
The Logarithmic Number System for Strength Reduction in Adaptive Filtering

John R. Sacha and Mary Jane Irwin

Computer Science and Engineering Department

The Pennsylvania State University

University Park, PA 16802

Phone: (814) 863-4162

E-mail: sacha@cse.psu.edu

Abstract

An important technique for reducing power consumption in
VLSI systems is strength reduction, the substitution of a
less-costly operation such as a shift, for a more-costly op-
eration such a multiplication. Using a logarithmic number
representation provides several opportunities for strength re-
ductions; in particular, multiplication is performed as the
�xed-point addition of logarithms, and extracting a square
root is implemented via a shift. These reductions occur
transparently at the hardware level; consequently relatively
little algorithmic modi�cation is required, and they are read-
ily applicable to adaptive �ltering. For performing Givens
rotations in the QR decomposition recursive least squares
adaptive �lter, logarithmic arithmetic is shown to compare
favorably to other strength reduction techniques, such as
CORDIC arithmetic, in terms of switched capacitance and
numerical accuracy.

1 Introduction

Adaptive �ltering is a necessary component of many com-
munication and other signal processing systems which must
operate in non-stationary environments. Uses include echo
cancellation, channel equalization, and system identi�ca-
tion. A wide variety of algorithms exist, admitting trade-
o�s among such varied criteria as convergence and tracking
rates, computational complexity, and numerical stability, in
order to meet performance goals and satisfy design con-
straints. In some recent applications, the traditional VLSI
constraints of throughput and area have been joined by the
issue of power dissipation. This has been largely motivated
by the emergence of portable computing and digitally-based
communications devices, where conserving energy is impor-
tant because of battery limitations. In non-portable com-
puting environments, power usage can also be an issue, since
packaging costs and circuit reliability are dependent upon
cooling considerations [1].

Low power optimizations take place at many levels, rang-
ing from the gate and circuit levels up through algorithm
design. One important higher level technique is the use of

strength reduction transformations to replace expensive op-
erations with mathematically equivalent operations that are
more conserving of energy [2]. Another technique involves
�nding a number representation which reduces switching ac-
tivity. Fixed point representations are the norm for low
power applications. A less standard method, logarithmic
representation, is potentially attractive for low power be-
cause intrinsic to it are several operator strength reductions.

2 Strength Reduction

In well-designed CMOS circuits, the main source of power
dissipation is the charging and discharging of node capaci-
tances. In exploring the tradeo�s between alternative imple-
mentations of a processing module, an appropriate measure
for comparison is the power dissipated over the duration of
the access. This gives the energy per access,

Em = CmV
2
dd: (1)

where Cm is the module switched capacitance, and Vdd is the
supply voltage [3]. The switched capacitance describes the
average capacitance charged and discharged per access. En-
ergy usage can be minimized by a combination of reducing
Vdd and Cm. Reducing Vdd increases gate delay, so that ar-
chitectural restructuring, e.g., pipelining or parallelization,
may then be required in order to maintain throughput; sub-
stantial scaling of Vdd is also technology dependent.

The average power dissipation of various arithmetic op-
erations varies considerably. For example, for a particu-
lar CMOS implementation of multiplication and addition in
conventional two's complement �xed-point arithmetic, the
average switched capacitances can be empirically modeled
as [4]

Cmult(n) � 253n2; (2)

Cadd(n) � 214n; (3)

respectively, where n is the word length in bits.
Optimizations at various levels can be performed in order

to address the relatively high cost of multiplies. Re�nements
at the transistor, gate, and circuit levels can be performed
to reduce the size of the capacitance constant [5][6]. At the
higher levels of algorithm and system design, reducing the
number of multiplies (as well as the even more complicated
\inverse" operations of division and square root extraction)
was an important consideration even before the advent of
major interest in low power designs, due to delay and area



(or discrete component) costs [7]. Such high-level changes
can yield big payo�s, but can also modify system character-
istics. For example, the replacement of a FIR �lters with a
shorter IIR design can alter frequency and phase responses,
which may or may not be acceptable.

An intermediate approach to reducing the cost of arith-
metic operations is strength reduction, the replacement of
an operation by a set of mathematically equivalent | but
less costly | alternative operations. This generally involves
local transformations of the computation ow. The canon-
ical example is the substitution of a few shifts and adds to
implement a constant multiplication: since 15 = 24 � 1,

15x ! (x� 4)� x: (4)

Note that the mathematical structure of the computation is
unaltered, but that the numerical behavior and delay might
be changed.

There is extensive literature for replacing multiplies with
other operators in FIR �ltering. One approach is to design
�lters with coe�cients that are powers of two (or sums of a
few powers of two), thus allowing general-purpose multiplies
to be replaced by a few shifts and adds [8][9]. Note that
this technique is not readily applicable to adaptive �lters,
in which the �lter coe�cients are not known a priori, or
may change over time.

One method for obtaining several strength reductions is
to employ a logarithmic number representation. By using
the Logarithmic Number System (LNS), the hardware com-
plexity of multiplication, division, and square rooting are
reduced considerably. These strength reductions occur at
the architecture level, without explicit local transformations
of the structure of the computation. The potential utility
of LNS for power savings is illustrated using an adaptive
�ltering application.

3 Adaptive Filtering

Consider the system

y(t) = �x(t)T �w(t) + �(t); (5)

where �x(t) is a length-N vector of known time-varying in-
puts, �w(t) is a vector of unknown \slowly varying" weights,
�(t) is a zero-mean white noise process, and y(t) is the known
output. The goal of adaptive �ltering is to determine a set
of weight estimates, ŵ(t), which minimizes the error (under
some criterion) between y(t) and �x(t)T ŵ(t). While the least
mean square (LMS) algorithm is typically the �rst choice
due to its O(N) complexity, for some applications it ex-
hibits slower than required convergence, so that alternative
algorithms such as recursive least squares (RLS) must be
used. The RLS algorithm solves the weighted least squares
problem

min
ŵ
kD(t)[Y (t)�X(t)T ŵ(t)]k22; (6)

where D(t) is a weight matrix (usually diag(�t; �t�1; :::; �)
for 0 � � � 1); Y (t) = [y(1); y(2); :::; y(t)]T , the output
history; and X(t) is the matrix of inputs observed through
time t, X(t) = [�x(1); �x(2); :::; �x(t)].

An e�cient solution to this problem can be obtained
by iteratively updating the QR decomposition of D1=2XT ,
giving the QR decomposition recursive least squares (QR-
DRLS) algorithm [10][11]. The QR decomposition can be
performed in a variety of ways. One which is amenable to

VLSI implementation, and which has received recent atten-
tion including low power consideration [11][12][13] is the use
of Givens rotations to annihilate the lower triangular en-
tries of D1=2XT . Given a vector [a b]T , b 6= 0, the Givens
transformation annihilates b via [14]�

c �s
s c

��
a
b

�
=

� p
a2 + b2

0

�
; (7)

where the values c and s represent the cosine and sine of an
angle �. This angle does does not have to be explicitly ex-
tracted; a numerically attractive algorithm for determining
c and s is:(

if b = 0 then c = sign(a); s = 0
if jbj > jaj then � = �a=b; s = 1=

p
1 + � 2; c = s�

if jbj � jaj then � = �b=a; c = 1=
p
1 + �2; s = c�:

(8)

Note that determining c and s requires one add, two multi-
plies (one of which is actually a squaring), two divides, and
one square root extraction. The standard method of apply-
ing the rotation to an arbitrary vector uses 4 multiplies and
2 adds.

Multiplies, divides, and square roots are considered to be
complicated to perform in conventional �xed- and oating-
point representations, and algorithmic solutions have been
developed to mitigate their e�ects. For example, square-
root free Givens rotations rely upon non-unitary \pseudo-
Givens" rotation matrices; in addition to eliminating the
need to extract square roots, the number of multiplies per
rotation is reduced. This approach may exhibit numeric
instablity [14], and will not be addressed here; however, with
extra stabilization steps it can perform acceptably well [10].

3.1 Matrix-Vector Multiply Recoding

One form of strength reduction which has been proposed for
adaptive �ltering converts the straightforward 4-multiply, 2-
add implementation of a plane rotation into a 3-multiply,
3-add form [15]. (Actually, this transformation was used for
complex multiplication in [2] and [15], but there is a direct
correspondence between complex multiplication and 2 � 2
plane rotation.) Note that�

c �s
s c

��
a
b

�
=

�
ca� sb+ (cb� cb)
sa+ cb+ (ca� ca)

�
(9)

=

�
c(a+ b)� (c+ s)b
c(a+ b) + (s� c)a

�
; (10)

with the savings occurring because c(a + b) has to be per-
formed only once. While this transformed formulation is
mathematically identical to the conventional matrix-vector
multiply, numerically it may not be, because of the preci-
sion potentially lost in forming the intermediate sums a+ b,
c + s, and s � c. (Also note also that this transformation
generates six distinct operands, potentially reducing the cor-
relation between successive multiplier inputs.)

This transformation is applicable to both �xed- and oating-
point number representations. Although oating point en-
joys widespread use in scienti�c computing and signal pro-
cessing because it simpli�es programming and provide wide
dynamic range, it has so far not found favor in low power ap-
plications due to its perceived complexity and overhead [16].
Nonetheless, oating point may provide a power saving, de-
pending upon the precision and dynamic range requirements
of a particular application. The underlying mechanism is



that reducing the mantissa length by a factor of a leads to a
reduction in multiplicative power dissipation by a factor of
a2, without appreciably changing the dynamic range. The
practical question is whether or not this savings o�sets the
added complexity of other oating-point operations for a
particular application.

3.2 CORDIC Arithmetic

Another approach to implementing Givens rotations using
conventional �xed-point representations, which has received
recent attention is to use CORDIC arithmetic [12] [13][17] [18].
In the CORDIC formulation, the rotation angle � is de-
composed into a sum of prede�ned \microrotation" angles,
� = s0�0 + � � �+ sm�m, si 2 f�1; 1g. Strength reduction is
achieved by choosing the �i such that arctan �i is a power of
two. This allows the microrotation matrix to be rewritten
as �

cos �i � sin �i
sin �i cos �i

�
=

1

cos �i

�
1 � tan �i

tan �i 1

�
(11)

= Ki

�
1 �si2�i

si2
�i 1

�
; (12)

so that apart from the scaling by the unitary normalization
constant, Ki = 1=

p
1 + 2�2i, the product is computable

with two shifts and two adds. In standard CORDIC, the
requirement si 2 f�1; 1g ensures that the product of the
unitary normalizing constants, K =

Qm

i=0
Ki, is a constant

which can itself be further decomposed o�ine into shifts and
adds.

Several low power CORDIC implementations have been
designed [13] [18]. In one version [13], si 2 f�1; 0; 1g, elim-
inating the need to perform rotations si = 0, though

Q
i
Ki

is no longer a constant and must be computed explicitly.
To further save power, a truncated CORDIC can be per-
formed, in which only the r most signi�cant non-zero rota-
tions, r� m, are applied.

4 Logarithmic Number System

In the Logarithmic Number System, a number X is repre-
sented by its sign, sX , and the logarithm to the base � of
its absolute value:

LX = log� jXj: (13)

Generally the base used is 2, and the n-bit �xed-point value
is treated as consisting of a k-bit integer part and an l-bit
fraction with n = k+ l. LNS has numeric properties similar
to those of oating point. The logarithmic system encodes
2l values in the interval [2d; 2d+1), with distances which are

harmonically related by the factor 21=2
l

, while a oating-
point scheme with an l-bit mantissa plus hidden bit would
divide the same interval into 2l equal-sized pieces. This rep-
resentation similarity means that, like oating point, LNS
provides a wider dynamic range than �xed point for a given
number of bits, and simpli�es algorithm coding helping to
keep track of the radix point. Unlike oating point, LNS
does not allow double precision accumulation.

The chief attraction of LNS arithmetic, historically as
well as in the context of low power design, is that the product
of two numbers A and B is computed by the �xed-point
addition of their logarithmic representations:

sAB = sA � sB (14)

LAB = LA + LB ; (15)

which represents a signi�cant strength reduction. Likewise,
division (which in conventional �xed- and oating-point is
more complicated than multiplication) is implemented as a
subtraction. (If the logarithms are coded in excess nota-
tion as is commonly done with oating-point exponents, the
overhead is higher since an extra full word add is required
to restore the o�set | clearly a drawback in the context of
low power processing.)

Exponentiation and root extraction are likewise trivial
under LNS. Assuming a base 2 logarithm, squaring and
square root extraction can be done with 1-bit shifts:

LA2 = LA << 1: (16)

LpA = LA >> 1: (17)

For square root extraction under LNS, a 20:1 power-delay
product improvement over oating-point has been reported [19].
Multiplication, division, and raising a number to an integer
power are numerically exact under LNS, barring overow;
some numerical precision can be lost when extracting roots.

Some of the gains achieved above are o�set by the in-
creased complexity of addition and subtraction, which are
based on the identities

A�B = A(1�B=A): (18)

In logarithmic form,

LA�B = LA + U�(LB � LA) (19)

where

U�(LX) = log2(1� 2LX ) (20)

The functions U+ and U� are typically implemented us-
ing table lookup. Thus, logarithm-based addition requires
two �xed-point additions and a ROM access, with an addi-
tional compare or negation used to force LX < 0, in order
to simplify table construction. In general, since the value
for U�(LX) cannot be represented exactly in a k + l bit

wide table, a relative error bounded by 2�(l+1) is intro-
duced into the �nal sum. A major challenge to the prac-
tical implementation and widespread adoption of LNS for
general purpose computing is that table sizes grow expo-
nentially with precision. Much LNS research activity is de-
voted to table compression in order to allow increased word
lengths in an attempt to compete with conventional oat-
ing point [20][21].However, LNS seems to be most suited for
moderate precision applications requiring high throughput,
such as signal processing [7]. Another issue faced by LNS
is conversion between LNS and �xed point. In some cases
data can be digitized directly into logarithmic form [19].

Logarithmic representation has previously been applied
to adaptive �ltering using the LMS algorithm [22]. How-
ever, given the development of reduced-multiplication vari-
ants such as sign-LMS, where additions dominate, using
LNS would not seem to be particularly advantageous in this
case. In contrast, LNS arithmetic is well-suited to imple-
menting Givens rotations. There are few additions (rela-
tively expensive in LNS) in comparison to the number of
multiplications, divisions, and square roots, which are cheap
in LNS. The crucial issue regarding the practicality of LNS
lies in the number of bits required to represent the loga-
rithms. If precision requirements are excessive, then coding
the tables for U� entails excessive area and/or the need for
expensive interpolation computations.



5 Simulation

To study the tradeo�s between performance and power re-
sulting from the various formulations presented above, we
applied the following instances of QRDRLS algorithm im-
plementations to the standard channel equalization example
of [10][11], with N = 11, SNR = 0:001, and �1=2 = 0:9375:

� 4-multiply and 3-multiply Givens formulations using
16-bit �xed-point arithmetic;

� 4-multiply and 3-multiply Givens formulations using
oating-point arithmetic having 5-, 6-, 8-, and 10-bit
mantissas (plus a hidden bit);

� Full and truncated CORDIC (two and three term), as
described in [13], using 16-bit �xed-point arithmetic;

� LNS arithmetic with 5-,6-,8-, and 10-bit fractional parts.

5.1 Algorithm Performance

Ensemble averages for �fty trials of each con�guration were
generated. A time-average of the steady-state squared a
priori error (i.e., after convergence) was used as the measure
of algorithm performance, as shown in Figure 1.

0 100 200 300 400
10

−3

10
−2

10
−1

Iteration

S
qu

ar
ed

 E
rr

or

|−> Steady State Error

Figure 1: A Priori Residual Error for Fixed-Point

5.2 Power Estimation

Architecture-level estimations of switched capacitance were
used to assess the relative power usage among the vari-
ous computational constructs discussed. The two high-level
capacitance models used wll be referred to as the \SRB-
Model"[23], and the \CB-Model"[4]. These are bit-independent
models comprised of algebraic formulas, such as Eqs. (1)-
(3), relating \average" switched capacitances of arithmetic
circuits to elementary architectural features such as word
length. The total switched capacitance of a computation
is obtained by summing the individual module capacitances
weighted by the number of accesses. Although less accu-
rate than gate or transistor level estimates, such high level
analysis can serve as a rough guide to possible design trade-
o�s. In estimating the switched capacitance for a QR up-
date, only the calculation and application of the Givens ro-
tations were considered; the backsubstitution to explicitly
obtain the weights was not included. For the conventional

�xed-point and oating-point versions, the multiplier ca-
pacitance model was assumed for division and square root
extractions; each of the latter two represent less than two
percent of the operations performed. Capacitances for the
oating-point operations were estimated by summing their
constituent �xed-point components, such as exponent addi-
tions, and the adds, multiplies and shifts of the mantissas.
The CORDIC estimates were based on counts of adds and
shifts, which included frequencies of shift values.

Modeling LNS capacitance was somewhat more involved
because of the table lookups. The e�ective ROM switched
capacitance in logarithmic addition table lookup depends
upon the ROM organization. In the SRB-Model, the capac-
itance switched by a memory access is a function of total
memory size, with three submodels provided; the submodel
used here assumes that a memory access is proportional to
the square root of the total memory size. Several assump-
tions were used to estimate memory size. First, since the
problem under consideration was shown to involve limited
precision, it was assumed that linear interpolation was un-
necessary. Second, each unit interval in the domain of U+

and U� was given its own ROM bank, whose word length
was no wider than necessary to encode the function for that
interval [19]. (For a fraction length of l, there would be
M = 2l entries per ROM.) Because the two functions de-
crease in magnitude as LX decreases, average ROM width
is reduced, decreasing both the area and the length of the ac-
tive access lines [24][25]. Last, a modest compression scheme
was assumed. For almost all blocks, the magnitudes of the
derivatives of U+ and U� are less than unity, ensuring that
stored values can change only by the value of the lsb between
adjacent entries. The M � b-bit ROMs are thus convertible
to M=2 � (b + 1)-bit ROMs by tabulating only the even-
numbered entries and storing one additional bit per entry
to indicate if the next (untabulated) odd-numbered entry is
di�erent; the b+1st bit serves as a carry into the �nal adder
stage. For 10-bit fraction LNS, the tables were estimated to
require 72 kilobits.

For the CB-Model, an average capacitance for each ROM
block was computed individually, using the formula for reg-
ister �le access. It was assumed that larger ROMs were
subdivided into blocks of 128 entries. Access patterns were
computed during the course of the simulations to estimate
values for pj , the probability that the jth ROM block is
accessed. This yielded a capacitance model of:

C
LNS
add (k; l) � 3Cadd(k + l) +

X
j

pjC
[j]
mem; (21)

where C
[j]
mem is the capacitance of the jth ROM. Figure 2

shows the relative capacitances of ROM bank accesses by
unit interval for a 12-bit fraction LNS implementation, and
Figure 3 shows corresponding ROM access frequencies.

5.3 Results

Figures 4 and 5 show the average steady-state error achieved
by each Givens rotation implementation plotted as functions
of the corresponding switched capacitances estimated from
the two power models. (Estimates for 3-multiply Givens
rotations are shown as triangles, and those for 4-multiply
rotations are indicated by squares.) The capacitance �gures
are for the data path only, and do not include such overheads
as clocking, data fetch, or decoding. Also, any needed cost
of conversion to/from LNS is not included. Although the
numeric values for the two plots di�er, the overall orderings



−12 −10 −8 −6 −4 −2 0
0

0.2

0.4

0.6

0.8

1

Address Interval

C
ap

ac
ita

nc
e/

A
cc

es
s

Relative Switched Capacitance for U
+
 ROMs

−12 −10 −8 −6 −4 −2 0
0

0.2

0.4

0.6

0.8

1

Address Interval

C
ap

ac
ita

nc
e/

A
cc

es
s

Relative Switched Capacitance for U
−
 ROMs

Figure 2: Relative Switched Capacitances for ROM Banks

−12 −10 −8 −6 −4 −2 0
0

0.02

0.04

0.06

0.08

0.1

0.12

Address Interval

F
re

qu
en

cy

Access Pattern for U
+
 ROMs

−12 −10 −8 −6 −4 −2 0
0

0.02

0.04

0.06

0.08

0.1

0.12

Address Interval

F
re

qu
en

cy

Access Pattern for U
−
 ROMs

Figure 3: ROM Bank Access Frequencies

are consistent from plot to plot, with LNS using the least
power and conventional �xed point the most.

� The conventional �xed-point implementations switched
the most capacitance. As expected, the 3-multiply
Givens used about 20% less power, at a cost of a minor
increase in error.

� The CORDIC formulations used less power than the
conventional �xed point, but were less accurate. The
squared residual error was greater for the the two-term
truncated CORDIC (r = 2), than for the three-term
truncated CORDIC (r = 3) or full CORDIC. While
it may not be readily apparent from the plot, the
three-term mean error averaged over time was actually
slightly lower than that of the full CORDIC, although
an examination of residual error time series revealed
that the former exhibited a higher variance. None of
the CORDIC methods achieved as low an error as the
conventional 16-bit implementations.

� Floating point outperformed �xed-point and CORDIC.
As with the �xed-point case, each 3-multiply Givens
used less power than its 4-multiply counterpart, but
produced an increase in the steady-state residual error.

Although oating point used more power than LNS, it
does not require lookup tables, and may therefore be
a good candidate in its own right.

� LNS exhibited the best overall accuracy and cost. It
was about six times less costly than conventional �xed
point, even with the elimination of one multiply per
Givens rotation in the �xed point implementation. As
might be expected, larger fractional parts yielded lower
errors, up to a point. The steady-state error for a 6-
bit fraction was better than those of the best CORDIC
formulations, while LNS with a 10-bit fraction yielded
a residual error less than those of the 16-bit �xed-point
implementations.

0 2 4 6 8 10

x 10
4

10
−3

10
−2

10
−1

Estimated Capacitance per Iteration

S
qu

ar
ed

 E
rr

or

CORDIC

Fullr=3

r=2

LNS Floating Pt

Fixed Pt

Figure 4: SRB Capacitance Model Results

0 2 4 6

x 10
4

10
−3

10
−2

10
−1

Estimated Capacitance per Iteration

S
qu

ar
ed

 E
rr

or

CORDIC

Fullr=3

r=2

LNS Floating Pt

Fixed Pt

Figure 5: CB Capacitance Model Results

The use of bit-independent capacitance models can serve
to reveal general trends and perform rough comparisons. In
real systems, however, implementation details and data cor-
relations come into play. For instance, in the 4-multiply
Givens rotation, performing the multiplies in the \natural
order" ca; sb; cb; sa can cause both inputs to the multiplier
to change (assuming a single multiplier). In contrast, only
a single input changes each time when performing the mul-
tiplies in the order ca; cb; sb; sa. By using a bit-dependent



power model [3], it was observed that the second ordering re-
duced switched capacitance by 10% relative to the �rst. As
previously noted, the 3-multiply transformation generates
six distinct multiplier inputs; even though it requires only
three multiplies, the bit-dependent model indicates that it
further reduces switched capacitance by only 6% relative to
the better of the 4-multiply Givens rotation orderings.

6 Conclusions

Several techniques for performing QRDRLS adaptive �lter-
ing were compared with regard to numeric accuracy and en-
ergy consumption. These included conventional �xed- and
oating-point con�gurations, CORDIC arithmetic, and log-
arithmic representations. Architecture-level power modeling
showed that logarithic arithmetic switched less capacitance
for a given residual error level than did the other methods
tested. The use of oating point also yielded energy savings.
CORDIC was the least accurate, while �xed-point exhibited
high accuracy but consumed the most energy. The logarith-
mic number system (LNS) and oating point have similar
dynamic range and precision properties. In the context of
low power, the chief attraction of LNS is that multiplica-
tion is performed as a �xed-point addition, reducing over-
all switching activity for multiplication-intensive operations
such as Givens rotations. Drawbacks to the use of LNS in-
clude potentially large memory requirements, and the cost
of conversion between logarithmic and more conventional
representations.

References

[1] M. Pedram, \Power Minimization in IC Design: Prin-
ciples and Applications," ACM Trans. Design Auto.
Electr. Sys., Vol. 1, No. 1, Jan. 1996.

[2] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J.
Rabaey, R. W. Broderson, \Optimizing Power Using
Transforms," IEEE Trans. CAD, Vol. 14, No. 1, Jan.
1995, pp. 12-31.

[3] H. A. Mehta, \System Level Power Analysis," Ph.D.
Dissertation, Computer Science and Engineering De-
partment, The Pennsylvania State University, Univer-
sity Park, PA, 1996.

[4] A. K. Chandrakasan, R. W. Broderson, Low Power Dig-
ital CMOS Design, Kluwer, 1995, pp. 282-283.

[5] T. K. Calaway, E. E. Swartzlander, Jr., \Power-Delay
Characteristics of CMOS Multipliers," Proc. 1997 Int.
Symp. Comp. Arith., pp. 26-32.

[6] C. J. Nicol, P. Larsson, \Low Power Multiplication for
FIR Filters," Proc. 1997 Int. Symp. Low Power Elec.
Design, pp. 76-79.

[7] G. A. Jullien, \High Performance Arithmetic for DSP
Systems," in VLSI Signal Processing Technology, M.
A. Bayoumi and E. E. Swartzlander, Jr. eds., Kluwer,
1995, pp. 59-96.

[8] G. Wade, Signal Coding and Processing, Cambridge
University Press, 1994, pp. 247-248, 291-301.

[9] B. W. Wah, Y. Shang, Z. Wu, \Discrete Lagrangian
Method for Optimizing the Design of Multiplierless
QMF Filter Banks," Proc. 1997 IEEE Int. Conf.
ASAP, July 14-16, 1997.

[10] N. Kalouptsidis, S. Theodoridis, eds., Adaptive Sys-
tem Identi�cation and Signal Processing Algorithms,
Prentice-Hall (UK), 1993, pp. 7-14, 123-130, 260-321.

[11] S. Haykin, Adaptive Filter Theory, Prentice-Hall, En-
glewood Cli�s, NJ, pp. 244�.

[12] J. Ma, E. F. Deprettere, K. K. Parhi, \Pipelined
Cordic Based QRD-RLS Adaptive Filtering Using Ma-
trix Lookahead," 1997 IEEE Workshop on Sig. Proc.
Sys., pp. 131-140.

[13] B. Haller, J. G�otze, J. R. Cavallaro, \E�cient Im-
plementation of Rotation Operations for High Per-
formance QRD-RLS Filtering," Proc. 1997 IEEE Int.
Conf. ASAP, July 14-16, 1997, pp. 162-174.

[14] E. Golub, C. F. Van Loan Matrix Computations, 2nd
Ed., Johns Hopkins University Press, 1989, pp. 200-210.

[15] M. Goel, N. R. Shanbhag, \Low-power Adaptive Filter
Architectures via Strength Reduction," Proc. 1996 Int.
Symp. Low Power Elec. Design, Aug. 1996, pp. 217-220.

[16] K. P. Acken, \Low Power Architectural Optimiza-
tions for 3D Graphics Subsystems," Ph.D. Dissertation,
Computer Science and Engineering Department, The
Pennsylvania State University, University Park, PA,
1997.

[17] E. Antelo, J. Villalba, J. D. Bruguera, E. L. Zapata,
`High Performance Rotation Architectures Based on the
Radix-4 CORDIC Algorithm,"` IEEE Trans. Comp.,
Vol. 46, No. 8, August 1997, pp. 855-870.

[18] C. V. Schimpe, S. Simon, J. A. Nossek, \Low Power
CORDIC Implementation Using Redundant Number
Representation," Proc. 1997 Int. Conf. Appl.-Speci�ic
Sys., Arch. and Proc., July 14-16, 1997, pp. 154-161.

[19] F. J. Taylor, R. Gill, J. Joseph, J. Radke, \A 20 Bit
Logarithmic Number System Processor," IEEE Trans.
Comp., Vol. 37, No. 2, February 1988, pp. 190-200.

[20] D. M. Lewis, \An Architecture for Addition and Sub-
traction of Long Word Length Numbers in the Log-
arithmic Number System," IEEE Trans. Comp., Vol.
39, No. 11, November 1990, pp. 1325-1336.

[21] J. N. Coleman, \Simpli�cation of Table Structure in
Logarithmic Arithmetic," Electron. Let., Vol. 31, No.
22, October 26, 1995, pp. 1905-1906.

[22] V. P. Shenoy, F. J. Taylor, \Error Analysis of LMS
Adaptive Digital Filter Implemented with Logarith-
mic Number System," Proc. ICASSP'84, pp. 30.10.1-
30.10.4.

[23] N. Sankarayya, K. Roy, D. Bhattacharya, \Algorithms
for Low Power and High Speed FIR Filter Realiza-
tion Using Di�erential Coe�cients," IEEE Trans. Circ.
Sys., Vol. 44, No. 6, 1997, pp. 488-497.

[24] P. E. Landman, J. M. Rabaey, \Architectural Power
Analysis: The Dual Bit Type Method," IEEE Trans.
VLSI Sys., Vol. 3, No. 2, June 1995, pp. 173-187.

[25] E. de Angel, E. E. Swartzlander, Jr., \Survey of Low
Power Techniques for ROMs," Proc. 1997 Int. Symp.
Low Power Elec. Design, Aug. 1997, pp. 7-11.


