. The locality

principle guided us in designing robust replacement algorithms, compiler

code generators, and thrashing-proof systems. It transformed virtual

memory from an unpredictable to a robust technology that regulated

itself dynamically and optimized throughput without user intervention.

Virtual memory became such an engineering triumph that it faded into

the background of every operating system, where it performs so well at

managing memory with multithreading and multitasking that no one

notices.

The locality principle found application well beyond virtual memory.

Today it directly influences the design of processor caches, disk

controller caches, storage hierarchies, network interfaces, database

systems, graphics display systems, human-computer interfaces,

individual application programs, search engines, Web browsers, edge

caches for Web based environments, and computer forensics. Tomorrow

it may help us overcome our problems with brittle, unforgiving,

unreliable, and unfriendly software.

I will tell the story of this principle, starting with its discovery to

solve a multimillion-dollar performance problem, through its evolution

as an idea, to its widespread adoption today. My telling is highly

personal because locality, and the attending success of virtual memory,

was my focus during the first part of my career.

2. Manifestation of a Need (1949-1965)

In 1949 the builders of the Atlas computer system at University of

Manchester recognized that computing systems would always have

storage hierarchies consisting of at least main memory (RAM) and

secondary memory (disk, drum). To simplify management of these

hierarchies, they introduced the page as the unit of storage and transfer.

Even with this simplification, programmers spent well over half their

time planning and programming page transfers, then called overlays. In

a move to enable programming productivity to at least double, the Atlas

system builders therefore decided to automate the overlaying process.

Their “one-level storage system” (later called virtual memory) was part

of the second-generation Atlas operating system in 1959 [Kilburn]. It

simulated a large main memory within a small real one. The heart of

their innovation was the novel concept that addresses named values, not

memory locations. The CPU’s addressing hardware translated CPU

addresses into memory locations via an updatable page table map (Figure

1). By allowing more addresses than locations, their scheme enabled

programmers to put all their instructions and data into a single address

space. The file containing the address space was on the disk; the

operating system copied pages on demand (at page faults) from that file

to main memory. When main memory was full, the operating system

selected a main memory page to be replaced at the next page fault.

The Atlas system designers had to resolve two performance

problems, either one of which could sink the system: translating

addresses to locations; and replacing loaded pages. They quickly found a

workable solution to the translation problem by storing copies of the

most recently used page table entries in a small high speed associative

memory, later known as the address cache or the translation lookaside

buffer. The replacement problem was a much more difficult conundrum.

Because the disk access time was about 10,000 times slower than the

CPU instruction cycle, each page fault added a significant delay to a

job’s completion time. Therefore, minimizing page faults was critical to

system performance. Since minimum faults means maximum inter-fault

intervals, the ideal page to replace from main memory is the one that will

not be used again for the longest time. To accomplish this, the Atlas

Figure 1. The architecture of virtual memory. The process running on the CPU has

access to an address space identified by a domain number d. A full copy of the address

space is stored on disk as the file AS[d]; only a subset is actually loaded into the main

memory. The page table PT[d] has an entry for every page of domain d. The entry for a

particular page (i) contains a presence bit P indicating whether the page is in main

memory or not, a usage bit U indicating whether it has been accessed recently or not, a

modified bit M indicating whether it has been written into or not, and a frame number FN

telling which main memory page frame contains the page. Every address generated by

the CPU is decomposed into a page number part (i) and a line number part (x). The

memory mapping unit (MMU) translates that address into a memory location as follows.

It accesses memory location d+i, which contains the entry of page i in the page table

PT[d]. If the page is present (P=1), it generates the memory location by substituting the

frame number (f) for the page number (i). If it is not present (P=0), it instead generates a

page fault interrupt that signals the operating system to invoke the page fault handler

routine (PFH). The MMU also sets the use bit (U=1) and on write accesses the modified

bit (M=1). The PFH selects a main memory page to replace, if modified copies it to the

disk in its slot of the address space file AS[d], copies page i from the address space file to

the empty frame, updates the page table, and signals the CPU to retry the previous

instruction. As it searches for a page to replace, the PFH reads and resets usage bits,

looking for unused pages. A copy of the most recent translations (from page to frame) is

kept in the translation lookaside buffer (TLB), enabling the MMU to bypass the page

table lookup most of the time.

system contained a “learning algorithm” that hypothesized a loop cycle

for each page, measured each page’s period, and estimated which page

was not needed for the longest time.

The learning algorithm was controversial. It performed well on

programs with well-defined loops and poorly on many other programs.

The controversy spawned numerous experimental studies well into the

1960s that sought to determine what replacement rules might work best

over the widest possible range of programs. Their results were often

contradictory. Eventually it became apparent that the volatility resulted

from variations in compiling methods: the way in which a compiler

grouped code blocks onto pages strongly affected the program’s

performance under a given replacement strategy.

Meanwhile, in the early 1960s, the major computer makers were

drawn to multiprogrammed virtual memory because of its superior

programming environment. RCA, General Electric, Burroughs, and

Univac all included virtual memory in their operating systems. Because

a bad replacement algorithm could cost a million dollars of lost machine

time over the life of a system, they all paid a great deal of attention to

replacement algorithms.

Nonetheless, by 1966 these companies were reporting their systems

were susceptible to a new, unexplained, catastrophic problem they called

thrashing. Thrashing seemed to have nothing to do with the choice of

replacement policy. It manifested as a sudden collapse of throughput as

the multiprogramming level rose. A thrashing system spent most of its

time resolving page faults and little running the CPU. Thrashing was far

more damaging than a poor replacement algorithm. It scared the

daylights out of the computer makers.

The more conservative IBM did not include virtual memory in its 360

operating system in 1964. Instead, it sponsored at its Watson laboratory

one of the most comprehensive experimental systems projects of all time.

Led by Bob Nelson, Les Belady, and David Sayre, the project team built

the first virtual-machine operating system and used it to study the

performance of virtual memory. (The term “virtual memory” appears to

have come from this project.) By 1966 they had tested every

replacement policy that anyone had ever proposed and a few more they

invented. Many of their tests involved the use bits built in to page tables

(see Figure 1). By periodically scanning and resetting the bits, the

replacement algorithm distinguishes recently referenced pages from

others. Belady concluded that policies favoring recently used pages

performed better than other policies; LRU (least recently used)

replacement was consistently the best performer among those tested

[Belady].

3. Discovery and Propagation of Locality Idea (1966-1980)

In 1965, I entered my PhD studies at MIT in Project MAC, which was

just undertaking the development of Multics. I was fascinated by the

problems of dynamically allocating scarce CPU and memory resources

among the many processes that would populate future time-sharing

systems.

I set myself a goal to solve the thrashing problem and define an

efficient way to manage memory with variable partitions. Solutions to

these problems would be worth millions of dollars in recovered uptime

of virtual memory operating systems. Little did I know that I would have

to devise and validate a theory of program behavior to accomplish this.

I learned about the controversies over the viability of virtual memory

and was baffled by the contradictory conclusions among the

experimental studies. All these studies examined individual programs

assigned to a fixed memory partition managed by a replacement

algorithm. They shed no light on the dynamic partitions used in

multiprogrammed virtual memory systems. They offered no notion of a

dynamic, intrinsic memory demand that would tell which pages of the

program were essential and which were replaceable -- something simple

like, “this process needs p pages at time t.” Such a notion was

incompatible with the fixed-space policies everyone was studying. I

began to speak of a process’s intrinsic memory demand as its “working

set”. The idea was that paging would be acceptable if the system could

guarantee that the working set was loaded. I combed the experimental

studies looking for clues on how to measure a program’s working set.

All I could find were data on lifetime curves (mean time between page

faults as a function of average memory space allocated to a program).

These data suggested that the mean working set size would be

significantly smaller than the full program size (Figure 2).

In an “Aha!” moment in the waning days of 1966, inspired by

Belady’s observations, I hit on the idea of defining a process’s working

set as the set of pages used during a fixed-length sampling window in the

immediate past. A working set could be measured by periodically

reading and resetting the use bits in a page table. The window had to be

Figure 2. A program’s lifetime curve plots the mean time between page faults in a virtual

memory system with a given replacement policy, as a function of the amount of space

allocated to it by the system. It has an S-shape. The knee, defined as the point at which a

line emanating from the origin is tangent to the curve, is the point of diminishing returns

for increased memory allocation. The knee memory size is typically considerably

smaller than the total program size, indicating that a replacement policy can often do

quite well with a relatively small memory allocation. A further significance of the knee

is that it maximizes the ratio L(x)/x for all points on the curve. The knee is therefore the

most desirable target for space allocation: it maximizes the mean time between faults per

unit of space.

in the virtual time of the process -- time as measured by the number of

memory references made -- so that the measurement would not be

distorted by interruptions. This led to the now-familiar notation: the

working set W(t,T) is the set of pages referenced in the virtual time

interval of length T preceding time t [Denning 68a].

By spring 1967, I had an explanation for thrashing [Denning 68b].

Thrashing was the collapse of system throughput triggered by making the

multiprogramming level too high. It was counterintuitive because we

were used to systems that would saturate under heavy load, not shut

down (Figure 3). When memory was filled with working sets, any

further increment in the multiprogramming level would simultaneously

push all loaded programs into a regime of working set insufficiency,

where they paged excessively and could not use the CPU efficiently

Figure 3. A computer system’s throughput (jobs completed per second) increases with

multiprogramming level up to a point. Then it decreases rapidly to throughput so low

that the system appears to have shut down. Because everyone was used to systems that

gradually approach saturation with increasing load, the throughput collapse was

unexpected. The thrashing state was “sticky” -- we had to reduce the MPL somewhat

below the trigger point to get the system to reset. No one knew how to predict the

optimal MPL or to find it without falling into thrashing.

(Figure 4). I proposed a feedback control mechanism that would limit

the multiprogramming level by refusing to activate any program whose

working set would not fit within the free space of main memory. When

memory was full, the operating system would defer programs requesting

activation into a holding queue. Thrashing would be impossible with a

working set policy (Figure 5).

The working set idea was based on an implicit assumption that the

pages seen in the backward window were highly likely to be used again

in the immediate future. Was this assumption justified? In discussions

with Jack Dennis (MIT) and Les Belady (IBM), I started using the term

“locality” for the observed tendency of programs to cluster references to

small subsets of their pages for extended intervals. We could represent a

program’s memory demand as a sequence of locality sets and their

holding times:

(L1,T2), (L2,T2), (L3,T3), ... , (Li,Ti), ...

This seemed natural because we knew that programmers planned

overlays using diagrams that showed subsets and time phases (Figure 6).

But what was strikingly interesting was that programs showed the

locality behavior even when it was not explicitly pre-planned. When

measuring actual page use, we repeatedly observed many long phases

with relatively small locality sets (Figure 7). Each program had its own

distinctive pattern, like a voiceprint.

We saw two reasons that this would happen: (1) temporal clustering

due to looping and executing within modules with private data, and (2)

spatial clustering due to related values being grouped into arrays,

sequences, modules, and other data structures. Both these reasons

seemed related to the human practice of “divide and conquer” -- breaking

a large problem into parts and working separately on each. The locality

bit maps captured someone’s problem-solving method in action. These

underlying phenomena gave us confidence to claim that programs have

natural sequences of locality sets. The working set sequence is a

measurable approximation of a program’s intrinsic locality sequence.

Figure 4. The first rigorous explanation of thrashing argued from efficiency. The

efficiency of a program is the ratio of its CPU execution time to its real time. Real time

is longer because of page-fault delays. Denote a program’s execution time by E, the page

fault rate by m, and the delay for one page fault by D; then the efficiency is E/(E+mED)

= 1/(1+mD). For typical values of D -- 10,000 memory cycle times or longer -- the

efficiency drops very rapidly for a small increase of m above 0. In a memory filled with

working sets (high efficiency), loading one more program can squeeze all the others,

pushing everyone into working set insufficiency, collapsing efficiency.

Figure 5. A feedback control system can stabilize the multiprogramming level and

prevent thrashing. The amount of free space is monitored and fed back to the scheduler.

The scheduler activates the next waiting program whenever the free space is sufficient for

its working set. With such a control, we expected that the multiprogramming level would

rise to the optimal level and stabilize there.

Figure 6. Locality sequence behavior diagrammed by programmer during overlay

planning.

Figure 7. Locality sequence behavior observed by sampling use bits during program

execution. Programs exhibit phases and localities naturally, even when overlays are not

pre-planned.

As we developed and refined our understanding of locality during the

1970s, I continued to work with many others to refine the locality idea

and turn it into a behavioral theory of computational processes

interacting with storage systems. By 1980 we articulated the principle as

a package of three ideas: (1) computational processes pass through a

sequence of locality sets and reference only within them, (2) the locality

sets can be inferred by applying a distance function to a program’s

address trace observed during a backward window, and (3) memory

management is optimal when it guarantees each program that its locality

sets will be present in high-speed memory [Denning 80]. A distance

function D(x,t) measures the distance from a processor to an object x at

time t. Distances could be temporal, measuring the time since prior

reference or access time within a network; spatial, measuring hops in a

network or address separation in a sequence; or cost, measuring any non-

decreasing accumulation of cost since prior reference. We said that

object x is in the locality set at time t if the distance is less than a

threshold: D(x,t) T. The storage system would maximize throughput

by caching locality sets close to the processor.

By 1975, the queueing network model had become a useful tool for

understanding the performance of computing systems, and for predicting

throughput, response time, and system capacity. In this model, each

computing device of the real system is represented as a server with a

queue; the server processes a job for a random service time and then

sends it to another server according to a probability distribution for the

inter-server transition. The parameters of the model are the mean service

times for each server, the mean number of times a job visits a server, and

the total number of jobs circulating in the system. We began to use these

models to study how to tell when a computing system had achieved its

maximum throughput and was on the verge of thrashing. The results

were eye-opening.

In the simplest queueing model of a virtual memory system, there is a

server representing the CPU and a server representing the paging disk. A

job cycles between the CPU and the disk in the pattern

(CPU, Disk)* CPU

meaning a series of CPU-Disk cycles followed by a CPU interval before

completing. The number of CPU-Disk cycles is the number of page

faults generated by the system’s replacement policy for the mean

memory space allocated to jobs. Queueing network theory told us that

every server poses a potential bottleneck that imposes an upper limit on

the system throughput; the actual bottleneck is the server with the

smallest limit. We discovered that the well-known thrashing curve

(Figure 3) is actually the system doing the best it can as the paging-disk

bottleneck worsens with increasing load (Figure 8.)

Figure 8. System throughput is constrained by both CPU and disk capacity. The CPU

imposes a throughput limit of 1/R, where R is the average running time of programs. The

disk imposes a throughput limit of 1/SF, where S is the mean time to do a page swap and

F is the total number of page faults in a job. Thrashing is caused by precipitous drop of

disk capacity as increased load squeezes space and forces more paging. The crossing

point occurs when R=SF; since F=R/L (lifetime, L), the crossing is at L=S, i.e., when the

mean time between faults equals the disk service time of a fault. Thus a control criterion

is to allow N to increase until L decreases to S. Unfortunately, this was not very precise;

we found experimentally that many systems were already in thrashing when L=S.

Moreover, the memory size at which L=S may bear no relation to the highly desirable

lifetime knee (Figure 2).

Once we saw that thrashing is a bottleneck problem, we studied

whether we could use bottleneck parameters as criteria for load controls

that prevented thrashing. One such criterion was called “L=S” because it

involved monitoring the mean lifetime L between page faults and

adjusting load to keep that value near the paging disk service time S

(Figure 8). This criterion was not very reliable: in some experiments, the

system would already be thrashing when L=S. We found that a “knee

criterion” -- in which the system adjusted load to keep the observed

lifetime near the knee lifetime (Figure 2) -- was consistently more

reliable, even though knee lifetime was not close to S. Unfortunately, it

is not possible to know the knee lifetime without running the program to

completion.

Figure 9. System throughput is maximized when the memory space-time consumed by a

job is minimum. The memory allocation that does this is near the knee (Figure 2). Our

experimental studies of working-set windows near the knee of its lifetime curve yielded

two useful results. One is that a program’s space-time is likely to be flat (near minimum)

for a broad range of window sizes. The picture shows how we defined a “10%

confidence interval” of window sizes.

Our theory told us that system throughput would be maximum when

space-time for each job is minimum, confirming our claim that a knee

criterion would optimize throughput. How well can a working-set policy

approach this ideal? In a line of experimental studies we found that the

interval of window values that put the space-time within 10% of its

minimum was quite wide (Figure 9) [Graham]. Then we found that

many workloads, consisting of a variety of programs, often had global T

values that fell in all the 10% confidence intervals (Figure 10). This

meant that a single, fixed, properly chosen value of T would cause the

working set policy to maintain system throughput to within 10% of its

optimum. The average deviation was closer to 5%.

Figure 10. On comparing the 10% confidence intervals, we found that there was very

often a global value of T that would put all programs within 10% of their space-time

minima. The average deviation from minimum for this value of T was closer to 5%. The

conclusion was that systems with a properly adjusted, single global T value would

achieve a working-set throughput within 5-10% of optimal.

The final question was: is there another policy that would deliver a

lower space-time per job and therefore a higher optimum throughput?

Obviously, the VMIN (variable space minimum [Prieve]) would do the

job; but it requires lookahead. We discovered that the working set policy

has exactly the same page-fault sequence as VMIN. Therefore the

difference of space-time between WS and VMIN is completely explained

by working-set “overshooting” in its estimates of locality at the

transitions between program phases. Indeed, VMIN unloads pages

toward the ends of their phases after it sees they will not be referenced in

the next phase. Working set cannot tell this until time T after the last

reference. Experiments by Alan Smith to clip off these overshoots

showed only a minor gain [Smith]. We concluded that it would be

unlikely that anyone would find a non-lookahead policy that was

noticeably better than working set.

Thus, by 1976, our theory was validated. It demonstrated our original

postulate: that working set memory management would prevent

thrashing and would allow system throughput to be close to its optimum.

The problem of thrashing, which originally motivated the working set

theory, has occurred in other contexts as well as storage management. It

can happen in any system where contention for a shared resource can

overwhelm the processes’ abilities to move forward. It was observed in

the first packet-radio communication system, ALOHA, in the late 1960s.

In this system, the various contenders could overwhelm the shared

spectrum by retransmitting packets when they discovered their

transmissions being inadvertently jammed by other transmitters

[Abramson]. A similar problem occurred in the Ethernet, where it was

solved by the “back-off” protocol that makes a transmitter wait a random

time before retrying a transmission [Metcalfe]. A similar problem

occurred in database systems with the two-phase commit protocol

[Thomasian]. Under this protocol, transactions try to collect locks on the

records they will update; but if they find any record already locked, they

release all their locks and try again. When too many transactions try to

collect locks at the same time, they spend most of their time gathering

and releasing locks.

Although it is not critical to the theory and conclusions above, it is

worth noting that the working-set analysis applies even when processes

share pages. Among its design objectives, Multics supported

multiprocess (multithreaded) computations. The notions of locality and

working sets had to apply in this environment. The obvious approach

was to define a computation’s working set as the union of its constituent

process working sets. This approach did not work well in the standard

paging system architecture (Figure 1) because the use bits that had to be

OR’d together were in different page tables and a high overhead would

be needed to locate them. Fortunately, the idea of capability-based

addressing, a locality-enhancing architecture articulated by colleagues

Dennis and Van Horn in 1966 [Dennis], offered a solution (Figure 11).

Working sets could be measured from the use bits of the set of object

descriptors.

The two-level mapping inherent in capability addressing is a principle

in its own right. It solved a host of sharing problems in virtual memories

of multiprocess operating systems [Fabry]. It stimulated a line of

extraordinarily fault tolerant commercial systems known as “capability

machines” in the 1970s [Wilkes 72, 79]. The architecture was adopted

into the run time environments of object oriented programming systems.

The principle was applied to solving the problem of sharing objects in

the Internet [Kahn]. Thus the situations in which working sets and

localities of multithreaded and distributed computations apply are

ubiquitous today.

Table 1 summarizes milestones in the development of the locality

idea.

Figure 11. Two-level mapping enables sharing of objects without prior arrangements

among the users. It begins with assigning a unique (over all time) identifying handle h to

an object; objects can be of any size. Object h has a single descriptor specifying its status

in memory: present (P = 0 or 1), used (U = 0 or 1), base address (B, defined only when

P=1), and length (L). The descriptors of all known objects are stored in a descriptor table

DT, a hash table with the handle as a lookup key. When present, the object is assigned a

block of contiguous addresses in main memory. Each computational process operates in

its own memory domain (such as d1 or d2), which is specified by an object table (OT), an

adaptation of the page table (Figure 1). The object table, indexed by an object number

(such as i or j), retrieves an object’s access code (such as rw) and handle. The memory

mapping unit takes an address (i,x), meaning line x of object i, and retrieves the handle

from the object table; then it looks up the descriptor for the handle in the descriptor table;

finally it forms the actual memory address b+x provided that x does not exceed the

object’s size a. Any number of processes can share h, simply by adding entries pointing

to h as convenient in their object tables. Those processes can use any local name (i or j)

they desire. If the system needs to relocate the object in memory, it can do so by

updating the descriptor (in the descriptor table). All processes will get the correct

mapping information immediately. Working sets can be measured from the use bits (U)

in the descriptor table.

4. Adoption of Locality Principle (1967-present)

The locality principle was adopted as an idea almost immediately by

operating systems, database, and hardware architects. But it did not

remain a pure idea for long. It was adopted into practice, in ever

widening circles:

• In virtual memory to organize caches for address translation and to

design the replacement algorithms.

• In data caches for CPUs, originally as mainframes and now as

microchips.

• In buffers between main memory and secondary memory devices.

• In buffers between computers and networks.

• In video boards to accelerate graphics displays.

• In modules that implement the information-hiding principle.

• In accounting and event logs in that monitor activities within a

system.

• In alias lists that associate longer names or addresses with short

nicknames.

• In the “most recently used” object lists of applications.

• In web browsers to hold recent web pages.

• In file systems, to organize indexes (e.g., B-trees) for fastest retrieval

of file blocks.

• In database systems, to manage record-flows between levels of

memory.

• In search engines to find the most relevant responses to queries.

• In classification systems that cluster related data elements into

similarity classes.

• In spam filters, which infer which categories of email are in the

user’s locality space and which are not.

• In “spread spectrum” video streaming that bypasses network

congestion and reduces the apparent distance to the video server.

• In “edge servers” to hold recent web pages accessed by anyone in an

organization or geographical region.

• In the field of computer forensics to infer criminal motives and intent

by correlating event records in many caches.

• In the field of network science by defining hierarchies of self-similar

locality structures within complex power-law networks.

Table 2 summarizes milestones in the adoption of locality in systems.

The locality principle is today considered as a fundamental principle for

systems design.

5. Modern Model of Locality: Context Awareness

As the uses of locality expanded into more areas, our understanding of

locality has evolved beyond the original idea of clustering of reference.

Today’s understanding embraces four key ideas that enable awareness of,

and meaningful response to, the context in which software is situated

(Figure 12):

• An observer;

• Neighborhoods: One or more sets of objects that are most relevant

to the observer at any given time;

• Inference: A method of identifying the most relevant objects by

monitoring the observer’s actions and interactions and other

information about the observer contained in the environment; and

• Optimal actions: An expectation that the observer will complete

work in the shortest time if neighborhood objects are ready

accessible in nearby caches.

The observer is the agent who is trying to accomplish tasks with the

help of software, and who places expectations on its function and

performance. In most cases, the observer is the user who interacts with

software. In some cases, especially when a program is designed to

compute a precise, mathematical model, the observer can be built into

the software itself.

Figure 12. The modern view of locality is a means of inferring the context of an observer

using software, so that the software can dynamically adapt its actions to produce optimal

behavior for the observer.

A neighborhood is a group of objects standing in a particular relation

to an observer, and valued in some way by the observer. The historical

example is the locality set associated with each phase of a program’s

execution; the observer is the process evoked by the program. Modern

examples of neighborhoods include email correspondents, non-spam

email, colleagues, teammates, objects used in a project, favorite objects,

user’s web, items of production, texts, and directories.

Some neighborhoods can be known by explicit declarations; for

example a user’s file directory, address book, or web pages. But most

neighborhoods can only be inferred by monitoring the event sequences of

an observer’s actions and interactions. The event sequences can be

measured either within the software with which the observer is

interacting, or outside that software, in the run-time system.

Inference can be any reasonable method that estimates the content of

neighborhoods, or at least the most relevant parts. The original working

estimated locality sets by observing page reference events in a backward

looking window. Modern inference is by a variety of methods such as

Google’s counting of incoming hyperlinks to a web page, connectionist

networks that learn patterns after being presented with many examples,

or Bayesian spam filters.

The optimal actions are taken by the system or the software on behalf

of the observer. As with the data collection to support neighborhood

inference, these actions can come either from inside the software with

which the observer is interacting, or from outside that software, in the

run-time system.

The matrix below shows four quadrants corresponding to the four

combinations of data collection and locus of action just mentioned.

Examples of software are named in each quadrant and are summarized

below.

 ORIGIN OF DATA FOR INFERENCE

 Inside Outside

Inside
Amazon.com,

Bayesian spam filter

Semantic web

Google LOCUS OF

ADAPTIVE

ACTION Outside Linkers and loaders
Working sets,

Ethernet load control

• Amazon.com; Bayesian spam filters. This system collects data

about user purchasing histories and recommends other purchases that

resemble the user’s previous purchases, or purchases by other,

similar users. Bayesian spam filters gather data about which emails

the user considers relevant and then block irrelevant emails. (Data

collection inside, optimal actions inside.)

• Semantic web; Google. Semantic web is a set of declarations of

structural relationships that constitute context of objects and their

connections. Programs read and act on it. Google gathers data from

the Web and uses it to rank pages that appear to be most relevant to a

keyword query posed by user. (Data collection outside, optimal

actions inside.)

• Linkers and Loaders. These workhorse systems gather library

modules mentioned by a source program and link them together into

a self-contained executable module. The libraries are neighborhoods

of the source program. (Data collection inside, optimal action

outside.)

• Working sets, Ethernet load controls. Virtual memory systems

measure working sets and guarantee programs enough space to

contain them, thereby preventing thrashing. Ethernet prevents the

contention resolving protocol from getting overloaded by making

competing transactions wait longer for retries if load is heavy. (Data

collection outside, optimal action outside.)

In summary, the modern principle of locality is that observers operate

in one or more neighborhoods that can be inferred from dynamic action

sequences and static structural declarations. Systems can optimize the

observer’s productivity by adapting to the observer’s neighborhoods,

which they can estimate by distance metrics or other inferences.

6. Future Uses of Locality Principle

Locality principles are certain to remain at the forefront of systems

design, analysis, and performance. This is because locality flows from

human cognitive and coordinative behavior. The mind focuses on a

small part of the sensory field and can work most quickly on the objects

of its attention. People organize their social and intellectual systems into

neighborhoods of related objects, and they gather the most useful objects

of each neighborhood close around them to minimize the time and work

of using them. These behaviors are transferred into the computational

systems we design and into the expectations users have about how their

systems should interact with them.

Here are seven modern areas offering challenging research problems

that locality may be instrumental in solving.

Architecture. Computer architects have heavily exploited the

locality principle to boost the performance of chips and systems. Putting

cache memory near the CPU, either on board the same chip or on a

neighboring chip, has enabled modern CPUs to pass the 1 GHz speed

mark. Locality within threaded instruction sequences is being exploited

by a new generation of multi-core processor chips. The “system on a

chip” concept places neighboring functions on the same chip to

significantly decrease delays of communicating between components.

Locality is used to compress animated sequences of pictures by detecting

the common neighborhood behind a sequence and transmitting it once

and then transmitting the differences. Architects will continue to

examine locality carefully to find new ways to speed up chips,

communications, and systems.

Caching. The locality principle is useful wherever there is an

advantage in reducing the apparent distance from a process to the objects

it can access. Objects in the process’s neighborhood are kept in a local

cache with fast access time. The performance acceleration of a cache

generally justifies the modest investment in the cache storage. Novel

forms of caching have sprung up in the Internet. One prominent example

is edge servers that store copies of web objects near their users. Another

example is the clustered databases built by search engines (like Google)

to instantly retrieve relevant objects from the same neighborhoods as the

asker. Similar capabilities are available in MacOS 10.4 (Tiger) and will

be in Windows 2006 to speed up finding relevant objects.

Bayesian Inference. A growing number of inference systems exploit

Bayes’s principle of conditional probability to compute the most likely

internal (hidden) states of a system given observable data about the

system. Spam filters, for example, use it to infer the email user’s mental

rules for classifying certain objects as spam. Connectionist networks use

it for learning: they internal states that abstract from desired input-output

pairs shown to the network; the network gradually acquires a capability

for new action. Bayesian inference is an exploitation of locality because

it infers a neighborhood given observations of what a user or process is

doing.

Forensics. The burgeoning field of computer forensics owes much of

its success to the ubiquity of caches. They are literally everywhere in an

operating systems and applications. By recovering evidence from these

caches, forensics experts can reconstruct (infer) an amazing amount of a

criminal’s motives and intent [Farmer]. Criminals who erase data files

are still not safe because experts use advanced signal-processing methods

to recover the faint magnetic traces of the most recent files from the disk

[Carrier]. Learning to draw valid inferences from data in a computer’s

caches, and from correlated data in caches in other computers with which

the subject has communicated, is a challenging research problem.

Web Based Business Processes. The principle of locality has

pervaded the design of web based business systems, which allow buyers

and sellers to engage in transactions using web interfaces to sophisticated

database systems. Amazon.com illustrates how a system can infer “book

interest neighborhoods” of customers and (successfully) recommend

additional sales. Many businesses employ customer relationship

management (CRM) systems that infer “customer interest

neighborhoods” and allow the company to provide better, more

personalized service. Database, network, server, memory, and other

caches optimize the performance of these systems [Menasce].

Context Aware Software. A growing number of software designers

are coming to believe that most software failures can be traced to the

inability of software to be aware of and act on the context in which it

operates. The modern locality principle is beginning to enable software

designers to reconstruct context and thereby to be consistently more

reliable, dependable, usable, safe, and secure.

Network Science. Inspired by A. L. Barabasi, many scientists have

begun applying statistical mechanics to large random networks, typically

finding that the distribution of node connections is power law with

degree -2 to -3 in most cases [Barabasi]. These networks have been

found to be self-similar, meaning that if all neighborhoods (nodes within

a maximum distance of each other) are collapsed to single nodes, the

resulting network has the same power distribution as the original [Song].

The idea that localities are natural in complex systems is not new; in

1976 Madison and Batson reported that program localities have self-

similar sub-localities [Madison], and in 1977 P. J. Courtois applied it to

cluster similar states of complex systems to simplify their performance

analyses [Courtois]. The locality principle may offer new

understandings of the structure of complex networks.

Researchers looking for challenging problems can find many in these

areas and can exploit the principle of locality to solve them.

7. References

1. Abramson, N. The ALOHA System--Another Alternative for Computer

Communication. Proc. AFIPS Fall Joint Computer Conference 37 (1970), 281-285.

2. Aho, A. V., P. J. Denning, and J. D. Ullman. Principles of optimal page

replacement. J ACM 18 (Jan 1971), 80-93.

3. Badel, M., E. Gelenbe, J. Lenfant, and D. Potier. Adaptive optimization of a time

sharing system’s performance. Proc. IEEE 63 (June 1975), 958-965.

4. Barabasi, A. L. Linked: The New Science of Networks. Perseus Books (2002).

5. Belady, L. A. “A study of replacement algorithms for virtual storage computers.

IBM Systems J. 5, 2 (1966), 78-101.

6. Blake, R. Optimal control of thrashing. ACM SIGMETRICS Proc. Conf. on

Measurement and Modeling of Computer Systems (1984), 1-10.

7. Brawn, B., and F. G. Gustavson. Program behavior in a paging environment. Proc.

AFIPS Fall Joint Computer Conference 33. Thompson (1968), 1019-1032.

8. Buzen, J. P. Optimizing the degree of multiprogramming in demand paging

systems. Proc. IEEE COMPCON (Sep 1971), 139-140.

9. Buzen, J. P. Fundamental laws of computer systems performance. Acta Informatica

7, 2 (1976), 167-182.

10. Carr, J., and J. Hennessy. WSCLOCK -- a simple and effective algorithm for virtual

memory management. ACM SIGOPS Proc. 8th Symp. on Operating Systems

Principles (1981), 87-95.

11. Carrier, Brian. File System Forensic Analysis. Addison Wesley (2005).

12. Corbato, F. J. A paging experiment with the Multics system. In Honor of P. M.

Morse, K. U. Ingard, Ed. MIT Press (1969), 217-228.

13. Courtois, P. J. Decomposability. Academic Press (1977).

14. Denning, P. J. The working set model for program behavior. ACM

Communications 11, 5 (May 1968), 323-333.

15. Denning, P. J. Thrashing: Its causes and prevent. Proc. AFIPS Fall Joint Computer

Conference 33. Thompson (1968), 915-922.

16. Denning, P. J. Virtual memory. ACM Computing Surveys 2, 3 (Sept 1970), 153-

189.

17. Denning, P. J. Working sets past and present. IEEE Transactions on Software

Engineering SE-6, 1 (January 1980), 64-84.

18. Denning, P. J. Network Laws. ACM Communications 47 (Nov 2004), 15-20.

19. Denning, P. J., and S. C. Schwartz. Properties of the working set model. ACM

Communications 15 (March 1972), 191-198.

20. Denning, P. J., K. C. Kahn, J. Laroudier, D. Potier, and R. Suri. Optimal

multiprogramming. Acta Informatica 7, 2 (1976), 197-216.

21. Denning, P. J., and D. R. Slutz. Generalized working sets for segment reference

strings. ACM Communications 21, 9 (September 1978), 750-759.

22. Dennis, J. B., and E. C. van Horn. Programming semantics for multiprogrammed

computations. ACM Communications 9, 3 (March 1966), 143-155.

23. Fabry, R. S. Capability-Based Addressing. ACM Communications 17, 7 (July

1974), 403-412.

24. Farmer, D., and W. Venema. Forensic Discovery. Addison Wesley (2004).

25. Ferrari, D. Improving locality by critical working sets. ACM Communications 17

(Nov 1974), 614-620.

26. Gelenbe, E., J. Lenfant, and D. Potier. Analyse d’un algorithme de gestion de

memoire centrale et d’un disque de pagination. Acta Informatica 3 (1974), 321-345.

27. Graham, G. S., and P. Denning. Multiprogramming and program behavior. Proc

ACM SIGMETRICS Conference on Measurement and Evaluation (1974), 1-8.

28. Hatfield, D., and J. Gerald. Program restructuring for virtual memory. IBM Syst. J.

10 (1971), 168-192.

29. Kahn, R., and R. Wilensky. A framework for distributed digital object services.

Corporation for National Research Initiatives (1995).

<http://www.cnri.reston.va.us/k-w.html>

30. Kilburn, T., D. B. G. Edwards, M. J. Lanigan, F. H. Sumner. One-level storage

system. IRE Transactions EC-11 (April 1962), 223-235.

31. Leroudier, J., and D. Potier. Principles of optimality for multiprogramming. Proc.

Int’l Symp. Computer Performance Modeling, Measurement, and Evaluation, ACM

SIGMETRICS and IFIP WG 7.3 (March 1976), 211-218.

32. Madison, A. W., and A. Batson. Characteristics of program localities. ACM

Communications 19, 5 (May 1976), 285-294.

33. Mattson, R. L., J. Gecsei, D. R. Slutz, I. L. Traiger. Evaluation techniques for

storage hierarchies. IBM Systems J. 9, 2 (1970), 78-117.

34. Menasce, D., and V. Almeida. Scaling for E-Business: Technologies, Models,

Performance, and Capacity Planning. Prentice-Hall (2000).

35. Metcalfe, R. M., and D. Boggs. Ethernet: Distributed packet switching for local

networks. ACM Communications 19, 7 (July 1976), 395-404.

36. Morris, J. B. Demand paging through the use of working sets on the MANIAC II.

ACM Communications 15 (Oct 1972), 867-872.

37. Prieve, B., and R. S. Fabry. VMIN -- An optimal variable space page replacement

algorithm. ACM Communications 19 (May 1976), 295-297.

38. Roberts, L. G. ALHOA packet system with and without slots and capture. ACM

SIGCOMM Computer Communication Review 5, 2 (April 1975), 28-42.

39. Rodriguez-Rosell, J., and J. P. Dupuy. The design, implementation, and evaluation

of a working set dispatcher. ACM Communications 16 (Apr 1973), 247-253.

40. Sayre, D. Is automatic folding of programs efficient enough to displace manual?

ACM Communications 13 (Dec 1969), 656-660.

41. Shore, J. E. The lazy repairman and other models: performance collapse due to

overhead in simple, single-server queueing systems. ACM SIGMETRICS Proc. Intl.

Symp. on Performance Measurement, Modeling, and Evaluation (May 1982), 217-

224.

42. Smith, A. J. A modified working set paging algorithm. IEEE Trans. Computing C-

25 (Sep 1976), 907-914.

43. Song, C., S. Havlin, and H. Makse. Self-Similarity of Complex Networks. Nature

433 (Jan 2005), 392-395.

44. Spirn, J. Program Behavior: Models and Measurements. Elsevier Computer

Science (1977).

45. Thomasian, A. Two-phase locking performance and its thrashing behavior. ACM

Trans. Database Systems (TODS) 18, 4 (December 1993), 579-625.

46. Wilkes, M. V. Slave memories and dynamic storage allocation. IEEE Transactions

Computers EC-14 (April 1965), 270-271.

47. Wilkes, M. V. Time Sharing Computer Systems. Elsevier (1968, 1972).

48. Wilkes, M. V. The dynamics of paging. Computer J 16 (Feb 1973), 4-9.

49. Wilkes, M. V., and R. Needham. The Cambridge CAP Computer and Its Operating

System. North-Holland (1979).

Table 1: Milestones in Development of Locality Idea

1959 Atlas operating system includes first virtual memory; a “learning algorithm”

replaces pages referenced farthest in the future [30].

1961 IBM Stretch supercomputer uses spatial locality to prefetch instructions and
follow possible branches.

1965 Wilkes introduces slave memory, later known as CPU cache, to hold most
recently used pages and significantly accelerate effective CPU speed [46].

1966 Belady at IBM Research publishes comprehensive study of virtual memory

replacement algorithms, showing that those with usage bits outperform
those without [5]. Corbato reconfirms for Multics [12].

1966 Denning proposes working set idea: the pages that must be retained in
main memory are those referenced during a window of length T preceding

the current time. In 1967 he postulates that working set memory
management will prevent thrashing [14,15,17]

1968 Denning shows analytically why thrashing precipitates suddenly with any

increase above a critical threshold of number of programs in memory [15].
Belady and Denning use term locality for the program behavior property
working sets measure.

1969 Sayre, Brawn, and Gustavson at IBM demonstrate that programs with good

locality are easy to design and cause virtual memory systems to perform
better than a manually design paging schedule [7, 40]

1970 Denning gathers all extant results for virtual memory into Computing

Surveys paper “virtual memory” that was widely used in operating systems

courses. This was first coherent scientific framework for designing and
analyzing dynamic memories [16].

1970-71 Mattson, Gecsei, Slutz, and Traiger of IBM publish “stack algorithms”,

modeling a large class of popular replacement policies including LRU and
MIN and offering surprisingly simple algorithms for calculating their paging
functions in virtual memory [33]. Aho, Denning, and Ullman prove a
principle of optimality for page replacement [2].

1971 Hatfield and Gerald demonstrate compiler code generation methods for
preserving locality in executable files [28]. Ferrari shows even greater
gains when working sets measure locality [25].

1972 Spirn and Denning conclude that locality sequence (phase-transition)
behavior is the most accurate description of locality [44].

1970-74 Abramson, Metcalfe, and Roberts report thrashing in Aloha and Ethernet
communication systems; load control protocols prevent it [1,35,38]

1976 Buzen, Courtois, Denning, Gelenbe, and others integrate memory

management into queueing network models, demonstrating that thrashing
is caused by the paging disk transitioning into the bottleneck with increasing

load [3,8,9,13,20,26,31] System throughput is maximum when the average
working set space-time is minimum [9,27]

1976 Madison and Batson demonstrate that locality is present in symbolic

execution strings of programs, concluding that locality is part of human
cognitive processes transmitted to programs [32]. They show that locality
sequences have self-similar substructures.

1976 Prieve and Fabry demonstrate VMIN, the optimal variable-space

replacement policy [37]; it has identical page faults as working set but lower
space-time accumulation at phase transitions [17].

1978 Denning and Slutz define generalized working sets; objects are local when

their memory retention cost is less than their recovery costs. The GWS

models the stack algorithms, space-time variations of working sets, and all
variable-space optimal replacement algorithms. [21]

1980 Denning gathers the results of over 200 virtual-memory researchers and

concludes that working set memory management with a single system-wide
window size is as close to optimal as can practically be realized [17].

1981 Carr and Hennessy offer effective software implementation of working set
by applying sampling windows in CLOCK algorithm [10].

1982-84 Shore reports thrashing in large class of queueing systems [41]. Blake
offers optimal controls of thrashing [6].

1993 Thomasian reports thrashing in two-phase locking systems [45].

Table 2: Milestones in Adoption of Locality

1961 IBM Stretch computer uses spatial locality for instruction lookahead.

1964 Major computer manufacturers (Burroughs, General Electric, RCA, Univac
but not IBM) introduce virtual memory with their “third generation computing
systems”. Thrashing is a significant performance problem.

1965-1969 Nelson, Sayre, and Belady, at IBM Research built first virtual machine

operating system; they experiment with virtual machines, contribute
significant insights into performance of virtual memory, mitigate thrashing
through load control, and lay groundwork for later IBM virtual machine
architectures.

1968 IBM introduces cache memory in 360 series. Multics adopts “clock”, an
RLU variant, to protect recently used pages.

1969-1972 Operating systems researchers demonstrate experimentally that the

working set policy works as advertised. They show how to group code
segments on pages to maximize spatial locality and thus temporal locality
during execution.

1972 IBM introduces virtual machines and virtual memory into 370 series. Bayer
formally introduces B-tree for organizing large files on disks to minimize

access time by improving spatial locality. Parnas introduces information
hiding, a way of localizing access to variables within modules.

1978 First BSD Unix includes virtual memory with load controls inspired by

working set principle; propagates into Sun OS (1984), Mach (1985), and
Mac OS X (1999).

1974-79 IBM System R, an experimental relational database system, uses LRU
managed record caches and B-trees.

1981 IBM introduces disk controllers containing caches so that database systems

can get records without a disk access; controllers use LRU but do not cache
records involved in sequential file accesses.

early
1980s

Chip makers start providing data caches in addition to instruction caches, to
speed up access to data and reduce contention at memory interface.

late 1980s Application developers add “most recent files” list to desktop applications,
allowing users to more quickly resume interrupted tasks.

1987-1990 Microsoft and IBM develop OS/2 operating systems for PCs, with full

multitasking and working set managed virtual memory. Microsoft splits from
IBM, transforms OS/2 into Windows NT.

Early
1990s

Computer forensics starts to emerge as a field; it uses locality and signal

processing to recover the most recently deleted files; and it uses multiple
system and network caches to reconstruction actions of users.

1990-1998 Beginning with Archie, then Gopher, Lykos, Altavista, and finally Google,

search engines compile caches that enable finding relevant documents
from anywhere in the Internet very quickly.

1993 Mosaic (later Netscape) browser uses a cache to store recently accessed
web pages for quick retrieval by the browser.

1995 Kahn and Wilensky show a method of digital object identifiers based on the
locality-enhancing two-level address mapping principle.

1998 Akamai and other companies provide local web caches (“edge servers”) to
speed up Internet access and reduce traffic at sources.

