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Abstract. We study the logarithmic growth of an element of the Robba ring which
satisfies a Frobenius equation over the bounded Robba ring. Chiarellotto and Tsuzuki com-
puted the logarithmic growth of analytic functions on the open unit disc with coefficients in
a p-adic local field which satisfy Frobenius equations over bounded functions of rank 2. We
extend their result by replacing those functions by elements of the Robba ring which satisfy
Frobenius equations over the bounded Robba ring. Moreover, we will see, in special cases, the
zeros of these functions have some cyclicity and the logarithmic growth can be computed by
the zeros of these function.

1. Introduction. Let p be a prime number and K a complete discrete valued field of
mixed characteristic (0, p). We denote by | | the norm of the algebraic closure K̄ of K which
is normalized by |p| = p−1. Let A[0, 1) be the ring of power series with coefficients in K

which are convergent in the open unit disc. Let K[[x]]0 be the ring of power series which
are bounded in the open unit disc. For f ∈ A[0, 1), the log-growth of f is the growth of
coefficients of f (cf. Definition 2.8).

The log-growth of the solutions of differential equations over K[[x]]0 was studied by
Dwork [8], [9], Robba, [14], and Christol [6]. Especially, Dwork computed the log-growth of
the solutions of hypergeometric differential equations, using the fact that they have Frobenius
structures [9].

Generally, the log-growth of horizontal sections of a differential module over K[[x]]0

with Frobenius structure was not known very well. But recently, Chiarellotto and Tsuzuki
showed that the log-growth polygon coincides with the Frobenius polygon in their cases by
direct computations [4], [5]. In their proof [4], Chiarellotto and Tsuzuki computed the log-
growth of f ∈ A[0, 1) when f satisfies a Frobenius equation

a0f + a1f
φ + a2f

φ2 = 0 (ai ∈ K[[x]]0, a0 �= 0) ,

where φ(
∑

n≥0 anx
n) = ∑

n≥0 anx
pn.

In this paper, we consider a Frobenius equation

(1) a0f + a1f
φ + · · · + anf

φn = 0 (ai ∈ R0, a0 �= 0) ,
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where R0 is the bounded Robba ring furnished with the Gauss norm | |1 which will be defined
in Subsection 2.4 (see [4, Propositions 7.6, 7.7]). As a result, we will have the following
theorem.

THEOREM 1.1. Let f be a nonzero element of the Robba ring R which satisfies a
Frobenius equation

a0f + a1f
φ + a2f

φ2 + · · · + anf
φn = 0 (ai ∈ R0, a0 �= 0).

Suppose that a0, . . . , an satisfy the condition

(a) |a1/a0|1 > |a2/a1|1 > · · · > |an/an−1|1.

Then the limit α = limr→1−(logp |f |r − logp |f φ |r ) exists and the exact order of log-growth
of f is α. Moreover, α = logp |ai+1/ai |1 for some i.

This value α in the theorem is also equal to one of the slope of the Newton polygon of
the polynomial

(2) a0 + a1X + · · · + anX
n

with respect to the Gauss norm. In particular, the order of log-growth of f is rational (see
[5]). We also consider the appearance of zeros of f when f satisfies a Frobenius equation (1).
If f ∈ A[0, 1) satisfies the condition (a), then we see, for any r ∈ [0, 1) close enough to 1,
that the difference between the number of zeros of f over the closed disc of radius r and that
of f φ is independent of r (see Example 3.11).

Acknowledgment. The author is grateful to Professor Shigeki Matsuda for his helpful advice.

2. p-adic analytic function. In this section, we introduce the notation and review the
theory of p-adic analytic functions.

2.1. Critical radius and Weierstrass Preparation theorem. Let p be a prime num-
ber. Let K be a complete discrete valued field with mixed characteristic (0, p). Let | | be
the norm of K normalized by |p| = p−1, and extended to an algebraic closure K̄ of K . We
denote the open disc {a ∈ K̄ ; |a| < r} by D(0, r−). For 0 ≤ r0 ≤ r1 (resp. 0 ≤ r0 < r1), we
denote

C[r0, r1] = {a ∈ K̄ ; r0 ≤ |a| ≤ r1} ,

C[r0, r1) = {a ∈ K̄ ; r0 ≤ |a| < r1} ,

and call them the annuli with radii [r0, r1] (resp. [r0, r1)). We denote the ring of analytic
functions on C[r0, r1] (resp. C[r0, r1)) with coefficients in K by A[r0, r1] (resp. A[r0, r1)),
i.e.,

A[r0, r1] =
{ ∞∑

n=−∞
anx

n ; an ∈ K, lim
n→±∞ |an|rn = 0 for all r ∈ [r0, r1]

}
,

A[r0, r1) =
{ ∞∑

n=−∞
anx

n ; an ∈ K, lim
n→±∞ |an|rn = 0 for all r ∈ [r0, r1)

}
.
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For each r ∈ [r0, r1], A[r0, r1] have the norm | |r defined by∣∣∣∣
∞∑

n=−∞
anx

n

∣∣∣∣
r

:= sup |an|rn .

We denote the ring of bounded power series with coefficients in K by

K[[x]]0 =
{ ∞∑

n=0

anx
n ∈ K[[x]] ; sup

0≤n<∞
|an| < ∞

}
.

K[[x]]0 has the Gauss norm defined by∣∣∣∣
∞∑

n=0

anx
n

∣∣∣∣
1

:= sup |an| .

Let y be an element of C[r0, r1] and f = ∑
−∞<n<∞ anx

n an element of A[r0, r1]. When
|y| = r ∈ [r0, r1], we can easily see |f (y)| ≤ |f |r . Since limm→±∞ |am|rm = 0 for any
r ∈ [r0, r1] by definition, there exists an integer n such that |f |r = |an|rn.

DEFINITION 2.1 ([3, 2.3]). Let f = ∑
−∞<n<∞ anx

n be a Laurent series which con-
verges on C[r0, r1]. For r ∈ [r0, r1], we define

K(r, f ) = max{n ∈ Z ; |f |r = |an|rn} ,

k(r, f ) = min{n ∈ Z ; |f |r = |an|rn} .

In the special case where r = 0 and f (0) = 0, we define

k(0, f ) = 0 , K(0, f ) = inf{n ; an �= 0} .

We call r ∈ [r0, r1] a critical radius if K(r, f ) > k(r, f ) and a regular radius if K(r, f ) =
k(r, f ).

By [3, Proposition 2.3.2], we have K(s, f g) = K(s, f ) + K(s, g) and k(s, f g) =
k(s, f )+k(s, g) for 0 �= f, g ∈ A[r, r]. In particular, K(s, 1/f ) = −K(s, f ) and k(s, 1/f ) =
−k(s, f ). Let f be a nonzero Laurent series which converges on C[r0, r1]. The set of
critical radii of f is finite [3, Proposition 2.3.1]. Let r be a regular radius of f . For any
x ∈ K̄ such that |x| = r , we have |f (x)| = |f |r . Indeed supn |anx

n| = |ak(r,f )|rk(r,f ) and
|anx

n| < |ak(r,f )|rk(r,f ) if n �= k(r, f ). On the other hand, when r is a critical radius, f has
K(r, f ) − k(r, f ) zeros on C[r, r] with counting multiplicities.

THEOREM 2.2 (Weierstrass preparation theorem [3, Proposition 2.4.3] ). Let f be an
element of A[r1, r2]. Let r be a real number such that r1 ≤ r ≤ r2. Let d = K(r, f )−k(r, f ).
Then there exists a unique pair (P, u) of a polynomial P ∈ K̄[x] of degree d with P(0) =
1, k(P, r) = 0 and K(P, r) = d , and an analytic function u on C[r1, r2] with k(u, r) =
K(u, r) and f = Pu.

We see by the Weierstrass preparation theorem that, for f ∈ A[r1, r2], the set {x ∈
C[r1, r2]; f (x) = 0} is algebraic over K . When we regard log |f |r as a function of log r , we
have the following proposition.



182 T. NAKAGAWA

PROPOSITION 2.3. Let f be an analytic function on C[r0, r1]. For r ∈ [r0, r1], the
map log r �−→ log |f |r is a piecewise linear continuous function. When r is a regular radius,
the slope of log |f |r at log r is K(r, f ).

2.2. Valuation polygon. Let f be an element of A[l, 1). In this subsection, we will
define the valuation polygon of f . The valuation polygon of f is determined by the Newton
polygon of f . Conversely, the Newton polygon is determined by the valuation polygon of
f . The exact order of log-growth of f is determined by the valuation polygon of f or the
Newton polygon of f (see the definition of the exact order of log-growth of f in Definition
2.8). Therefore, if we want to know the exact order of log-growth of f , then we have only to
know either the valuation polygon of f or the Newton polygon of f .

DEFINITION 2.4. For f = ∑∞
n=−∞ anx

n ∈ A[l, 1), the graph of the function

t �→ inf∞>n>−∞(− log |an| − nt) = − log |f |et (log l ≤ t < 0)

is called the valuation polygon of Laurent series f .

The valuation polygon of f is decided by the numbers of zeros of f over C[rn, rn] (equal
to K(rn, f )−k(rn, f )) for the critical radii rn of f and the initial condition (K(l, f ), aK(l,f )).
However, if we know the data of the critical radii {rn} of f and the numbers of zeros of f

over C[rn, rn], then we can compute the exact order of log-growth of f (see Robert [15,
p. 297–p. 304]).

Let f ∈ A[l, 1). By Proposition 2.3, there exist locally constant functions A(r), B(r)

such that log |f |r = A(r) log r + B(r). We obtain A(r) = K(r, f ) and B(r) = log |aK(r,f )|.
The function − log |f |et is not differentiable at t (i.e., (t,− log |f |et ) is a vertex of the

valuation polygon of f ) if and only if t is a critical radius of f . If t is a critical radius of f ,
then K(t, f ) − k(t, f ) is equal to the difference of the slopes of log |f |er at r = t + ε and
r = t − ε for a sufficiently small real number ε. Therefore, if we know the number of zeros of
f over C(rn, rn) (equal to K(rn, f )− k(rn, f )) for every critical radius rn of f and the initial
condition (K(l, f ), aK(l,f )), then we can compute the valuation polygon of f inductively.

Let f, g be elements of A[l, 1). By definition, |f |r = |g|r (l ≤ r < 1) if and only if
the valuation polygon of f coincides with that of g on [− log l, 0). Assume that g is non-
constant and has only finite zeros. The valuation polygon of f does not coincide with any
translation of the valuation polygon of gf over [− log l, 0). However, there exists r ∈ [l, 1)

such that the set of critical radii of f coincides with that of f g over [r, 1), and for each
critical radius s ∈ [r, 1) of f , we have K(s, f ) − k(s, f ) = K(s, f g) − k(s, f g) (i.e.,
the valuation polygon of f coincides with that of gf over [− log r, 0) except for the initial
condition). Indeed, by [3, Proposition 2.3.2], we have K(s, f g) = K(s, f ) + K(s, g) and
k(s, f g) = k(s, f ) + k(s, g). If we choose r ∈ [l, 1) such that g has no zeros on C[r, 1),
then we have K(s, f g) − k(s, f g) = K(s, f ) − k(s, f ) for s ∈ [r, 1). Note that s is a critical
radius of f if and only if K(s, f ) − k(s, f ) > 0. Therefore, the set of critical radii of f

coincides with that of f g over [r, 1).
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We will explain the relation between the valuation polygon and the Newton polygon of
f = ∑∞

n=0 anx
n. Note that, when a real number ρ is a critical radius, (log ρ, infn{− log |an|−

n log ρ}) is a vertex of the valuation polygon of f . Let (n,− log |an|) and (m,− log |am|) be
adjacent verteces of the Newton polygon of f . The slope of the Newton polygon between
these points is

log ρ = − log |an| + log |am|
n − m

.

Then, we have

log ρn−m = log
|am|
|an| .

Therefore, ρ is a critical radius since |an|ρn = |am|ρm. Conversely suppose ρ is a critical
radius. By the definition of critical radius, we have k(ρ, f ) < K(ρ, f ) and

|aK(ρ,f )|ρK(ρ,f ) = |ak(ρ,f )|ρk(ρ,f ) .

Hence,

log ρ = − log |aK(ρ,f )| − log |ak(ρ,f )|
K(ρ, f ) − k(ρ, f )

.

This concludes that log ρ is a slope of the Newton polygon of f because (k(ρ, f ),

− log |ak(ρ,f )|) and (K(ρ, f ),− log |aK(ρ,f )|) are adjacent verteces of the Newton polygon
of f .

2.3. Poisson-Jensen formula. In this section, we review the Poisson-Jensen formula
[3, 2.5]. Let f be an analytic function on C[r1, r2) which is not identically zero. For r ∈
[r1, r2), we define a counting function N(r, f ) by

N(r, f ) =
∑

0 �= z ∈ C[r1, r2]
f (z) = 0

log
r

|z| +
{
k(r1, f ) log r + log |ak(r1,f )| r1 > 0 ,

K(0, f ) log r r1 = 0 .

For r1 > 0 (resp. r1 = 0), let {ln} be the strictly increasing sequence of the positive real
numbers such that {ln} is the set of critical radii of f on the interval [r1, r2) (resp. (r1, r2)).
For any real number r such that r1 ≤ r < r2, take the greatest integer k such that lk ≤ r . Then
we have

N(r, f ) = K(r, f ) log r −
k∑

i=1

(K(li, f ) − k(li , f )) log li if r1 = 0 ,

and

N(r, f ) = K(r, f ) log r + log |ak(r1,f )| −
k∑

i=1

(K(li , f ) − k(li, f )) log li if r1 > 0 .

If there is no integers k with lk ≤ r , then N(r, f ) = K(r, f ) log r .
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THEOREM 2.5 (Poisson-Jensen formula [3, Therem 2.5.1]). Let f (z) = ∑
n∈Z anz

n

be an analytic function on C[r1, r2) with r2 ≤ ∞. Then, for all r ∈ [r1, r2), we have

N(r, f ) = log |f |r if r1 > 0 ,

and

N(r, f ) + log |aK(0,f )| = log |f |r if r1 = 0 .

2.4. The Robba ring. We define the Robba ring R over K by

R =
{ ∞∑

n=−∞
anx

n ; an ∈ K, |an|rn → 0 (n → ∞) for all 0 < r < 1
|an|sn → 0 (n → −∞) for some 0 < s < 1

}
.

We regard A[0, 1) as a subring of R. We define the bounded Robba ring R0 by

R0 =
{ ∞∑

n=−∞
anx

n ∈ R ; sup
n>0

|an| < ∞
}

.

Although R0 has the Gauss norm by definition, it is not complete under this norm. We regard
K[[x]]0 as a subring of R0. R and R0 do not have the norm | |r for 0 < r < 1. However,
for each element f of R (resp. R0), there exists a real number r0 such that A[r0, 1) contains
f . Then we can define |f |r for r0 ≤ r < 1 (resp. r0 ≤ r ≤ 1). R and R0 have Frobenius
endomorphisms φ : ∑

anx
n �→ ∑

anx
pn.

Since K is a discrete valued field, we obtain the following lemma.

LEMMA 2.6 ([7], [11], [12] and [16]). Let f = ∑∞
n=−∞ anx

n be an element of R0.
Then, there exists a real number r0 such that, for all r ∈ [r0, 1), there exist t ∈ Q and s ∈ Z

with |f |r = rspt .

PROOF. We assume that f = ∑
anx

n ∈ R0 is analytic on C[l, 1). We have only to
prove that f has only finite zeros on C[l, 1). Indeed we can choose r0 ∈ [l, 1) such that f

has no zeros on C[r0, 1), and then s = K(r0, f ) and t = logp |aK(r0,f )|. Suppose that f has
infinite zeros on C[l, 1). Since f has only finite zeros on each critical radius, f has infinite
critical radii on [l, 1). We take strictly increasing sequence {rn}n∈N of critical radii of f on
the interval [l, 1). By the definition of critical radius, we have k(ri, f ) < K(ri, f ) and

|ak(ri,f )|rk(ri,f )
i = |aK(ri,f )|rK(ri,f )

i (i = 1, 2, . . . ) .

Since K(ri, f ) = k(ri+1, f ) by definition and ri < 1 for all i ∈ N , we have

|ak(r1,f )| < |ak(r2,f )| < · · · < |ak(rm,f )| < · · · .

Since K is a discretely valued field, f is not bounded. This contradicts the assumption that
f ∈ R0. �

By the above lemma, we see R0 is a field. In fact, R0 is a henselian field [7], [11, Lemma
15.1.3], [12, Proposition 3.2] and [16].
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REMARK 2.7. Assume that K has a lift σ of Frobenius endomorphism on the residue
field of K . Then σ is extended to R0 so that |σ(x) − xp|1 < 1. Then σ can be extended
to R naturally. Even if we replace φ by σ , we can establish Theorems 2.10 and 4.1 because,
for any f ∈ R, there exists a positive real number r0 < 1 such that for all r ∈ [r0, 1),
|f φ|r = |f σ |r = |f |rp (see [11, 15.2.4]).

2.5. Log-growth.

DEFINITION 2.8. Let f = ∑∞
n=−∞ anx

n be an element of the Robba ring R and let
α be a nonnegative real number. We say f is of logarithmic growth (or log-growth) α if

lim sup
n→∞

|an|
nα

< ∞ .

If moreover, f is not of log-growth β for any real number β such that 0 ≤ β < α, then we
say f is exactly of log-growth α. When f is exactly of log-growth α, α is said to be the exact
order of log-growth of f .

The following result is given in [6, Proposition 2.3.3].

PROPOSITION 2.9. Let r0 be a real number such that 0 ≤ r0 < 1. For f ∈ A[r0, 1),
f is of log-growth α if and only if for r0 < r < 1,

|f |r = O(log−α(1/r)).

When f ∈ R satisfies a Frobenius equation (1), the order of log-growth of f is given as
follows (see [4, Proposition 6.12] and [11, Theorem18.4.5]).

THEOREM 2.10. Let f be a nonzero element of the Robba ring R. Suppose f satisfies
a Frobenius equation

(3) a0f + a1f
φ + · · · + anf

φn = 0 (ai ∈ R0, a0 �= 0) .

If t is the first slope of the Newton polygon of the polynomial

(4) a0 + a1X + · · · + anX
n

with respect to the Gauss norm, then f is of log-growth −t .

PROOF. Note that, for g ∈ A[r0, 1) and r ∈ [r0, 1), we have |gφ |r = |g|rp . We may
assume a0 = −1. Then

f = a1f
φ + · · · + anf

φn

= a1φ(a1f
φ + · · · + anf

φn

) + a2f
φ2 + · · · + anf

φn

= (a1a
φ

1 + a2)f
φ2 + · · · + (an + a1a

φ

n−1)f
φn + a1a

φ
n f φn+1

.

Thus f satisfies the equality

f = A1
mf φm+1 + · · · + An

mf φm+n

(Ai
m ∈ R0) ,

where Ai
m’s satisfy the relations

Ai
0 = ai (1 ≤ i ≤ n) ,
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Ai
m+1 = Ai+1

m + A1
ma

φm+1

i (1 ≤ i ≤ n − 1) ,

An
m+1 = A1

maφm+1

n .

By Lemma 2.6, there exist a real number r0, integers si and rational numbers ti for i =
1, 2, . . . , n such that f, f φ, . . . , f φn ∈ A[r0, 1) and

ai ∈ A[r0, 1) with |ai|r = rsipti for r ∈ [r0, 1) .

By induction, we can easily see Ai
m ∈ A[r1/pm

0 , 1) for all i because if g ∈ A[r0, 1) then

gφ ∈ A[r1/p

0 , 1) in general. Let l be an integer such that tl/ l = maxi{ti/i}. Then, tl/ l is
equal to −t by definition. We have to prove that f is of log-growth tl/ l.

LEMMA 2.11. Let s = max |si |∞ (| |∞ is the usual absolute value). For all r ∈ [r0, 1),

|Ai
m|r1/pm ≤ r−s(1+1/p+···+1/pm)p(m+i)tl/ l (i = 0, . . . , n) .

PROOF. We use induction on m. For m = 0 and r ∈ [r0, 1), we have

|Ai
0|r = |ai|r = rsipti ≤ r−spiti /i ≤ r−spitl/ l .

Therefore, the case m = 0 is true.
We assume that the assertion is true for m = k. For 1 ≤ i ≤ n − 1 and r ∈ [r0, 1), we

have

|Ai
k+1|r1/pk+1 ≤ max(|Ai+1

k |
r1/pk+1 , |aφk+1

i A1
k|r1/pk+1 ) .

We evaluate the right-hand side. We set u = r1/p ∈ [r0, 1). Then by the induction hypothesis,
we have

|Ai+1
k |

r1/pk+1 = |Ai+1
k |

u1/pk ≤ u−s(1+···+1/pk)p(k+i+1)tl/ l

< r−s(1+···+1/pk+1)p(k+i+1)tl/ l ,

|aφk+1

i A1
k|r1/pk+1 = |ai |r |A1

k|r1/pk+1

≤ r−spitl/ l × u−s(1+···+1/pk)p(k+1)tl/ l

= r−s(1+1/p+···+1/pk+1)p(k+i+1)tl/ l .

Therefore, the assertion is true for i = 1, . . . , n−1. We can also prove the assertion for i = n

by the same way. Hence the lemma is proved. �

We continue the proof of Theorem 2.10. We fix r1 ∈ [r0, 1). Note r
−s(1+···+1/pm)

1 <

r
−sp/(p−1)

1 for all m. By Lemma 2.11,

|f |r1
1/pm ≤ max

i
(|Ai

m|r1
1/pm |f φi |r1)

= O(pmtl/ l) = O(log−tl/ l(1/r1
1/pm

)) (m → ∞) .

We may assume that |f |ν is an increasing function over [r0, 1). For any ν ∈ [r0, 1), there

exists an integer m ∈ N such that r1/pm

1 ≤ ν < r
1/pm+1

1 . Since |f |r1
1/pm ≤ |f |ν ≤ |f |

r1
1/pm+1 ,
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we have

|f |ν = O(log−tl / l(1/ν)) (ν → 1)

by the inequality above. Therefore, f is of log-growth tl/ l by Proposition 2.9. �

REMARK 2.12. Under the assumption of Theorem 2.10, f may not be exactly of log-
growth −t . Let f be a nonzero element of the Robba ring R which satisfies (3). Then f also
satisfies a Frobenius equation of degree n + 1:

1

pk
φ(a0f + a1f

φ + · · · + anf
φn

) + (a0f + a1f
φ + · · · + anf

φn

) = 0 .(5)

If we take an integer k large enough, the first slope of the Newton polygon corresponding (5)
is larger than inf{α; f is of log-growth α }.

PROPOSITION 2.13. Let f be an element in R. If there exists a real number r0 ∈ [0, 1)

such that −K(r, f ) log r ≤ α for any r ∈ [r0, 1), then f is of log-growth α.

PROOF. According to [10, p.21], we have

N(r, f ) =
∫ r

r0

K(t, f )

t
dt + O(1) (r ∈ [r0, 1)) .

By this equality, we have

N(r, f ) =
∫ r

r0

K(t, f )

t
dt + O(1)

=
∫ r

r0

−K(t, f ) log t

−t log t
dt + O(1)

≤
∫ r

r0

α

−t log t
dt + O(1)

= −α log(− log r) + O(1).

Theorem 2.5 implies the inequality

log |f |r ≤ −α log(− log r) + O(1) .

We see that f is of log-growth α. �

3. Critical radius.
3.1. Condition (Bi). Let K be a complete discrete valued field with mixed character-

istic (0, p) and φ a Frobenius endomorphism
∑

anx
n �→ ∑

anx
pn. Let f = ∑

anx
n ∈

A[r0, 1). We say α ∈ K̄ is the zero of f if f (α) = 0, and we count the number of
zeros of f with multiplicities of zeros. Let α be an element of the set {α ∈ K̄ ; |α| ∈
[r0, 1) and f (α) = 0} and α1/p a fixed primitive p-th root of α. Then α1/pζ i is an element of
the set {a ∈ K̄ ; a ∈ [r1/p

0 , 1), f φ(a) = 0} for all i = 0, 1, . . . , p − 1, where ζ is a primitive

p-th root of unity. Conversely, any zero of f φ over C[r1/p

0 , 1) can be written like this. We
can easily see the following proposition holds.
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PROPOSITION 3.1. Let f be an element of A[r0, 1), and {ri}i the set of critical radii
of f over [r, 1). Then the set of critical radii of f φ over [r1/p

0 , 1) is {r1/p

i }. Moreover, we
have pk(l, f ) = k(l1/p, f φ) and pK(l, f ) = K(l1/p, f φ) for any l ∈ [r0, 1).

PROPOSITION 3.2. Let f be an element of A[l, 1). Let {rn}n≥1 be the strictly increas-
ing sequence such that {rn} is the set of critical radii of f on the interval [l, 1) (resp. (0, 1))

if l > 0 (resp. l = 0). For r ∈ [l, 1) (resp. r ∈ (0, 1)), let n and m be the greatest integers
with rn ≤ r and r

1/p
m ≤ r . Then we have an equality

(6)

log |f |r − log |f φi |r = (
K(rn, f ) − k(r

1/pi

m , f φi

)
)

log r

−
n∑

j=m+1

(
K(rj , f ) − k(rj , f )

)
log rj .

PROOF. By using Proposition 3.1 and the Poisson-Jensen formula, we obtain

log |f |r − log |f φi |r = N(r, f ) − N(r, f φi

)

= (
K(rn, f ) − k(r

1/pi

m , f φi

)
)

log r

−
n∑

j=1

(
K(rj , f ) − k(rj , f )

)
log rj

+
m∑

j=1

(
K(r

1/pi

i , f φi

) − k(r
1/pi

j , f φi

)
)

log r
1/pi

j

= (
K(rn, f ) − k(r

1/pi

m , f φi

)
)

log r

−
n∑

j=m+1

(
K(rj , f ) − k(rj , f )

)
log rj .

�

Let f be a nonzero element of the Robba ring R which satisfies a Frobenius equation

(7) a0f + a1f
φ + · · · + anf

φn = 0 (ai ∈ R0, a0 �= 0) .

Let i = min1≤j≤n{j ; aj �= 0}. If |f |r is an increasing function with respect to r , then we
have

log |f |r − log |f φi |r = log |aif
φi + · · · + anf

φn |r − log |ai |r − log |f φi |r
≤ max

j≥i
{log |ajf

φj |r } − log |ai |r − log |f φi |r
= max

j≥i
{log |f φj |r − log |f φi |r + log |aj |r} − log |ai|r

≤ max
j≥i

{log |aj |} − log |ai |r + O(1) = O(1) .
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DEFINITION 3.3. Let i be a natural number. For a nonzero element f ∈ R, we say f

satisfies the condition (Bi) if there exists a real number r0 ∈ [0, 1) such that

log |f |r − log |f φi |r = O(1) for r ∈ [r0, 1) .

The following lemma can be seen easily.

LEMMA 3.4. Let f, g be nonzero elements of the Robba ring R.
(i) If f satisfies a Frobenius equation (7), then f satisfies (Bi) for some i.

(ii) If f satisfies (Bi), then for any k ∈ N , f satisfies (Bki).
(iii) f satisfies (Bi) if and only if f φ satisfies (Bi).
(iv) If f, g satisfy (Bi), then f g satisfies (Bi).

By the Poisson-Jensen formula, we obtain the following proposition.

PROPOSITION 3.5. Let f be a nonzero element of A[rpi

0 , 1) which satisfies (Bi). If
we write for r ∈ [r0, 1)

log |f |r − log |f φi |r = A(r) log r + B(r) ,

where A(r), B(r) are locally constant functions, defined by Proposition 2.3, then we have

(8) |A(r) log r|∞ is bounded on (r0, 1) ,

(9) 0 ≤ B(r) is bounded on (r0, 1) ,

(10) B(r) ∈ log |K|.
In particular, the set {B(r) ; r ∈ [r0, 1)} is finite .

PROOF. We will prove the assertion in the case where i = 1. The other cases are proved
similarly.

The assertion (10) follows from the definition of the norm | |r . It follows from (6) that
0 ≤ B(r). Since f satisfies (B1), the assertion (8) implies the assertion (9). Therefore, we
have only to prove the assertion (8). According to [10, p.21],

(11) N(r, f ) =
∫ r

r0

K(t, f )

t
dt + O(1) (r ∈ [r0, 1))

where O(1) is a bounded function. Therefore, for any r ∈ [r1/p
0 , 1), we have

log |f |r − log |f φ |r = log |f |r − log |f |rp

= N(r, f ) − N(rp, f )

=
∫ r

rp

K(t, f )

t
dt + O(1)

≥
∫ r

rp

K(rp, f )

t
dt + O(1)

= −p − 1

p
K(rp, f ) log rp + O(1) .
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Since f satisfies (B1), the left-hand side is bounded for any r ∈ [r0, 1). Therefore,
|K(r, f ) log r|∞ < ∞. Since A(r) = K(r, f ) − K(r, f φ) by (6), we have

|A(r) log r|∞ ≤ |K(r, f ) log r|∞ + |K(r, f φ) log r|∞
= O(1) + |K(rp, f ) log rp|∞ = O(1) .

�

3.2. Condition (Ai). Let f be a nonzero element of the Robba ring R which satisfies
(Bi). By the definition of (Bi), there exists a real number r0 such that, for r ∈ [r0, 1),

log |f |r − log |f φi |r = O(1) .

However, we do not know the existence of b ∈ R0 and r1 ∈ [0, 1) such that

log |f |r − log |f φi |r = log |b|r for r ∈ [r1, 1) .

DEFINITION 3.6. Let i be a natural number. For nonzero f ∈ R, we say f satisfies
the condition (Ai) if there exist b ∈ R0 and l1 ∈ (0, 1) such that

(12) log |f |r − log |f φi |r = log |b|r for r ∈ [l1, 1) .

The following lemma is verified easily.

LEMMA 3.7. Let f be a nonzero element of the Robba ring R.
(i) If f satisfies (Ai), then f satisfies (Bi) and (Aki) for any natural number k.

(ii) f satisfies (Ai) if and only if f φ satisfies (Ai).
(iii) If f, g satisfy (Ai), then f g satisfies (Ai).

When f satisfies (Ai), the exact order of log-growth of f is calculated as follows.

PROPOSITION 3.8. Let f be a nonzero element of the Robba ring R which satisfies
(Ai). Then f is exactly of log-growth limr→1−(logp |f |r − logp |f φi |r )/i.

PROOF. By definition, there exist an element a ∈ R0 and a real number r0 ∈ (0, 1)

such that for all r ∈ [r0, 1)

log |f |r − log |f φi |r = log |a|r .

By Lemma 2.6, there exist a real number r1, an integer k and a rational number t such that
|a|r = rkpt for any r ∈ [r1, 1). We will prove f is exactly of log-growth t/i. We fix a real
number r such that r ∈ [max{r0, r1}, 1). Then

|f |
r1/pli = |a|

r1/pli |f φi |
r1/pli = pt rk/pli |f φi |

r1/pli = pt rk/pli |f |
r1/p(l−1)i

for each integer l. Hence for any nonnegative integer n, we have

|f |
r1/pni = pnt rk(1/pi+1/p2i+···+1/pni)|f |r .

Since

rk(1/pi+1/p2i+···+1/pni) → rk/(pi−1) > 0 (n → ∞) ,
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we have

|f |
r1/pni = O(ptn) = O(log−t/i(1/r1/pin

)) (n → ∞) ,

|f |
r1/pni �= o(log−t/i(1/r1/pni

)) (n → ∞) .

By Proposition 2.9, f is exactly of log-growth t/i. �

The condition (Ai) has the following properties.

PROPOSITION 3.9. Let f be a nonzero element of the Robba ring R. Assume f, f φi ∈
A[l1, 1). Let {rn}n∈N be the strictly increasing sequence of critical radii of f over the interval
[l1, 1). Then the following conditions are equivalent.

(i) f satisfies (Ai).

(ii) (a) There exist an r ∈ [l1, 1) and an integer m such that rk+m = r
1/pi

k for any
critical radius rk > r , and
(b) for almost all critical radii rk , the number of zeros of f is equal to the number
of zeros of f φi

over C[rk, rk].
(iii) For any r close enough to 1, the difference between the number of zeros of f and

the number of zeros of f φi
over C[r, 1) is constant.

(iv) For any r ∈ [l1, 1), the difference between the number of zeros of f and the number
of zeros of f φi

over C[r, 1) is bounded.

PROOF. (i) ⇒ (ii). Assume f satisfies (12) for some b ∈ R0. Then for some l′1 ∈ [l1, 1),

the valuation polygon of f coincides with that of bf φi
over [l′1, 1). Therefore, the set of

critical radii of f coincides with that of bf φi
. Hence, the number of zeros of f over C[rk, rk]

coincides with that of bf φi
over C[rk, rk]. Since b has only finite zeros over C[l′1, 1) by

Lemma 2.6, there exists a real number l2 such that the set of critical radii of f coincides with
that of f φi

over [l2, 1) and, if rk > l2, the number of zeros of f over C[rk, rk] coincides
with that of f φi

over C[rk, rk]. Hence the assertion (b) is true. If rk > l2, then there exists an

integer t such that rk = r
1/pi

t by Proposition 3.1 because the set of critical radii of f coincides

with that of f φi
over [l2, 1). Then we see rk+n = r

1/pi

t+n for any nonnegative integer n and the
assertion (ii) is true.

(ii) ⇒ (iii). It is trivial because the zeros of f exist only on the critical radius of f .
(iii) ⇒ (i). By assumption, there exist an integer A and real numbers B and l such that

log |f |r − log |f φi |r = A log r + B for any r ∈ [l, 1). Then it is obvious that B ∈ log |K|.
Therefore, there exists a rational function b ∈ K(x) such that log |b|r = A log r + B for any
r ∈ [l, 1). Therefore, f satisfies (Ai).

Since (iii) ⇒ (iv) is obvious, the rest is to prove (iv) ⇒ (i). Write

log |f |r − log |f φi |r = A(r) log r + B(r) ,

where A, B are locally constant functions. Since A(r) is bounded by assumption, B(r)

is also bounded. Moreover, we have A(r) ∈ Z and B(r) ∈ log |K|. Therefore, the set
{(A(r), B(r)); r ∈ [l, 1)} is finite. Hence log |f |r − log |f φi |r as a function of log r has
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only finite non-differentiable points. Therefore, for any r close enough to 1, A(r) and B(r)

are constant. Hence (i) holds. �

The next proposition follows from Propositions 3.8 and 3.9.

PROPOSITION 3.10. Let f be a nonzero element of the Robba ring R which sat-
isfies (Ai). If we write (logp |f |r − logp |f φi |r )/i as (6), then −(

∑n
j=m+1(K(rj , f ) −

k(rj , f )) logp rj )/i is independent of r for any r close enough to 1 and it coincides with
the exact order of log-growth of f .

EXAMPLE 3.11. (i) v := log(1 + x) = ∑
n≥1(−1)n−1xn/n has Ni = pi(p − 1)

zeros on the annulus {x ∈ Q
alg
p ; |x| = p−1/pi (p−1)} of radius ri = p−1/pi(p−1) for i ∈ {0} ∪

N and one zero at the origin. By Proposition 3.1, v satisfies the condition (ii) of Proposition
3.8 and hence v satisfies (A1). For r ∈ [p−1/(p−1), 1), take the greatest integer n such that
p−1/pn(p−1) < r . Then

logp |v|r − logp |vφ |r = (K(r, v) − K(r, vφ)) logp r −
n∑

i=0

Ni logp ri +
n−1∑
i=0

pNi logp r
1/p

i

=
(

1 +
n∑

i=0

Ni − p −
n−1∑
i=0

pNi

)
logp r

−
n∑

i=0

pi(p − 1) logp p−1/pi(p−1)

+
n−1∑
i=0

pi+1(p − 1) logp p−1/pi+1(p−1)

= 1 .

v is exactly of log-growth 1 by Proposition 3.8. On the other hand, v satisfies a Frobenius
equation. In fact, we see that c := v − vφ/p is an element of Zp[[x]] by an easy calculation.
Therefore, v satisfies the Frobenius equation

y −
(

1

p
+ c

cφ

)
yφ + c

pcφ
yφ2 = 0 .

Needless to say, it is obvious that v is exactly of log-growth 1 by definition.
(ii) See Tsuzuki [16, Example 6.26]. Assume p �= 2. We set

u = 1 +
∞∑

n=1

((2n − 1)!!)2

(8π)nn! yn

where π is a solution of equation xp−1 = −p and (2n − 1)!! = 1 × 3 × · · · × (2n − 1). u

satisfies the differential equation 4yδ2
y(u) + 4(y − 2π)δy(u) + yu = 0 with δy = yd/dy and

a Frobenius equation. By direct calculation, we can see the vertices of the Newton polygon
of u are ((pi − 1)/2,−i/2) for i ∈ {0} ∪ N , the critical radii of u are ri = p−1/pi(p−1) for
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i ∈ {0}∪N and, u has Ni = pi(p−1)/2 zeros on the annulus {x ∈ Q
alg
p ; |x| = p−1/pi(p−1)}

of radius ri = p−1/pi(p−1) for i ∈ {0} ∪ N . By Proposition 3.1, u satisfies Proposition 3.9
(ii). Therefore, u satisfies (A1). For r ∈ [p−1/(p−1), 1), fix the largest integer n such that
p−1/pn(p−1) < r . Then

logp |u|r − logp |uφ|r

= (K(r, v) − K(r, vφ)) logp r −
n∑

i=0

Ni logp ri +
n−1∑
i=0

pNi logp r
1/p
i

=
( n∑

i=0

Ni −
n−1∑
i=0

pNi

)
logp r −

n∑
i=0

pi(p − 1)

2
logp p−1/pi (p−1)

+
n−1∑
i=0

pi+1(p − 1)

2
logp p−1/pi+1(p−1)

= p − 1

2
logp r + 1

2
.

Therefore, u is exactly of log-growth 1/2 by Proposition 3.8. Moreover, Tsuzuki computed
the corresponding Frobenius slope is 1/2.

4. Special cases. Let f be a nonzero element of R which satisfies a Frobenius equa-
tion

(13) a0f + a1f
φ + · · · + anf

φn = 0 (ai ∈ R0 a0 �= 0) .

Assume a0, . . . , an, f ∈ A[rpn

0 , 1). We define the symbols

Iij = {r ∈ [r0, 1) ; |aif
φi |r = |ajf

φj |r = sup
k

|akf
φk |r } ,

Ii = {r ∈ [r0, 1) ; |aif
φi |r = sup

k

|akf
φk |r} ,

Ii (r) = Ii ∩ [r, 1) , Iij (r) = Iij ∩ [r, 1) .

Since f satisfies (13), we have

(14)
⋃

0≤i<j≤n

Iij = [r0, 1) .

The aim of this section is to prove the following theorem (see [4, Proposition 7.6] in the case
of rank 2).

THEOREM 4.1. Let f be a nonzero element of the Robba ring R which satisfies a
Frobenius equation

a0f + a1f
φ + a2f

φ2 + · · · + anf
φn = 0 (ai ∈ R0 a0 �= 0) .

Suppose that a0, . . . , an satisfy the condition

(a) |a1/a0|1 > |a2/a1|1 > · · · > |an/an−1|1.
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Then f satisfies (A1). Moreover, f is exactly of log-growth logp |ai+1/ai |1 for some i.

To prove Theorem 4.1, firstly we prove the following lemma.

LEMMA 4.2. Let f be a nonzero element of the Robba ring R which satisfies a Frobe-
nius equation (13). Assume

|a1/a0|1 > max
n−1≥i≥1

|ai+1/ai |1 .

Then there exists a real number R0 ∈ [0, 1) such that r ∈ I0(R0) implies r1/p ∈ I01.

PROOF. By definition, there exists a real number r0 such that a0, . . . , an, f ∈ A[rpn

0 , 1).
By assumption, we obtain

|ai/a0|1 > |ai+1/a1|1 (i = 1, . . . , n − 1) .

Since each ak is bounded, Lemma 2.6 implies that there exists a real number ri such that

|ai/a0|r > |ai+1/a1|r1/p (i = 1, . . . , n − 1)

for all r ∈ [ri, 1). Put R0 = max{ri} and take r ∈ I0(R0). Then we have

log |f φ |r1/p − log |f φi+1 |r1/p = log |f |r − log |f φi |r
≥ log |ai/a0|r
> log |ai+1/a1|r1/p

for i = 1, . . . , n − 1. Therefore, |a1f
φ |r1/p > |ai+1f

φi+1 |r1/p for i = 1, . . . , n − 1. By the
equation (14), we conclude r1/p ∈ I01. �

The same argument implies the following lemma.

LEMMA 4.3. Let f be a nonzero element of the Robba ring R which satisfies a Frobe-
nius equation (13). We also assume

min
n−2≥i≥0

|ai+1/ai |1 > |an/an−1|1 .

Then there exists a real number R0 ∈ [0, 1) such that r ∈ In(R0) implies rp ∈ In−1,n.

PROOF. There exists a real number r0 such that a0, . . . , an, f ∈ A[rpn

0 , 1). By assump-
tion, we have

|an−1/ai |1 > |an/ai+1|1 (i = 0, . . . , n − 2) .

Since ak ∈ R0, by Lemma 2.6, there exists a real number ri such that for all r ∈ [ri , 1),

|an−1/ai |rp > |an/ai+1|r .

We will see that we can take R0 = max{r1/p

i }. Suppose there exists r ∈ In(R0). Then we
have

log |f φi |rp − log |f φn−1 |rp = log |f φi+1 |r − log |f φn |r
≤ log |an/ai+1|r
< log |an−1/ai |rp
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for i = 0, . . . , n−2. Therefore, |an−1f
φn−1 |rp > |aif

φi |rp for i = 0, . . . , n−2. By equality
(14), we conclude rp ∈ In−1,n. �

LEMMA 4.4. Let f be a nonzero element of the Robba ring R which satisfies a Frobe-
nius equation (13) and assume that the condition (a) of Theorem 4.1.

(i) If I0(R0) = I1(R0) = · · · = Ik−1(R0) = ∅ for some R0 ∈ [0, 1), then there exists
R1 ∈ [R0, 1) such that r ∈ Ik(R1) implies r1/p ∈ Ik,k+1.

(ii) If In(R0) = In−1(R0) = · · · = Ik+1(R0) = ∅ for some R0 ∈ [0, 1), then there
exists R1 ∈ [R0, 1) such that r ∈ Ik(R1) implies rp ∈ Ik−1,k .

PROOF. (i) The condition (a) implies |ak+1/ak|1 > maxn−1≥i≥k+1 |ai+1/ai|1. We can
also show the lemma by the same augments. �

By Lemma 4.4, we can calculate the order of log-growth under the condition (a) of
Theorem 4.1.

PROPOSITION 4.5. Let f be a nonzero element of the Robba ring R which satisfies a
Frobenius equation (13) and assume that the condition (a) of Theorem 4.1 holds.

(i) If I0(R0) = I1(R0) = · · · = Ik−1(R0) = ∅ for some R0 ∈ [0, 1) and Ik(r) �= ∅ for
any r ∈ [R0, 1), then f is exactly of log-growth logp |ak+1/ak|1.

(ii) If In(R0) = In−1(R0) = · · · = Ik+1(R0) = ∅ for some R0 ∈ [0, 1) and Ik(r) �= ∅
for any r ∈ [R0, 1), then f is of log-growth logp |ak/ak−1|1.

PROOF. (i) We prove the assertion in the case where k = 0. For a general k, the similar
proof works. By definition, there exists a real number r0 such that a0, . . . , an, f, f φ, . . . ,

f φn ∈ A[r0, 1). By Lemma 2.6, there is a real number r1 ∈ [0, 1) such that |a1/a0|s = pt sk

with some t ∈ Q and k ∈ Z for any s ∈ [r1, 1). We fix r ∈ I0(max{r0, r1}). Using Lemma
4.4, we have r1/pn ∈ I01 for n > 0. Therefore, we have

|f |r1/p = |a1|r1/p

|a0|r1/p

|f φ|r1/p = pt rk/p|f φ |r1/p = pt rk/p|f |r ,

|f |
r1/p2 = |a1|r1/p2

|a0|r1/p2
|f φ|

r1/p2 = pt rk/p2 |f φ |
r1/p2 = pt rk/p2|f |r1/p ,

...

|f |r1/pn = |a1|r1/pn

|a0|r1/pn
|f φ |r1/pn = pt rk/pn |f φ |r1/pn = pt rk/pn |f |

r1/pn−1 .

By these equalities, we see

|f |r1/pn = pnt rk(1/p+1/p2+···+1/pn)|f |r .

Since

rk(1/p+1/p2+···+1/pn) → rk/(p−1) > 0 (n → ∞) ,

we have

|f |r1/pn = O(ptn) = O
(

log−t (1/r)1/pn)
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and

|f |r1/pn �= o
(

log−t (1/r)1/pn)
.

By Proposition 2.9, f is exactly of log-growth t = logp |a1|1/|a0|1.

(ii) We note that f and f φ have the same exact order of log-growth. By the assumption
and Lemma 4.4 (2), there exists a real number r0 which satisfies the following properties:

• In(r0) = In−1(r0) = · · · = Ik+1(r0) = ∅, and Ik(r) �= ∅ for any r ∈ [r0, 1),
• a0, . . . , an, f, . . . , f φn ∈ A[r0, 1),

• |ak/ak−1|r = pt rs for all r ∈ [r0, 1),

• if r ∈ Ik(r0), then rp ∈ Ik−1,k.

By assumption and Lemma 4.4 (ii), there exists a sequence {tn}n∈N which satisfies the fol-
lowing conditions:

• tn ∈ Ik−1,k ,
• t1 ∈ [r0, 1) and tn ∈ (tn−1, 1) if n ≥ 2,
• tn → 1 (n → ∞).

For n ∈ N , there exists m = m(n) ∈ N ∪ {0} such that

r
1/pm

0 ≤ tn ≤ r
1/pm+1

0 .(15)

By the definition of r0 and tn, we have t
pi

n ∈ Ik−1,k for i = 0, . . . ,m. By the definition of

Ik−1,k , we see |ak−1f
φk−1 |

t
pi

n

= |akf
φk |

t
pi

n

for i = 0, . . . ,m. Since r0 ≤ t
pi

n , we obtain

|f φk−1 |
t
pi

n

= t
spi

n pt |f φk |
t
pi

n

= t
spi

n pt |f φk−1 |
t
pi+1
n

for i = 0, . . . ,m. Therefore,

|f φk−1 |tn = t
s(1+p+p2+···+pm)
n pt(m+1)|f φk−1 |

t
pm+1
n

.

Since we may assume |f |r is an increasing function, we have the formula of inequalities

|f φk−1 |
r

1/pm

0
≤ |f φk−1 |tn = t

s(1+p+p2+···+pm)
n pt(m+1)|f φk−1 |

t
pm+1
n

≤ r
−|s|∞(1+1/p+···+1/pm)

0 pt(m+1)|f φk−1 |r0 = O(pt(m+1))

by (15). Since m(n) → ∞ as n → ∞, we conclude that f is of log-growth t =
logp |ak/ak−1|1. �

PROOF OF THEOREM 4.1. There exists integers k1, k2 with 1 ≤ k1 ≤ k2 ≤ n − 1 such
that I0(R0) = I1(R0) = · · · = Ik1−1(R0) = ∅, Ik1(r) �= ∅, In(R0) = In−1(R0) = · · · =
Ik+1(R0) = ∅, Ik2(r) �= ∅. Then by Proposition 4.5 (i), f is exactly of log-
growth logp |ak1+1/ak1 |1. On the other hand, by Proposition 4.5 (ii), f is of log-growth
logp |ak2+1/ak2 |1. Thus we must have k1 = k2. Since there exists a real number r ∈ [0, 1)

such that Ik1,k1+1(r) = [r, 1), f satisfies (A1). �
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COROLLARY 4.6. Let f be a nonzero element of R which satisfies a Frobenius equa-
tion (13) and the condition (a) of Theorem 4.1. Let i be an integer such that f is exactly of
log-growth logp |ai+1/ai |1. Then K(1, ai+1/ai) is divided by pi .

PROOF. With the hypothesis of Theorem 4.1, suppose f is exactly of log-growth
logp |ai+1/ai |1 for some i and |aif

φi |r = |ai+1f
φi+1 |r for any r close enough to 1. If we put

log |f |r − log |f φ |r = A(r) log r + B(r) ,

then K(r, ai+1/ai) = piA(r) is divided by pi . �

Let �y = (y1, y2, . . . , yn) be a nonzero element of Rn. Set the exact order of log-growth
of yi by αi . We define the exact order of log-growth of �y to be α = max{αi}. Let �y =
(y1, y2, . . . , yn) be a nonzero element of Rn such that

⎛
⎜⎜⎜⎝

b1 1
...

. . .

bn−1 1
bn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

y1
...

yn−1

yn

⎞
⎟⎟⎟⎠

φ

= γ

⎛
⎜⎜⎜⎝

y1
...

yn−1

yn

⎞
⎟⎟⎟⎠

where b1, . . . , bn ∈ R0, and γ ∈ K with |γ | = pλ. Then, according to [4, Lemma 6.18], the
exact order of log-growth of �y equals to the exact order of log-growth of y1 and y1 satisfies
the Frobenius equation

(16)
b

φn−1

n

γ n−1 y
φn

1 + b
φn−2

n−1

γ n−2 y
φn−1

1 + · · · + b
φ

1

γ
y

φ
1 = y1 .

COROLLARY 4.7. With the above condition, assume the first slope of the Newton poly-
gon associated to the polynomial

1 + b1X + b2X
2 + · · · + bnX

n

is α. Then y1 is of log-growth λ − α. Moreover, we assume logp |b1|1 < logp |b2/b1|1 <

· · · < logp |bn/bn−1|1. Then the exact order of log-growth of f is one of λ + logp |b1|1, λ +
logp |b2/b1|1, . . . , λ + logp |bn/bn−1|1. If the exact order of log-growth of f is λ +
logp |bi+1/bi |1, then K(1, bi) is divided by p. In particular, if K(1, bj ) is not divided by
p for all j , then y1 is exactly of log-growth λ − α.

PROOF. By [4, Lemma 6.18], the first slope of the Newton polygon of the polynomial

(17)
b

φn−1

n

γ n−1 Xn + b
φn−2

n−1

γ n−2 Xn−1 + · · · + b
φ
1

γ
X + 1

is α − λ. Hence, y1 is of log-growth λ − α by Theorem 2.10. Assume logp |b1|1 <

logp |b2/b1|1 < · · · < logp |bn/bn−1|1. By [4, Lemma 6.18], the slopes of the Newton poly-
gon of polynomial (16) are − logp |b1|1−λ> − logp |b2/b1|1−λ> · · ·> − logp |bn/bn−1|1−
λ. Therefore, the exact order of log-growth of f is one of λ+logp |b1|1, λ+logp |b2/b1|1, . . . ,
λ + logp |bn/bn−1|1 by Theorem 4.1. Moreover, assume f is exactly of log-growth λ +
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logp |bi+1/bi |1 for i ≥ 1. By Corollary 4.6, limr→1− K(r, b
φi

i+1/b
φi−1

i ) = limr→1−

(K(r, b
φi

i+1) − K(r, b
φi−1

i )) is divided by pi . Since limr→1− K(r, b
φi

i+1) is divided by pi

and limr→1− K(r, b
φi−1

i ) is divided by pi−1 by Proposition 3.1, limr→1− K(r, bi) is divided
by p. �
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