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THE L2-LOCALIZATION OF W (n)

ROBERT D. THOMPSON

Abstract. In this paper we analyze the localization of W (n), the fiber of
the double suspension map S2n−1 → Ω2S2n+1, with respect to E(2). If four
cells at the bottom of DpM2np−1, the pth extended power spectrum of the
Moore spectrum, are collapsed to a point, then one obtains a spectrum C. Let
QM2np−1 → QC be the James-Hopf map followed by the collapse map. Then
we show that the secondary suspension map BW (n)→ QM2np−1 has a lifting
to the fiber of QM2np−1 → QC and this lifting is shown to be a v2-periodic
equivalence, hence an E(2)-equivalence.

1. Introduction

We begin by recalling the following construction from [24]. Consider the fiber
sequence

F −−−−→ QS2n+1 jp−−−−→ QDpS
2n+1

where jp is the James-Hopf map and DpS
2n+1 is the pth extended power con-

struction on the sphere. The stabilization map S2n+1 → QS2n+1 lifts to a map
S2n+1 → F , and in [24] it is shown that this lifting induces an isomorphism in
complex K-theory. It follows that there is an equivalence L1S

2n+1 ∼= L1F where
L1 stands for Bousfield localization with respect to K-theory on the category of
spaces. This result enables one to get a handle on L1S

2n+1 since the functor L1

is reasonably well behaved on fiber sequences, L1 of an infinite loop space is some-
thing very close to the localization of the corresponding spectrum, and K-theory
localization stably is well understood.

The aim of this paper is to explore an analogous construction for L2W (n). L2

refers to Bousfield localization with respect to the p-local homology theory E(2)
with coefficients E(2)∗ = Z(p)[v1, v2, v

−1
2 ] (for example see [28]). W (n) is the ho-

motopy fiber of the double suspension map S2n−1 → Ω2S2n+1, localized at a prime
p. For technical reasons which probably have to do with our method of proof more
than anything else, we will assume p ≥ 5. The analogue of the stabilization map is
a ‘secondary suspension map’, which is a map W (n) → QM2np−2 that is degree
one on the bottom Moore space. Here Mk denotes a mod p Moore space with
top cell in dimension k. There are various constructions of maps such as this, for
example see [8]. It will be more convenient to start with a delooped version of the
secondary suspension. In [12] it is shown that there exists a delooping of W (n),
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Figure 1. Cell diagram of DpM
2np−1 and C = DpM

2np−1/X

denoted BW (n). It follows from the construction of BW (n) that there is a map

BW (n)
σ−→ QM2np−1 which has degree one on the bottom cell. See [12] for details.

Consider the James-Hopf map

QM2np−1 jp−−−−→ QDpM
2np−1.

The left side of Figure 1 gives a cell diagram for DpM
2np−1. The short and long

lines represent the actions of the Milnor primitives Q0 and Q1 respectively. Note
the four cells near the bottom in dimensions 2np2− 1, 2np2− 2, 2np2− 2p+ 1, and
2np2 − 2p. Denote this 4-cell complex by X . Since p is odd, X can be collapsed
to a point. Let C denote the complex DpM

2np−1/X which is pictured on the right
side of Figure 1, and consider the fiber sequence

Gn
i−−−−→ QM2np−1 −−−−→ QC,(1.1)

where the second map is the James-Hopf map jp composed with Q(π) where π is
the collapse map.

In the case of the sphere S2n+1, the lifting of the stabilization map exists for
purely dimensional reasons. Since BW (n) is not finite dimensional, a secondary
suspension map does not lift for such a simple reason.

Our first result is the following:
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THE L2 LOCALIZATION OF W (N) 1933

Theorem 1.2. Assume p ≥ 5 and n ≥ 1. There exists a map

σ1 : BW (n)→ Ω2pBW (n+ 1)

which is degree one on the bottom Moore space. The mapping telescope of the
diagram

BW (n)→ Ω2pBW (n+ 1)→ Ω4pBW (n+ 2)→ . . .

is QM2np−1. If we let σ : BW (n) → QM2np−1 denote the inclusion into the
telescope, then there exists a map λ : BW (n)→ Gn such that i ◦ λ = σ.

This will be proved in section 2 by analyzing some properties of the James-Hopf
maps. The hypothesis that p ≥ 5 is required in order to use certain properties of
Gray’s delooping of W (n) ([12]).

Our main result is the following:

Theorem 1.3. Assume p ≥ 5 and 2np− 2− k is sufficiently large. Then

λ : ΩkBW (n)→ ΩkGn

induces an isomorphism in E(2)∗, hence

L2Ω
kBW (n) ' L2Ω

kGn.

Just how large 2np− 2− k must be for the theorem to hold is discussed below.
In [24] the K-theory isomorphism induced by the map S2n+1 → F is established

by direct calculation of K∗(F ) relying on, among other things, the results of [27].
Techniques for calculating the E(2)-homology of spaces such as ΩkBW (n) and
ΩkGn are not in place yet, so Theorem 1.3 will be deduced from Theorem 1.5
stated below, via the following theorem of A. K. Bousfield [3]. In order to state
this we recall some definitions.

For each m ≥ 1, let Vm−1 denote some finite cell complex which has type m,
i.e. K(i)∗Vm−1 = 0 if i < m and K(m)∗Vm−1 6= 0, where K(i) is the ith Morava
K-theory spectrum (see [28]). Let v : ΣdVm−1 → Vm−1 be a vm self map, i.e. a
map inducing an isomorphism in K(m)∗ and inducing the zero map in K(i)∗ if
i 6= m. Define the homotopy groups of a space Y with coefficients in Vm−1 by

πt(Y ;Vm−1) = [ΣtVm−1, Y ]

and define the vm-periodic homotopy groups of Y , which we will denote by

v−1
m πt(Y ;Vm−1),

as the colimit of the sequence

πt(Y ;Vm−1)
v∗−→ πt+d(Y ;Vm−1)

v∗−→ . . .

It can be shown that these periodic groups do not depend on the choice of v. They
do depend on the choice of Vm−1, however if a map induces an isomorphism in
v−1
m πt( ;Vm−1) with one choice of Vm−1, then it also will with any other choice

(Corollary 11.11, [3]). So for purposes of making statements about vm-periodic
isomorphisms, we are free to choose Vn−1 as we like.

For each n, Bousfield defines an integer c(n). The precise value of c(n) is not
known. Very roughly, c(n) is bounded above by the dimension of the bottom cell
of a minimally connected type n complex Vn−1 which is a suspension. Also, c(n)
is bounded below by n + 1. It is known that c(0) = 1 and c(1) = 2. Define a
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functor Ω̃, going from the category of c(n)-connected spaces to itself, as the c(n)-
connected cover of the loop space functor Ω. Let E∗ be a homology theory. We say
a map f : X → Y in the homotopy category of c(n)-connected spaces is a durable

E∗-equivalence if Ω̃kf : Ω̃kX → Ω̃kY is an E∗-equivalence for all k ≥ 0.
The following is distilled from Bousfield [3].

Theorem 1.4 (Bousfield, 13.3 and 13.15 of [3]). Let f : X → Y be a map in the
homotopy category of c(n)-connected spaces. Then f induces an isomorphism in
v−1
m πt( ;Vm−1) for all 0 ≤ m ≤ n if and only if f is a durable E∗-equivalence for

all spectra E such that E∗(Vn) = 0.

Such an equivalence is called a vn-periodic equivalence. In particular, a vn-
periodic equivalence is always an E(n)∗-isomorphism.

The condition on n and k in Theorem 1.3 can be stated more precisely now:
2np− 2− k is sufficiently large if ΩkBW (n) is c(2)-connected.

Thus by using Bousfield’s theorem we see that Theorem 1.3 follows from the
following:

Theorem 1.5. Assume that p ≥ 5 and n ≥ 1. The map λ : BW (n)→ Gn induces
an isomorphism in unstable vm-periodic homotopy groups for 0 ≤ m ≤ 2, i.e λ is a
v2-periodic equivalence.

Theorem 1.5 will be proved in section 3. The proof is an adaptation to the
present situation of the methods employed in [25], [23], [22], and [30]. In particular,
Theorem 1.5 could be viewed as an odd primary analogue of the main result [25]
which deals with the case p = 2. However there are two significant differences. The
first is that in [25], we do not know if there is a map analogous to λ of Theorem 1.2.
This means that the statement concerning v2-periodic homotopy groups does not
obviously translate into a result concerning homological localization. The second
is that the lambda algebra calculations of [25] for p = 2 do not readily carry over
to the odd primary case.

We deal with this second point by using the results of B. Gray concerning the
odd primary lambda algebra [13] and [14]. Thus Theorem 1.5 is concerned with
the application of the machinery of [13] and [14] to the unstable Adams spectral
sequence. This was part of the original motivation for studying such subquotients
of the lambda algebra. See [21], [15], [22], and [30].

Remark 1.6. If we localize with respect to K(2) instead of E(2) then we can say
more. In [10] it is shown that Bousfield localization with respect to the Morava
K-theory spectrum K(n) preserves fiber sequences which are double loops except
possibly in dimensions n−1, n, and n+1. Combining this with Theorem 1.3 yields
the following corollary:

Corollary 1.7. Let p ≥ 5 and 2np − 4 > c(2). Then there is a map from
LK(2)ΩW (n) to the homotopy fiber of

LK(2)QM
2np−3 → LK(2)QΣ−2C

which induces an isomorphism in homotopy groups except possibly in dimensions
1,2, and 3.

Furthermore, in [2] Bousfield proves that the localization of any infinite loop
space Ω∞Z with respect to any spectrum E is again an infinite loop space. There
is a certain localization functor associated to E on the category of (−1)-connected
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THE L2 LOCALIZATION OF W (N) 1935

spectra, called the E∗Ω∞ localization, and in [2] it is shown that the E-localization
of the space Ω∞Z is Ω∞ applied to the spectrum E∗Ω∞Z. Thus Corollary 1.7 shows
that the homotopy groups of LK(2)ΩW (n) could in principle be computed from the
LES associated to the K(2)-localization of (1.1), if one had explicit information
about the K(2)∗Ω∞ localization functor on connective spectra.

The author wishes to thank several people for numerous conversations related to
these results. Mark Mahowald conjectured Theorem 1.2, and Mahowald and Bill
Richter helped with the proof. Brayton Gray spent much time explaining his work
to the author and made a number of suggestions which improved the present work.

2. James-Hopf maps

Theorem 1.2 follows from some basic properties of James-Hopf maps in conjunc-
tion with some properties of Gray’s construction of BW (n). We recall James-Hopf
maps:

For nonnegative integers k and q (or k infinite) and each space X there are
James-Hopf maps

jq : ΩkΣkX → QDk,qX,

natural in X , where Dk,qX is the extended power space Ck(q)
+ ∧Σq X

[q]. Here

Ck(q) is the space of ordered q-tuples of little cubes disjointly embedded in Ik.
If k is infinite, we simply write DqX . The maps jq are defined in [6]. In [4] an
important Cartan formula is proved for the James-Hopf maps, and in [18] various
compatibility relations between the James-Hopf maps are established which are
extremely useful.

Taking the wedge sum of the adjoints of the James-Hopf maps yields a map of
spectra

J : Σ∞ΩkΣkX →
∨
q≥1

Σ∞Dk,qX(2.1)

which is a stable equivalence. Such a stable splitting was first established in [17] for
k = ∞ and [29] for finite k and then generalized in [6] and [4]. Such a splitting is
not unique of course. Throughout this paper jq will always refer to the James-Hopf
maps of [6], [4], and the stable splitting of ΩkΣkX will be the one in (2.1) induced
by the maps jq unless otherwise noted.

In [12] Gray shows that W (n) is a loop space. More precisely, he shows that

there exists a space BW (n), together with a map Ω2S2n+1 ν−→ BW (n) such that
the homotopy fiber of ν is S2n−1. For p odd, BW (n) is shown to be an H-space,
and for p ≥ 5, ν is an H-map. In what follows we need ν to be an H-map, hence
the hypothesis in Theorem 1.2 that p ≥ 5. Furthermore, in Proposition 7 of [12], it
is shown that there is a splitting

Σ2Ω2S2n+1 ∼= Σ2(S2n−1 ×BW (n))

∼= Σ2(S2n−1 ∨BW (n) ∨ Σ2n−1BW (n)).
(2.2)

In [8], it is shown that the James-Hopf map admits a factorization

Ω2S2n+1 → Ω2pΣ2pM2np−1 → QM2np−1 = QD2,p(S
2n−1).
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Definition 2.3. Let s : Σ2BW (n) → Σ2Ω2S2n+1 be the right inverse of Σ2ν
corresponding to (2.2). Let σ1

′ : BW (n) → Ω2pΣ2pM2np−1 be the adjoint of the
composite

Σ2pBW (n)
Σ2p−2s−−−−→ Σ2pΩ2S2n+1 j̃p−→ Σ2pM2np−1.

Finally, let σ1 : BW (n)→ Ω2pBW (n+ 1) be the composite

BW (n)
σ1
′

−−→ Ω2pΣ2pM2np−1 → Ω2pBW (n+ 1)

where the second map is Ω2p on the inclusion of the bottom cell.

The proof that QM2np−1 is the mapping telescope of σ1 is the same as that in

[8]. Note that the map BW (n)
σ−→ QM2np−1 is just

BW (n)
σ1
′

−−→ Ω2pΣ2pM2np−1 → QM2np−1

where the second map is the inclusion.
For the last statement in Theorem 1.2 we need several lemmas.
The following lemma is a variation of Lemma 3.6 of [20]. The difference is that

the secondary suspension map α defined in Lemma 3.6 of [20] is not a priori the
same as the map σ defined here. One can conclude after the fact that α and σ are
the same since BW (n) splits off of Ω2S2n+1 stably.

Lemma 2.4. There exists a factorization up to homotopy of the James-Hopf map:

Ω2S2n+1 ν−−−−→ BW (n)

=

y yσ
Ω2S2n+1 jp−−−−→ QM2np−1

Proof. The mod p homology algebra of Ω2S2n+1 for p odd is given by ([5])

E(ι, Q1ι, Q
2
1ι, . . . )⊗ P (βQ1ι, βQ

2
1ι, . . . ).

If we assign weights to the monomials by wt(Qj1ι) = wt(βQj1ι) = pj and wt(xy) =
wt(x) + wt(y) then the homology of D2,jS

2n−1 is the vector space of monomials
of weight j. It follows that Ω2S2n+1, localized at p, splits stably into a wedge∨∞
j=1 D2,jS

2n−1 where j ≡ 0 or 1 (mod p). Let J−1 stand for the homotopy equiv-

alence which is inverse to the stable splitting of (2.1) given by the James-Hopf
maps.

It can be verified by an easy calculation in homology that the composite

Σ∞BW (n)
Σ∞s−−−−→ Σ∞Ω2S2n+1 J−−−−→ ∨

j≡0 (mod p)

Σ∞D2,jS
2n−1

(2.5)

is a homotopy equivalence. Thus we have a stable splitting

Σ∞BW (n) ∨ (
∨

j≡1 (mod p)

Σ∞D2,jS
2n−1)

Σ∞s∨J−1−−−−−−→∼=
Σ∞Ω2S2n+1

Consider the adjoint of the diagram in Lemma 2.4. It is immediate that the ad-
joint diagram commutes when restricted to the piece Σ∞BW (n). To show that
the diagram commutes on the other piece first note that j̃p : Σ∞Ω2S2n+1 →
Σ∞M2np−1, is null homotopic on the pieces of the splitting where j ≡ 1 (mod p).
Thus the proof of 2.4 is completed by the following lemma.
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Lemma 2.6. The composite map

∨
j≡1 (mod p)

D2,jS
2n−1 J−1−−−−→ Σ∞Ω2S2n+1 Σ∞ν−−−−→ Σ∞BW (n)

is null homotopic.

Proof. This makes use of the Cartan formula for James-Hopf maps given in [4] and
the fact that BW (n) is an H-space [12]. There are pairings Dk,jX ∧ Dk,rX →
Dk,j+rX induced by the inclusion Σj × Σr ⊂ Σj+r and the Cartan formula for
James-Hopf maps says that these pairings are compatible, via the stable splitting,
with the stabilization of the H-space multiplication on ΩkΣkX . In the following
diagram we will abbreviate D2,jS

2n−1 to Dj. We will suppress the symbol Σ∞ but
the diagram is to be understood as being stable.

S2n−1 ∧Dpk −−−−→ S2n−1 ∧ Ω2S2n+1 −−−−→ ∗
=

y i∧1

y y
D1 ∧Dpk

J−1−−−−→ Ω2S2n+1 ∧ Ω2S2n+1 ν∧ν−−−−→ BW (n) ∧BW (n)

∼=
y m

y m

y
Dpk+1

J−1−−−−→ Ω2S2n+1 ν−−−−→ BW (n)

The upper left vertical map is an equivalence because D1 = S2n−1. The lower
left vertical map induces an isomorphism in homology hence is an equivalence. The
lower middle vertical map is the Hopf construction on the H-space multiplication
on Ω2S2n+1. The right hand lower vertical map is the Hopf construction on the H-
space multiplication on BW (n). Since ν is an H-map, the lower right hand square

commutes. The upper right square commutes since S2n−1 → Ω2S2n+1 ν−→ BW (n)
is null. This completes the proof of 2.6.

Before completing the proof of Theorem 1.2 we recall a result from [19] concerning
the composite of two James-Hopf maps:

Theorem 2.7 (part of 5.2 of [19]). For k, n, r, q ≥ 1 let fnr,q be the composite map

Σ∞Dk,nX ↪→ Σ∞ΩkΣkX
Σ∞jq−−−→ Σ∞QDk,qX → Σ∞DrDk,qX

Then fnr,q is null homotopic if n > rq.

Proof. (of Theorem 1.2)

In order to get a lifting BW (n)
λ−→ G we need to know that the composite

BW (n)
σ−→ QM2np−1 → QC is null homotopic. Gray’s map Ω2S2n+1 ν−→ BW (n)

has a right inverse stably (Theorem 8(e) [12]), so by Lemma 2.4 it suffices to show

that Ω2S2n+1 jp−→ QM2np−1 −→ QC is null homotopic. This is equivalent to a
factorization of jp ◦ jp through QX , where X is the four cell complex at the bottom
of DpM

2np−1 defined in Section 1. See the diagram below. Notice that X is
homotopy equivalent to D2,p2(S

2n−1), so Theorem 1.2 is proved once we know that
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the following square commutes up to homotopy:

QM2np−1 jp−−−−→ QDpM
2np−1

jp

x x
Ω2S2n+1

jp2−−−−→ QD2,p2(S
2n−1) QX

Equivalently, we consider the adjoint diagram and check that it commutes on
each piece of the stable splitting of Ω2S2n+1:

Σ∞QM2np−1 j̃p−−−−→ Σ∞DpM
2np−1

Σ∞jp

x x
Σ∞Ω2S2n+1

j̃p2−−−−→ Σ∞D2,p2(S
2n−1)

(2.8)

The right hand vertical map is a sort of transfer, defined as the composite

Σ∞D2,p2(S
2n−1) ↪→ Σ∞Ω2S2n+1 Σ∞jp−−−→ Σ∞QM2np−1 j̃p−→ Σ∞DpM

2np−1.

Thus the square (2.8) commutes on the p2 piece of the splitting by definition.
The bottom horizontal map is null on Σ∞D2,m(S2n−1) for each m 6= p2. The

composite j̃p ◦ Σ∞jp is null on Σ∞D2,m(S2n−1) for m < p2 for purely dimensional

reasons. Finally, j̃p ◦Σ∞jp is null on Σ∞D2,m(S2n−1) for m > p2 by Theorem 2.7.

3. Unstable v2-periodic homotopy groups

In this section we will prove Theorem 1.5. To start, we have

Lemma 3.1. λ : BW (n) → Gn induces an isomorphism in v−1
0 π∗( ) and

v−1
1 π∗( ).

Proof. v−1
0 π∗( ) is just rational homotopy and both spaces are torsion. The map

σ : BW (n)→ QM2np−1 induces an isomorphism in v−1
1 π∗( ) by [30]. To see that

v−1
1 π∗(QC) = 0, use the fact that C has a filtration with subquotients V (1), and

so K(1)∗V (1) = 0. By the telescope theorem for n = 1 (Theorem 4.11 of [1]), we
have that stably v−1

1 π∗(V (1)) = 0.

We will define unstable v2-periodic homotopy groups by taking V1 to be the
Smith-Toda complex V (1), which we will denote simply by V . Since p ≥ 5, V has a
v2-self map v2 : Σ|v2|V → V . Using a p-local version of the Freudenthal suspension
theorem (see [11]) we see that this v2-self map is defined unstably as long as V is

at least d− 1-connected, where d = 2p2+1
p−1 + 3.

Consider the map of pairs

(QM2np−1, BW (n))→ (QM2np−1, Gn)→ (QC, ∗).
It suffices to show that this induces an isomorphism

v−1
2 π∗(QM2np−1, BW (n);V )

∼=−→ v−1
2 π∗(QC;V ).(3.2)

The proof of this is based on the modified unstable Adams spectral sequence
techniques of [22], [23], [25], [30]. This machinery takes as input certain calculations
involving subquotients of the lambda algebra. See [15] and [21]. In the present case,
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THE L2 LOCALIZATION OF W (N) 1939

the relevant lambda algebra calculations are provided by [13] and [14] so we will
use that framework. We recall the construction.

In [13] it is shown that there are spaces {Wn
(0)}n≥0 and maps

ΩW 2n−1
(0) → Ω3W 2n+1

(0) → Ω5W 2n+3
(0) → Ω7W 2n+5

(0) → . . . .(3.3)

The two cell complex at the bottom of Ω2k+1W
2(n+k)−1
(0) is M2n−2 and each of the

above maps is degree one on this bottom Moore space. The homotopy colimit of
this sequence is QM2n−2. The spaces W 2n−1

(0) are defined as follows:

W 2n−1
(0) = fiber(πn : Ω2S2n+1 → S2n−1)

where

πn =

{
πn from [7] if (n, p) = 1,

φm from [12] if n = pm.
(3.4)

Thus ΩW 2np−1
(0) = W (n).

We need to prove that there is an isomorphism

v−1
2 π∗(QM2np−2,ΩW 2np−1

(0) ;V )
∼=−→ v−1

2 π∗(QΣ−1C;V ).(3.5)

Even though the map ΩW 2np−1
(0) → QM2np−2 defined by (3.3) is not necessarily

the same as Ωσ : W (n) → QM2np−2, we will nevertheless see that the proof of
(3.5) leads to the proof of (3.2).

In [14] certain subquotients of Λ, the odd primary lambda algebra, are defined.
These are denoted by Λ(m)(n), m ≥ −1, n ≥ 0. There are SES’s

0→ Λ(m)(2n− 1)→ Λ(m)(2n)→ Λ(m)(2np− 1)→ 0

and

0→ Λ(m)(2n)→ Λ(m)(2n+ 1)→ Λ(m)(2np+ 2pm+1 − 1)→ 0

which yield EHP sequences in homology and a SES

0→ Λ(m)(2n− 1)→ Λ(m)(2n+ 1)→ Λ(m+1)(2np− 1)→ 0(3.6)

which yields the double suspension sequence.
We have

Λ(m) =

∞⋃
n=1

Λ(m)(n) = E(τ0, . . . , τm)⊗̃Λ

where E(τ0, . . . , τm) is the exterior subalgebra of the dual Steenrod algebra A∗. In
those cases where V (m) exists we have E(τ0, . . . , τm) = H∗V (m) and

H∗(E(τ0, . . . , τm)⊗̃Λ) = ExtA∗(H∗V (m)).

The chain complex Λ(m+1)(k) has a splitting given by the SES’s

0→ Λ(m)(2n+ 1)→ Λ(m+1)(2n+ 1)→ Λ(m)(2n+ 2pm+1 + 1)→ 0

and

0→ Λ(m)(2n+ 1)→ Λ(m+1)(2n)→ Λ(m)(2n+ 2pm+1 − 1)→ 0

There are vm-self maps

vm : Λ(m−1)(2n+ 2pm − 1)→ Λ(m−1)(2n− 1)
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and isomorphisms

v−1
m Λ(m−1)(2n− 1) ∼= v−1

m Λ(m−1)(2n+ 1) ∼= v−1
m (E(τ0, . . . , τm−1)⊗̃Λ).

Recall from [22] and [30] that a resolution of a space X is a tower of fibrations,

F0 F1 F2y=

y y
X0 ←−−−− X1 ←−−−− X2 ←−−−− . . .

with each fiber Fs being a GEM, and compatible maps fs : X → Xs, with f∞ :
X → X∞ being the p-completion. Given a resolution of a space, there is the usual
homotopy spectral sequence.

Lemma 3.7. (1) There is a resolution of W 2n−1
(0) with

Es,t2
∼= H∗(Λ(0)(2n− 1)).

(2)The map ΩW 2n−1
(0) → Ω3W 2n+1

(0) is covered by a map of resolutions, and the

induced map of E2-terms is H∗(Λ(0)(2n− 1))→ H∗(Λ(0)(2n+ 1)) from (3.6).
(3) Let

Ω2W 2np−1
(1) → ΩW 2n−1

(0) → Ω3W 2n+1
(0)

be the homotopy fiber sequence of [13]. Then there is a resolution of Ω2W 2np−1
(1)

with Es,t2
∼= H∗(Λ(1)(2np− 1)).

Proof. Proposition 6.3 of [25] states that if we are given a map of spaces f : X →
Y , and resolutions of X and Y , then there is a map of resolutions covering f if
the largest dimensional homotopy class in π∗Fs, for the target space Y , is in the
range through which fs, for the source space X , is surjective in cohomology. This
was used in [22] (Proposition 4.10) and [30] (Theorem 2.27) to produce a map of
resolutions covering a secondary suspension map W (n)→ Ω2pW (n+1). The proof
of Proposition 6.3 of [25] is the same as the proof of Proposition 4.10 of [22]. If we
replace the resolution of the target space Y by the same tower starting in degree
i, then we have the result that there is a filtration i map of resolutions covering f
if the largest dimensional homotopy class in π∗Fs+i, for the target, is in the range
through which fs, for the source, is surjective in cohomology.

We apply this to the map πn : Ω2S2n+1 → S2n−1 of (3.4). As usual, take
the Adams resolution for S2n−1 with Λ(2n− 1) as E1-term, and for Ω2S2n+1 take
double loops on the Adams resolution for S2n+1. The map of resolutions needs to
be a filtration one map. As in [30], the dimension of a class in π∗Fs+1, for S2n−1,
is at most

q(n− 1)[1 + p + · · ·+ ps] + 2n− 1.

This is less than (2n − 1)ps+1 + (p − 2)ps, which is the range through which f∗s :
H∗Ω2S2n+1 ←− H∗Xs is onto in the resolution of Ω2S2n+1.

Proposition 3.3 of [22] (see also 2.20 of [30]) states that if we are given a map of
resolutions covering a given map f , then there is a resolution of the fiber of f , and
a long exact sequence of E2-terms. It is implicit in [22] that one of the maps in the
LES is induced by the map f . This last fact is proved explicitly in [23].

For our resolution of W 2n−1
(0) we take the resolution of the fiber corresponding

to the map of resolutions covering πn : Ω2S2n+1 → S2n−1 constructed above.
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The statement regarding the E2-term follows from the LES of E2-terms, once we
check that the map of resolutions induces the homomorphism v0 : Λ(0)(2n+ 1) →
Λ(0)(2n− 1) at least on E2. Following the proof of Proposition 2.32 and Lemma
2.29 of [30], let P ′∗ be a chain complex of free unstable A-modules corresponding to
the resolution of Ω2S2n+1, and P ′′∗ a chain complex of free unstable A-modules for
the resolution of S2n−1. Let ε : P ′′∗ → P ′∗ denote the difference between the chain
map induced by the map of resolutions constructed above, and the given map v0.
Since P ′′∗ is acyclic (the resolution of S2n−1 is an Adams resolution), the composite

P ′′∗
ε−→ P ′∗

σ−→ P ′′∗ is chain homotopically trivial, where σ is double suspension. Thus
there is a lifting P ′′∗ → kerσ. Now kerσ is a chain complex of free unstable A-
modules corresponding to a resolution of W (n). This lifting is zero since kerσ is
acyclic in the range of dimensions in which HomA(P ′′∗ , Z/p) is nonzero, which is
easy to check by the calculations of section two of [30].

Part 3) follows immediately from part 2) by using the resolution of the fiber. Part
2) uses the same argument as Theorem 2.27 and Lemma 2.29 of [30]. Actually no
new calculations are needed as the estimates given in [30] yield part 2) directly.

The 4-cell complex at the bottom of Ω2W 2np2−1
(1) is V = V (1) with the bottom

cell in dimension 2np2− 4. Checking the p-local Freudenthal suspension condition,
we see that as long as n ≥ 1 this V at the bottom is the target of the self map v2.

By [16] there is an exponent k such that vk2 ∧ 1 is the same as 1 ∧ vk2 as a stable
self map of V ∧V . As in [25] we consider the following diagram of pointed mapping

spaces. For brevity, denote Ω2W 2np2−1
(1) by W , vk2 by v, and set j = |vk2 |.

map∗(V,W ) → map∗(ΣjV,W ) → map∗(Σ2jV,W ) → . . .
↑ ↑ ↑

map∗(V, V ) → map∗(ΣjV, V ) → map∗(Σ2jV, V ) → . . .
↘ ↑ ↑

map∗(ΣjV,ΣjV ) → map∗(Σ2jV,ΣjV ) → . . .
↘ ↑

map∗(Σ2jV,Σ2jV ) →
↘ . . .

As in [25], this yields a commutative diagram of abelian groups after applying π∗.
This produces a homomorphism

πS
∗ (V ;V )→ v−1

2 π∗(W ;V )

which extends to give a homomorphism

v−1
2 πS

∗ (V ;V )
φ−→ v−1

2 π∗(W ;V ).

Theorem 3.8. The homomorphism φ is an isomorphism.

Proof. As in [25], we have a corresponding diagram of E2-terms

Es,∗2 (W ;V ) → Es+1,∗
2 (W ;V ) → Es+2,∗

2 (W ;V ) → . . .
↑ ↑ ↑

Es,∗2 (V ;V ) → Es+1,∗
2 (V ;V ) → Es+2,∗

2 (V ;V ) → . . .
↘ ↑ ↑

Es,∗2 (ΣjV ;V ) → Es+1,∗
2 (ΣjV ;V ) → . . .

↘ ↑
Es,∗2 (Σ2jV ;V ) →

↘ . . .
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which gives a homomorphism

Exts,tA (H∗V,H∗V )→ v−1
2 Es,t2 (W ;V )

which extends to a homomorphism

v−1
2 Exts,tA (H∗V,H∗V )

ψ−→ v−1
2 Es,t2 (W ;V ).

In [14] it shown that there is an isomorphism

v−1
2 Es,t2 (W )

θ−→ v−1
2 Exts,tA (H∗V ).

Reducing mod V , we get an isomorphism

v−1
2 Es,t2 (W ;V )

θ−→ v−1
2 Exts,tA (H∗V,H∗V ).

Now the argument of [9], Theorem 3.10, shows that the composite

v−1
2 Exts,tA (H∗V,H∗V )

ψ−→ v−1
2 Es,t2 (W ;V )

θ−→ v−1
2 Exts,tA (H∗V,H∗V )

is an isomorphism, and this proves Theorem 3.8.

Returning to the proof of the isomorphism in (3.5), consider the tower of fibra-
tions

∗ → (Ω3W 2np+1
(0) ,ΩW 2np−1

(0) ) → (Ω5W 2np+3
(0) ,ΩW 2np−1

(0) ) → . . .

↑ ↑ ↑
Ω2W 2np2−1

(1) Ω4W 2np2+2p−1
(1) Ω6W 2np+4p−1

(1)

The homotopy colimit of this tower is the pair (QM2np−2,ΩW 2np−1
(0) ). By applying

the functor v−1
2 π∗( ;V ) to this tower we get a spectral sequence which converges

to v−1
2 π∗(QM2np−2,ΩW 2np−1

(0) ;V ).

The complex C has a filtration with subquotients copies of V , (see Figure 1),
and this filtration is compatible with the above tower. This gives a map of spectral
sequences, with v2 inverted. Theorem 3.8 says this map of spectral sequences is an
isomorphism on E2-terms and (3.5) follows.

Now consider (3.2). First note that if we “speed up the filtration” of the pair

(QM2np−2,ΩW 2np−1
(0) ) we get

∗ → (Ω2p+1W
2(n+1)p−1
(0) ,ΩW 2np−1

(0) )→ (Ω4p+1W
2(n+2)p−1
(0) ,ΩW 2np−1

(0) )→ . . . .

The fiber at each stage is a space F whose bottom 4p cells is a complex A1, whose
cohomology is A(1), the subalgebra of the Steenrod algebra generated by β and P1.
Note that A1 consists of p copies of V (1) attached together.

In [26] it shown that there is a v2-self map Σ|v2|A1 → A1. Again, by the p-local
Freudenthal suspension condition, this map desuspends to a map of spaces, as long

as A1 is at least d− 1-connected, where d = 2p2+1
p−1 + 2p+ 1. The dimension of the

bottom cell of the first A1 is 2np2 − 4, and so it is the target of the self map v2.
Lemma 2.27 of [30] shows that the map

W (n)
Ωσ1−−→ Ω2pW (n+ 1)

is covered by a map of resolutions and Lemma 2.29 of [30] shows that the induced
map of E2-terms is the same as that of the argument above. Thus we have an
isomorphism

v−1
2 Es,t2 (F ;V )

θ−→ v−1
2 Exts,tA (A1, H∗V )
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and the v2-periodic homotopy of F is the stable v2-periodic homotopy of A1.
Now the proof of (3.2) proceeds exactly as above with W replaced by F and

map∗(V, V ) replaced by map∗(V,A1).
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