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The Log of Gravity

Abstract

Although economists have long been aware of Jensen�s inequality, many econo-

metric applications have neglected an important implication of it: estimating

economic relationships in logarithms can lead to signi�cant biases in the pres-

ence of heteroskedasticity. This paper explains why this problem arises and

proposes an appropriate estimator. Our criticism to conventional practices

and the solution we propose extends to a broad range of economic applications

where the equation under study is log-linearized. We develop the argument

using one particular illustration, the gravity equation for trade, and use the

proposed technique to provide novel estimates of this equation. Three results

stand out. First, contrary to general belief, income elasticities are signi�cantly

smaller than 1. Second, standard estimators greatly exaggerate the roles of

distance and colonial links. Finally, trade gains associated with preferential-

trade agreements are remarkably smaller than those predicted by conventional

methods.

Key words: Preferential-trade agreements, Gravity equation, Heteroskedastic-

ity, Jensen�s inequality, Poisson regression.
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1. Introduction

Economists have long been aware that Jensen�s inequality implies that E(ln y) 6= lnE(y),

i.e., the expected value of the logarithm of a random variable is di¤erent from the loga-

rithm of its expected value. This basic fact, however, has been neglected in many econo-

metric applications. Indeed, one important implication of Jensen�s inequality is that the

standard practice of interpreting the parameters of log-linearized models estimated by

ordinary least squares (OLS) as elasticities can be highly misleading in the presence of

heteroskedasticity.

Although many authors have addressed the problem of obtaining consistent estimates

of the conditional mean of the dependent variable when the model is estimated in the

log-linear form (see, for example, Goldberger, 1968; Manning and Mullahy, 2001), we

were unable to �nd any reference in the literature to the potential bias of the elasticities

estimated using the log-linear model.

In this paper we use the gravity equation for trade as a particular illustration of how the

bias arises and propose an appropriate estimator. We argue that the gravity equation, and,

more generally, constant-elasticity models should be estimated in their multiplicative form

and propose a simple pseudo-maximum likelihood estimation technique. Besides being

consistent in the presence of heteroskedasticity, this method also provides a natural way

to deal with zero values of the dependent variable.

Using Monte Carlo simulations, we compare the performance of our estimator with

that of OLS (in the log-linear speci�cation). The results are striking. In the presence

of heteroskedasticity, estimates obtained using log-linearized models are severely biased,

distorting the interpretation of the model. These biases might be critical for the com-

parative assessment of competing economic theories, as well as for the evaluation of the

e¤ects of di¤erent policies. In contrast, our method is robust to the di¤erent patterns of

heteroskedasticity considered in the simulations.

We next use the proposed method to provide new estimates of the gravity equation

and, in particular, to reassess the impact of preferential-trade agreements on the volume
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of international trade. Our estimation method paints a very di¤erent picture of the

determinants of international trade. The coe¢ cients on GDP are clearly not, as generally

believed, close to 1. Instead, they are signi�cantly smaller, calling for modi�cations to the

simple gravity models.1 Incidentally, the smaller estimated elasticities help reconcile the

gravity equation with the observation that the trade-to-GDP ratio decreases with total

GDP (or, in other words, that smaller countries tend to be more open to international

trade). In addition, OLS greatly exaggerates the roles of colonial ties and geographical

proximity. Perhaps more interesting, the pseudo-maximum likelihood estimation indicates

that, on average, bilateral trade between countries that have signed a preferential-trade

agreement is 20 percent larger than trade between pairs without agreement. The trade

increase predicted by OLS is remarkably larger. The striking contrast in estimates suggests

that inferences drawn on the standard regressions used in the literature can produce

misleading conclusions and confound policy decisions.

Despite this focus on the gravity equation, our criticism to the conventional practice

and the solution we propose extends to a broad range of economic applications where

the equations under study are log-linearized, or, more generally, transformed by a non-

linear function. A short list of examples includes the estimation of Mincerian equations

for wages, production functions, and Euler equations, which are typically estimated in

logarithms.

The remainder of the paper is organized as follows. Section 2 studies the econometric

problems raised by the estimation of gravity equations. Section 3 considers constant-

elasticity models in general and introduces the pseudo-maximum likelihood estimator and

speci�cation tests to check the adequacy of the proposed estimator. Section 4 presents the

Monte Carlo simulations. Section 5 provides new estimates of the gravity equation, revis-

iting the role of preferential-trade agreements in international trade. Section 6 contains

concluding remarks.

1Note that a more complex �and complete �model of gravity, like the one proposed by Anderson

and van Wincoop (2003) can rationalize our results, as their model is consistent with smaller income

elasticities.
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2. Gravity-Defying Trade

The pioneering work of Jan Tinbergen (1962) initiated a vast theoretical and empirical

literature on the gravity equation for trade. Theories based on di¤erent foundations for

trade, including endowment and technological di¤erences, increasing returns to scale, and

�Armington� demands, all predict a gravity relationship for trade �ows analogous to

Newton�s �Law of Universal Gravitation.�2 In its simplest form, the gravity equation for

trade states that exports from country i to country j, denoted by Tij, are proportional to

the product of the two countries�GDPs, denoted by Yi and Yj, and inversely proportional

to their distance, Dij, broadly construed to include all factors that might create trade

resistance. That is,

Tij = �0Y
�1
i Y

�2
j D

�3
ij , (1)

where �0, �1, �2, and �3 are parameters to be estimated.

The analogy between trade and the physical force of gravity, however, clashes with the

observation that there is no set of parameters for which equation (1) will hold exactly for

an arbitrary set of observations. To account for deviations from the theory, stochastic

versions of the equation are used in empirical studies. Typically, the stochastic version of

the gravity equation has the form

Tij = �0Y
�1
i Y

�2
j D

�3
ij �ij, (2)

2See, for example, Anderson (1979), Helpman and Krugman (1985), Bergstrand (1985), Davis (1995),

Deardo¤ (1998), and Anderson and van Wincoop (2003). A feature common to these models is that

they all assume complete specialization: each good is produced in only one country. However, Haveman

and Hummels (2001), Feenstra, Markusen, and Rose (1999), and Eaton and Kortum (2001) derive the

gravity equation without relying on complete specialization. Examples of empirical studies framed on

the gravity equation include the evaluation of trade protection (e.g., Harrigan, 1993), regional trade

agreements (e.g., Frankel, Stein, and Wei, 1995; Frankel, 1997), exchange rate variability (e.g., Frankel

and Wei, 1993; Eichengreen and Irwin, 1995), and currency unions (e.g., Rose, 2000; Frankel and Rose,

2002; and Tenreyro and Barro, 2002). See also the various studies on �border-e¤ects� in�uencing the

patterns of intranational and international trade, including McCallum (1995), and Anderson and van

Wincoop (2003), among others.
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where �ij is an error term with E(�ijjYi; Yj; Dij) = 1, assumed to be statistically indepen-

dent of the regressors, leading to

E(TijjYi; Yj; Dij) = �0Y
�1
i Y

�2
j D

�3
ij .

There is a long tradition in the trade literature of log-linearizing (2) and estimating the

parameters of interest by least squares using the equation

ln (Tij) = ln (�0) + �1 ln (Yi) + �2 ln (Yj) + �3 ln (Dij) + ln
�
�ij
�
. (3)

The validity of this procedure depends critically on the assumption that �ij, and therefore

ln
�
�ij
�
, are statistically independent of the regressors. In (2) the parameters �1, �2, and

�3 are the elasticities of E(TijjYi; Yj; Dij) (not of Tij) with respect to Yi, Yj and Dij.

Due to Jensen�s inequality, only under very restrictive assumptions on the distribution of

the error terms will it also be possible to interpret these parameters as the derivatives of

E(ln (Tij) jYi; Yj; Dij) with respect to the logarithms of the conditioning variables, which

is how they appear in (3).

There is no reason to assume that the variance of �ij will be independent of the countries�

GDPs and of the various measures of distance between them. In other words, the error

term �ij will, in general, be heteroskedastic. This implies that the standard estimation

method will be consistent for the derivatives of E(ln (Tij) jYi; Yj; Dij) with respect to the

logged regressors, but generally these parameters are di¤erent from the elasticities of

E(TijjYi; Yj; Dij) with respect to Yi, Yj and Dij.

To see why this is so, notice that the expected value of the logarithm of a random

variable depends both on its mean and on higher-order moments of the distribution.

Hence, whenever the variance of the error term �ij in equation (1) depends on Yi, Yj,

or Dij, the expected value of ln
�
�ij
�
will also depend on the regressors, violating the

condition for consistency of OLS.3 Clearly, in this instance, homoskedasticity is critical

3As an illustration, consider the case in which �ij follows a log-normal distribution, with

E(�ij jYi; Yj ; Dij) = 1 and variance �2ij = f(Yi; Yj ; Dij). The error term in the log-linearized repre-

sentation will then follow a normal distribution, with E
�
ln
�
�ij
�
jYi; Yj ; Dij

�
= � 1

2 ln(1 + �
2
ij), which is

also a function of the covariates.
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not only for the e¢ ciency of the estimator, but also for its consistency for the parameters

of interest.

A related problem with the analogy between Newtonian gravity and trade is that grav-

itational force can be very small, but never zero, whereas trade between several pairs of

countries is literally zero. In many cases, these zeros occur simply because some pairs of

countries did not trade in a given period. For example, it would not be surprising to �nd

that Tajikistan and Togo did not trade in a certain year.4 These zero observations pose

no problem at all for the estimation of gravity equations in their multiplicative form. In

contrast, the existence of observations for which the dependent variable is zero creates

an additional problem for the use of the log-linear form of the gravity equation. Several

methods have been developed to deal with this problem (see Frankel, 1997, for a descrip-

tion of the various procedures). The approach followed by the large majority of empirical

studies is simply to drop the pairs with zero trade from the data set and estimate the

log-linear form by OLS. Rather that throwing away the observations with yi = 0, some

authors estimate the model using yi+1 as the dependent variable. Both these procedures,

however, lead to inconsistent estimators of �. The severity of these inconsistencies will

depend on the particular characteristics of the sample and model used, but there is no

reason to believe that they will be negligible. The consequences of these procedures are

discussed latter.

Zeroes may also be the result of rounding errors.5 If trade is measured in thousands of

dollars, it is possible that for pairs of countries for which bilateral trade did not reach a

minimum value, say $500, the value of trade is registered as zero. If these rounded-down

observations were partially compensated by rounded-up ones, the overall e¤ect of these

errors would be relatively minor. However, the rounding down is more likely to occur for

4The absence of trade between small and distant countries might be explained, among other factors,

by large variable costs (e.g., bricks are too costly to transport) or large �xed costs (e.g., information

on foreign markets). At the aggregate level, these costs can be best proxied by the various measures of

distance and size entering the gravity equation.
5Trade data can su¤er from many other forms of errors, as described in Feenstra, Lipsey, and Bowen

(1997).
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small or distant countries and, therefore, the probability of rounding down will depend

on the value of the covariates, leading to the inconsistency of the estimators. Finally, the

zeros can just be missing observations which are wrongly recorded as zero. This problem

is more likely to occur when small countries are considered and, again, measurement error

will depend on the covariates, leading to inconsistency.

3. Constant-Elasticity Models

Despite their immense popularity, there are still important econometric �aws in empirical

studies involving gravity equations. These �aws are not exclusive of this literature, and

extend to many areas where constant-elasticity models are used. This section examines

how the deterministic multiplicative models suggested by economic theory can be used in

empirical studies.

In their non-stochastic form, the relationship between the multiplicative constant-

elasticity model and its log-linear additive formulation is trivial. The problem, of course,

is that economic relations do not hold with the accuracy of the physical laws. All that

can be expected is that they hold on average. Indeed, here we interpret economic models

like the gravity equation as the expected value of the variable of interest, y � 0, for

a given value of the explanatory variables, x (see Goldberger, 1991, p: 5). That is, if

economic theory suggests that y and x are linked by a constant-elasticity model of the

form yi = exp (xi�), the function exp (xi�) is interpreted as the conditional expectation

of yi given x, denoted E [yijx].6 For example, using the notation in the previous sec-

tion, the multiplicative gravity relationship can be written as the exponential function

6Notice that if exp (xi�) is interpreted as describing the conditional median of yi (or other conditional

quantile) rather than the conditional expectation, estimates of the elasticities of interest can be obtained

estimating the log-linear model using the appropriate quantile regression estimator (Koenker and Bassett,

1978). However, interpreting exp (xi�) as a conditional median is problematic when yi has a large mass

of zero observations, like in trade data. Indeed, in this case the conditional median of yi will be a

discontinuous function of the regressors, which is generally not compatible with the standard economic

theory.
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exp [ln (�0) + �1 ln (Yi) + �2 ln (Yj) + �3 ln (Dij)], which is interpreted as the conditional

expectation E(TijjYi; Yj; Dij).

Since the relation yi = exp (xi�) holds on average, but not for each i, there is an error

term associated with each observation, which is de�ned as "i = yi � E [yijx].7 Therefore,

the stochastic model can be formulated as

yi = exp (xi�) + "i, (4)

with yi � 0 and E ["ijx] = 0.

As we mentioned before, the standard practice of log-linearizing equation (4) and esti-

mating � by OLS is inappropriate for a number of reasons. First of all, yi can be zero,

in which case log-linearization is unfeasible. Second, even if all observations of yi are

strictly positive, the expected value of the log-linearized error will in general depend on

the covariates and hence OLS will be inconsistent. To see the point more clearly, notice

that equation (4) can be expressed as

yi = exp (xi�) �i,

with �i = 1+ "i/ exp (xi�) and E [�ijx] = 1. Assuming for the moment that yi is positive,

the model can be made linear in the parameters by taking logarithms of both sides of the

equation, leading to

ln (yi) = xi� + ln (�i) . (5)

To obtain a consistent estimator of the slope parameters in equation (4) estimating

(5) by OLS, it is necessary that E [ ln (�i)jx] does not depend on xi.8 Since �i = 1 +

"i/ exp (xi�), this condition is met only if "i can be written as "i = exp (xi�) �i, where �i

is a random variable statistically independent of xi. In this case, �i = �i and therefore is

statistically independent of xi, implying that E [ ln (�i)jx] is constant. Thus, the log-linear

representation of the constant-elasticity model is only useful as a device to estimate the

parameters of interest under very speci�c conditions on the error term.

7Whether the error term enters additively or multiplicatively is irrelevant for our purposes, as explained

below.
8Consistent estimation of the intercept would also require E [ ln (�i)jx] = 0.
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When �i is statistically independent of xi, the conditional variance of yi (and "i) is

proportional to exp (2xi�). Although economic theory generally does not provide any

information on the variance of "i, we can infer some of its properties from the character-

istics of data. Because yi is non-negative, when E [yijx] approaches zero, the probability

of yi being positive must also approach zero. This implies that V [yijx], the conditional

variance of yi, tends to vanish as E [yijx] passes to zero.9 On the other hand, when the

expected value y is far away from its lower bound, it is possible to observe large devia-

tions from the conditional mean in either direction, leading to greater dispersion. Thus,

in practice, "i will generally be heteroskedastic and its variance will depend on exp (xi�),

but there is no reason to assume that V [yijx] is proportional to exp (2xi�). Therefore, in

general, regressing ln (yi) on xi by OLS will lead to inconsistent estimates of �.

It may be surprising that the pattern of heteroskedasticity and, indeed, the form of

all higher-order moments of the conditional distribution of the error term can a¤ect the

consistency of an estimator, rather than just its e¢ ciency. The reason is that the non-

linear transformation of the dependent variable in equation (5) changes the properties of

the error term in a non-trivial way since the conditional expectation of ln (�i) depends on

the shape of the conditional distribution of �i. Hence, unless very strong restrictions are

imposed on the form of this distribution, it is not possible to recover information about the

conditional expectation of yi from the conditional mean of ln (yi) simply because ln (�i) is

correlated with the regressors. Nevertheless, estimating (5) by OLS will produce consistent

estimates of the parameters of E [ ln (yi)jx]. The problem is that these parameters may

not permit identi�cation of the parameters of E [yijx].

In short, even assuming that all observations on yi are positive, it is not advisable to

estimate � from the log-linear model. Instead, the non-linear model has to be estimated.

9In the case of trade data, when E [yijx] is close to its lower bound (i.e., for pairs of small and distant

countries), it is unlikely that large values of trade are observed since they cannot be o¤set by equally

large deviations in the opposite direction simply because trade cannot be negative. Therefore, for these

observations, dispersion around the mean tends to be small.
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3.1 Estimation

Although most empirical studies use the log-linear form of the constant-elasticity model,

some authors (see Frankel and Wei, 1993, for an example in the international trade liter-

ature) have estimated multiplicative models using non-linear least squares (NLS), which

is an asymptotically valid estimator for (4). However, the NLS estimator can be very

ine¢ cient in this context, as it ignores the heteroskedasticity that, as discussed before, is

characteristic of this type of model.

The NLS estimator of � is de�ned by

�̂ = argmin
b

nX
i=1

[yi � exp (xib)]2 ,

which implies the following set of �rst order conditions:
nX
i=1

h
yi � exp

�
xi�̂
�i
xi exp

�
xi�̂
�
= 0. (6)

These equations give more weight to observations where exp
�
xi�̂
�
is large because that

is where the curvature of the conditional expectation is more pronounced. However, these

are generally also the observations with larger variance, which implies that NLS gives more

weight to noisier observations. Thus, this estimator may be very ine¢ cient, depending

heavily on a small number of observations.

If the form of V [yijx] was known, this problem could be eliminated using a weighted-

NLS estimator. However, in practice, all we know about V [yijx] is that, in general, it

goes to zero as E [yijx] passes to zero. Therefore, an optimal weighted-NLS estimator

cannot be used without further information on the distribution of the errors. In principle,

this problem can be tackled by estimating the multiplicative model using a consistent

estimator, and then obtaining the appropriate weights estimating the skedastic function

non-parametrically, as suggested by Delgado (1992) and Delgado and Kniesner (1997).

However, this nonparametric generalized least squares estimator is rather cumbersome

to implement, especially if the model has a large number of regressors. Moreover, the

choice of the �rst round estimator is an open question as the NLS estimator may be

a poor starting point due to its considerable ine¢ ciency. Therefore, the nonparametric
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generalized least squares estimator is not appropriate to use as a work-horse for routine

estimation of multiplicative models.10 Indeed, what is needed is an estimator that is

consistent and reasonably e¢ cient under a wide range of heteroskedasticity patterns and

is also simple to implement.

A possible way of obtaining an estimator that is more e¢ cient than the standard NLS

without the need to use nonparametric regression is to follow McCullagh and Nelder

(1989) and estimate the parameters of interest using a pseudo-maximum likelihood (PML)

estimator based on some assumption on the functional form of V [yijx].11 Among the many

possible speci�cations, the hypothesis that the conditional variance is proportional to the

conditional mean is particularly appealing. Indeed, under this assumption E [yijx] =

exp (xi�) / V [yijx], and � can be estimated by solving the following set of �rst order

conditions:
nX
i=1

h
yi � exp

�
xi~�
�i
xi = 0. (7)

Comparing equations (6) and (7), it is clear that, unlike the NLS estimator, which is

a PML estimator obtained assuming that V [yijx] is constant, the PML estimator based

on (7) gives the same weight to all observations, rather than emphasizing those for which

exp (xi�) is large. This is because, under the assumption that E [yijx] / V [yijx], all

observations have the same information on the parameters of interest as the additional

information on the curvature of the conditional mean coming from observations with large

exp (xi�) is o¤set by their larger variance. Of course, this estimator may not be optimal,

but without further information on the pattern of heteroskedasticity, it seems natural to

give the same weight to all observations as in this way there is no risk of giving extra

10A nonparametric generalized least squares estimator can also be used to estimate linear models in

presence of heteroskedasticity of unknown form (Robinson, 1987). However, despite having been proposed

more than 15 years ago, this estimator has never been adopted as a standard tool by empirical researchers,

who generally prefer the simplicity of the ine¢ cient OLS, with an appropriate covariance matrix.
11See also Manning and Mullahy (2001). A related estimator is proposed by Papke and Wooldridge

(1996) for the estimation of models for fractional data.
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weight to the wrong observations.12 Even if E [yijx] is not proportional to V [yijx], the

PML estimator based on (7) is likely to be more e¢ cient than the NLS estimator when

the heteroskedasticity increases with the conditional mean.

The estimator de�ned by (7) is numerically equal to the Poisson pseudo-maximum

likelihood estimator which is often used for count data13 and can be obtained maximizing

~� = argmax
b

nX
i=1

fyi (xib)� exp (xib)g .

The form of (7) makes clear that all that is needed for this estimator to be consistent

is the correct speci�cation of the conditional mean, i.e., E [yijx] = exp (xi�). Therefore,

the data do not have to be Poisson at all and, what is more important, yi does not

even have to be an integer, for the estimator based on the Poisson likelihood function to

be consistent. This is the well-known pseudo-maximum likelihood result �rst noted by

Gourieroux, Monfort and Trognon (1984).

The implementation of the Poisson PML estimator is straightforward since there are

standard econometric programs with commands that permit the estimation of Poisson

regression, even when the dependent variables are not integers. Because the assumption

V [yijx] / E [yijx] is unlikely to hold, this estimator does not fully account for the het-

eroskedasticity in the model and all inference has to be based on an Eicker-White (Eicker,

1963; and White, 1980) robust covariance matrix estimator.

Of course, if it was known that V [yijx] is a function of higher powers of E [yijx], a more

e¢ cient estimator could be obtained down-weighing even more the observations with

large conditional mean. An example of such estimator is the gamma pseudo-maximum

likelihood estimator studied by Manning and Mullahy (2001) which, like the log-linearized

model, assumes that V [yijx] is proportional to E [yijx]2. The �rst order conditions for
12The same strategy is implicitly used by Papke and Wooldridge (1996) in their pseudo-maximum

estimator for fractional data models.
13See Cameron and Trivedi (1998) and Winkelmann (2000) for more details on the Poisson regression

and on more general models for count data.
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the gamma PML estimator are given by

nX
i=1

h
yi � exp

�
xi��
�i xi

exp
�
xi��
� = 0.

In the case of trade data, however, this estimator may have an important drawback.

Trade data for larger countries (as gauged by GDP per capita) tend to be of higher quality

(see Frankel and Wei, 1993, and Frankel 1997); hence, models assuming that V [yijx] is

a function of higher powers of E [yijx] might give excessive weight to the observations

that are more prone to measurement errors.14 Therefore, the Poisson regression emerges

as a reasonable compromise, giving less weight to the observations with larger variance

than the standard NLS estimator, without giving too much weight to observations more

prone to contamination by measurement error and less informative about the curvature

of E [yijx].

3.2 Testing

In this section we consider tests for the particular pattern of heteroskedasticity assumed

by PML estimators, focusing on the Poisson estimator. Although PML estimators are

consistent even when the variance function is misspeci�ed, the researcher can use these

tests to check if a di¤erent PML estimator would be more appropriate and to decide

whether or not the use of a nonparametric estimator of the variance is warranted.

Manning and Mullahy (2001) suggested that if

V [yijx] = �0E [yijx]�1 , (8)

the choice of the appropriate PML estimator can be based on a Park-type regression

(Park, 1966). Their approach is based on the idea that if (8) holds and an initial consistent

14Frankel and Wei (1993) and Frankel (1997) suggest that larger countries should be given more weight

in the estimation of gravity equations. This would be appropriate if the errors in the model were just

the result of measurement errors in the dependent variable. However, if it is accepted that the gravity

equation does not hold exactly, measurement errors account for only part of the dispersion of trade data

around the gravity equation.
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estimate of E [yijx] is available, then �1 can be consistently estimated using an appropriate

auxiliary regression. Speci�cally, following Park (1966), Manning and Mullahy (2001)

suggest that �1 can be estimated using the auxiliary model

ln (yi � �yi)2 = ln (�0) + �1 ln (�yi) + �i, (9)

where �yi denotes the estimated value of E [yijx]. Unfortunately, as the discussion in the

previous sections should have made clear, this approach based on the log-linearization

of (8) is valid only under very restrictive conditions on the conditional distribution of

yi. However, it is easy to see that this procedure is valid when the constant-elasticity

model can be consistently estimated in the log-linear form. Therefore, using (9) a test for

H0 : �1 = 2 based on a non-robust covariance estimator provides a check for the adequacy

of the estimator based on the log-linear model.

A more robust alternative, which is mentioned by Manning and Mullahy (2001) in a

footnote, is to estimate �1 from

(yi � �yi)2 = �0 (�yi)�1 + �i, (10)

using an appropriate PML estimator. The approach based on (10) is asymptotically

valid and inference about �1 can be based on the usual Eicker-White robust covariance

matrix estimator. For example, the hypothesis that V [yijx] is proportional to E [yijx] is

accepted if the appropriate con�dence interval for �1 contains 1. However, if the purpose

is to test the adequacy of a particular value of �1, a slightly simpler method based on the

Gauss-Newton regression (see Davidson and MacKinnon, 1993) is available.

Speci�cally, to check the adequacy of the Poisson PML for which �1 = 1 and �yi =

exp
�
xi~�
�
, (10) can be expanded in a Taylor series around �1 = 1, leading to

(yi � �yi)2 = �0�yi + �0 (�1 � 1) ln (�yi) �yi + �i.

Now, the hypothesis that V [yijx] / E [yijx] can be tested against (8) simply by checking

the signi�cance of the parameter �0 (�1 � 1). Because the error term �i is unlikely to be

homoskedastic, the estimation of the Gauss-Newton regression should be performed using
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weighted least squares. Assuming that in (10) the variance is also proportional to the

mean, the appropriate weights are given by exp
�
�xi~�

�
and therefore the test can be

performed by estimating

(yi � �yi)2
�p

�yi = �0
p
�yi + �0 (�1 � 1) ln (�yi)

p
�yi + �

�
i (11)

by OLS and testing the statistical signi�cance of �0 (�1 � 1) using a Eicker-White robust

covariance matrix estimator.15

In the next section, a small simulation is used to study the Gauss-Newton regression test

for the hypothesis that V [yijx] / E [yijx], as well as the Park-type test for the hypothesis

that the constant-elasticity model can be consistently estimated in the log-linear form.

4. A simulation study

This section reports the results of a small simulation study designed to assess the per-

formance of di¤erent methods to estimate constant-elasticity models in the presence of

heteroskedasticity and rounding errors. As a by-product, we also obtained some evi-

dence on the �nite sample performance of the speci�cation tests presented above. These

experiments are centered around the following multiplicative model:

E [yijx] = � (xi�) = exp (�0 + �1x1i + �2x2i) ; i = 1; : : : ; 1000: (12)

Since, in practice, regression models often include a mixture of continuous and dummy

variables, we replicate this feature in our experiments: x1i is drawn from a standard

normal and x2 is a binary dummy variable that equals 1 with a probability of 0:4.16 The

15Notice that to test V [yijx] / E [yijx] against alternatives of the form V [yijx] = �0 exp (xi (� + �))

the appropriate auxiliary regression would be

(yi � �yi)2
.p

�yi = �0
p
�yi + �0�xi

p
�yi + �

�
i ,

and the test could be performed by checking the joint signi�cance of the elements of �0�. If the model

includes a constant, one of the regressores in the auxiliary regression is redundant and should be dropped.
16For example, in gravity equations, continuous variables (which are all strictly positive) include income

and geographical distance. In equation (12), x1 can be interpreted as (the logarithm of) one of these
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two covariates are independent and a new set of observations of all variables is generated

in each replication using �0 = 0, �1 = �2 = 1. Data on y are generated as

yi = � (xi�) �i, (13)

where �i is a log-normal random variable with mean 1 and variance �2i . As noted before,

the slope parameters in (12) can be estimated using the log-linear form of the model only

when �2i is constant. That is, when V [yijx] is proportional to � (xi�)
2.

In these experiments we analyzed PML estimators of the multiplicative model and

di¤erent OLS estimators of the log-linearized model. The consistent PML estimators

studied were: non-linear least squares, NLS; gamma pseudo-maximum likelihood, GPML;

and the Poisson pseudo-maximum likelihood, PPML. Besides these estimators, we also

considered the standard OLS estimator of the log-linear model, OLS; the OLS estimator

for the model were the dependent variable is yi + 1, OLS (y + 1); and truncated OLS

estimators to be discussed below.17

To assess the performance of the estimators under di¤erent patterns of heteroskedas-

ticity, we considered the four following speci�cations of �2i :

Case 1: �2i = � (xi�)
�2; V [yijx] = 1;

Case 2: �2i = � (xi�)
�1; V [yijx] = � (xi�);

Case 3: �2i = 1; V [yijx] = � (xi�)
2;

Case 4: �2i = exp (x2i) + � (xi�)
�1; V [yijx] = � (xi�) + exp (x2i)� (xi�)2.

In Case 1 the variance of "i is constant, implying that the NLS estimator is optimal.

Although, as argued before, this case is unrealistic for models of bilateral trade, it is

included in the simulations for completeness. In Case 2, the conditional variance of

variables. Examples of binary variables include dummies for free-trade agreements, common language,

colonial ties, contiguity and access to land.
17We also studied the performance of Tobit models (with constant and estimated cut-o¤ points as well

as the semi-logarithmic Tobit) �nding very poor results.
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yi equals its conditional mean, as in the Poisson distribution. The pseudo-likelihood

estimator based on the Poisson distribution is optimal in this situation. Case 3 is the

special case in which OLS estimation of the log-linear model is consistent for the slope

parameters of (12). Moreover, in this case the log-linear model not only corrects the

heteroskedasticity in the data, but, because �i is log-normal, it is also the maximum

likelihood estimator. The GPML is the optimal PML estimator in this case, but it should

be outperformed by the true maximum likelihood estimator. Finally, Case 4 is the only

one in which the conditional variance does not depend exclusively on the mean. The

variance is a quadratic function of the mean, as in Case 3, but it is not proportional to

the square of the mean.

We carried out two sets of experiments. The �rst set was aimed at studying the per-

formance of the estimators of the multiplicative and the log-linear models under di¤erent

patterns of heteroskedasticity. In order to study the e¤ect of the truncation on the per-

formance of the OLS, and given that this data generating mechanism does not produce

observations with yi = 0, the log-linear model was also estimated using only the observa-

tions for which yi > 0:5, OLS (y > 0:5). This reduces the sample size by about 25% to

35%, depending on the pattern of heteroskedasticity.

The second set of experiments studied the estimators�performance in the presence of

rounding errors in the dependent variable. For that purpose, a new random variable was

generated rounding to the nearest integer the values yi obtained in the �rst set of sim-

ulations. This procedure mimics the rounding errors in o¢ cial statistics and generates

a large number of zeros, a typical feature of trade data. Because the model considered

here generates a large proportion of observations close to zero, rounding down is much

more frequent than rounding up. As the probability of rounding up or down depends on

the covariates, this procedure will necessarily bias the estimates, as discussed before. The

purpose of the study is to gauge the magnitude of these biases. Naturally, the log-linear

model cannot be estimated in these conditions because the dependent variable equals zero

for some observations. Following what is the usual practice in these circumstances, the

truncated OLS estimation of the log-linear model was performed dropping the observa-
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tions for which the dependent variable equals zero. Notice that the observations discarded

with this procedure are exactly the same that are discarded by OLS (y > 0:5) in the �rst

set of experiments. Therefore, this estimator is also denoted OLS (y > 0:5).

The results of the �rst set of experiments are summarized in Table 1, which displays the

biases and standard errors of the di¤erent estimators of � obtained with 10; 000 replicas of

the simulation procedure described above, without measurement error. Table 2 contains

the results for the experiments in which yi is rounded to the nearest integer.

As expected, OLS only performs well in Case 3.18 In all other cases this estimator is

clearly inadequate because, despite its low dispersion, it is often badly biased. Moreover,

the sign and magnitude of the bias vary considerably. Therefore, even when the dependent

variable is strictly positive, estimation of constant elasticity models using the log-linearized

model cannot generally be recommended. As for the modi�cations of the least squares

estimator designed to deal with the zeros of the dependent variable, OLS (y + 1) and OLS

(y > 0:5), their performance is also very disappointing. These results clearly emphasize

the need to use adequate methods to deal with the zeros in the data and raise serious

doubts about the validity of the results obtained using the traditional estimators based on

the log-linear model. Overall, except under very special circumstances, estimation based

on the log-linear model cannot be recommended.

One remarkable result of this set of experiments is the extremely poor performance of

the NLS estimator. Indeed, when the heteroskedasticity is more severe (cases 3 and 4)

this estimator, despite being consistent, leads to very poor results because of its erratic

behavior.19 Therefore, it is clear that the loss of e¢ ciency caused by some of the forms

of heteroskedasticity considered in these experiments is strong enough to render this

estimator useless in practice.

18Notice that only the results for �1 and �2 are of interest in this case since it is well know that the

estimator of �0 is inconsistent.
19Manning and Mullahy (2001) report similar results.
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Table 1: Simulation results under di¤erent forms of heteroskedasticity
�0 �1 �2

Estimator: Bias S. Error Bias S. Error Bias S. Error

Case 1: V [yijx] = 1
PPML �0:00018 0:035 �0:00004 0:016 0:00009 0:027

NLS 0:00009 0:021 �0:00006 0:008 �0:00003 0:017

GPML �0:00771 0:073 0:01276 0:068 0:00754 0:082

OLS �0:53337 0:043 0:39008 0:039 0:35568 0:054

OLS (y > 0:5) 0:17812 0:037 �0:16402 0:027 �0:15487 0:038

OLS (y + 1) 0:74497 0:015 �0:40237 0:014 �0:37683 0:022

Case 2: V [yijx] = � (xi�)
PPML �0:00035 0:036 �0:00011 0:019 0:00009 0:039

NLS �0:00247 0:069 0:00046 0:033 0:00066 0:057

GPML �0:00246 0:049 0:00376 0:043 0:00211 0:062

OLS �0:40271 0:036 0:21076 0:030 0:19960 0:049

OLS (y > 0:5) 0:15061 0:036 �0:17868 0:026 �0:17220 0:043

OLS (y + 1) 0:73925 0:016 �0:42371 0:015 �0:39931 0:025

Case 3: V [yijx] = � (xi�)2

PPML �0:00215 0:104 �0:00526 0:091 �0:00228 0:130

NLS �0:79648 9:234 0:23539 3:066 0:07323 1:521

GPML �0:00203 0:052 �0:00047 0:041 �0:00029 0:083

OLS �0:49964 0:040 0:00015 0:032 �0:00003 0:064

OLS (y > 0:5) 0:17779 0:041 �0:34480 0:039 �0:34614 0:064

OLS (y + 1) 0:67525 0:020 �0:51804 0:021 �0:50000 0:038

Case 4: V [yijx] = � (xi�) + exp (x2i)� (xi�)2

PPML �0:00053 0:118 �0:00696 0:103 �0:00647 0:144

NLS �1:15429 21:850 0:35139 7:516 0:08801 1:827

GPML �0:00342 0:063 0:00322 0:057 �0:00137 0:083

OLS �0:60041 0:044 0:13270 0:039 �0:12542 0:075

OLS (y > 0:5) �0:39217 0:044 �0:41391 0:042 �0:41391 0:070

OLS (y + 1) 0:67743 0:020 �0:51440 0:021 �0:58087 0:041
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Table 2: Simulation results under heteroskedasticity and rounding error
�0 �1 �2

Estimator: Bias S. Error Bias S. Error Bias S. Error

Case 1: V [yijx] = 1
PPML �0:04161 0:038 0:01886 0:017 0:02032 0:029

NLS �0:00638 0:022 0:00195 0:008 0:00274 0:018

GPML �0:11466 0:095 0:10946 0:096 0:09338 0:108

OLS (y > 0:5) 0:26861 0:034 �0:22121 0:026 �0:21339 0:036

OLS (y + 1) 0:70142 0:017 �0:37752 0:015 �0:34997 0:024

Case 2: V [yijx] = � (xi�)
PPML �0:04800 0:040 0:02190 0:020 0:02334 0:041

NLS �0:00933 0:069 0:00262 0:033 0:00360 0:057

GPML �0:13724 0:072 0:13243 0:073 0:11331 0:087

OLS (y > 0:5) 0:25779 0:033 �0:24405 0:026 �0:23889 0:040

OLS (y + 1) 0:68960 0:018 �0:39401 0:016 �0:36806 0:028

Case 3: V [yijx] = � (xi�)2

PPML �0:06562 0:109 0:02332 0:091 0:02812 0:133

NLS �0:80964 9:269 0:23959 3:082 0:07852 1:521

GPML �0:17807 0:073 0:17134 0:068 0:14442 0:104

OLS (y > 0:5) 0:30765 0:037 �0:41006 0:037 �0:41200 0:060

OLS (y + 1) 0:61141 0:022 �0:48564 0:022 �0:46597 0:040

Case 4: V [yijx] = � (xi�) + exp (x2i)� (xi�)2

PPML �0:05933 0:122 0:02027 0:104 0:01856 0:146

NLS �1:16956 21:861 0:35672 7:521 0:09239 1:829

GPML �0:14256 0:085 0:12831 0:085 0:10245 0:129

OLS (y > 0:5) 0:35122 0:039 �0:45188 0:040 �0:46173 0:066

OLS (y + 1) 0:61930 0:022 �0:48627 0:022 �0:56039 0:044

In the �rst set of experiments, the results of the gamma PML estimator are very good.

Indeed, when no measurement error is present, the biases and standard errors of the

GPML estimator are always among the lowest. However, this estimator is very sensitive

to the form of measurement error considered in the second set of experiments, consistently

leading to sizable biases. These results, like those of the NLS, clearly illustrate the danger

of using a PML estimator that gives extra weight to the noisier observations.
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As for the performance of the Poisson PML estimator, the results are very encouraging.

In fact, when no rounding error is present, its performance is reasonably good in all cases.

Moreover, although some loss of e¢ ciency is noticeable as one moves away from Case 2,

in which it is an optimal estimator, the biases of the PPML are always small.20 Moreover,

the results obtained with rounded data suggest that the Poisson based PML estimator

is relatively robust to this form of measurement error of the dependent variable. Indeed,

the bias introduced by the rounding-o¤ errors in the dependent variable is relatively small

and, in some cases, it even compensates the bias found in the �rst set of experiments.

Therefore, because it is simple to implement and reliable under a wide variety of situations,

the Poisson PML estimator has the essential characteristics needed to make it the new

work-horse for the estimation of constant-elasticity models.

Obviously, the sign and magnitude of the bias of the estimators studied here depend on

the particular speci�cation considered. Therefore, the results of these experiments cannot

serve as an indicator of what can be expected in other situations. However, it is clear

that, apart from the Poisson PML method, all estimators are potentially very misleading.

These experiments were also used to study the �nite sample performance of the Gauss-

Newton regression (GNR) test for the adequacy of the Poisson PML based on (11) and

of the Park test advocated by Manning and Mullahy (2001), which, as explained above,

is only valid to check for the adequacy of the estimator based on the log-linear model.21

Given that the Poisson PML estimator is the only estimator with a reasonable behavior

under all the cases considered, these tests were performed using residuals and estimates

of � (xi�) from the Poisson regression. Table 3 contains the rejection frequencies at the

5 percent nominal level of the two tests for the four cases considered in the two sets of

experiments. In this table the rejection frequencies under the null hypothesis are given in

bold.

20These results are in line with those reported by Manning and Mullahy (2001).
21To illustrate the pitfalls of the procedure suggested by Manning and Mullahy (2001) we note that

the means of the estimates of �1 obtained using (9) in cases 1, 2 and 3 (without measurement error) were

0:58955, 1:29821 and 1:98705, whereas the true values of �1 in these cases are, respectively, 0, 1 and 2.
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Table 3: Rejection frequencies at the
5% level for the two speci�cation tests

Without Measurement Error

Test Case 1 Case 2 Case 3 Case 4

GNR 0:91980 0:05430 0:58110 0:49100

Park 1:00000 1:00000 0:06680 0:40810

With Measurement Error

Test Case 1 Case 2 Case 3 Case 4

GNR 0:91740 0:14980 0:57170 0:47580

Park 1:00000 1:00000 1:00000 1:00000

Since both tests have adequate behavior under the null and reveal reasonable power

against a wide range of alternatives, the results suggest that these tests are important

tools to assess the adequacy of the standard OLS estimator of the log-linear model and

of the proposed Poisson PML estimator.

5. The gravity equation

In this section, we use the Poisson PML estimator to quantitatively assess the determi-

nants of bilateral trade �ows, uncovering signi�cant di¤erences in the roles of various

measures of size and distance from those predicted by the �logarithmic tradition.�We

focus particular attention on the role of trade agreements, since this policy instrument

has been the object of intense debate (see, for example, Frankel, 1997, and Bhagwati and

Panagariya, 1996).

In recent years, the estimation of gravity equations using panel data has become in-

creasingly popular, and the literature has focused on the propper way to include country-

speci�nc e¤ects in these regressions (see Mátyás, 1997 and 1998; Egger, 2000 and 2002;

Cheng and Wall, 2002 and Egger and Pfa¤ermayr, 2003). However, since the vast major-

ity of empirical applications of constant-elasticity models does not use panel data, here we

illustrate the use of the proposed Poisson PML estimator using a single cross-section.22

With this type of data, the inclusion of country-speci�c �xed e¤ects is unappealing since

22Notice that this estimator can be easily applied with panel data.
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it does not permit the estimation of some parameters of primary interest, like the income

elasticities. Therefore, we estimated a model without �xed-e¤ects which serves our main

purpose, which is to highlight the large di¤erence between the results obtained with the

Poisson PML estimator and those resulting from the use of the standard log-linearized

model.23

5.1 The data

The analysis covers a cross section of 136 countries in 1990. Hence, our data set consists

of 18; 360 observations of bilateral export �ows (136 � 135 country pairs). The list of

countries is reported in Table A1 in the Appendix. Information on bilateral exports

comes from Feenstra et al: (1997). Data on real GDP per capita and population come from

the World Bank�s World Development Indicators (2002). Data on location and dummies

indicating contiguity, common language, colonial ties, and access to water are constructed

from the CIA�s World Factbook. Bilateral distance is computed using the great circle

distance algorithm provided by Andrew Gray (2001). Remoteness �or relative distance �

is calculated as the (log of) GDP-weighted average distance to all other countries (see Wei,

1996). Finally, information on preferential-trade agreements comes from Frankel (1997),

complemented with data from the World Trade Organization. The list of preferential

trade agreements (and stronger forms of trade agreements) considered in the analysis is

displayed in Table A2 in the Appendix. Table A3 in the Appendix provides a description

of the variables and displays the summary statistics.

5.2 Results

Table 4 presents the estimation outcomes resulting from OLS and Poisson regressions.

The �rst column reports OLS estimates using the logarithm of trade as the dependent

variable; as noted before, this regression leaves out pairs of countries with zero bilateral

23As later explained, we include the variable remoteness, or relative distance, in our estimation, in an

attempt to control for third-country e¤ects.
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exports (only 9; 613 country pairs, or 52 percent of the sample, exhibit positive export

�ows). For comparison, the second column reports Poisson estimates using only the

subsample of positive-trade pairs. Finally, the third column shows the Poisson results for

the whole sample (including zero-trade pairs).

The �rst point to notice is that Poisson-estimated coe¢ cients are remarkably similar us-

ing both the whole sample and the positive-trade subsample.24 However, most coe¢ cients

di¤er �oftentimes signi�cantly �using OLS. This suggests that in this case, heteroskedas-

ticity (rather than truncation) can distort results in a material way. Poisson estimates

reveal that the coe¢ cients on importer�s and exporter�s GDPs are not, as generally be-

lieved, close to 1. The estimated GDP elasticities are just above 0:7 (s.e: = 0:03). OLS

generates signi�cantly larger estimates, especially on exporter�s GDP (0:94, s.e: = 0:01).

These �ndings suggest that the simpler models of gravity equation (those that predict

unit-income elasticities typically as a result of specialization in production and homo-

thetic preferences) should be modi�ed to feature a less-than-proportional relationship

between trade and GDP.25 (See Anderson and van Wincoop (2003), who provide a model

consistent with smaller elasticities.) It is worth pointing out that unit-income elasticities

in the simple gravity framework are at odds with the observation that the trade-to-GDP

ratio decreases with total GDP, or, in other words, that smaller countries tend to be more

open to international trade.26

The role of geographical distance as trade deterrent is signi�cantly larger under OLS; the

estimated elasticity is �1:17 (s.e: = 0:03), whereas the Poisson estimate is �0:78 (s.e: =

0:06). Our lower estimate suggests a smaller role for transport costs in the determination

of trade patterns. Furthermore, Poisson estimates indicate that, after controlling for

bilateral distance, sharing a border does not in�uence trade �ows, while OLS, instead,

24The reason why truncation has little e¤ect in this case is that observations with zero trade correspond

to pairs for which the estimated value of trade is close to zero. Therefore, the corresponding residuals

are also close to zero and their elimination from the sample has little e¤ect.
25This result holds when one looks at the subsample of OECD countries. It is also robust to the

exclusion of GDP per capita from the regressions.
26Note also that Poisson predicts almost equal coe¢ cients for the GDPs of exporters and importers.
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generates a substantial e¤ect: It predicts that trade between two contiguous countries is

37 percent larger than trade between countries that do not share a border.27

We control for remoteness to account for the hypothesis that larger distances to all

other countries might increase bilateral trade between two countries.28 Poisson regressions

support this hypothesis, whereas OLS estimates suggest that only exporter�s remoteness

increases bilateral �ows between two given countries. Access to water appears to be

important for trade �ows, according to Poisson regressions; the negative coe¢ cients on

the land-locked dummies can be interpreted as an indication that ocean transportation is

signi�cantly cheaper. In contrast, OLS results suggest that whether or not the exporter

is landlocked does not in�uence trade �ows, whereas a landlocked importer experiences

lower trade; this asymmetry is hard to interpret. We also explore the role of colonial

heritage, obtaining, as before, signi�cant discrepancies: Poisson indicates that colonial ties

play no role in determining trade �ows, once a dummy variable for common language is

introduced. OLS regressions, instead, generate a sizeable e¤ect (countries with a common

colonial past trade almost 45 percent more than other pairs). Language is statistically

and economically signi�cant under both estimation procedures.

Strikingly, preferential-trade agreements play a much smaller � although still substan-

tial � role according to Poisson regressions. OLS estimates suggest that preferential-trade

agreements rise expected bilateral trade by 63 percent, whereas Poisson estimates indicate

an average enhancement e¤ect below 20 percent. The contrast in estimates suggests that

the biases generated by standard regressions can be substantial, leading to misleading

inferences and, perhaps, erroneous policy decisions.29

27The formula to compute this e¤ect is (ebi � 1)� 100%, where bi is the estimated coe¢ cient.
28To illustrate the role of remoteness, consider two pairs of countries, (i; j) and (k; l), and assume that

the distance between the countries in each pair is the same Dij = Dkl, however, i and j are closer to

other countries. In this case, the most remote countries, k and l, will tend to trade more between each

other because they do not have alternative trading partners. See Deardo¤ (1998).
29It is interesting to remark that there is a pattern in the direction of the bias generated by OLS.

The bias tends to be positive for the coe¢ cients on variables that relate to larger volumes of trade and,

presumably, to larger variance. It tends to be negative for variables that deter trade and, possibly, reduce

the variance.
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Table 4. The Gravity Equation OLS and Poisson Estimations.

OLS
Poisson
Trade > 0

Poisson

Log of exporter�s GDP 0:938�� 0:721�� 0:733��

(0:012) (0:027) (0:027)

Log of importer�s GDP 0:798�� 0:732�� 0:741��

(0:012) (0:028) (0:027)

Log of exporter�s per capita GDP 0:207�� 0:154�� 0:157��

(0:017) (0:053) (0:053)

Log of importer�s per capita GDP 0:106�� 0:133�� 0:135��

(0:018) (0:044) (0:045)

Log of distance �1:166�� �0:776�� �0:784��
(0:034) (0:055) (0:055)

Contiguity dummy 0:314� 0:202 0:193

(0:127) (0:105) (0:104)

Common-language dummy 0:678�� 0:752�� 0:746��

(0:067) (0:134) (0:135)

Colonial-tie dummy 0:397�� 0:019 0:024

(0:070) (0:150) (0:150)

Landlocked-exporter dummy �0:062 �0:873�� �0:864��
(0:062) (0:157) (0:157)

Landlocked-importer dummy �0:665�� �0:704�� �0:697��
(0:060) (0:141) (0:141)

Exporter�s remoteness 0:467�� 0:647�� 0:660��

(0:079) (0:135) (0:134)

Importer�s remoteness �0:205� 0:549�� 0:561��

(0:085) (0:120) (0:118)

Free-trade agreement dummy 0:491�� 0:179� 0:181�
(0:097) (0:090) (0:088)

Openness dummy �0:170�� �0:139 �0:107
(0:053) (0:133) (0:131)

Constant �28:187�� �31:527�� �32:327��
(1:101) (2:161) (2:059)

Observations 9613 9613 18360

RESET test, p-values 0:000 0:941 0:331

Note: In the OLS regression, the dependent variable is ln(trade). In the Poisson estima-

tion, the dependent variable is trade (the gravity equation is estimated in its multiplica-

tive form). Results for the restricted sample (with positive trade) and the whole sample

are reported. The equations use data for 1990. Robust standard errors in parentheses.

* signi�cant at 5%; ** signi�cant at 1%
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Preferential-trade agreements might also cause trade diversion; if this is the case, the co-

e¢ cient on the trade-agreement dummy will not re�ect the net e¤ect of trade agreements.

To account for the possibility of diversion, we include an additional dummy, �openness,�

similar to that used by Frankel (1997). This dummy takes the value 1 whenever one (or

both) of the countries in the pair is part of a preferential-trade agreement and, thus, it

captures the extent of trade between members and non-members of a preferential-trade

agreement. The sum of the coe¢ cients on the trade agreement and the openness dum-

mies gives the net creation e¤ect of trade agreements. OLS suggests that there is trade

destruction coming from trade agreements. Still, the net creation e¤ect is around 40 per-

cent. In contrast, Poisson regressions provide no signi�cant evidence of trade diversion,

although the point estimates are of the same order of magnitude under both methods.

Hence, even when accounting for trade diversion e¤ects, on average, the Poisson method

estimates a smaller e¤ect of preferential-trade agreements on trade, approximately half of

that indicated by OLS.

To check the adequacy of the estimated models, we performed a heteroskedasticity-

robust RESET test (Ramsey, 1969). This is essentially a test for the correct speci�cation

of the conditional expectation, which is performed by checking the signi�cance of an addi-

tional regressor constructed as (x0b)2, where b denotes the vector of estimated parameters.

The corresponding p-values are reported at the bottom of table 4. In the OLS regression,

the test rejects the hypothesis that the coe¢ cient on the test variable is zero. This means

that the model estimated using the logarithmic speci�cation is inappropriate. In contrast,

the models estimated using the Poisson regressions pass the RESET test, i.e., the RESET

test provides no evidence of misspeci�cation of the gravity equations estimated using the

Poisson method.

Finally, we also check whether the particular pattern of heteroskedasticity assumed

by the models is appropriate. As explained in section 3.2, the adequacy of the log-linear

model was checked using the Park-type test, whereas the hypothesis V [yijx] _ � (xi�) was
tested by evaluating the signi�cance of the coe¢ cient on the term ln (�yi)

p
�yi in the Gauss-

Newton regression indicated in expression (11). The p-values of the tests are reported in
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table 5. Again, the log-linear speci�cation is unequivocally rejected. On the other hand,

these results indicate that the estimated coe¢ cient on ln (�yi)
p
�yi is insigni�cantly di¤erent

from zero at the usual 5 percent level. This implies that the Poisson PML assumption,

V [yijx] = �0E [yijx] cannot be rejected at this signi�cance level.

Table 5: Results of the tests for

type of heteroskedasticity (p-values).

Test (Null hypothesis) Trade > 0 Full sample

GNR (V [yijx] _ � (xi�)) 0:063 0:065

Park (OLS is valid) 0:000 0:000

6. Conclusions

In this paper, we argue that the standard empirical methods used to estimate gravity

equations are inappropriate. The basic problem is that log-linearization (or, indeed, any

non-linear transformation) of the empirical model in the presence of heteroskedasticity

leads to inconsistent estimates. This is because the expected value of the logarithm of a

random variable depends on higher-order moments of its distribution. Therefore, if the

errors are heteroskedastic, the transformed errors will be generally correlated with the

covariates. An additional problem of log-linearization is that it is incompatible with the

existence of zeroes in trade data, which led to several unsatisfactory solutions, including

truncation of the sample (i.e., elimination of zero-trade pairs) and further non-linear

transformations of the dependent variable.

To address the various estimation problems, we propose a simple Poisson pseudo-

maximum likelihood method and assess its performance using Monte Carlo simulations.

We �nd that in the presence of heteroskedasticity the standard methods can severely bias

the estimated coe¢ cients, casting doubt on previous empirical �ndings. Our method,

instead, is robust to di¤erent patterns of heteroskedasticity and, in addition, provides a

natural way to deal with zeroes in trade data.

We use our method to re-estimate the gravity equation and document signi�cant dif-

ferences from the results obtained using the log-linear method. Among other di¤erences,
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income elasticities are systematically smaller than those obtained with log-linearized OLS

regressions. In addition, OLS estimation exaggerates the role of geographical proximity

and colonial ties. Finally, and perhaps more interesting, the pseudo-maximum likelihood

results indicate that bilateral trade between countries that have signed a preferential-trade

agreements is, on average, 20 percent larger than that between pairs of countries without

agreement, which contrasts with the substantially larger estimate obtained by OLS. Our

results suggest that heteroskedasticity (rather than truncation of the data) is responsible

for the main di¤erences.

Log-linearized equations estimated by OLS are of course used in many other areas

of empirical economics and econometrics. Our Monte Carlo simulations and the regres-

sion outcomes indicate that in the presence of heteroskedasticity this practice can lead

to signi�cant biases. These results suggest that, at least when there is evidence of het-

eroskedasticity, the Poisson pseudo-maximum likelihood estimator should be used as a

substitute for the standard log-linear model.
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Appendix

Table A1: List of countries.
Albania Denmark Kenya Romania
Algeria Djibouti Kiribati Russian Federation
Angola Dominican Rp: Korea Rp: Rwanda
Argentina Ecuador Laos P: Dem: Rp: Saudi Arabia
Australia Egypt Lebanon Senegal
Austria El Salvador Madagascar Seychelles
Bahamas Eq: Guinea Malawi Sierra Leone
Bahrain Ethiopia Malaysia Singapore
Bangladesh Fiji Maldives Solomon Islands
Barbados Finland Mali South Africa
Belgium-Luxemburg France Malta Spain
Belize Gabon Mauritania Sri Lanka
Benin Gambia Mauritius St: Kitts and Nevis
Bhutan Germany Mexico Sudan
Bolivia Ghana Mongolia Suriname
Brazil Greece Morocco Sweden
Brunei Guatemala Mozambique Switzerland
Bulgaria Guinea Nepal Syrian Arab Rp:
Burkina Faso Guinea-Bissau Netherlands Tanzania
Burundi Guyana New Caledonia Thailand
Cambodia Haiti New Zealand Togo
Cameroon Honduras Nicaragua Trinidad and Tobago
Canada Hong Kong Niger Tunisia
Central African Rp: Hungary Nigeria Turkey
Chad Iceland Norway Uganda
Chile India Oman United Arab Em:
China Indonesia Pakistan U.K.
Colombia Iran Panama U.S.A.
Comoros Ireland Papua New Guinea Uruguay
Congo Dem: Rp: Israel Paraguay Venezuela
Congo Rp: Italy Peru Vietnam
Costa Rica Jamaica Philippines Yemen
Cote D�Ivoire Japan Poland Zambia
Cyprus Jordan Portugal Zimbabwe
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Table A2. Preferential Trade Agreements in 1990.
EEC/EC CARICOM CACM
Belgium Bahamas Costa Rica
Denmark Barbados El Salvador
France Belize Guatemala
Germany Dominican Rp. Honduras
Greece Guyana Nicaragua
Ireland Haiti
Italy Jamaica Bilateral Agreements
Luxembourg Trinidad and Tobago EC-Cyprus
Netherlands St Kitts and Nevis EC-Malta
Portugal Suriname EC-Egypt
Spain EC-Syria
United Kingdom SPARTECA EC-Algeria

Australia EC-Norway
EFTA New Zealand EC-Iceland
Iceland Fiji EC-Switzerland
Norway Kiribati Canada-US
Switzerland Papua New Guinea Israel-US
Liechtenstein Solomon Islands

CER PATCRA
Australia Australia
New Zealand Papua New Guinea
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Table A3. Summary Statistics.
Full Sample Trade > 0

Variable Mean Std: Dev: Mean Std: Dev:
Trade 172132:2 1828720 328757:7 2517139

Log of trade � � 8:43383 3:26819

Log of exporter�s GDP 23:24975 2:39727 24:42503 2:29748

Log of importer�s GDP 23:24975 2:39727 24:13243 2:43148

Log of exporter�s per capita GDP 7:50538 1:63986 8:09600 1:65986

Log of importer�s per capita GDP 7:50538 1:63986 7:98602 1:68649

Log of distance 8:78551 0:74168 8:69497 0:77283

Contiguity dummy 0:01961 0:13865 0:02361 0:15185

Common-language dummy 0:20970 0:40710 0:21284 0:40933

Colonial-tie dummy 0:17048 0:37606 0:16894 0:37472

Landlocked exporter dummy 0:15441 0:36135 0:10767 0:30998

Landlocked importer dummy 0:15441 0:36135 0:11401 0:31784

Exporter�s remoteness 8:94654 0:26389 8:90383 0:29313

Emporter�s remoteness 8:94654 0:26389 8:90787 0:28412

Preferential-trade agreement dummy 0:02505 0:15629 0:04452 0:20626

Openness dummy 0:56373 0:49594 0:65796 0:47442
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