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Abstract  

LOCUS Is a distributed operating system 

which supports  transparent  access to  data 

through a network wide fllesystem, permits 

automatic  replication o f  storaget supports  

transparent distributed process execution, 

supplies a number of  high reliability functions 

such as nested transactions,  and is upward 

compatible with Unix. P a r t i t i o n e d  o p e r a t i o n  

o f  s u b n e t l  a n d  t h e i r  dynamic merge is a l so  

supported.  

The system has been operational for about  

two years at  UCLA and extensive experience 

In its use has been obtained. The complete 

system architecture is outlined in this paper, 

and that  experience is summarized. 

1 I n t r o d u c t i o n  

LOCUS is a Unix compatible,  distributed operat-  

ing system in operational use at  UCLA on a set of 17 

Vax/750's  connected by a standard Ethernet  s The 
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system supports a very high degree of network tran- 

sparency, i.e. it makes the network of machines ap- 

pear to users and programs as a single computer;  

machine boundaries are completely hidden during 

normal operation. Both files and programs can be 

moved dynamically with no effect on naming or 

correct operation. Remote  resources are accessed in 

the same manner  as local ones. Processes can be 

created locally and remotely in the same manner,  

and process interaction is the same, independent of 

location. Many of these functions operate tran- 

sparently even across heterogeneous cpus. 

LOCUS also provides a number  of high reliability 

facilities, including flexible and automatic  replication 

of storage at a file level, a full implementat ion of 

nested transactions[MEUL 83], uad a substantially 

more robust da ta  storage facility than conventional 
Unix systems. All of the functions reported here 

have been implemented,  and most are in routine use. 

This paper provides an overview of the basic 

LOCUS system architecture. The file system, espe- 

cially its distributed naming catalog, plays a central 

role in the system structure, both because file system 

activity typically predominates in most operating 

systems and so high performance is critical, and be- 

cause the generalized name service provided is used 

by so many other parts  of the system. Therefore, 

the file system is described first. Remote  processes 

are discussed next, including discussions of process 

creation, inter-process functions and error handling. 

An important  par t  of the LOCUS research con- 

cerns recovery from failures of parts of the system, 

including partition of a LOCUS system into separated 

but functioning subnetworks. The next sections of 

this paper discuss the several LOCUS facilities dedi- 

cated to recovery. First  is the merging of the nam- 

ing catalog; the hierarchical directory system. The 

handling of other object types in the file system is 

also briefly considered. These recovery algorithms 
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are designed to permit  normal operation while 

resources are arriving and departing. Last, the pro- 

tocols which LOCUS sites execute in order to main- 
tain and define the accessible members of a network, 

i.e. the  network topology, are discussed. These pro- 

tocols are designed to assure that  all sites converge 

on the same answer in a rapid manner. 

The paper concludes with a set of observations 

regarding the use of LOCUS in production settings, 

especially the value of its network transparent  inter- 

face. 

2 Distributed Fllesystem 

S.I Filesystem overview 

The LOCUS filesystem presents a single tree 

structured naming hierarchy to users and applica- 

tions. It is functionally a superset of the Unix tree 

structured naming system. There are three major 

areas of extension. First, the single tree structure in 

LOCUS covers all objects in the filesystem on all 

machines. LOCUS names are fully transparent; it is 

not possible from the name of a resource to discern 

its location in the netwol'k. Such location tran- 

sparency is critical for allowing data  and programs in 
general to move or even be executed from different 

sites. The second direction of extension concerns re- 

plication. Files in LOCUS can be replicated to vary- 

ing degrees, and it is the LOCUS system's responsibil- 

ity to keep all copies up to date, assure that  access 
requests are served by the most recent available ver- 

sion, and support partitioned operation. 

To a first approximation, the pathname tree is 

made up of a collection of filegroups, as in a conven- 

tional Unix environment 1. Each group is a wholly 

self contained subtree of the naming hierarchy, in- 
cluding storage for all files and directories contained 

in the subtree. Gluing together a collection of file- 

groups to construct the uniform naming tree is done 

via the mount  mechanism. Logically mounting a file- 

group attaches one tree (the filegroup being mount- 

ed} as a subtree within an already mounted tree. 

The glue which allows smooth path traversals up and 
down the expanded naming tree is kept as operating 

system state information. Currently this state infor- 

mation is replicated at all sites. To scale a LOCUS 
network to hundreds or thousands of sites, this 

"mount" information would be cached. 

1 The term filegroup in this paper corresponds directly to 
the Unix term filesystem. 

A substantial amount  of the LOCUS filesystem 

design, as well as implementation, has been devoted 

to appropriate forms of error and failure manage- 
ment. These issues will be discussed throughout this 

paper. Further,  high performance has always been a 
critical goal. In our view, solutions to all the other 
problems being addressed are really not solutions at 

all unless their performance is suitable. In LOCUS, 

when resources are local, access is no more expensive 

than on a conventional Unix system. When 

resources are remote, access cost is higher, but  

dramatically better  than traditional layered file 

transfer and remote terminal protocols permit. 

Measured performance results are presented in 

[GOLD 83]. 

2.2 File Replication 

2.2.1 M o t i v a t i o n  f o r  Replication 

Replication of storage in a distributed filesystem 

serves multiple purposes. First, from the users' point 

of view, multiple copies of data  resources provide the 
opportunity for substantially increased availability. 

This improvement is clearly the ease for read access, 

although the situation is more complex when update 

is desired, since if some of the copies are not accessi- 

ble at a given instant, potential inconsistency prob- 

lems may preclude update, thereby decreasing avai- 
lability as the level of replication is increased. 

The second advantage, from the user viewpoint, 

concerns performance. If users of the file exist on 
different machines, and copies a r e  available near 
those machines, then read access can be substantially 

faster compared to the necessity to have one of the 

users always make remote accesses. This difference 

can be substantial; in a slow network, it is 

overwhelming, but  in a high speed local network it is 

still significant 1. 

In a general purpose distributed computing en- 
vironment,  such as LOCUS, some degree of replica- 

tion is essential in order for the user to be able to 

work at all. Certain files used to set up the user's 

environment must be available even when various 

machines have failed or are inaccessible. The start- 
up files in Multics, or the various Unix shells, are ob- 

1 In the LOCUS system, which is highly optimized for 
remote access, the cpu overhead of accessing a remote 
page is twice local access, and the cost of a remote open is 
significantly more than the case when the entire open can 
be done locally. 
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vious examples. Mail aliases and routing information 

are others. Of course, these cases can generally be 

handled by read-only replication, which in general 

imposes fewer problems 1. 

From the system point of view, some form of re- 
plication is more than convenient; it is absolutely 

essential for system data  structures, both for availa- 

bility and performance. Consider a file directory. A 
hierarchical name space in a distributed environment 
implies that  some directories will have entries which 

refer to files on different machines. There is strong 
motivation for storing a copy of all the directory en- 

tries in the backward path from a file at the site 

where the file is stored, or at least "nearby".  The 

principal reason is availability. If a directory entry 

in the naming path to a file is not accessible because 

of network partition or site failure, then that  file 

cannot be accessed, even though it may be stored lo- 

cally. LOCUS supports replication at the granularity 

of the entire directory {as opposed to the entry 

granularity} to address this issue. 

Second, directories in general experience a high 

level of read access compared to update. As noted 

earlier, this 'characteristic is precisely the one for 

which a high degree of replicated storage will im- 

prove system performance. In the case of the file 

directory hierarchy, this improvement is critical. In 
fact, the access characteristics in a hierarchical direc- 

tory system are, fortunately, even better behaved 

than just indicated. Typically, the top of the hierar- 

chy exhibits a very high level of lookup, and a 
correspondingly low rate of update. This pattern oc- 

curs because the root of the tree is heavily used by 

most programs and users as the starting point for 
name resolution. Changes disrupt programs with 

embedded names, and so are discouraged. The pat- 

tern permits (and requires} the root directories to be 

highly replicated, thus improving availability and 

performance simultaneously. By contrast, as one 
moves down the tree toward the leaves, the degree of 

shared use of any given directory tends to diminish, 

since directories are used to organize the name space 

into more autonomous subspaces. The desired level 
of replication for availability purposes tends to de- 

crease as well. Further,  the update traffic to direc- 

tories near the leaves of the naming tree tends to be 

I The problems which remain are present because few files 
are strictly read-only; it is just that their update rate is 
low. When an update is done, some way to make sure 
that all copies are consistent is needed. If the rate is low 
enough, manual methods may suffice. 

greater, so one would have less directory replication 
to improve performance. 

The performance tradeoffs between update/read 

rates and degree of replication are well known, and 
we have already discussed them. However, there are 
other costs as well. For example, concurrency con- 

trol becomes more expensive. Without replication 

the storage site can provide concurrency control for 
the object since it will know about all activity. 
With replication some more complex algorithm must 

be supported. In a similar way, with replication, a 
choice must be made as to which copy of an object 

will supply service when there is activity on the ob- 

ject. This degree of freedom is not available without 

replication. If objects move, then, in the no replica- 

tion case, the mapping mechanism must be more 

general. With replication a move of an object is 

equivalent to an add followed by a delete of an ob- 

ject copy. 

2.2.2 Mechanism Supporting Replication 

File replication is made possible in LOCUS by 

having multiple physical containers for a logical file- 
group. A given file belonging to logical filegroup X 

may be stored at any subset of the sites where there 

exist physical containers corresponding to X. Thus 
the entire logical filegroup is not replicated by each 

physical container as in a "hot  shadow" type en- 
vironment. Instead, to permit  substantially in- 

creased flexibility, any physical container is incom- 
plete; it stores only a subset of the files in the sub- 

tree to which it corresponds. 

To simplify access and provide a basis for low 

level communication about files, the various copies of 
a file are assigned the same file descriptor or inode 

number within the logical filegroup. Thus a file's 

globally unique low-level name is: 
~logical filegroup number, file descriptor (inode) number~ 

and it is this name which most of the operating sys- 

tem uses. 

In the case where not all sites are communicat- 

ing and even for a short time while they are com- 

municating right after a file update, not all the 

copies of the file are necessarily up to date. To 

record this and to ensure that  the latest copies will 
be used for any accesses, each copy has a version 

vector associated with it that  maintains necessary 
history information. See [PARK83]. 
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2.3 Access ing  t h e  F l l e s y s t e m  

There were several goals directing the design of 
the network-wide file access mechanism. The first 
was that  the system call interface should be uniform, 
independent of file location. In other words, the 
same system call with the same parameters should 
be able to access a file whether the file is stored lo- 
cally or not. Achieving this goal of transparency 
would allow programs to move from machine to 
machine and allow data  to be relocated. 

The primary system calls dealing with the 
filesystem are open, create, read, write, commit, 

close and unlink. After introducing the three logical 
sites involved in file access and the file access syn- 
chronization aspect of LOCUS, these system calls are 
considered in the context of the logical tasks of file 
reading, modifying, creating and deleting. 

2.3.1 LOCUS Logica l  Si tes  for  F i l e s y s t e m  Ac- 
t iv i t ies  

LOCUS is designed so that  every site can be a 
full function node. As we saw above, however, 
filesystem operations can involve more than one 
host. In fact there are three logical functions in a 
file access and thus three logical sites. These are: 

a. using site, (US), which issues the request to 
open a file and to which pages of the file are 
to be supplied, 

b. storage site, (SS), which is the site at which 
a copy of the requested file is stored, and 
which has been selected to supply pages of 
that  file to the using site, 

c. current synchronization site, {CSS), which 
enforces a global access synchronization poli- 
cy for the file's filegroup and selects SSs for 
each open request. A given physical site can 
be the CSS for any number of filegroups but 
there is only one CSS for any given filegroup 
in any set of communicating sites (i.e. a par- 
tition). The CSS need not store any particu- 
lar file in the filegroup but in order for it to 
make appropriate access decisions it must 
have knowledge of which sites store the file 
and what the most current version of the file 

is. 
Since there are three possible independent roles a 
given site can play (US, CSS, SS), it can therefore 
operate in one of eight modes. LOCUS handles each 
combination, optimizing some for performance. 

Since all open requests for a file go through the 
CSS function, it is possible to implement a large 
variety of synchronization policies. In LOCUS, so 
long as there is a copy of the desired resource avail- 
able, it can be used. If .there are multiple copies 
present, the most efficient one to access is selected. 
Other copies are updated in background, but the sys- 
tem remains responsible for supplying a mutually 
consistent view to the user. Within a set of com- 
municating sites, synchronization facilities and up- 
date propagation mechanisms assure consistency of 
copies, as well as guaranteeing that  the latest version 
of a file is the only one that  is visible. 

Since it is important to allow modification of a 
file even when all copies are not currently accessible, 
LOCUS contains a file reconciliation mechanism as 
part of the recovery system (described in section 4). 

2.3.2 S t r a t e g y  fo r  D i s t r i b u t e d  O p e r a t i o n  

LOCUS is a procedure based operating system - 
processes request system service by executing system 
calls, which trap to the kernel. The kernel runs as 
an extension to the process and can sleep on behalf 
of the process. In general, application programs and 
users cannot determine if any given system call will 
require foreign service. In fact, most of the high lev- 
el parts of the system service routines are unaware of 
the network. At the point within the execution of 
the system call that  foreign service is needed, the 
operating system packages up a message and sends it 
to the relevant foreign site. Typically the kernel 
then sleeps, waiting for a response, much as it would 
after requesting a disk i /o  to be performed on behalf 
of a specific process. 

This flow of control structure is a special case of 
remote procedure calls. Operating system pro- 
cedures are executed at a remote site as part of the 
service of a local system call. Figure 1 traces, over 
time, the processing done at the requesting and serv- 
ing site when one executes a system call requiring 
foreign service. 

2.3.3 Reading Files 

To read a file, an application or system supplied 
program issues the open system call with a filename 
parameter and flags indicating that  the open is for 
read. As in standard Unix, pathname searching (or 
directory interrogation) is done within the operating 
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system open call. l After the last directory has been 
interrogated, the operating system on the requesting 
site has a <logical filegroup number, inode 
number> pair for the target file that is about to be 
opened. If the inode information is not already in an 
ineore inode structure, a structure is allocated. If 
the file is stored locally, the local disk inode informa- 
tion is filled in. Otherwise very little information is 
initially entered. 

Next, the CSS is interrogated. If the local site is 
the CSS, only a procedure call is needed. If not, the 
CSS is determined by examining the logical mount 
table, a message is sent to the CSS, the CSS sets up 
an incore inode for itself, calls the same procedure 
that would have been called if the US is the CSS, 
packages the response, and sends it back to the US. 
The CSS is involved for several reasons. One is to 
enforce synchronization controls. Enough state in- 
formation is kept incore at the CSS to support those 
synchronization decisions. For example, if the policy 
allows only a single open for modification, the site 
where that modification is ongoing would be kept in- 
core at the CSS. Another reason for contacting the 
CSS is to determine a storage site. The CSS stores a 

copy of the disk inode information whether or not it 
actually stores the file. Consequently it has a list of 
packs which store the file. Using that information 
and mount table information the CSS can select po- 
tential storage sites. The potential sites are polled 
to see if they will act as storage sites. 

Besides knowing the packs where the file is 
stored, the CSS is also responsible for knowing the 
latest version vector. This information is passed to 
potential storage sites so they can check it against 
the version they store. If they do not yet store the 
latest version, they refuse to act as a storage site. 

Two obvious optimizations are done. First, in 
it's message to the CSS, the US includes the version 
vector of the copy of the file it stores, if it stores the 
file. If that is the latest version, the CSS selects the 
US as the SS and just responds appropriately to the 
US. Another simplying case is when the CSS stores 
the latest version and the US doesn't. In this case 
the CSS picks itself as SS (without any message 
overhead) and returns this information to the US. 

The response from the CSS is used to complete 
the incore inode information at the US. For exam- 
ple, if the US is not the SS then all the disk inode in- 

formation (eg. file size, ownership, permissions) is ob- 
tained from the CSS response. The CSS in turn had 
obtained that information from the SS. The most 
general open protocol (all logical functions on 
different physical sites) is: 

US - >  CSS OPEN request 
CSS --> SS request for storage site 
SS - >  CSS response to previous message 
CSS --> US response to first message. 

Figure 2 displays this generally message sequence. 

13)] 
(2) 

Figure 2: Open Protocol 

i Pathname searching is described in the next section. 
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After the file is open, the user level process is- 

sues read calls. All such requests are serviced via 

kernel buffers, both in standard Unix and in LOCUS. 

In the local case, da ta  is paged from external storage 
devices into operating system buffers and then copied 

from there into the address space of the process. Ac- 

cess to locally stored files is the same in LOCUS as in 
Unix, including the one page readahead done for files 

being read sequentially. 

Requests for da ta  from remote sites operates 

similarly. Instead of allocating a buffer and queueing 
a request for a page from a local disk, however, the 

operating system at the US allocates a buffer and 

queues a request to be sent over the network to the 

SS. The request is simple. It contains the <logical  

filegroup, inode n u m b e r >  pair, the logical page 

number within the file and a guess as to where the 

incore inode information is stored at the SS. The- 

CSS is out of the i /o  communication. 

At the SS, the request is treated, within the operat- 

ing system, as follows: 
a. The incore inode is found using the guess 

provided; 
b. The logical page number is translated into a 

physical disk block number; 
c. A standard low level operating system rou- 

tine is called to allocate a buffer and get the 
appropriate page from disk (if it is not al- 

ready in a buffer); 
d. The buffer is queued on the network i /o  

queue for transmission back to the US as a 

response to a read request. 

The protocol for a network read is thus: I 
US - >  SS request for page z of file y 

SS - >  US response to the above request 

As in the case of local disk reads, readahead is useful 

in the case of sequential behavior, both at the SS, as 

well as across the network. 

One of several actions can take place when the 

close system call is invoked on a remotely stored file, 

depending on how many times the file is concurrent- 

ly open at this US. 

If this is not the last close of the file at this US, 

only local state information need be updated in most 

cases. However, if this is the last close of the file, 

the SS and CSS must be informed so they can deal- 
locate incore inode structures and so the CSS can 

alter state data  which might affect it 's next syn- 

chronization policy decision. The protocol is1: 
US - >  SS US close 

SS - >  CSS SS close 

CSS - - >  SS response to above 

SS - >  US response to first message 

Closes of course can happen as a result of error 

conditions like hosts crashing or network partitions. 

To properly effect closes at various logical sites, cer- 

tain state information must be kept in the incore 

inode. The US of course must know where the SS is 

(but then it needed that  knowledge just to read 

pages). The CSS must know all the sites currently 
serving as storage sites so if a certain site crashes, 

the CSS can determine if a given incore inode slot is 
thus no longer in use. Analogously, the SS must 

keep track, for each file, of all the USs that  it is 

currently serving. 

The protocols discussed here are the lowest level 

protocols in the system, except for some retransmis- 

sion support. Because multilayered support and er- 
ror handling, such as suggested by the ISO standard, 

is not present, much higher performance has been 

achieved. 

2.3.4 P a t h n a m e  Searching 

In the previous section we outlined the protocol 
for opening a file given the <logical  filegroup 

number, inode n u m b e r >  pair. In this section we 

describe how that  pair is found, given a character 

string name. 

All pathnames presented to the operating system 

start  from one of two places, either the root ( /)  or 

the current working directory of the process present- 
ing the pathname. In both cases an inode is incore 

at the US for the directory. To commence the path- 

name searching, the <logical  filegroup, inode 
n u m b er>  of the starting directory is extracted from 

l There are no other messages involved; no 
acknowledgements, flow control or any other underlying 
mechanism. This specialized protocol is an important 
contributor to LOCUS performance, but it implies the need 
for careful higher level error handling. 

i The original protocol for close was simply: 
US --> SS US close of file 11 
SS --> US SS close of file I/ 

However, we encountered a race condition under this 
scheme. The US could attempt to reopen the file before 
the CSS knew that the file was closed. Thus the responses 
were added. 
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the appropriate inode and an internal open is done 

on it. This is the same internal open that  was 
described at the start  of the previous section, but  

with one difference. A directory opened for path- 

name searching is not open for normal READ but in- 
stead for an internal unsynchronized read. The dis- 
tinction is that  no global locking is done. If the 

directory is stored locally and there are no propaga- 
tions pending to come in, the local directory is 

searched without informing the CSS. If the directo- 

ry is not local, the protocol involving the CSS must 

be used but the locking is such that  updates to the 
directory can occur while interrogation is ongoing. 

Since no system call does more than just enter, 

delete, or change an entry within a directory and 

since each of these actions are atomic, directory in- 
terrogation never sees an inconsistent picture. 

Having opened the initial directory, protection 

checks are made and the directory is searched for the 

first pathname component. Searching of course will 

require reading pages of the directory, and if the 

directory is not stored locally these pages are read 

across the net in the same manner as other file data  

pages. If a match is found, the inode number of that  

component is read from the the directory to continue 

the pathname search. The initial directory is closed 

(again internally), and the next component is 

opened. This strategy is continued up to the last 
component, which is opened in the manner requested 

by the original system call. Another strategy for 

pathname searching is to ship partial pathnames to 

foreign sites so they can do the expansion locally, 
avoiding remote directory opens and network 

transmission of directory pages. Such a solution is 

being investigated but is more complex in the gen- 
eral case because the SS for each intermediate direc- 

tory could be different. 

Some special care is necessary for crossing file- 

group boundaries, as discussed earlier, and for creat- 
ing and deleting files, as discussed later. 

Z.3.5 File Modification 

Opening an existing file for modification is much 
the same as opening for read. The synchronization 

check at the CSS is different and the state informa- 

tion kept at all three logical sites is slightly different. 

The act of modifying data  takes on two forms. 
If the modification does not include the entire page, 

the old page is read from the SS using the read pro- 
tocol. If the change involves an entire page, a buffer 

is set up at the US without any reads. In either 

case, after changes are made, the page is sent to the 

SS via the write protocol, which is simplyl: 

US -~> SS Write logical page z in file y 
The action to be taken at the SS is described in the 

next section in the context of the commit  mechan- 
ism. 

The close protocol for modification is similar to 

the read case. However, at the US all modified pages 

must be flushed to the SS before the close message is 

sent. Also, the mechanism at the SS interacts with 

the commit mechanism, so we turn to it now. 

2.3.6 File C o m m i t  

The important  concept of atomically committing 

changes has been imported from the database world 
and integrated into LOCUS. All changes to a given 

file are handled atomically. Such a commit mechan- 
ism is useful both for database work and, in general, 

and can be integrated without performance degrada- 

tion. No changes to a file are permanent until a 

commit operation is performed. Commit and abort 

(undo any changes back to the previous commit 

point) system calls are provided, and closing a file 
commits it. 

To  allow file modifications to act like a transac- 

tion, it is necessary to keep both the original and 

changed data  available. There are two well known 
mechanisms to do so: a) logging and b) shadow pages 

or intentions lists [LAMP 81a]. LOCUS uses a sha- 

dow page mechanism, partly because Unix file 

modifications tend to overwrite entire files, and part- 
ly because high performance shadowing is easier to 
implement. 

The US function never deals with actual disk 

blocks but  rather with logical pages. Thus the entire 
shadow page mechanism is implemented at the SS 

and is transparent to the US. At the SS, then, a new 

physical page is allocated if a change is made to an 
existing page of a file. This is done without any ex- 

tra i /o  in one of two ways: if an entire page is being 
changed, the new page is filled in with the new data  
and written to the storage medium; if the change is 
not of the entire page, the old p~ge is read, the name 

of the buffer is changed to the new page, the 

changed data  is entered and this new page is written 
to the storage medium. Both these cases leave the 

1 There are low level acknowledgements on this message 
to ensure that it is received. No higher level response is 
necessary. 

5 5  



old information intact. Of course it is necessary to 

keep track of where the old and new pages are. The 

disk inode contains the old page numbers. The in- 

core copy of the disk inode starts with the old pages 
but  is updated with new page numbers as shadow 

pages are allocated. If a given logical page is 

modified multiple times it is not necessary to allo- 

cate different pages. After the first time the page is 

modified, it is marked as being a shadow page and 

reused in place for subsequent changes. 

The atomic commit operation consists merely of 

moving the incore inode information to the disk 

inode. After tha t  point, the file permanently con- 

tains the  new information. To  abort a set of changes 
rather than commit  them, one merely discards the 

incore information since the old inode and pages are 

still on disk, and free up page frames on disk con- 

taining modified pages. Additional mechanism is 

also present to support large files that  are structured 

through indirect pages that  contain page pointers. 

As is evident by the mechanism above, we have 

chosen to deal with file modification by first commit- 
ting the change to one copy of a file. Via the cen- 

tralized synchronization mechanism, changes to two 

different copies at the same time is blocked, and 

reading an old copy while another copy is being 

modified is prevented, l As part of the commit opera- 

tion, the SS sends messages to all the other SS's of 

that  file as well as the CSS. At a minimum, these 

messages identify the file and contain the new ver- 

sion vector. Additionally, for performance reasons, 
the message can indicate: a) whether it was just 

inode information that  changed and no da ta  (eg. 
ownership or permissions) or b) which explicit logical 

pages were modified. At this point it is the responsi- 
bility of these additional SS's to bring their version 

of the file up to date by propagating in the entire file 

or just the changes. A queue of propagation requests 

is kept  by the kernel at each site and a kernel pro- 

cess services the queue. 

Propagation is done by "pulling" the data  rather 

than "pushing" it. The propagation process which 
wants to page over changes to a file first internally 

opens the file at a site which has the latest version. 

It then issues standard read messages either for all 

I Simultaneous read and modification requests, even when 
initiated at different sites is allowed. Page-valid tokens 
are managed by the kernels for this purpose. Only one 
storage site can be involved, unlike the case when there 
are only multiple readers. 

the pages or just the modified ones. When each page 

arrives, the buffer that  contains it is renamed and 

sent out to secondary storage, thus avoiding copying 

data  into and out of an application data  space, as 

would he necessary if this propagation mechanism 
were to run as an application level process. Note 

also that  this propagation-in procedure uses the stan- 

dard commit mechanism, so if contact  is lost with 

the site containing the newer version, the local site is 

still left with a coherent, complete copy of the file, 

albeit still out of date. 

Given this commit mechanism, one is always left 

with either the original file or a completely changed 

file but  never with a partially made change, even in 

the face of local or foreign site failures. Such was 

not the case in the standard Unix environment.  

2.3.7 File Creation and Deletion 

The system and user interface for file creation 

and deletion is just the standard Unix interface, to 

retain upward compatibility and to maintain tran- 

sparency. However, due to the potential for replicat- 

ed storage of a new file, the create call needs two ad- 

ditional pieces of information - how many copies to 

store and where to store them. Adding such infor- 
mation to the create call would change the system 

interface so instead defaults and per process state in- 

formation is used, with system calls to modify them. 

For each process, an inherited variable has been 

added to LOCUS to store the default number of 

copies of files created by that  process. A new system 
call has been added to modify and interrogate this 

number. Currently the initial replication factor of a 
file is the minimum of the user settable number-of- 

copies variable and the replication factor of the 

parent directory. 

Initial storage sites for a file are currently deter- 

mined by the following algorithm: 
a. All such storage sites must be a storage site 

for the parent directory; 

b. The local site is used first if possible; 

c. Then follow the site selection for the parent 

directory, except that sites which are 

currently inaccessible are chosen last. 

This algorithm is localized in the code and may 

change as experience with replicated files grows. 

As with all file modification, the create is done 

at one storage site and propagated to the other 

storage sites. If the storage site of the created file is 

not IocM, the protocol for the create is very similar 

56  



to the remote open protocol, the difference being 
that  a placeholder is sent instead of an inode 

number. The storage site allocates an inode number 
from a pool which is local to that  physical container 

of the filegroup. Tha t  is, to facilitate inode alloca- 
tion and allow operation when not all sites are acces- 

sible, the entire inode space of a filegroup is parti- 
tioned so that  each physical container for the file- 

group has a collection of inode numbers that  it can 

allocate. 

File delete uses much of the same mechanism as 

normal file update. After the file is open for 

modification, the US marks the inode and does a 

commit, which ships the inode back to the SS and 

increments the version vector. As part  of the com- 

mit mechanism, pages are released and other sites 

are informed that  a new version of the file exists. As 

those sites discover that  the new version is a delete, 

they also release their pages. When all the storage 

sites have seen the delete, the inode can be reallocat- 

ed by the site which has control of that  inode (i.e. 
the storage site of the original create). 

2.4 Other Issues 

The LOCUS name service implemented by the 

directory system is also used to support interprocess 

communication and remote device access, as well as 

to aid in handling heterogeneous machine types in a 
transparent manner. We turn to these issues now. 

2.4.1 Site and Machine  D e p e n d e n t  Files 

There are several aspects to the hardware 
heterogeneity problem, such as number representa- 

tion, byte ordering, instruction set differences and 

special hardware constraints (eg. floating point avai- 

lability). Strong file typing and conversions during 

transmission can help some of these problems 1. Here 

we address only the file naming problem. 

While globally unique user visible file naming is 

very important  most of the time, there can be situa- 

tions where an uttered filename wants to be inter- 
preted specially, based on the context under which it 

was issued. The machine-type context is a good ex- 
ample. In a LOCUS net containing both DEC PDP- 

11/45s and DEC VAX 750s, a user would want to 

type the same command name on either type of 
machine and get a similar service. However, the 

1 Solutions to the number representation and byte 
ordering problems have not yet been implemented. 

load modules of the programs providing that  service 

could not be identical and would thus have to have 
different globally unique n a m e s .  To get the proper 

load modules executed when the user types a com- 

mand, then, requires using the context of which 
machine the user is executing on. A discussion of 

transparency and the context  issue is given in 

[POPE 83a]. Here we outline a mechanism imple- 

mented in LOCUS which allows context sensitive files 

to be named and accessed transparently. 

Basically the scheme consists of four parts: 

a. Make the globally unique name of the object 

in question refer to a special kind of directo- 

ry (hereafter referred to as a hidden directo- 
ry] instead of the object itself. 

b. Inside this directory put  the different ver- 

sions of the file, naming them based on the 

context with which they are associated. For 

example, have the command /bin/who be a 

hidden directory with the file entries ~5 and 

vaz that are the respective load modules. 
c. Keep a per-process inherited context for 

these hidden directories. If a hidden directo- 

ry is found during pathname searching (see 
section 4.4 for pathname searching), it is ex- 

amined for a match with the process's con- 

text rather than the next Component of the 
pathnames passed to the system. 

d. Give users and programs an escape mechan- 

ism to make hidden directories visible so 
they can be examined and specific entries 

manipulated. 

As we shall see in section 3, not only does this 

naming scheme allow us to store and name load 
modules for different sites, but  allows us to tran- 

sparently run a requested command on the site for 

which a load module exists. 

2.4.2 O t h e r  F l l e s y s t e m  O b j e c t s  

In LOCUS, as in Unix, the name catalog also in- 

cludes objects other than files; devices and interpro- 
cess communication (ipc) channels are the best 

known. 

LOCUS provides for transparent use of remote 

devices in most cases I. This functionality is exceed- 
ingly valuable, but involves considerable care. The 

1 The only exception is remote access to raw, non- 
character devices and these can be accessed by executing 
processes remotely. 
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implementation architecture is beyond the scope of 

this paper. 

Interprocess communication (ipc) is often a 

controversial subject in a single machine operating 

system, with many differing opinions. In a distribut- 

ed environment,  the requirements of error handling 

impose a number of additional requirements tha t  

help make design decisions, potentially easing 

disagreements. 

In LOCUS, the initial ipc effort was further 

simplified by the desire to provide a network-wide 

ipc facility which is fully compatible with the single 

machine functions that  were already present in Unix. 

Therefore, in the current LOCUS system release, 

Unix named pipes and signals are supported across 

the network. Their  semantics in LOCUS are identical 

to those seen on a single machine Unix system, even 
when processes a r e  resident on different machines in 

LOCUS. Just providing these seemingly simple ipe 
facilities was non-trivial, however. Details of the im- 

plementation are given in [WALK831. 

3 R e mote  Processes  

Transparent  support for remote processes re- 

quires a facility to create a process on a remote 

machine, initialize it appropriately, support cross 

machine, inter-process functions with the same se- 

mantics as were available on a single machine, and 

reflect error conditions across machine boundaries. 

Each of these is discussed below. 

3.1 Remote  Process  Creation 

LOCUS permits one to execute programs at any 

site in the network, subject to permission control, in 
a manner just as easy as executing the program lo- 

cally. In fact, one can dynamically, even just before 

process invocation, select the execution site. No re- 
binding or any other action is needed. The mechan- 

ism is entirely transparent,  so that  existing software 

can be executed either locally or remotely, with no 

change to that  software. 

The decision about where the new process is to 
execute is specified by information associated with 

the calling process. Tha t  information, currently a 
structured advice list, can be set dynamically. Shell 

commands to control execution site are also avail- 

able. 

Processes are typically created by the standard 

Unix .fork call. Both fork and ezec, the Unix call 

which installs a load module into a process and 

starts execution, are controlled by site information in 

the process environment. If exec is to occur remote- 

ly, then the process is effectively moved at that  time. 

By doing so it is feasible to support  remote execution 

of programs intended for dissimilar epu types. 

In both cases, a process body is allocated at  the 

destination site following a message exchange 
between the calling site and the new process site. 

More significant, it is necessary to initialize the new 

process' environment correctly. This requires, for 
Unix compatibility, tha t  the parent  and child process 

share open file descriptors (which contain current file 

position pointers1), a copy of other process state in- 

formation. 

In the case of a fork, the process  address space, 

both code and data,  must be made a copy of the 

parents' .  If the code is reentrant,  and a copy al- 

ready exists on the destination machine, it should be 

used. In any case, the relevant set of process pages 

are sent to the new process site. 

For optimization purposes, a run call has been 

added that  is similar to the effect of a fork followed 

by a exec. If the run is to execute remotely, the 

effect is a local fork and a remote exec. However, 

run is transparent as to where is executes. Run 
avoids the copy of the parent  process image which 

occurs with fork, and includes parameterization tha t  
permits the caller to set up the environment of the 
new process, be local or remote. 

3.2 I n t e r - p r o c e u  F u n c t i o n s  

The semantics of the available functions by 
which processes interact determines, to a large ex- 

tent,  the difficulty involved in supporting a tran- 
sparent process facility. In Unix, there are explicit 

functions such as signals and pipes (named or not), 

but  there are also implicit mechanisms; shared open 

files are the most significant. The  most difficult par t  
of these functions' semantics is their expectation of 

shared memory. For  example, if one process sharing 
an open file reads or writes a character,  and then 
another does so, the second process receives or alters 

1 TO implement this functionality across the network we 
keep a file descriptor at each site, with only one valid at 
any time, using a token scheme to determine which file 
descriptor is currently valid. 
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the character following the one touched by the first 
process. Pipes have similar characteristics under cer- 
tain circumstances. 

All of these mechanisms are supported in 

LOCUS, in part  through a token mechanism which 
marks which copy of a resource is valid; access to a 

resource requires the token. This concept is used at 

various levels within the system. While in the worst 

case, performance is limited by the speed at which 

the tokens and their associated resources can be 

flipped back and forth among processes on different 
machines, such extreme behavior is exceedingly rare. 

Virtually all processes read and write substanti.~! 

amounts of data  per system call. As a result, most 

collections of Unix processes designed to execute on a 
single machine run very well when distributed on 

LOCUS. 

3.3 Error Handling 

In LOCUS, process errors are folded into the ex- 

isting Unix interface to the degree possible. The  new 

error types primarily concern cases where either the 
calling or called machine fails while the parent and 

child are still alive. When the child's machine fails, 
the parent receives an error signal. Additional infor- 

mation about the nature of the error is deposited in 
the parent 's process structure, which can be interro- 

gated via a new system call. When the parent 's 
machine fails, the child is notified in a similar 

manner. Otherwise, the process interface in LOCUS 

is the same as in Unix. 

4 LOCUS R e c o v e r y  P h i l o s o p h y  

The basic approach in LOCUS is to maintain, 

within a single partition, strict synchronization 
among copies of a file so that all uses of that  file see 

the most recent version, even if concurrent activity 
is taking place on different machines. Each partition 

operates independently, however. Upon merge, 
conflicts are reliably detected. For those data  types 

which the system understands, automatic reconcilia- 

tion is done. Otherwise, the problem is reported to a 

higher level; a database manager for example, who 

may itself be able to reconcile the inconsistencies. 
Eventually, if necessary, the user is notified and tools 

are provided by which he can interactively merge the 
copies. 

An important  example where replicated opera- 
tion is needed, in a distributed system, is the name 

service, the mechanism by which the user sensible 

names are translated into internal system names and 
locations for the associated resource. Those mapping 
tables must themselves be replicated, as already 

pointed out. A significant part of the basic replica- 

tion mechanism in LOCUS is used by its name ser- 

vice, or directory system, and so we will concentrate 

on that part  of recovery in the remainder of our dis- 
cussion. 

4.1 Partit ions 

Partit ions clearly are the primary source of 

difficulty in a replicated environment.  Some authors 
have proposed that the problem can be avoided by 

having high enough connectivity that  failures will 

not result in partitions. In practice, however, there 

are numerous ways that effective partitioning occurs. 

In single local area networks, a single loose cable ter- 

minator can place all machines in individual parti- 

tions of a single node. Gateways between local nets 

fail. Long haul connections suffer many error modes. 

Even when the hardware level is functioning, there 
are miriad ways that  software levels cause messages 

not to be communicated; buffer lockups, synchroni- 

zation errors, etc. Any distributed system architec- 
tural strategy which depends for its correct and con- 

venient operation on the collection of these failure 
modes being exceedingly infrequent is a fragile 

model, in our judgment. In addition, there are 
maintenance and hardware failure scenarios that  can 

result in file modification conflict even when two 

sites have never executed independently at the same 
time. For example, while site B is down, work is 

done on site A. Site A goes down before B comes 

up. When site A comes back up, an effective parti- 
tion merge must be done. 

Given partitioning will occur, and assuming re- 

plication of data  is'desired for availability, reliabili- 

ty, and performance, an immediate question is 
whether a data  object, appearing in more than one 

partition, can be updated during partition. In our 

judgment, the answer must be yes. There are 
numerous reasons. First, if it is not possible, then 

availability goes down, rather than up, as the degree 
of replication increases. Secondly, the system itself 

must maintain replicated data, and permit update 

during partitioned mode. Directories are the obvious 
example. Solutions to that  problem may well be 
made available to users at large. Third, in many en- 

vironments, the probability of conflicting updates is 
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low. Actual intimate sharing is often not the rule. 
Thus, unless the user involved needed, to get at an 
alternate copy because of system failures, a policy of 
allowing update in all partitions will not lead to 
conflicting updates. To forbid update in all parti- 
tions, or all except one, can be a severe constraint, 
and in most cases will have been unnecessary. 

Given the ability to update a replicated object 
during partition, one must face the problem of mutu- 
al consistency of the copies of each data object. 
Further, the merge procedure must assure that no 
updates are lost when dilterent copies are merged. 
Solutions proposed elsewhere, such as primary copy 
[ALSB70I, majority consensus [THOM78], and 
weighted voting [MENA77] are excluded. They all 
impose the requirement that update can be done in 
at most one partition. Even methods such as that 
used in Grapevine [BIRR82] are not suitable. While 
Grapevine assures that copies will eventually reach a 
consistent state, updates can be lost. 

It is useful to decompose the replication/merge 
problem into two cases. In the first, one can assume 
that multiple copies of a given object may be recon- 
ciled independently of any other object. That is, the 
updates done to the object during partition are 
viewed as being unrelated and independent of up- 
dates (or references) to other objects. 

The second case is the one that gives rise to 
transactions. Here it is recognized that changes to 
sets of objects are related. Reconciliation of differing 
versions of an object must be coordinated with other 
objects and the operations on those objects which oc- 
curred during partition. 

LOCUS takes both points of view. The basic dis- 
tributed operating system assumes, as the default, 
that non-directory file updates and references are un- 
related to other non-directory files. The steps which 
are taken to manage replication under those assump- 
tions are discussed in the next section. In addition, 
LOCUS provides a full nested transaction facility for 
those cases where the user wishes to bind a set of 
events together. Case specific merge strategies have 
been developed. The recovery and merge implica- 
tions of these transactions are discussed later. 

4.2 Detec t ion  of  Confl ict ing U p d a t e s  to  Flies 

Suppose file / w a s  replicated at sites $1 and S2 . 
Initially assume each copy was identical but after 
some period sites $1 and $2 partitioned. If f is 
modified at S l producing /1 then when Sl and 82 
merge the two copies of f will be inconsistent. Are 
they then in conflict? No.  The copy at $1 (fl) 
should propagate to $2 and that will produce a con- 
sistent state. The copies of the object would be in 
conflict if during the partition not only was Sl's copy 
modified to produce fl but S2's copy was modified to 
produce f2. At merge a conflict should be detected. 
As ~lready pointed out the system may be able to 
resolve the conflict. This is just a simple example. 
There could be several copies of the object and the 
history of the modifications and partitions can be 
complex. Detecting consistency under the general 
circumstances is non-trivial, but a elegant solution is 
presented in [PARK83], and is implemented in 
LOCUS. 

For some types of system supported single file 
structures the system can mechanically resolve those 
conflicts which are detected. Directories and mail- 
boxes have relatively simple semantics {add and 
delete are the major operations} and can be done in 
this manner. These cases are critical to LOCUS, and 
will be discussed below. 

4.3 File Syt~tem Merge 

A distributed file system is an important and 
basic case of replicated storage. The LOCUS file sys- 
tem is a network wide, tree structured directory sys- 
tem, with leaves being data files whose internal 
structure is unknown to the LOCUS system nucleus. 
All files, including directories, have a type associated 
with them. The type information is used by 
recovery software to take appropriate action. 
Current types are: 

directories 
mailboxes (several kinds} 
database files 
untyped files 

The LOCUS recovery and merge philosophy is 
hierarchically organized. The basic system is respon- 
sible for detecting all conflicts. For those data types 
that it manages, including internal system data as 
well as file system directories, automatic merge is 
done by the system. If the system is not responsible 
for a given file type, it reflects the problem up to a 
higher level; to a recovery/merge manager if one ex- 
ists for the given file type. If there is none, the sys- 
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tem notifies the ownerIs ) of the file that  a conflict ex- 
ists, and permits interactive reconciliation of the 
differences. Transaction recovery and merge can also 
be supported across partitions in LOCUS. See 
[FAIS81, THIE83 and MEULL83]. 

4.4 Reconc i l i a t ion  o f  a D i s t r i b u t e d ,  H ie r a r ch -  
Ical D i r e c t o r y  S t r u c t u r e  

In this section, we consider how to merge two 
copies of a directory that  has been independently up- 
dated in different partitions. Logically, the directory 

structure is a tree I but any directory can be replicat- 
ed. A directory can be viewed as a set of records, 
each one containing the character string comprising 
one element in the path name of a file. Associated 
with that string is an index that  points at a descrip- 
tor (inode) for a file or directory. In that  inode is a 
collection of information about the file. LOCUS gen- 
erally treats inode as part of the file from the 
recovery point of view. The significance of this view 
will become apparent as the reconciliation procedure 
is outlined. 

To develop a merge procedure for any data  type, 
including directories, it is necessary to evaluate the 
operations which can be applied to that  data  type. 
For directories, there are two operations: 

insert (character string path element) and 
remove (character string path element). 

Although these operations have rather simple seman- 
tics, the merge rules are not so simple, primarily be- 
cause: 

a) operations (remove, rename and link) may 
be done to a file in a partition which does 
not store the file; 
b) a file which was deleted in one partition 
while it was modified in another, wants to be 
saved; 
c) a directory may have to be resolved 
without either partition storing particular 
files. 

With these situations in mind, we note that  no 
recovery is needed if the version vector for both 
copies of the directory are identical. Otherwise the 
basic rules are: 

1. Check for name conflicts. For each name in 
the union of the directories, check that  the 
inode numbers are the same. If they aren't, 
both file names are slightly altered to be dis- 
tinguished. The owners of the two files are 

. 

ing: 
a) 

notified by electronic mail that  this action 
has been taken. 
The remaining resolution is done on an inode 
by inode basis, with the rules in general be- 

if the entry appears in one directory 
and not in the other, propagate the 
entry; 

b). if a deleted entry exists in one direc- 
tory and not in the other, propagate 
the delete, unless there has been a 
modification of the data  since the 
delete; 

c) if both directories have an entry and 
neither is deleted, no action is neces- 
sary; 

d) if both directories have an entry and 
one is a delete and other is not, the 
inode is interrogated in each parti- 
tion; if the data  has been modified 
since the delete, either a conflict is 
reported or the delete is undone; 
otherwise the delete is propagated. 

Further augmentation to the directory merge algo- 
rithm must be done because of links. The complete 
algorithm is given in [POPE83b]. 

Since recovery may have to be run while users 
are active, it is necessary that  regular traffic be al- 

~'lowed. To accommodate this, we support demand 
recovery, which is to say that  a particular directory 
can be reconciled out of order to allow access to it 
with only a small delay. 

4.$ Reconc i l i a t ion  o f  Mai lboxes  

Automatic reconciliation of user mailboxes is im- 
portant in the LOCUS replication system,, since 
notification of name conflicts in files is done by send-  
ing the user electronic mail. It is desirable that, 
after merge, the user's mailbox is in suitable condi- 
tion for general use. 

Fortunately, mailboxes are even easier to merge 
than directories. The reason is that  the operations 
which can be done during partitioned operation are 
the same: insert and delete, but it is easy to arrange 
for no name conflicts, and there are no link prob- 
lems. Further, since mailboxes are not a system 
data  structure, and generally are seen only by the 
small number of mail programs, support for deletion 
information can be easily installed. 

i With the exception of links. 
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Thus, for each different mail storage format 1 
there is a mail merge program that  is invoked after 
the basic file system has been made consistent again. 
These programs deal with conflicted files detected by 
the version vector algorithm which the typing sys- 
tem indicates are mail files. 

4.6 Conflicts Among Untyped Data Objects 

When the system has no mechanisms to deal 
with conflicts, it reports the matter  to the user. In 
LOCUS, mail is sent to the owner(s) of a given file 
that  is in conflict, describing the problem. It may 
merely be that  certain descriptive information has 
been changed. Alternately, the file content may be 
in conflict. In any case, files with unresolved 
conflicts are marked so normal at tempts to access 
them fail, although that  control may be overridden. 
A trivial tool is provided by which the user may 
rename each version of the conflicted file and make 
each one a normal file again. Then the standard set 
of application programs can be used to compare and 
merge the files. 

5 D y n a m i c  R e c o n f l g u r a t l o n  

5.1 Introduction 

Transparency in LOCUS applies not only to the 
static topology of the network, but to the 
configuration changes themselves. The system 
strives to insulate the users from reconfigurations, 
providing continuing operation with only negligible 
delay. Requiring user programs to deal with 
reconfiguration would shift the network costs from 
the operating system to the applications programs. 

This section discusses the concept of transparen- 
cy as i t  relates to a dynamic network environment, 
gives several principles that  the operating system 
should follow to provide it, and presents the 
reconfiguration protocols used in LOCUS. The proto- 
cols make use of a high-level synchronization stra- 
tegy to avoid the message overhead of two-phased 
commits or high-level ACKs, and are largely in- 
dependent of the specific architecture of LOCUS. 

The high-level protocols of LOCUS assume that  
the underlying network is fully connected. By this 
we mean that  if site A can communicate with site B, 
and site B with site C, then site A can communicate 
with site C. In practice, this may be done by rout- 
ing messages from A to C through B, although the 
present implementation of LOCUS runs on a broad- 
cast network where this is unnecessary. The as- 
sumption of transitivity of communication 
significantly simplifies the high-level protocols used 
in LOCUS. 

The low-level protocols enforce that  network 
transitivity. Network information is kept internally 
in both a high-level status table and a collection of 

virtual circuits, l The two structures are, to some ex- 
tent, independent. Membership in the partition does 
not guarantee the existence of a virtual circuit, nor 
does an open virtual circuit guarantee membership in 
the partition. Failure of a virtual circuit, either on 
or after open, does, however, remove a node from a 
partition. Likewise removal from a partition closes 
all relevant virtual circuits. All changes in partitions 
invoke the protocols discussed later in this paper. 

The system attempts to maintain file access 
across partition changes. If it is possible, without 
loss of information, to substitute a different copy of 
a file for one lost because of partition, the system 
will do so. If, in particular, a process loses contact 
with a file it was reading remotely, the system will 
at tempt to reopen a different copy of the same ver- 
sion of the file. 

The ability t o  mount filegroups independently 
gives great flexibility to the name space. Since radi- 
cal changes to the name space can confuse users, 
however, this facility is rarely used for that  purpose, 
and that  use is not supported in LOCUS. The 
reconflguration protocols require that  the mount  
hierarchy be the same at all sites. 

I There are two storage formats in LOCUS; one in which 

multiple messages are stored in a single file, the default, 

and another where each message is a different file, and 

messages are grouped by parent directory. This second 

storage discipline is used by the mail program mh. 

1 The virtual circuits deliver messages from site A to site 

B (the virtual circuits conWneet sites, not processes} in the 
order they are sent. If a message is lost, the circuit is 
closed. The mechanism defends the local site from the 
slow operation of a foreign site. 
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5.2 Requi rements  for  the  Reeonf lgura t lon  
Pro tocols  

The first constraint on the reconfiguration proto- 
col is that it maintain consistency with respect to 
the internal system protocols. All solutions satisfy- 
ing this constraint could be termed correct. Correct- 
ness, however, is not enough. In addition to main- 
taining system integrity, the solution must insulate 
the user from the underlying system changes. The 
solution should not affect program development, and 
it should be efficient enough that any delays it im- 
poses are negligible. 

As an example of a "correct ~ but poor solution 
to the problem, the system could handle only the 
boot case, where all machines in the network come 
up together. Any failures would be handled by a 
complete network reboot. Such a solution would 
easily satisfy the consistency constraint; however, 
one might expect murmurs of complaint from the 
user community. 

Similarly, a solution that brings the system to a 
grinding halt for an unpredictable length of time at 
unforseeable intervals to reconstruct internal tables 
might meet the requirement of correctness, but 
would clearly be undesirable. 

Optimally, the reconfiguration algorithms should 
not affect the user in any matter whatsoever. A user 
accessing resources on machine A from machine B 
should not be affected by any activity involving 
machine C. This intuitive idea can be expressed in 
several principles: 

1. User activity should be allowed to continue 
without adverse affect, provided no resources 
are lost. 

2. Any delay imposed by the system on user 
activity during reconfiguration should be 
negligible. 

3. The user should be shielded from any tran- 
sient effects of the network configuration. 

4. Any activity initiated after the 
reconfiguration should reflect the state of the 
system after the reconfiguration. 

5. Specialized users should be able to detect 
reconfigurations if necessary. 

6. No user should be penalized for increased 

availability of resources, l 

All these principles are fairly intuitive. They 
merely extend the concept of network transparency 
to a dynamic network and express a desire for 
efficiency. They do, however, give tight constraints 
on the eventual algorithms. For example, those 
operations with high delay potentials must be parti- 
tioned in such a way that the tasks relevant to a 
specific user request can be run quickly, efficiently, 
and immediately. 

The principles have far-reaching implications in 
areas such as file access and synchronization. Sup- 
pose, for example, a process were reading from a file 
replicated twice in its partition. If it were to lose 
contact with the copy it was reading, the system 
should substitute the other copy (assuming, of 
course, that it is still available). If a more recent 
version became available, the process should contin- 
ue accessing the old version, but this must not 
prevent other processes from accessing the newer 
version. 

These considerations apply equally to all parti- 
tions, and no process should loose access to files sim- 
ply because a merge occurred. While the LOCUS 
protocols insure synchronization within a partition, 
they cannot do so between partitions. Thus, it is 
easy to contrive a scenario where the system must 
support conflicting locks within a single partition, 
and invoke any routines necessary to deal with in- 
consistencies that result. 

5.3 Pro tocol  S t r u c t u r e  

As noted before, the underlying LOCUS protocols 
assume a fully-connected network. To insure correct 
operation, the reconfiguration strategy must guaran- 
tee this property. If, for instance, a momentary 
break occurs between two sites, all other sites in the 
partition must be notified of the break. A simple 
scan of available nodes is insufficient. 

The present strategy splits the reconfiguration 
into two stages: first, a partition protocol runs to find 
fully-connected sub-networks; then a merge protocol 
runs to merge several such sub-networks into a full 
partition. The partition protocol affects only those 
sites previously thought to be up. It divides a parti- 
tion into sub-partitions, each of which is guaranteed 
to be fully-connected and disjoint from all other 

1 This last point may cause violations of synchronization 
policies, as discussed below. 
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sub-partitions. It detects all site and communica- 
tions failures and cleans up all affected multi-site 
data  structures, so that  the merge protocol can ig- 
nore such matters. The merge protocol polls the set 
of available sites, and merges several disjoint sub- 
partitions into one. 

After the new partition is establishe~], the 
recovery procedure corrects any inconsistencies 
brought about either by the reconfiguration code it- 
self, or by activity while the network was not con- 
nected. Recovery is concerned mainly with file con- 
sistency. It schedules update propagation, detects 
conflicts, and resolves conflicts on classes of files it 
recognizes. 

All reconfiguration protocols are controlled by a 
high-priority kernel process. The partition and 
merge protocols are run directly by that  process, 
while the recovery procedure runs as a privileged 
application program. 

5.4 T h e  P a r t i t i o n  P r o t o c o l  

Communication in a fully-connected network is 
an equivalence relation. Thus the partitions we 
speak about are partitions, in the strict mathemati- 
cal sense of the set of nodes of the network. In nor- 
mal operation, the site tables reflect the equivalence 
classes: all members of a partition agree on the 
status of the general network. When a communica- 
tion break occurs, for whatever reason, these tables 
become unsynchronized. The partition code must 
re-establish the logical partitioning that  the operat- 
ing system assumes, and synchronize the site tables 
of its member sites to reflect the new environment. 

In general, a communication failure between any 
two sites does not imply a failure of either site. 
Failures caused by transmission noise or unforeseen 
delays cannot be detected directly by foreign sites, 
and will often be detected in only one of the sites in- 
volved. In such situations, the partition algorithm 
should find maximum partitions: a single communi- 
cations failure should not result in the network 

breaking into three or more parts. 1 LOCUS imple- 
ments a solution based on iterative intersection. 

A few terms are helpful for the following discus- 
sion. The partition set, Pc,, is the set of sites be- 
lieved up by site a. The new partition set, Pa I , is 

the set of sites known by a to have joined the new 
partition. 

Consider a partition P after some set of failures 
has occurred. To form a new partition, the sites 
must reach a consensus on the state of the network. 
The criterion for consensus may be stated in set no- 
tation as: for every a,~EP,  P~=Pp.  This state can 
be reached from any initial condition by taking suc- 
cessive intersections of the partition sets of a group 
of sites. 

When a site a runs the partition algorithm, it 
polls the sites in Pa. Each site polled responds with 
its own partition set PpoIlsit~. When a site is polled 
successfully, it is added to the new partition set 
P J  , and Pa is changed to P~f'~Ppoll,,tc. a continues 

to poll those sites in Pa but  not in Pal until the two 
sets are equal, at which point a consensus is assured, 
and a announces it to the other sites. 

Translating this algorithm into a working proto- 
col requires provisions for synchronization and 
failure recovery. These two requirements are 

antagonistic-while the algorithm requires that  only 
one active site poll for a new partition, and that  oth- 
er sites join only one new partition, reliability con- 
siderations require that  sites be able to change active 
sites when one fails--and make the protocol intrinsi- 
cally complex. Space precludes including the details 
of the algorithm. 

5.5 T h e  Merge  P r o t o c o l  

The merge procedure joins several partitions into 
one. It establishes new site and mount  tables, and 
re-establishes CSS's for all the file groups. To form 
the largest possible partition, the protocol must 
check all possible sites, including, of course, those 

thought to be down 1. In a large network, sequential 
polling results in a large additive delay because of 
the timeouts and retransmissions necessary to deter- 
mine the status of the various sites. To minimize 
this effect, the merge strategy polls the sites asyn- 
chronously. 

I Breaking a virtual circuit between two sites aborts any 
ongoing activity between those two sites. Partition 
fragmentation must be minimized to minimize the loss of 
work. 

In a large network with gateways one can optimize by 
polling the gateways. 
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J J  

The algorithm itself is simple. The site initiat- 
ing the protocol sends a request for information to 

all sites in the network. Those sites which are able 

respond with the information necessary for the ini- 

tiating site to build the global tables. After a suit-  
able time, the initiating site gives up on the other 

sites, declares a new partition, and broadcasts its 

composition to the world. 

The algorithm is centralized and can only be run 

at one site, and a site can only participate in one 
protocol at a time, so the other sites must be able to 

halt execution of the protocol. To accomplish this, 

the polled site sends back an error message instead 

of a normal reply: 

IF ready to merge THEN 
IF merging AND actsite ~---= Iocsite THEN 

IF fsite < Iocsite THEN 

actsite := fsite; 

halt active merge; 

ELSE decline to merge 

FI 
ELSE actsite :== fsite; 

FI 
ELSE decline to merge 

FI 

If a site is not ready tomerge ,  then either it or some 

other site will eventually run the merge protocol. 

The major source of delay in the merge pro- 
cedure is in the t imeout routines that  decide when 
the full partition has answered. A fixed length 

timeout long enough to handle a sizeable network 
would add unreasonable ~ielay to a smaller network 
or a small partition of a large network. The strategy 

used must be flexible enough to handle the large par- 

tition case and the small partit ion case at the same 

time. 

The merge protocol waits longer when there is a 
reasonable expectation that  further replies will ar- 
rive. When a site answers the poll, it sends its parti- 
tion information in the reply. Until all sites believed 

up by some site in the new partition have replied, 
the timeout is long. Once all such sites have replied, 

the timeout is short. 

5.6 T h e  C l e a n u p  P r o c e d u r e  

Even before the partition has been reestablished, 

there is considerable work that  each node can do to 

clean up its internal da ta  structures. Essentially, 

each machine, once it has decided that  a particular 
site is unavailable, must invoke failure handling for 

all resources which it's processes were using at that  

site, or for all local resources which processes at that  

site were using. The action to be taken depends on 
the nature of the resource and the actions that  were 

under way when failure occurred. The cases are out- 
lined in the table below. 

Local Resource in Use Remotely 

Resource Failure Action 

File (open for update) 

File (open for read) 

Discard pages, close file 
and abort updates 

Close file 

Remote Resource in Use Locally 

Resou rce 

File (open for update) 

File (open for read) 

Failure Action 

Discard pages, set error 

in local file descriptor 
Internal close, a t t empt  

to reopen at other site 

Interacting Processes 

Failure T~pe 

Remote Fork/Exec,  
remote site fails 

Fork/Exec,  

calling site fails 
Distributed Transaction 

Action 

return error to caller 

notify process 
abort all related 
subtransactions in 

partit ion 

Once the machines in a partition have mutually 

agreed upon the membership of the partition, the 
system must select, for each filegroup it supports, a 

new synchronization site. This is the site to which 
the LOCUS file system protocols direct all file open 
requests. Once the synchronization site has been 

selected, that  site must reconstruct the lock table for 

all open files from the information remaining in the 
partition. If there are operations in progress which 

would not be permitted during normal behavior, 

some action must be taken. For example, file X is 
open for update in two partitions, the system policy 

permits only one such use at a time, and a merge oc- 

curs. The desired action is to permit these opera- 

tions to continue to completion, and only then per- 
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form file system conflict analysis on those resources, l 
Finally, the recovery procedure described in section 4 
is run for each filegroup to which it is necessary. 

After all these functions have been completed, 
the effect of topology change has been completely 
processed. For most of these steps, normal process- 
ing at all of the operating nodes continues 
unaffected. If a request is made for a resource which 
has not been merged yet, the normal order of pro- 
cessing is set aside to handle that request. There- 
fore, higher level reconfiguration steps, such as file 
and directory merge, do not significantly delay user 

requests. 

5.7 P r o t o c o l  Synchron iza t ion  

The reconfiguration procedure breaks down into 
three distinct components, each of which has already 
been discu~ed. What remains is a discussion of how 
the individual parts are tied together into a robust 
whole. At various points in the procedure, the parti- 
cipating sites must be synchronized, and control of 
the protocol must be handed to a centralized site. 
Those sites not directly involved in the activity must 
be able to ascertain the status of the active sites to 
insure that no failures have stalled the entire net- 

work. 

One approach to synchronization would be to 
add ACKs to the end of each section of the protocol, 
and get the participants in lock-step before proceed- 
ing to the next section. This approach increases 
both the message traffic and the delay, both critical 
performance quantities. It also requires careful 
analysis of the critical sections in the protocols to 
determine where a commit is required, and the im- 
plementation of a commit for each of those sections. 
If a site fails during a synchronization stage, the sys- 
tem must still detect and recover from that failure. 

LOCUS reconfiguration uses an extension of a 
"failure detection" mechanism for synchronization 
control. Whenever a site takes on a passive role in a 
protocol, it checks periodically on the active site. If 
the active site fails, the passive site can restart the 
protocol. 

As the various protocols execute, the states of 
both the active and the passive sites change. An ac- 
tive site at one instant may well become a passive 
site the next, and a passive site could easily end up 
waiting for another passive site. Without adequate 

1 LoCUS currently does not support this behavior. 

control, this could lead to circular waits and 
deadlocks. 

One solution would be to have passive sites 
respond to the checks by returning the site that they 
themselves are waiting for. The checking site would 
then follow that chain and make sure that it ter- 
minated. This approach could require several mes- 
sages per check, however, and communications de- 
lays could make the information collected obsolete or 
mid-leading. 

Another alternative, the one used in LOCUS, is 
to order all the stages of the protocol. When a site 
checks another site, that site returns its own status 
information. A site can wait only for those sites who 
are executing a portion of the protocol that precedes 
its own. If the two sites are in the same state, the 
ordering is by site number. This ordering of the 
sites is complete. The lowest ordered site has no site 
to legally wait for; if it is not active, its check will 
fail, and the protocol can be re-started at a reason- 
able point. 

While no synchronization "failures ~ can cause 
the protocols to fail, they can slow execution. 
Without ACKs, the active site cannot effectively 
push its dependents ahead of itself through the 
stages of the protocol. Nor can it insure that two 
passive sites always agree on the present status o f  
the reconfiguration. On the other hand, careful 
design of the message sequences can keep the win- 
dows where difficulties can occur small, and the nor- 
mal case executes rapidly. 

8 Exper ience  

Locus has now been operating for about two 
years at UCLA, and has been installed at a few o ther  
sites. Most of the experience with a large network 
configuration has occurred at UCLA. A 17 Vax- 
11/750 Ethernet network is the host facility, with 
additional machines, including a Vax-11/780, to be 
added shortly. The network is typically operated as 
three separate Locus networks; one for production 
use, one as a beta test net, and a few machines for 
developing new system software. On the beta net, 
for example, it has recently been typical to have 5 
machines operational with about 30-40 users. The 
production net configuration is correspondingly 
larger. These systems are used for virtually all the 
interactive computing in the UCLA Computer Sci- 
ence Department, except for those classes using the 
Vax-11/780 that has not yet been converted. We es- 
timate that over 100,000 connect hours have been 
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delivered by the Vax Locus networks by early 1983. 
Most of the user experience with Locus has been ac- 
quired on a version of the system that did not sup- 
port replication of files, the nested transaction facili- 
ty or general remote process forking. The following 
observations largely reflect the experience at UCLA. 

First, it is clearly feasible to provide high perfor- 
mance, transparent distributed system behavior for 
file and device access, as well as remote, interprocess 
interaction. Measurements consistently indicate that 
Locus performance equals Unix in the local case, and 
that remote access in general, while somewhat slower 
than when resources are local, is close enough that 
no one typically thinks much about resource location 
because of performance reasons. This ability to pro- 
vide a substantial degree of performance transparen- 
cy surprised us. There is still no indication that Eth- 
ernet bandwidth is any significant limitation. It is, 
however, difficult to swap load images across the net- 
work with high performance because of the software 
cost of packet disassembly and reassembly for the 
current hardware and low level protocols. Much 
larger configurations clearly cannot share the same 
broadcast cable of that bandwidth, of course. 

Most of the problems which were encountered by 
users resulted from those situations where tran- 
sparency was not completely supported, either be- 
cause the implementation was not finished, or be- 
cause explicit decisions to make exceptions were 
made. Overwhelming however, experience with tran- 
sparency has been very positive; giving it up, once 
having had it, would be nearly unthinkable. 

LOCUS executes, programs locally as the default. 
We found that the primary motivation for remote 
execution was load balancing. Remote process exe- 
cution is also used to access those few peripheral 
devices which are not remotely transparent. We ex- 
pect that the remote processing facility will also be 
heavily used when a LOCUS network is composed of 
heterogeneous cpus. The non-Vax machines at 
UCLA (PDP-I1's) were decommissioned before the 
remote processing facilities were generally available, 
so this activity is not heavily represented in opera- 
tional experience. 

Experience with replicated storage was limited at 
the time this paper was written, so few firm conclu- 
sions can be drawn, except that we certainly cursed 
its absence. 

As usual, the tasks involved in providing a rea- 
sonably production quality environment were far 
more extensive and much more painful than anyone 
had anticipated, even though we held university 
standards for 'production quality', and we all knew 
to expect this phenomenon. 

We estimate that, from the project inception in 
1979 till early 1983, about S0 man years were spent 
on Locus. This effort included almost a year in a 
conceptual phase (transparency was only a vague 
idea at that time, for example), an extensive design 
phase that lasted almost a year, initial construction 
on PDP-11s, multiple ports to the Vax and Ethernet, 
development of the general-use, development and 
testing configuration at UCLA, extensive debugging, 
some redesign and reimplementation to more fully 
maintain Unix compatibility, and a significant 
number of masters and PhD theses. Nevertheless, a 
great deal remains at the time this paper was writ- 
ten. Fortunately, most of that work is now being 
done in a commercial environment rather than by a 
university research project. 

7 Conclusions 

The most obvious conclusion to be drawn from 
the LOCUS work is that a high performance, network 
transparent, distributed file system which contains 
all of the various functions indicated throughout this 
paper, is feasible to design and implement, even in a 
small machine environment. 

Replication of storage is valuable, both from the 
user and the system's point of view. However, much 
of the work is in recovery and in dealing with the 
various races and failures that can exist. 

Nothing is free. In order to avoid performance 
degradation when resources are local, the cost has 
been converted into additional code and substantial 
care in implementation architecture. LOCUS is ap- 
proximately a third bigger than Unix and certainly 
more complex. 

The difficulties involved in dynamically 
reconfiguring an operating system are both intrinsic 
to the problem, and dependent on the particular sys- 
tem. Rebuilding lock tables and synchronizing 
processes running in separate environments are prob- 
lems of inherent difficulty. Most of the system- 
dependent problems can be avoided, however, with 
careful design. 
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The fact that LOCUS uses specialized protocols 
for operating system to operating system communi- 
cation made it possible to control message traffic 
quite selectively. The ability to alter specific proto- 
cols to simplify the reconfiguration solution was par- 
ticularly appreciated. 

The task of developing a protocol by which sites 
would agree about the membership of s partition 
proved to be surprisingly difficult. Balancing the 
needs of protocol synchronization and failure detec- 
tion while maintaining good performance presented a 
considerable challenge. Since reconfiguration 
software is run precisely when the network is flaky, 
those problems are real, and not events that are un- 
likely. 

Nevertheless, it has been possible to design and 
implement a solution that exhibits reasonably high 
performance. Further work is still needed to assure 
that scaling to a large network will successfully 
maintain that performance characteristic, but our ex- 
perience with the present solution makes us quite op- 
timistic. 

In summary, however, use of LOCUS indicates 
the enormous value of a highly transparent, distri- 
buted operating system. Since file activity often is 
the dominant part of the operating system load, it 
seems clear that the LOCUS architecture, constructed 
on a distributed file system base, is rather attractive. 
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