
T h e L O C U S D i s t r i b u t e d O p e r a t i n g S y s t e m I

Bruce Walker, Gerald Popek, Robert English, Charles Kline and Greg Thiel 2

University of California at Los Angeles

Abstract

LOCUS Is a distributed operating system

which supports transparent access to data

through a network wide fllesystem, permits

automatic replication o f storaget supports

transparent distributed process execution,

supplies a number of high reliability functions

such as nested transactions, and is upward

compatible with Unix. P a r t i t i o n e d o p e r a t i o n

o f s u b n e t l a n d t h e i r dynamic merge is a l so

supported.

The system has been operational for about

two years at UCLA and extensive experience

In its use has been obtained. The complete

system architecture is outlined in this paper,

and that experience is summarized.

1 I n t r o d u c t i o n

LOCUS is a Unix compatible, distributed operat-

ing system in operational use at UCLA on a set of 17

Vax/750's connected by a standard Ethernet s The

1 This research was supported by the Advanced Research
Projects Agency under research contract DSS-MDA-903-
82-C-0189.

Current address of Bruce Walker, Charles Kline and
Greg Thiel: LOCUS Computing Corporation, 3330 Ocean
Park Blvd., Santa Monica, Ca. 90405.

Initial work was done on DEC PDP-11/45's and VAX
750's using both 1 and 10 megabit ring networks.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

'©1983 ACM 0-89791-115-6/83/010/0049 $00.75

system supports a very high degree of network tran-

sparency, i.e. it makes the network of machines ap-

pear to users and programs as a single computer;

machine boundaries are completely hidden during

normal operation. Both files and programs can be

moved dynamically with no effect on naming or

correct operation. Remote resources are accessed in

the same manner as local ones. Processes can be

created locally and remotely in the same manner,

and process interaction is the same, independent of

location. Many of these functions operate tran-

sparently even across heterogeneous cpus.

LOCUS also provides a number of high reliability

facilities, including flexible and automatic replication

of storage at a file level, a full implementat ion of

nested transactions[MEUL 83], uad a substantially

more robust da ta storage facility than conventional
Unix systems. All of the functions reported here

have been implemented, and most are in routine use.

This paper provides an overview of the basic

LOCUS system architecture. The file system, espe-

cially its distributed naming catalog, plays a central

role in the system structure, both because file system

activity typically predominates in most operating

systems and so high performance is critical, and be-

cause the generalized name service provided is used

by so many other parts of the system. Therefore,

the file system is described first. Remote processes

are discussed next, including discussions of process

creation, inter-process functions and error handling.

An important par t of the LOCUS research con-

cerns recovery from failures of parts of the system,

including partition of a LOCUS system into separated

but functioning subnetworks. The next sections of

this paper discuss the several LOCUS facilities dedi-

cated to recovery. First is the merging of the nam-

ing catalog; the hierarchical directory system. The

handling of other object types in the file system is

also briefly considered. These recovery algorithms

4 9

are designed to permit normal operation while

resources are arriving and departing. Last, the pro-

tocols which LOCUS sites execute in order to main-
tain and define the accessible members of a network,

i.e. the network topology, are discussed. These pro-

tocols are designed to assure that all sites converge

on the same answer in a rapid manner.

The paper concludes with a set of observations

regarding the use of LOCUS in production settings,

especially the value of its network transparent inter-

face.

2 Distributed Fllesystem

S.I Filesystem overview

The LOCUS filesystem presents a single tree

structured naming hierarchy to users and applica-

tions. It is functionally a superset of the Unix tree

structured naming system. There are three major

areas of extension. First, the single tree structure in

LOCUS covers all objects in the filesystem on all

machines. LOCUS names are fully transparent; it is

not possible from the name of a resource to discern

its location in the netwol'k. Such location tran-

sparency is critical for allowing data and programs in
general to move or even be executed from different

sites. The second direction of extension concerns re-

plication. Files in LOCUS can be replicated to vary-

ing degrees, and it is the LOCUS system's responsibil-

ity to keep all copies up to date, assure that access
requests are served by the most recent available ver-

sion, and support partitioned operation.

To a first approximation, the pathname tree is

made up of a collection of filegroups, as in a conven-

tional Unix environment 1. Each group is a wholly

self contained subtree of the naming hierarchy, in-
cluding storage for all files and directories contained

in the subtree. Gluing together a collection of file-

groups to construct the uniform naming tree is done

via the mount mechanism. Logically mounting a file-

group attaches one tree (the filegroup being mount-

ed} as a subtree within an already mounted tree.

The glue which allows smooth path traversals up and
down the expanded naming tree is kept as operating

system state information. Currently this state infor-

mation is replicated at all sites. To scale a LOCUS
network to hundreds or thousands of sites, this

"mount" information would be cached.

1 The term filegroup in this paper corresponds directly to
the Unix term filesystem.

A substantial amount of the LOCUS filesystem

design, as well as implementation, has been devoted

to appropriate forms of error and failure manage-
ment. These issues will be discussed throughout this

paper. Further, high performance has always been a
critical goal. In our view, solutions to all the other
problems being addressed are really not solutions at

all unless their performance is suitable. In LOCUS,

when resources are local, access is no more expensive

than on a conventional Unix system. When

resources are remote, access cost is higher, but

dramatically better than traditional layered file

transfer and remote terminal protocols permit.

Measured performance results are presented in

[GOLD 83].

2.2 File Replication

2.2.1 M o t i v a t i o n f o r Replication

Replication of storage in a distributed filesystem

serves multiple purposes. First, from the users' point

of view, multiple copies of data resources provide the
opportunity for substantially increased availability.

This improvement is clearly the ease for read access,

although the situation is more complex when update

is desired, since if some of the copies are not accessi-

ble at a given instant, potential inconsistency prob-

lems may preclude update, thereby decreasing avai-
lability as the level of replication is increased.

The second advantage, from the user viewpoint,

concerns performance. If users of the file exist on
different machines, and copies a r e available near
those machines, then read access can be substantially

faster compared to the necessity to have one of the

users always make remote accesses. This difference

can be substantial; in a slow network, it is

overwhelming, but in a high speed local network it is

still significant 1.

In a general purpose distributed computing en-
vironment, such as LOCUS, some degree of replica-

tion is essential in order for the user to be able to

work at all. Certain files used to set up the user's

environment must be available even when various

machines have failed or are inaccessible. The start-
up files in Multics, or the various Unix shells, are ob-

1 In the LOCUS system, which is highly optimized for
remote access, the cpu overhead of accessing a remote
page is twice local access, and the cost of a remote open is
significantly more than the case when the entire open can
be done locally.

5 0

vious examples. Mail aliases and routing information

are others. Of course, these cases can generally be

handled by read-only replication, which in general

imposes fewer problems 1.

From the system point of view, some form of re-
plication is more than convenient; it is absolutely

essential for system data structures, both for availa-

bility and performance. Consider a file directory. A
hierarchical name space in a distributed environment
implies that some directories will have entries which

refer to files on different machines. There is strong
motivation for storing a copy of all the directory en-

tries in the backward path from a file at the site

where the file is stored, or at least "nearby". The

principal reason is availability. If a directory entry

in the naming path to a file is not accessible because

of network partition or site failure, then that file

cannot be accessed, even though it may be stored lo-

cally. LOCUS supports replication at the granularity

of the entire directory {as opposed to the entry

granularity} to address this issue.

Second, directories in general experience a high

level of read access compared to update. As noted

earlier, this 'characteristic is precisely the one for

which a high degree of replicated storage will im-

prove system performance. In the case of the file

directory hierarchy, this improvement is critical. In
fact, the access characteristics in a hierarchical direc-

tory system are, fortunately, even better behaved

than just indicated. Typically, the top of the hierar-

chy exhibits a very high level of lookup, and a
correspondingly low rate of update. This pattern oc-

curs because the root of the tree is heavily used by

most programs and users as the starting point for
name resolution. Changes disrupt programs with

embedded names, and so are discouraged. The pat-

tern permits (and requires} the root directories to be

highly replicated, thus improving availability and

performance simultaneously. By contrast, as one
moves down the tree toward the leaves, the degree of

shared use of any given directory tends to diminish,

since directories are used to organize the name space

into more autonomous subspaces. The desired level
of replication for availability purposes tends to de-

crease as well. Further, the update traffic to direc-

tories near the leaves of the naming tree tends to be

I The problems which remain are present because few files
are strictly read-only; it is just that their update rate is
low. When an update is done, some way to make sure
that all copies are consistent is needed. If the rate is low
enough, manual methods may suffice.

greater, so one would have less directory replication
to improve performance.

The performance tradeoffs between update/read

rates and degree of replication are well known, and
we have already discussed them. However, there are
other costs as well. For example, concurrency con-

trol becomes more expensive. Without replication

the storage site can provide concurrency control for
the object since it will know about all activity.
With replication some more complex algorithm must

be supported. In a similar way, with replication, a
choice must be made as to which copy of an object

will supply service when there is activity on the ob-

ject. This degree of freedom is not available without

replication. If objects move, then, in the no replica-

tion case, the mapping mechanism must be more

general. With replication a move of an object is

equivalent to an add followed by a delete of an ob-

ject copy.

2.2.2 Mechanism Supporting Replication

File replication is made possible in LOCUS by

having multiple physical containers for a logical file-
group. A given file belonging to logical filegroup X

may be stored at any subset of the sites where there

exist physical containers corresponding to X. Thus
the entire logical filegroup is not replicated by each

physical container as in a "hot shadow" type en-
vironment. Instead, to permit substantially in-

creased flexibility, any physical container is incom-
plete; it stores only a subset of the files in the sub-

tree to which it corresponds.

To simplify access and provide a basis for low

level communication about files, the various copies of
a file are assigned the same file descriptor or inode

number within the logical filegroup. Thus a file's

globally unique low-level name is:
~logical filegroup number, file descriptor (inode) number~

and it is this name which most of the operating sys-

tem uses.

In the case where not all sites are communicat-

ing and even for a short time while they are com-

municating right after a file update, not all the

copies of the file are necessarily up to date. To

record this and to ensure that the latest copies will
be used for any accesses, each copy has a version

vector associated with it that maintains necessary
history information. See [PARK83].

5 1

2.3 Access ing t h e F l l e s y s t e m

There were several goals directing the design of
the network-wide file access mechanism. The first
was that the system call interface should be uniform,
independent of file location. In other words, the
same system call with the same parameters should
be able to access a file whether the file is stored lo-
cally or not. Achieving this goal of transparency
would allow programs to move from machine to
machine and allow data to be relocated.

The primary system calls dealing with the
filesystem are open, create, read, write, commit,

close and unlink. After introducing the three logical
sites involved in file access and the file access syn-
chronization aspect of LOCUS, these system calls are
considered in the context of the logical tasks of file
reading, modifying, creating and deleting.

2.3.1 LOCUS Logica l Si tes for F i l e s y s t e m Ac-
t iv i t ies

LOCUS is designed so that every site can be a
full function node. As we saw above, however,
filesystem operations can involve more than one
host. In fact there are three logical functions in a
file access and thus three logical sites. These are:

a. using site, (US), which issues the request to
open a file and to which pages of the file are
to be supplied,

b. storage site, (SS), which is the site at which
a copy of the requested file is stored, and
which has been selected to supply pages of
that file to the using site,

c. current synchronization site, {CSS), which
enforces a global access synchronization poli-
cy for the file's filegroup and selects SSs for
each open request. A given physical site can
be the CSS for any number of filegroups but
there is only one CSS for any given filegroup
in any set of communicating sites (i.e. a par-
tition). The CSS need not store any particu-
lar file in the filegroup but in order for it to
make appropriate access decisions it must
have knowledge of which sites store the file
and what the most current version of the file

is.
Since there are three possible independent roles a
given site can play (US, CSS, SS), it can therefore
operate in one of eight modes. LOCUS handles each
combination, optimizing some for performance.

Since all open requests for a file go through the
CSS function, it is possible to implement a large
variety of synchronization policies. In LOCUS, so
long as there is a copy of the desired resource avail-
able, it can be used. If .there are multiple copies
present, the most efficient one to access is selected.
Other copies are updated in background, but the sys-
tem remains responsible for supplying a mutually
consistent view to the user. Within a set of com-
municating sites, synchronization facilities and up-
date propagation mechanisms assure consistency of
copies, as well as guaranteeing that the latest version
of a file is the only one that is visible.

Since it is important to allow modification of a
file even when all copies are not currently accessible,
LOCUS contains a file reconciliation mechanism as
part of the recovery system (described in section 4).

2.3.2 S t r a t e g y fo r D i s t r i b u t e d O p e r a t i o n

LOCUS is a procedure based operating system -
processes request system service by executing system
calls, which trap to the kernel. The kernel runs as
an extension to the process and can sleep on behalf
of the process. In general, application programs and
users cannot determine if any given system call will
require foreign service. In fact, most of the high lev-
el parts of the system service routines are unaware of
the network. At the point within the execution of
the system call that foreign service is needed, the
operating system packages up a message and sends it
to the relevant foreign site. Typically the kernel
then sleeps, waiting for a response, much as it would
after requesting a disk i /o to be performed on behalf
of a specific process.

This flow of control structure is a special case of
remote procedure calls. Operating system pro-
cedures are executed at a remote site as part of the
service of a local system call. Figure 1 traces, over
time, the processing done at the requesting and serv-
ing site when one executes a system call requiring
foreign service.

2.3.3 Reading Files

To read a file, an application or system supplied
program issues the open system call with a filename
parameter and flags indicating that the open is for
read. As in standard Unix, pathname searching (or
directory interrogation) is done within the operating

52

Requesting Site

initiai
stem call
ocessing

Jmessage setup

turn message
ocessing

~o astern

alml pletio n

I

I Serving Site
I

I

I ~time

I

| ~nessage
I Jimalysis
I]system call
I . &continuation
I Isend return
I d/nessage

I

I

I
I

Figure 1: Proceosinf a System Call
Requiring Foreion Service

system open call. l After the last directory has been
interrogated, the operating system on the requesting
site has a <logical filegroup number, inode
number> pair for the target file that is about to be
opened. If the inode information is not already in an
ineore inode structure, a structure is allocated. If
the file is stored locally, the local disk inode informa-
tion is filled in. Otherwise very little information is
initially entered.

Next, the CSS is interrogated. If the local site is
the CSS, only a procedure call is needed. If not, the
CSS is determined by examining the logical mount
table, a message is sent to the CSS, the CSS sets up
an incore inode for itself, calls the same procedure
that would have been called if the US is the CSS,
packages the response, and sends it back to the US.
The CSS is involved for several reasons. One is to
enforce synchronization controls. Enough state in-
formation is kept incore at the CSS to support those
synchronization decisions. For example, if the policy
allows only a single open for modification, the site
where that modification is ongoing would be kept in-
core at the CSS. Another reason for contacting the
CSS is to determine a storage site. The CSS stores a

copy of the disk inode information whether or not it
actually stores the file. Consequently it has a list of
packs which store the file. Using that information
and mount table information the CSS can select po-
tential storage sites. The potential sites are polled
to see if they will act as storage sites.

Besides knowing the packs where the file is
stored, the CSS is also responsible for knowing the
latest version vector. This information is passed to
potential storage sites so they can check it against
the version they store. If they do not yet store the
latest version, they refuse to act as a storage site.

Two obvious optimizations are done. First, in
it's message to the CSS, the US includes the version
vector of the copy of the file it stores, if it stores the
file. If that is the latest version, the CSS selects the
US as the SS and just responds appropriately to the
US. Another simplying case is when the CSS stores
the latest version and the US doesn't. In this case
the CSS picks itself as SS (without any message
overhead) and returns this information to the US.

The response from the CSS is used to complete
the incore inode information at the US. For exam-
ple, if the US is not the SS then all the disk inode in-

formation (eg. file size, ownership, permissions) is ob-
tained from the CSS response. The CSS in turn had
obtained that information from the SS. The most
general open protocol (all logical functions on
different physical sites) is:

US - > CSS OPEN request
CSS --> SS request for storage site
SS - > CSS response to previous message
CSS --> US response to first message.

Figure 2 displays this generally message sequence.

13)]
(2)

Figure 2: Open Protocol

i Pathname searching is described in the next section.

53

After the file is open, the user level process is-

sues read calls. All such requests are serviced via

kernel buffers, both in standard Unix and in LOCUS.

In the local case, da ta is paged from external storage
devices into operating system buffers and then copied

from there into the address space of the process. Ac-

cess to locally stored files is the same in LOCUS as in
Unix, including the one page readahead done for files

being read sequentially.

Requests for da ta from remote sites operates

similarly. Instead of allocating a buffer and queueing
a request for a page from a local disk, however, the

operating system at the US allocates a buffer and

queues a request to be sent over the network to the

SS. The request is simple. It contains the <logical

filegroup, inode n u m b e r > pair, the logical page

number within the file and a guess as to where the

incore inode information is stored at the SS. The-

CSS is out of the i /o communication.

At the SS, the request is treated, within the operat-

ing system, as follows:
a. The incore inode is found using the guess

provided;
b. The logical page number is translated into a

physical disk block number;
c. A standard low level operating system rou-

tine is called to allocate a buffer and get the
appropriate page from disk (if it is not al-

ready in a buffer);
d. The buffer is queued on the network i /o

queue for transmission back to the US as a

response to a read request.

The protocol for a network read is thus: I
US - > SS request for page z of file y

SS - > US response to the above request

As in the case of local disk reads, readahead is useful

in the case of sequential behavior, both at the SS, as

well as across the network.

One of several actions can take place when the

close system call is invoked on a remotely stored file,

depending on how many times the file is concurrent-

ly open at this US.

If this is not the last close of the file at this US,

only local state information need be updated in most

cases. However, if this is the last close of the file,

the SS and CSS must be informed so they can deal-
locate incore inode structures and so the CSS can

alter state data which might affect it 's next syn-

chronization policy decision. The protocol is1:
US - > SS US close

SS - > CSS SS close

CSS - - > SS response to above

SS - > US response to first message

Closes of course can happen as a result of error

conditions like hosts crashing or network partitions.

To properly effect closes at various logical sites, cer-

tain state information must be kept in the incore

inode. The US of course must know where the SS is

(but then it needed that knowledge just to read

pages). The CSS must know all the sites currently
serving as storage sites so if a certain site crashes,

the CSS can determine if a given incore inode slot is
thus no longer in use. Analogously, the SS must

keep track, for each file, of all the USs that it is

currently serving.

The protocols discussed here are the lowest level

protocols in the system, except for some retransmis-

sion support. Because multilayered support and er-
ror handling, such as suggested by the ISO standard,

is not present, much higher performance has been

achieved.

2.3.4 P a t h n a m e Searching

In the previous section we outlined the protocol
for opening a file given the <logical filegroup

number, inode n u m b e r > pair. In this section we

describe how that pair is found, given a character

string name.

All pathnames presented to the operating system

start from one of two places, either the root (/) or

the current working directory of the process present-
ing the pathname. In both cases an inode is incore

at the US for the directory. To commence the path-

name searching, the <logical filegroup, inode
n u m b er> of the starting directory is extracted from

l There are no other messages involved; no
acknowledgements, flow control or any other underlying
mechanism. This specialized protocol is an important
contributor to LOCUS performance, but it implies the need
for careful higher level error handling.

i The original protocol for close was simply:
US --> SS US close of file 11
SS --> US SS close of file I/

However, we encountered a race condition under this
scheme. The US could attempt to reopen the file before
the CSS knew that the file was closed. Thus the responses
were added.

5 4

the appropriate inode and an internal open is done

on it. This is the same internal open that was
described at the start of the previous section, but

with one difference. A directory opened for path-

name searching is not open for normal READ but in-
stead for an internal unsynchronized read. The dis-
tinction is that no global locking is done. If the

directory is stored locally and there are no propaga-
tions pending to come in, the local directory is

searched without informing the CSS. If the directo-

ry is not local, the protocol involving the CSS must

be used but the locking is such that updates to the
directory can occur while interrogation is ongoing.

Since no system call does more than just enter,

delete, or change an entry within a directory and

since each of these actions are atomic, directory in-
terrogation never sees an inconsistent picture.

Having opened the initial directory, protection

checks are made and the directory is searched for the

first pathname component. Searching of course will

require reading pages of the directory, and if the

directory is not stored locally these pages are read

across the net in the same manner as other file data

pages. If a match is found, the inode number of that

component is read from the the directory to continue

the pathname search. The initial directory is closed

(again internally), and the next component is

opened. This strategy is continued up to the last
component, which is opened in the manner requested

by the original system call. Another strategy for

pathname searching is to ship partial pathnames to

foreign sites so they can do the expansion locally,
avoiding remote directory opens and network

transmission of directory pages. Such a solution is

being investigated but is more complex in the gen-
eral case because the SS for each intermediate direc-

tory could be different.

Some special care is necessary for crossing file-

group boundaries, as discussed earlier, and for creat-
ing and deleting files, as discussed later.

Z.3.5 File Modification

Opening an existing file for modification is much
the same as opening for read. The synchronization

check at the CSS is different and the state informa-

tion kept at all three logical sites is slightly different.

The act of modifying data takes on two forms.
If the modification does not include the entire page,

the old page is read from the SS using the read pro-
tocol. If the change involves an entire page, a buffer

is set up at the US without any reads. In either

case, after changes are made, the page is sent to the

SS via the write protocol, which is simplyl:

US -~> SS Write logical page z in file y
The action to be taken at the SS is described in the

next section in the context of the commit mechan-
ism.

The close protocol for modification is similar to

the read case. However, at the US all modified pages

must be flushed to the SS before the close message is

sent. Also, the mechanism at the SS interacts with

the commit mechanism, so we turn to it now.

2.3.6 File C o m m i t

The important concept of atomically committing

changes has been imported from the database world
and integrated into LOCUS. All changes to a given

file are handled atomically. Such a commit mechan-
ism is useful both for database work and, in general,

and can be integrated without performance degrada-

tion. No changes to a file are permanent until a

commit operation is performed. Commit and abort

(undo any changes back to the previous commit

point) system calls are provided, and closing a file
commits it.

To allow file modifications to act like a transac-

tion, it is necessary to keep both the original and

changed data available. There are two well known
mechanisms to do so: a) logging and b) shadow pages

or intentions lists [LAMP 81a]. LOCUS uses a sha-

dow page mechanism, partly because Unix file

modifications tend to overwrite entire files, and part-
ly because high performance shadowing is easier to
implement.

The US function never deals with actual disk

blocks but rather with logical pages. Thus the entire
shadow page mechanism is implemented at the SS

and is transparent to the US. At the SS, then, a new

physical page is allocated if a change is made to an
existing page of a file. This is done without any ex-

tra i /o in one of two ways: if an entire page is being
changed, the new page is filled in with the new data
and written to the storage medium; if the change is
not of the entire page, the old p~ge is read, the name

of the buffer is changed to the new page, the

changed data is entered and this new page is written
to the storage medium. Both these cases leave the

1 There are low level acknowledgements on this message
to ensure that it is received. No higher level response is
necessary.

5 5

old information intact. Of course it is necessary to

keep track of where the old and new pages are. The

disk inode contains the old page numbers. The in-

core copy of the disk inode starts with the old pages
but is updated with new page numbers as shadow

pages are allocated. If a given logical page is

modified multiple times it is not necessary to allo-

cate different pages. After the first time the page is

modified, it is marked as being a shadow page and

reused in place for subsequent changes.

The atomic commit operation consists merely of

moving the incore inode information to the disk

inode. After tha t point, the file permanently con-

tains the new information. To abort a set of changes
rather than commit them, one merely discards the

incore information since the old inode and pages are

still on disk, and free up page frames on disk con-

taining modified pages. Additional mechanism is

also present to support large files that are structured

through indirect pages that contain page pointers.

As is evident by the mechanism above, we have

chosen to deal with file modification by first commit-
ting the change to one copy of a file. Via the cen-

tralized synchronization mechanism, changes to two

different copies at the same time is blocked, and

reading an old copy while another copy is being

modified is prevented, l As part of the commit opera-

tion, the SS sends messages to all the other SS's of

that file as well as the CSS. At a minimum, these

messages identify the file and contain the new ver-

sion vector. Additionally, for performance reasons,
the message can indicate: a) whether it was just

inode information that changed and no da ta (eg.
ownership or permissions) or b) which explicit logical

pages were modified. At this point it is the responsi-
bility of these additional SS's to bring their version

of the file up to date by propagating in the entire file

or just the changes. A queue of propagation requests

is kept by the kernel at each site and a kernel pro-

cess services the queue.

Propagation is done by "pulling" the data rather

than "pushing" it. The propagation process which
wants to page over changes to a file first internally

opens the file at a site which has the latest version.

It then issues standard read messages either for all

I Simultaneous read and modification requests, even when
initiated at different sites is allowed. Page-valid tokens
are managed by the kernels for this purpose. Only one
storage site can be involved, unlike the case when there
are only multiple readers.

the pages or just the modified ones. When each page

arrives, the buffer that contains it is renamed and

sent out to secondary storage, thus avoiding copying

data into and out of an application data space, as

would he necessary if this propagation mechanism
were to run as an application level process. Note

also that this propagation-in procedure uses the stan-

dard commit mechanism, so if contact is lost with

the site containing the newer version, the local site is

still left with a coherent, complete copy of the file,

albeit still out of date.

Given this commit mechanism, one is always left

with either the original file or a completely changed

file but never with a partially made change, even in

the face of local or foreign site failures. Such was

not the case in the standard Unix environment.

2.3.7 File Creation and Deletion

The system and user interface for file creation

and deletion is just the standard Unix interface, to

retain upward compatibility and to maintain tran-

sparency. However, due to the potential for replicat-

ed storage of a new file, the create call needs two ad-

ditional pieces of information - how many copies to

store and where to store them. Adding such infor-
mation to the create call would change the system

interface so instead defaults and per process state in-

formation is used, with system calls to modify them.

For each process, an inherited variable has been

added to LOCUS to store the default number of

copies of files created by that process. A new system
call has been added to modify and interrogate this

number. Currently the initial replication factor of a
file is the minimum of the user settable number-of-

copies variable and the replication factor of the

parent directory.

Initial storage sites for a file are currently deter-

mined by the following algorithm:
a. All such storage sites must be a storage site

for the parent directory;

b. The local site is used first if possible;

c. Then follow the site selection for the parent

directory, except that sites which are

currently inaccessible are chosen last.

This algorithm is localized in the code and may

change as experience with replicated files grows.

As with all file modification, the create is done

at one storage site and propagated to the other

storage sites. If the storage site of the created file is

not IocM, the protocol for the create is very similar

56

to the remote open protocol, the difference being
that a placeholder is sent instead of an inode

number. The storage site allocates an inode number
from a pool which is local to that physical container

of the filegroup. Tha t is, to facilitate inode alloca-
tion and allow operation when not all sites are acces-

sible, the entire inode space of a filegroup is parti-
tioned so that each physical container for the file-

group has a collection of inode numbers that it can

allocate.

File delete uses much of the same mechanism as

normal file update. After the file is open for

modification, the US marks the inode and does a

commit, which ships the inode back to the SS and

increments the version vector. As part of the com-

mit mechanism, pages are released and other sites

are informed that a new version of the file exists. As

those sites discover that the new version is a delete,

they also release their pages. When all the storage

sites have seen the delete, the inode can be reallocat-

ed by the site which has control of that inode (i.e.
the storage site of the original create).

2.4 Other Issues

The LOCUS name service implemented by the

directory system is also used to support interprocess

communication and remote device access, as well as

to aid in handling heterogeneous machine types in a
transparent manner. We turn to these issues now.

2.4.1 Site and Machine D e p e n d e n t Files

There are several aspects to the hardware
heterogeneity problem, such as number representa-

tion, byte ordering, instruction set differences and

special hardware constraints (eg. floating point avai-

lability). Strong file typing and conversions during

transmission can help some of these problems 1. Here

we address only the file naming problem.

While globally unique user visible file naming is

very important most of the time, there can be situa-

tions where an uttered filename wants to be inter-
preted specially, based on the context under which it

was issued. The machine-type context is a good ex-
ample. In a LOCUS net containing both DEC PDP-

11/45s and DEC VAX 750s, a user would want to

type the same command name on either type of
machine and get a similar service. However, the

1 Solutions to the number representation and byte
ordering problems have not yet been implemented.

load modules of the programs providing that service

could not be identical and would thus have to have
different globally unique n a m e s . To get the proper

load modules executed when the user types a com-

mand, then, requires using the context of which
machine the user is executing on. A discussion of

transparency and the context issue is given in

[POPE 83a]. Here we outline a mechanism imple-

mented in LOCUS which allows context sensitive files

to be named and accessed transparently.

Basically the scheme consists of four parts:

a. Make the globally unique name of the object

in question refer to a special kind of directo-

ry (hereafter referred to as a hidden directo-
ry] instead of the object itself.

b. Inside this directory put the different ver-

sions of the file, naming them based on the

context with which they are associated. For

example, have the command /bin/who be a

hidden directory with the file entries ~5 and

vaz that are the respective load modules.
c. Keep a per-process inherited context for

these hidden directories. If a hidden directo-

ry is found during pathname searching (see
section 4.4 for pathname searching), it is ex-

amined for a match with the process's con-

text rather than the next Component of the
pathnames passed to the system.

d. Give users and programs an escape mechan-

ism to make hidden directories visible so
they can be examined and specific entries

manipulated.

As we shall see in section 3, not only does this

naming scheme allow us to store and name load
modules for different sites, but allows us to tran-

sparently run a requested command on the site for

which a load module exists.

2.4.2 O t h e r F l l e s y s t e m O b j e c t s

In LOCUS, as in Unix, the name catalog also in-

cludes objects other than files; devices and interpro-
cess communication (ipc) channels are the best

known.

LOCUS provides for transparent use of remote

devices in most cases I. This functionality is exceed-
ingly valuable, but involves considerable care. The

1 The only exception is remote access to raw, non-
character devices and these can be accessed by executing
processes remotely.

5 7

implementation architecture is beyond the scope of

this paper.

Interprocess communication (ipc) is often a

controversial subject in a single machine operating

system, with many differing opinions. In a distribut-

ed environment, the requirements of error handling

impose a number of additional requirements tha t

help make design decisions, potentially easing

disagreements.

In LOCUS, the initial ipc effort was further

simplified by the desire to provide a network-wide

ipc facility which is fully compatible with the single

machine functions that were already present in Unix.

Therefore, in the current LOCUS system release,

Unix named pipes and signals are supported across

the network. Their semantics in LOCUS are identical

to those seen on a single machine Unix system, even
when processes a r e resident on different machines in

LOCUS. Just providing these seemingly simple ipe
facilities was non-trivial, however. Details of the im-

plementation are given in [WALK831.

3 R e mote Processes

Transparent support for remote processes re-

quires a facility to create a process on a remote

machine, initialize it appropriately, support cross

machine, inter-process functions with the same se-

mantics as were available on a single machine, and

reflect error conditions across machine boundaries.

Each of these is discussed below.

3.1 Remote Process Creation

LOCUS permits one to execute programs at any

site in the network, subject to permission control, in
a manner just as easy as executing the program lo-

cally. In fact, one can dynamically, even just before

process invocation, select the execution site. No re-
binding or any other action is needed. The mechan-

ism is entirely transparent, so that existing software

can be executed either locally or remotely, with no

change to that software.

The decision about where the new process is to
execute is specified by information associated with

the calling process. Tha t information, currently a
structured advice list, can be set dynamically. Shell

commands to control execution site are also avail-

able.

Processes are typically created by the standard

Unix .fork call. Both fork and ezec, the Unix call

which installs a load module into a process and

starts execution, are controlled by site information in

the process environment. If exec is to occur remote-

ly, then the process is effectively moved at that time.

By doing so it is feasible to support remote execution

of programs intended for dissimilar epu types.

In both cases, a process body is allocated at the

destination site following a message exchange
between the calling site and the new process site.

More significant, it is necessary to initialize the new

process' environment correctly. This requires, for
Unix compatibility, tha t the parent and child process

share open file descriptors (which contain current file

position pointers1), a copy of other process state in-

formation.

In the case of a fork, the process address space,

both code and data, must be made a copy of the

parents' . If the code is reentrant, and a copy al-

ready exists on the destination machine, it should be

used. In any case, the relevant set of process pages

are sent to the new process site.

For optimization purposes, a run call has been

added that is similar to the effect of a fork followed

by a exec. If the run is to execute remotely, the

effect is a local fork and a remote exec. However,

run is transparent as to where is executes. Run
avoids the copy of the parent process image which

occurs with fork, and includes parameterization tha t
permits the caller to set up the environment of the
new process, be local or remote.

3.2 I n t e r - p r o c e u F u n c t i o n s

The semantics of the available functions by
which processes interact determines, to a large ex-

tent, the difficulty involved in supporting a tran-
sparent process facility. In Unix, there are explicit

functions such as signals and pipes (named or not),

but there are also implicit mechanisms; shared open

files are the most significant. The most difficult par t
of these functions' semantics is their expectation of

shared memory. For example, if one process sharing
an open file reads or writes a character, and then
another does so, the second process receives or alters

1 TO implement this functionality across the network we
keep a file descriptor at each site, with only one valid at
any time, using a token scheme to determine which file
descriptor is currently valid.

5 8

the character following the one touched by the first
process. Pipes have similar characteristics under cer-
tain circumstances.

All of these mechanisms are supported in

LOCUS, in part through a token mechanism which
marks which copy of a resource is valid; access to a

resource requires the token. This concept is used at

various levels within the system. While in the worst

case, performance is limited by the speed at which

the tokens and their associated resources can be

flipped back and forth among processes on different
machines, such extreme behavior is exceedingly rare.

Virtually all processes read and write substanti.~!

amounts of data per system call. As a result, most

collections of Unix processes designed to execute on a
single machine run very well when distributed on

LOCUS.

3.3 Error Handling

In LOCUS, process errors are folded into the ex-

isting Unix interface to the degree possible. The new

error types primarily concern cases where either the
calling or called machine fails while the parent and

child are still alive. When the child's machine fails,
the parent receives an error signal. Additional infor-

mation about the nature of the error is deposited in
the parent 's process structure, which can be interro-

gated via a new system call. When the parent 's
machine fails, the child is notified in a similar

manner. Otherwise, the process interface in LOCUS

is the same as in Unix.

4 LOCUS R e c o v e r y P h i l o s o p h y

The basic approach in LOCUS is to maintain,

within a single partition, strict synchronization
among copies of a file so that all uses of that file see

the most recent version, even if concurrent activity
is taking place on different machines. Each partition

operates independently, however. Upon merge,
conflicts are reliably detected. For those data types

which the system understands, automatic reconcilia-

tion is done. Otherwise, the problem is reported to a

higher level; a database manager for example, who

may itself be able to reconcile the inconsistencies.
Eventually, if necessary, the user is notified and tools

are provided by which he can interactively merge the
copies.

An important example where replicated opera-
tion is needed, in a distributed system, is the name

service, the mechanism by which the user sensible

names are translated into internal system names and
locations for the associated resource. Those mapping
tables must themselves be replicated, as already

pointed out. A significant part of the basic replica-

tion mechanism in LOCUS is used by its name ser-

vice, or directory system, and so we will concentrate

on that part of recovery in the remainder of our dis-
cussion.

4.1 Partit ions

Partit ions clearly are the primary source of

difficulty in a replicated environment. Some authors
have proposed that the problem can be avoided by

having high enough connectivity that failures will

not result in partitions. In practice, however, there

are numerous ways that effective partitioning occurs.

In single local area networks, a single loose cable ter-

minator can place all machines in individual parti-

tions of a single node. Gateways between local nets

fail. Long haul connections suffer many error modes.

Even when the hardware level is functioning, there
are miriad ways that software levels cause messages

not to be communicated; buffer lockups, synchroni-

zation errors, etc. Any distributed system architec-
tural strategy which depends for its correct and con-

venient operation on the collection of these failure
modes being exceedingly infrequent is a fragile

model, in our judgment. In addition, there are
maintenance and hardware failure scenarios that can

result in file modification conflict even when two

sites have never executed independently at the same
time. For example, while site B is down, work is

done on site A. Site A goes down before B comes

up. When site A comes back up, an effective parti-
tion merge must be done.

Given partitioning will occur, and assuming re-

plication of data is'desired for availability, reliabili-

ty, and performance, an immediate question is
whether a data object, appearing in more than one

partition, can be updated during partition. In our

judgment, the answer must be yes. There are
numerous reasons. First, if it is not possible, then

availability goes down, rather than up, as the degree
of replication increases. Secondly, the system itself

must maintain replicated data, and permit update

during partitioned mode. Directories are the obvious
example. Solutions to that problem may well be
made available to users at large. Third, in many en-

vironments, the probability of conflicting updates is

5 9

low. Actual intimate sharing is often not the rule.
Thus, unless the user involved needed, to get at an
alternate copy because of system failures, a policy of
allowing update in all partitions will not lead to
conflicting updates. To forbid update in all parti-
tions, or all except one, can be a severe constraint,
and in most cases will have been unnecessary.

Given the ability to update a replicated object
during partition, one must face the problem of mutu-
al consistency of the copies of each data object.
Further, the merge procedure must assure that no
updates are lost when dilterent copies are merged.
Solutions proposed elsewhere, such as primary copy
[ALSB70I, majority consensus [THOM78], and
weighted voting [MENA77] are excluded. They all
impose the requirement that update can be done in
at most one partition. Even methods such as that
used in Grapevine [BIRR82] are not suitable. While
Grapevine assures that copies will eventually reach a
consistent state, updates can be lost.

It is useful to decompose the replication/merge
problem into two cases. In the first, one can assume
that multiple copies of a given object may be recon-
ciled independently of any other object. That is, the
updates done to the object during partition are
viewed as being unrelated and independent of up-
dates (or references) to other objects.

The second case is the one that gives rise to
transactions. Here it is recognized that changes to
sets of objects are related. Reconciliation of differing
versions of an object must be coordinated with other
objects and the operations on those objects which oc-
curred during partition.

LOCUS takes both points of view. The basic dis-
tributed operating system assumes, as the default,
that non-directory file updates and references are un-
related to other non-directory files. The steps which
are taken to manage replication under those assump-
tions are discussed in the next section. In addition,
LOCUS provides a full nested transaction facility for
those cases where the user wishes to bind a set of
events together. Case specific merge strategies have
been developed. The recovery and merge implica-
tions of these transactions are discussed later.

4.2 Detec t ion of Confl ict ing U p d a t e s to Flies

Suppose file / w a s replicated at sites $1 and S2 .
Initially assume each copy was identical but after
some period sites $1 and $2 partitioned. If f is
modified at S l producing /1 then when Sl and 82
merge the two copies of f will be inconsistent. Are
they then in conflict? No. The copy at $1 (fl)
should propagate to $2 and that will produce a con-
sistent state. The copies of the object would be in
conflict if during the partition not only was Sl's copy
modified to produce fl but S2's copy was modified to
produce f2. At merge a conflict should be detected.
As ~lready pointed out the system may be able to
resolve the conflict. This is just a simple example.
There could be several copies of the object and the
history of the modifications and partitions can be
complex. Detecting consistency under the general
circumstances is non-trivial, but a elegant solution is
presented in [PARK83], and is implemented in
LOCUS.

For some types of system supported single file
structures the system can mechanically resolve those
conflicts which are detected. Directories and mail-
boxes have relatively simple semantics {add and
delete are the major operations} and can be done in
this manner. These cases are critical to LOCUS, and
will be discussed below.

4.3 File Syt~tem Merge

A distributed file system is an important and
basic case of replicated storage. The LOCUS file sys-
tem is a network wide, tree structured directory sys-
tem, with leaves being data files whose internal
structure is unknown to the LOCUS system nucleus.
All files, including directories, have a type associated
with them. The type information is used by
recovery software to take appropriate action.
Current types are:

directories
mailboxes (several kinds}
database files
untyped files

The LOCUS recovery and merge philosophy is
hierarchically organized. The basic system is respon-
sible for detecting all conflicts. For those data types
that it manages, including internal system data as
well as file system directories, automatic merge is
done by the system. If the system is not responsible
for a given file type, it reflects the problem up to a
higher level; to a recovery/merge manager if one ex-
ists for the given file type. If there is none, the sys-

60

tem notifies the ownerIs) of the file that a conflict ex-
ists, and permits interactive reconciliation of the
differences. Transaction recovery and merge can also
be supported across partitions in LOCUS. See
[FAIS81, THIE83 and MEULL83].

4.4 Reconc i l i a t ion o f a D i s t r i b u t e d , H ie r a r ch -
Ical D i r e c t o r y S t r u c t u r e

In this section, we consider how to merge two
copies of a directory that has been independently up-
dated in different partitions. Logically, the directory

structure is a tree I but any directory can be replicat-
ed. A directory can be viewed as a set of records,
each one containing the character string comprising
one element in the path name of a file. Associated
with that string is an index that points at a descrip-
tor (inode) for a file or directory. In that inode is a
collection of information about the file. LOCUS gen-
erally treats inode as part of the file from the
recovery point of view. The significance of this view
will become apparent as the reconciliation procedure
is outlined.

To develop a merge procedure for any data type,
including directories, it is necessary to evaluate the
operations which can be applied to that data type.
For directories, there are two operations:

insert (character string path element) and
remove (character string path element).

Although these operations have rather simple seman-
tics, the merge rules are not so simple, primarily be-
cause:

a) operations (remove, rename and link) may
be done to a file in a partition which does
not store the file;
b) a file which was deleted in one partition
while it was modified in another, wants to be
saved;
c) a directory may have to be resolved
without either partition storing particular
files.

With these situations in mind, we note that no
recovery is needed if the version vector for both
copies of the directory are identical. Otherwise the
basic rules are:

1. Check for name conflicts. For each name in
the union of the directories, check that the
inode numbers are the same. If they aren't,
both file names are slightly altered to be dis-
tinguished. The owners of the two files are

.

ing:
a)

notified by electronic mail that this action
has been taken.
The remaining resolution is done on an inode
by inode basis, with the rules in general be-

if the entry appears in one directory
and not in the other, propagate the
entry;

b). if a deleted entry exists in one direc-
tory and not in the other, propagate
the delete, unless there has been a
modification of the data since the
delete;

c) if both directories have an entry and
neither is deleted, no action is neces-
sary;

d) if both directories have an entry and
one is a delete and other is not, the
inode is interrogated in each parti-
tion; if the data has been modified
since the delete, either a conflict is
reported or the delete is undone;
otherwise the delete is propagated.

Further augmentation to the directory merge algo-
rithm must be done because of links. The complete
algorithm is given in [POPE83b].

Since recovery may have to be run while users
are active, it is necessary that regular traffic be al-

~'lowed. To accommodate this, we support demand
recovery, which is to say that a particular directory
can be reconciled out of order to allow access to it
with only a small delay.

4.$ Reconc i l i a t ion o f Mai lboxes

Automatic reconciliation of user mailboxes is im-
portant in the LOCUS replication system,, since
notification of name conflicts in files is done by send-
ing the user electronic mail. It is desirable that,
after merge, the user's mailbox is in suitable condi-
tion for general use.

Fortunately, mailboxes are even easier to merge
than directories. The reason is that the operations
which can be done during partitioned operation are
the same: insert and delete, but it is easy to arrange
for no name conflicts, and there are no link prob-
lems. Further, since mailboxes are not a system
data structure, and generally are seen only by the
small number of mail programs, support for deletion
information can be easily installed.

i With the exception of links.

61

Thus, for each different mail storage format 1
there is a mail merge program that is invoked after
the basic file system has been made consistent again.
These programs deal with conflicted files detected by
the version vector algorithm which the typing sys-
tem indicates are mail files.

4.6 Conflicts Among Untyped Data Objects

When the system has no mechanisms to deal
with conflicts, it reports the matter to the user. In
LOCUS, mail is sent to the owner(s) of a given file
that is in conflict, describing the problem. It may
merely be that certain descriptive information has
been changed. Alternately, the file content may be
in conflict. In any case, files with unresolved
conflicts are marked so normal at tempts to access
them fail, although that control may be overridden.
A trivial tool is provided by which the user may
rename each version of the conflicted file and make
each one a normal file again. Then the standard set
of application programs can be used to compare and
merge the files.

5 D y n a m i c R e c o n f l g u r a t l o n

5.1 Introduction

Transparency in LOCUS applies not only to the
static topology of the network, but to the
configuration changes themselves. The system
strives to insulate the users from reconfigurations,
providing continuing operation with only negligible
delay. Requiring user programs to deal with
reconfiguration would shift the network costs from
the operating system to the applications programs.

This section discusses the concept of transparen-
cy as i t relates to a dynamic network environment,
gives several principles that the operating system
should follow to provide it, and presents the
reconfiguration protocols used in LOCUS. The proto-
cols make use of a high-level synchronization stra-
tegy to avoid the message overhead of two-phased
commits or high-level ACKs, and are largely in-
dependent of the specific architecture of LOCUS.

The high-level protocols of LOCUS assume that
the underlying network is fully connected. By this
we mean that if site A can communicate with site B,
and site B with site C, then site A can communicate
with site C. In practice, this may be done by rout-
ing messages from A to C through B, although the
present implementation of LOCUS runs on a broad-
cast network where this is unnecessary. The as-
sumption of transitivity of communication
significantly simplifies the high-level protocols used
in LOCUS.

The low-level protocols enforce that network
transitivity. Network information is kept internally
in both a high-level status table and a collection of

virtual circuits, l The two structures are, to some ex-
tent, independent. Membership in the partition does
not guarantee the existence of a virtual circuit, nor
does an open virtual circuit guarantee membership in
the partition. Failure of a virtual circuit, either on
or after open, does, however, remove a node from a
partition. Likewise removal from a partition closes
all relevant virtual circuits. All changes in partitions
invoke the protocols discussed later in this paper.

The system attempts to maintain file access
across partition changes. If it is possible, without
loss of information, to substitute a different copy of
a file for one lost because of partition, the system
will do so. If, in particular, a process loses contact
with a file it was reading remotely, the system will
at tempt to reopen a different copy of the same ver-
sion of the file.

The ability t o mount filegroups independently
gives great flexibility to the name space. Since radi-
cal changes to the name space can confuse users,
however, this facility is rarely used for that purpose,
and that use is not supported in LOCUS. The
reconflguration protocols require that the mount
hierarchy be the same at all sites.

I There are two storage formats in LOCUS; one in which

multiple messages are stored in a single file, the default,

and another where each message is a different file, and

messages are grouped by parent directory. This second

storage discipline is used by the mail program mh.

1 The virtual circuits deliver messages from site A to site

B (the virtual circuits conWneet sites, not processes} in the
order they are sent. If a message is lost, the circuit is
closed. The mechanism defends the local site from the
slow operation of a foreign site.

62

5.2 Requi rements for the Reeonf lgura t lon
Pro tocols

The first constraint on the reconfiguration proto-
col is that it maintain consistency with respect to
the internal system protocols. All solutions satisfy-
ing this constraint could be termed correct. Correct-
ness, however, is not enough. In addition to main-
taining system integrity, the solution must insulate
the user from the underlying system changes. The
solution should not affect program development, and
it should be efficient enough that any delays it im-
poses are negligible.

As an example of a "correct ~ but poor solution
to the problem, the system could handle only the
boot case, where all machines in the network come
up together. Any failures would be handled by a
complete network reboot. Such a solution would
easily satisfy the consistency constraint; however,
one might expect murmurs of complaint from the
user community.

Similarly, a solution that brings the system to a
grinding halt for an unpredictable length of time at
unforseeable intervals to reconstruct internal tables
might meet the requirement of correctness, but
would clearly be undesirable.

Optimally, the reconfiguration algorithms should
not affect the user in any matter whatsoever. A user
accessing resources on machine A from machine B
should not be affected by any activity involving
machine C. This intuitive idea can be expressed in
several principles:

1. User activity should be allowed to continue
without adverse affect, provided no resources
are lost.

2. Any delay imposed by the system on user
activity during reconfiguration should be
negligible.

3. The user should be shielded from any tran-
sient effects of the network configuration.

4. Any activity initiated after the
reconfiguration should reflect the state of the
system after the reconfiguration.

5. Specialized users should be able to detect
reconfigurations if necessary.

6. No user should be penalized for increased

availability of resources, l

All these principles are fairly intuitive. They
merely extend the concept of network transparency
to a dynamic network and express a desire for
efficiency. They do, however, give tight constraints
on the eventual algorithms. For example, those
operations with high delay potentials must be parti-
tioned in such a way that the tasks relevant to a
specific user request can be run quickly, efficiently,
and immediately.

The principles have far-reaching implications in
areas such as file access and synchronization. Sup-
pose, for example, a process were reading from a file
replicated twice in its partition. If it were to lose
contact with the copy it was reading, the system
should substitute the other copy (assuming, of
course, that it is still available). If a more recent
version became available, the process should contin-
ue accessing the old version, but this must not
prevent other processes from accessing the newer
version.

These considerations apply equally to all parti-
tions, and no process should loose access to files sim-
ply because a merge occurred. While the LOCUS
protocols insure synchronization within a partition,
they cannot do so between partitions. Thus, it is
easy to contrive a scenario where the system must
support conflicting locks within a single partition,
and invoke any routines necessary to deal with in-
consistencies that result.

5.3 Pro tocol S t r u c t u r e

As noted before, the underlying LOCUS protocols
assume a fully-connected network. To insure correct
operation, the reconfiguration strategy must guaran-
tee this property. If, for instance, a momentary
break occurs between two sites, all other sites in the
partition must be notified of the break. A simple
scan of available nodes is insufficient.

The present strategy splits the reconfiguration
into two stages: first, a partition protocol runs to find
fully-connected sub-networks; then a merge protocol
runs to merge several such sub-networks into a full
partition. The partition protocol affects only those
sites previously thought to be up. It divides a parti-
tion into sub-partitions, each of which is guaranteed
to be fully-connected and disjoint from all other

1 This last point may cause violations of synchronization
policies, as discussed below.

63

sub-partitions. It detects all site and communica-
tions failures and cleans up all affected multi-site
data structures, so that the merge protocol can ig-
nore such matters. The merge protocol polls the set
of available sites, and merges several disjoint sub-
partitions into one.

After the new partition is establishe~], the
recovery procedure corrects any inconsistencies
brought about either by the reconfiguration code it-
self, or by activity while the network was not con-
nected. Recovery is concerned mainly with file con-
sistency. It schedules update propagation, detects
conflicts, and resolves conflicts on classes of files it
recognizes.

All reconfiguration protocols are controlled by a
high-priority kernel process. The partition and
merge protocols are run directly by that process,
while the recovery procedure runs as a privileged
application program.

5.4 T h e P a r t i t i o n P r o t o c o l

Communication in a fully-connected network is
an equivalence relation. Thus the partitions we
speak about are partitions, in the strict mathemati-
cal sense of the set of nodes of the network. In nor-
mal operation, the site tables reflect the equivalence
classes: all members of a partition agree on the
status of the general network. When a communica-
tion break occurs, for whatever reason, these tables
become unsynchronized. The partition code must
re-establish the logical partitioning that the operat-
ing system assumes, and synchronize the site tables
of its member sites to reflect the new environment.

In general, a communication failure between any
two sites does not imply a failure of either site.
Failures caused by transmission noise or unforeseen
delays cannot be detected directly by foreign sites,
and will often be detected in only one of the sites in-
volved. In such situations, the partition algorithm
should find maximum partitions: a single communi-
cations failure should not result in the network

breaking into three or more parts. 1 LOCUS imple-
ments a solution based on iterative intersection.

A few terms are helpful for the following discus-
sion. The partition set, Pc,, is the set of sites be-
lieved up by site a. The new partition set, Pa I , is

the set of sites known by a to have joined the new
partition.

Consider a partition P after some set of failures
has occurred. To form a new partition, the sites
must reach a consensus on the state of the network.
The criterion for consensus may be stated in set no-
tation as: for every a,~EP, P~=Pp. This state can
be reached from any initial condition by taking suc-
cessive intersections of the partition sets of a group
of sites.

When a site a runs the partition algorithm, it
polls the sites in Pa. Each site polled responds with
its own partition set PpoIlsit~. When a site is polled
successfully, it is added to the new partition set
P J , and Pa is changed to P~f'~Ppoll,,tc. a continues

to poll those sites in Pa but not in Pal until the two
sets are equal, at which point a consensus is assured,
and a announces it to the other sites.

Translating this algorithm into a working proto-
col requires provisions for synchronization and
failure recovery. These two requirements are

antagonistic-while the algorithm requires that only
one active site poll for a new partition, and that oth-
er sites join only one new partition, reliability con-
siderations require that sites be able to change active
sites when one fails--and make the protocol intrinsi-
cally complex. Space precludes including the details
of the algorithm.

5.5 T h e Merge P r o t o c o l

The merge procedure joins several partitions into
one. It establishes new site and mount tables, and
re-establishes CSS's for all the file groups. To form
the largest possible partition, the protocol must
check all possible sites, including, of course, those

thought to be down 1. In a large network, sequential
polling results in a large additive delay because of
the timeouts and retransmissions necessary to deter-
mine the status of the various sites. To minimize
this effect, the merge strategy polls the sites asyn-
chronously.

I Breaking a virtual circuit between two sites aborts any
ongoing activity between those two sites. Partition
fragmentation must be minimized to minimize the loss of
work.

In a large network with gateways one can optimize by
polling the gateways.

64

J J

The algorithm itself is simple. The site initiat-
ing the protocol sends a request for information to

all sites in the network. Those sites which are able

respond with the information necessary for the ini-

tiating site to build the global tables. After a suit-
able time, the initiating site gives up on the other

sites, declares a new partition, and broadcasts its

composition to the world.

The algorithm is centralized and can only be run

at one site, and a site can only participate in one
protocol at a time, so the other sites must be able to

halt execution of the protocol. To accomplish this,

the polled site sends back an error message instead

of a normal reply:

IF ready to merge THEN
IF merging AND actsite ~---= Iocsite THEN

IF fsite < Iocsite THEN

actsite := fsite;

halt active merge;

ELSE decline to merge

FI
ELSE actsite :== fsite;

FI
ELSE decline to merge

FI

If a site is not ready tomerge , then either it or some

other site will eventually run the merge protocol.

The major source of delay in the merge pro-
cedure is in the t imeout routines that decide when
the full partition has answered. A fixed length

timeout long enough to handle a sizeable network
would add unreasonable ~ielay to a smaller network
or a small partition of a large network. The strategy

used must be flexible enough to handle the large par-

tition case and the small partit ion case at the same

time.

The merge protocol waits longer when there is a
reasonable expectation that further replies will ar-
rive. When a site answers the poll, it sends its parti-
tion information in the reply. Until all sites believed

up by some site in the new partition have replied,
the timeout is long. Once all such sites have replied,

the timeout is short.

5.6 T h e C l e a n u p P r o c e d u r e

Even before the partition has been reestablished,

there is considerable work that each node can do to

clean up its internal da ta structures. Essentially,

each machine, once it has decided that a particular
site is unavailable, must invoke failure handling for

all resources which it's processes were using at that

site, or for all local resources which processes at that

site were using. The action to be taken depends on
the nature of the resource and the actions that were

under way when failure occurred. The cases are out-
lined in the table below.

Local Resource in Use Remotely

Resource Failure Action

File (open for update)

File (open for read)

Discard pages, close file
and abort updates

Close file

Remote Resource in Use Locally

Resou rce

File (open for update)

File (open for read)

Failure Action

Discard pages, set error

in local file descriptor
Internal close, a t t empt

to reopen at other site

Interacting Processes

Failure T~pe

Remote Fork/Exec,
remote site fails

Fork/Exec,

calling site fails
Distributed Transaction

Action

return error to caller

notify process
abort all related
subtransactions in

partit ion

Once the machines in a partition have mutually

agreed upon the membership of the partition, the
system must select, for each filegroup it supports, a

new synchronization site. This is the site to which
the LOCUS file system protocols direct all file open
requests. Once the synchronization site has been

selected, that site must reconstruct the lock table for

all open files from the information remaining in the
partition. If there are operations in progress which

would not be permitted during normal behavior,

some action must be taken. For example, file X is
open for update in two partitions, the system policy

permits only one such use at a time, and a merge oc-

curs. The desired action is to permit these opera-

tions to continue to completion, and only then per-

65

form file system conflict analysis on those resources, l
Finally, the recovery procedure described in section 4
is run for each filegroup to which it is necessary.

After all these functions have been completed,
the effect of topology change has been completely
processed. For most of these steps, normal process-
ing at all of the operating nodes continues
unaffected. If a request is made for a resource which
has not been merged yet, the normal order of pro-
cessing is set aside to handle that request. There-
fore, higher level reconfiguration steps, such as file
and directory merge, do not significantly delay user

requests.

5.7 P r o t o c o l Synchron iza t ion

The reconfiguration procedure breaks down into
three distinct components, each of which has already
been discu~ed. What remains is a discussion of how
the individual parts are tied together into a robust
whole. At various points in the procedure, the parti-
cipating sites must be synchronized, and control of
the protocol must be handed to a centralized site.
Those sites not directly involved in the activity must
be able to ascertain the status of the active sites to
insure that no failures have stalled the entire net-

work.

One approach to synchronization would be to
add ACKs to the end of each section of the protocol,
and get the participants in lock-step before proceed-
ing to the next section. This approach increases
both the message traffic and the delay, both critical
performance quantities. It also requires careful
analysis of the critical sections in the protocols to
determine where a commit is required, and the im-
plementation of a commit for each of those sections.
If a site fails during a synchronization stage, the sys-
tem must still detect and recover from that failure.

LOCUS reconfiguration uses an extension of a
"failure detection" mechanism for synchronization
control. Whenever a site takes on a passive role in a
protocol, it checks periodically on the active site. If
the active site fails, the passive site can restart the
protocol.

As the various protocols execute, the states of
both the active and the passive sites change. An ac-
tive site at one instant may well become a passive
site the next, and a passive site could easily end up
waiting for another passive site. Without adequate

1 LoCUS currently does not support this behavior.

control, this could lead to circular waits and
deadlocks.

One solution would be to have passive sites
respond to the checks by returning the site that they
themselves are waiting for. The checking site would
then follow that chain and make sure that it ter-
minated. This approach could require several mes-
sages per check, however, and communications de-
lays could make the information collected obsolete or
mid-leading.

Another alternative, the one used in LOCUS, is
to order all the stages of the protocol. When a site
checks another site, that site returns its own status
information. A site can wait only for those sites who
are executing a portion of the protocol that precedes
its own. If the two sites are in the same state, the
ordering is by site number. This ordering of the
sites is complete. The lowest ordered site has no site
to legally wait for; if it is not active, its check will
fail, and the protocol can be re-started at a reason-
able point.

While no synchronization "failures ~ can cause
the protocols to fail, they can slow execution.
Without ACKs, the active site cannot effectively
push its dependents ahead of itself through the
stages of the protocol. Nor can it insure that two
passive sites always agree on the present status o f
the reconfiguration. On the other hand, careful
design of the message sequences can keep the win-
dows where difficulties can occur small, and the nor-
mal case executes rapidly.

8 Exper ience

Locus has now been operating for about two
years at UCLA, and has been installed at a few o ther
sites. Most of the experience with a large network
configuration has occurred at UCLA. A 17 Vax-
11/750 Ethernet network is the host facility, with
additional machines, including a Vax-11/780, to be
added shortly. The network is typically operated as
three separate Locus networks; one for production
use, one as a beta test net, and a few machines for
developing new system software. On the beta net,
for example, it has recently been typical to have 5
machines operational with about 30-40 users. The
production net configuration is correspondingly
larger. These systems are used for virtually all the
interactive computing in the UCLA Computer Sci-
ence Department, except for those classes using the
Vax-11/780 that has not yet been converted. We es-
timate that over 100,000 connect hours have been

66

delivered by the Vax Locus networks by early 1983.
Most of the user experience with Locus has been ac-
quired on a version of the system that did not sup-
port replication of files, the nested transaction facili-
ty or general remote process forking. The following
observations largely reflect the experience at UCLA.

First, it is clearly feasible to provide high perfor-
mance, transparent distributed system behavior for
file and device access, as well as remote, interprocess
interaction. Measurements consistently indicate that
Locus performance equals Unix in the local case, and
that remote access in general, while somewhat slower
than when resources are local, is close enough that
no one typically thinks much about resource location
because of performance reasons. This ability to pro-
vide a substantial degree of performance transparen-
cy surprised us. There is still no indication that Eth-
ernet bandwidth is any significant limitation. It is,
however, difficult to swap load images across the net-
work with high performance because of the software
cost of packet disassembly and reassembly for the
current hardware and low level protocols. Much
larger configurations clearly cannot share the same
broadcast cable of that bandwidth, of course.

Most of the problems which were encountered by
users resulted from those situations where tran-
sparency was not completely supported, either be-
cause the implementation was not finished, or be-
cause explicit decisions to make exceptions were
made. Overwhelming however, experience with tran-
sparency has been very positive; giving it up, once
having had it, would be nearly unthinkable.

LOCUS executes, programs locally as the default.
We found that the primary motivation for remote
execution was load balancing. Remote process exe-
cution is also used to access those few peripheral
devices which are not remotely transparent. We ex-
pect that the remote processing facility will also be
heavily used when a LOCUS network is composed of
heterogeneous cpus. The non-Vax machines at
UCLA (PDP-I1's) were decommissioned before the
remote processing facilities were generally available,
so this activity is not heavily represented in opera-
tional experience.

Experience with replicated storage was limited at
the time this paper was written, so few firm conclu-
sions can be drawn, except that we certainly cursed
its absence.

As usual, the tasks involved in providing a rea-
sonably production quality environment were far
more extensive and much more painful than anyone
had anticipated, even though we held university
standards for 'production quality', and we all knew
to expect this phenomenon.

We estimate that, from the project inception in
1979 till early 1983, about S0 man years were spent
on Locus. This effort included almost a year in a
conceptual phase (transparency was only a vague
idea at that time, for example), an extensive design
phase that lasted almost a year, initial construction
on PDP-11s, multiple ports to the Vax and Ethernet,
development of the general-use, development and
testing configuration at UCLA, extensive debugging,
some redesign and reimplementation to more fully
maintain Unix compatibility, and a significant
number of masters and PhD theses. Nevertheless, a
great deal remains at the time this paper was writ-
ten. Fortunately, most of that work is now being
done in a commercial environment rather than by a
university research project.

7 Conclusions

The most obvious conclusion to be drawn from
the LOCUS work is that a high performance, network
transparent, distributed file system which contains
all of the various functions indicated throughout this
paper, is feasible to design and implement, even in a
small machine environment.

Replication of storage is valuable, both from the
user and the system's point of view. However, much
of the work is in recovery and in dealing with the
various races and failures that can exist.

Nothing is free. In order to avoid performance
degradation when resources are local, the cost has
been converted into additional code and substantial
care in implementation architecture. LOCUS is ap-
proximately a third bigger than Unix and certainly
more complex.

The difficulties involved in dynamically
reconfiguring an operating system are both intrinsic
to the problem, and dependent on the particular sys-
tem. Rebuilding lock tables and synchronizing
processes running in separate environments are prob-
lems of inherent difficulty. Most of the system-
dependent problems can be avoided, however, with
careful design.

67

The fact that LOCUS uses specialized protocols
for operating system to operating system communi-
cation made it possible to control message traffic
quite selectively. The ability to alter specific proto-
cols to simplify the reconfiguration solution was par-
ticularly appreciated.

The task of developing a protocol by which sites
would agree about the membership of s partition
proved to be surprisingly difficult. Balancing the
needs of protocol synchronization and failure detec-
tion while maintaining good performance presented a
considerable challenge. Since reconfiguration
software is run precisely when the network is flaky,
those problems are real, and not events that are un-
likely.

Nevertheless, it has been possible to design and
implement a solution that exhibits reasonably high
performance. Further work is still needed to assure
that scaling to a large network will successfully
maintain that performance characteristic, but our ex-
perience with the present solution makes us quite op-
timistic.

In summary, however, use of LOCUS indicates
the enormous value of a highly transparent, distri-
buted operating system. Since file activity often is
the dominant part of the operating system load, it
seems clear that the LOCUS architecture, constructed
on a distributed file system base, is rather attractive.

8 Acknowledgemen t s

The authors would like to thank all those
members of the research contract who have helped,
over the years, in the design, implementation and
support of LOCUS. In addition, special recognition
should be given to Terry Gray, who is responsible for
keeping the LOCUS facility running at UCLA.

9 Bib l iography

ALSB 76 Alsberg, P. A., Day, J. D., A Principle
for Resilient Sharing of Distributed
Resources, Proceedings of Second Interna-
tional Conference on Software Engineering,
October 1976.

BARL 81 Bartlett J.F., A NonStop Kernel,
Proceedings of the Eighth Symposium on
Operating Systems Principles, Pacific
Grove, California, December 1981.

BIRR 82 Birreli, A. D., Levin, R., Needham, R.
M., Schroeder, M. D., Grapevine: An Ezer-

else in Distributed Computing, CACM, Vol.
25, No. 4, April 1982, pp. 260-274.

DION 80 Dish, J., The Cambridge File Server, Op.
Sys. Rev, 14(4), pp. 26-35, Oct. 1980.

FAIS 81 Faissol, S., Availability and Reliability Is-

sues in Distributed Databases, Ph. D.

Dissertation, Computer Science Depart-
ment, University of California, Los Angeles,
1981.

GOLD 83 Goldberg, A., and G. Popek, Measure-
ment of the Distributed Operating System
LOCUS, UCLA Technical Report, 1983.

GRAY 78 Gray, J. N., Notes on Data Base
Operating Systems, Operating Systems,
Lecture Notes in Computer Science 60,
Springer-Verlag, 1978, 393-481.

HOLL 81a l~loller E., Multiple Copy Update, Distri-
buted Sys tems- Architecture and Imple-
mentation, Lecture Notes in Computer Sci-
ence 105, Springer-Verlag, 1981, 284-303.

HOLL 81b Holler E., The National Software Works
(NSW), Distributed Systems - Architecture
and Implementation, Lecture Notes in
computer Science 105, Springer-Verlag,
1981, 421-442.

JONE 82 Jones, M.B., R. F. Rashid and M.
Thompson, Sesame: The Spice File System,
Dra/t from CMU, Sept. 82.

LAMP 81a Lampson B.W., Atomic Transactions,
Distributed Systems - Architecture and Im-
plementation, Lecture Notes in Computer
Science 105, Springer-Verlag, 1981, 246-264.

LAMP 81b Lampson B.W., Ethernet, Pub and
Violet, Distributed Systems - Architecture
and Implementation, Lecture Notes in
Computer Science 105, Springer-Verlag,
1981, 446-484.

LAMP 82 Lampson, B.W. and H.E. Sturgis, Crash
Recovery in a Distributed Data Storage Sys-
tem, CACM (to appear)

68

LELA 81 LeLann G., Synchronization, Distributed
Systems - Architecture and Implementation,
Lecture Notes in Computer Science 105,
Springer-Verlag, 1981, 266-282.

LIND 79 Lindsay, B. G. et. at., Notes on Distribut-

ed Databases, IBM Research Report
RJ2571(33471), IBM Research Laboratory,
San Jose, CA, July 14, 1979, 44-50.

MENA 77 Menasce, D. A., Popek, G. J., Muntz,
R. R., A Locking Protocol for Resource
Coordination in Distributed Systems,

Technical Report UCLA-ENG-7808, Dept.
of Computer Science, UCLA, October 1977.

MEUL 83 Meuller E., J. Moore and G. Popek, A
Nested Transaction System for LOCUS,

SOSP '83.

MITC 82 Mitchell J.G. and J. Dion, A Comparison
of Two Network-Based File Servers, CACM,
Vol. 25, No. 4, April 1982.

NELS 81 Nelson, B.J., Remote Procedure Call,

Ph.D. Dissertation, Report CMU-CS-81-119,
Carnegie-Mellon University, Pittsburgh,
1981.

PARK 83 Parker, D. Stott, Popek, Gerald J., Ru-
disin, G., Stoughton, A., Walker, B., Wal-
ton, E., Chow, J., Edwards, D., Kiser, S.,
and Kilns, C., Detection of Mutual Incon-
sistency in Distributed Systems, IEEE Tran-
sactions of Software Engineering, May 1983.

POPE 81 Popek, G., Walker, B., Chow, J., Ed-
wards, D., Kline, C., Rudisin, G., and
Thiel, G., LOCUS: A Network Transparent,

High Reliability Distributed System,
Proceedings of the Eighth Symposium on
Operating Systems Principles, Pacific
Grove, California, December 1981.

POPE 83a Popek, Gerald J., and Walker, Bruce
J., Network Transparency and its Limits in
a Distributed Operating System, Submitted
for Publication.

POPE 83b Popek G.J., et.al., LOCUS System Ar-

chitecture, LOCUS Computing Corporation
Technical Report, 1983.

RASH 81 Rashid, R.F., and Robertson, G.G., Ac-

cent: A Communication Oriented Network

Operating System Kernel, Proceedings of
the Eighth Symposium on Operating Sys-
tems Principles, Pacific Grove, California,
December 1981.

REED 78 Reed, D. P., Naming and Synchroniza-

tion in a Decentralized Computer System,

Technical Report MIT/LCS/TR-205, La-
boratory for Computer Science, M.I.T.,
1978.

REED 80 Reed, D.P, and Svobodova L, SWAL-

LOW: A Distributed Data Storage System

for a Local Network, Proc. of the Interna-
tional Workshop on Local Networks, Zu-
rich, Switzerland, August 1980.

RITC 78 Ritchie, D. and Thompson, K., The

UNIX Timesharing System, Bell System
Technical Journal, vol. 57, no. 6, part 2
(July- August 1978), 1985-1930.

SALT 78 Saltzer J.H., Naming and Binding of Ob-

jects, Operating Systems, Lecture Notes in
Computer Science 60, Springer-Verlag,
1978, 99-208.

SPEC 81 Spector, A. Z., Performing Remote

Operations Efficiently on a Local Computer
Network, CACM, Vol. 25, No. 4, April
1982.

STON 76 Stonebraker, M., Wong, E., Kreps, P.,
The Design and Implementation of lngres,

ACM Transactions on Database Systems,
Vol. 1, No. 3, Sept. 1976, pp. 189-222.

STUR 80 Sturgis, H.E.J.G, Mitchell and J. Israel,
Issues in the Design and Use of a Distribut-
ed File System, Op. Sys. Rev, 14(3), pp.
55-69, July 1980.

SVOB 81 Svobodova, L., A Reliable Object-
Oriented Data Repository For a Distributed

Computer, Proceedings of the Eighth Sym-
posium on Operating Systems Principles,
Pacific Grove, California, December 1981.

69

THIE 83 Thiel, G., Partitioned Operation and Dis-

tributed Data Base Management System Ca-

talogues, Ph.d. Dissertation, Computer Sci-
ence Department, University of California,
Los Angeles, June 1983.

THOM 78 Thomas, R.F., A Solution to the Con-

currency Control Problem for Multiple Copy

Data Bases, Proe. Spring COMPCON, Feb
28-Mar 3, 1978.

WALK 83 Walker, B.J., Issues of Network Tran-
sparency and File Replication in Distributed

Systems: LOCUS, Ph.D. Dissertation, Com-
puter Science Department, University of
California, Los Angeles, 1983.

WATS 81 Watson R.W., Identifiers (Naming) in
Distributed Systems, Distributed Systems -
Architecture and Implementation, Lecture
Notes in Computer Science 105, Springer-
Verlag, 1981, 191-210.

70

