
The logic of Boolean matrices
C. R. Edwards
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A Boolean matrix algebra is described which enables many logical functions to be manipulated
simultaneously. The algebra is similar to conventional matrix algebra and its structure includes
a topological description of logic circuits. The matrices are readily manipulated by the digital
computer.
(Received December 1971)

The type of Boolean matrices considered here were first
developed by J. O. Campeau in the late 1950s. To the author's
knowledge little has been published in this field recently but we
may look forward to a reappraisal of this topic as it enables
logic analysis and synthesis to be carried out with relative ease,
especially with the aid of a digital computer.
The manipulation of Boolean matrices is similar to that of

conventional matrices so that logic design engineers will have
little difficulty in appreciating its advantages over more usual
methods and employing it as a useful tool.
It is not the purpose of this article to submit a series of

rigorous mathematical proofs, for these the list of references
should be consulted, but to give the reader a good working
knowledge of this rather fascinating branch of applied
mathematics.

1. Basic concepts
We require that Boolean functions may be expressed in a
matrix algebra similar to that of conventional matrix algebra,
viz.

COEFFICIENTS
(Defining the
function(s))

INPUT
VARIABLES

REQUIRED
FUNCTION(S)

It will be recalled that in 'conventional' matrix algebra the
coefficients are arranged in a particular order so that under
multiplication the correct coefficient is associated with a
particular variable, e.g.

[-:
gives

3x + 2y = P
- 4 x + y = Q

This is also true of Boolean matrix algebra, the coefficients
being those, in order, of the chosen 'canonical' form. Since
there are many different canonical forms, each of which may
be used to describe a particular function, it is necessary to
'standardise' this form and thereafter not deviate from it. The
choice of the canonical form is made, not as it may appear
for aesthetic reasons, but to enable a straightforward 'unit'
matrix to be developed later.
An equation of canonic form as used here consists of 2"

terms, where n is the number of input variables. Each term
contains all the variables, complemented or uncomplemented,
and a constant (0 or 1); no two terms are the same. By choosing
particular values for the constants, in (1) below for example, the
reader may quickly verify that any logical function of xt and x2
may be defined.
The two-variable canonical form is:

f{xuX2) = (Ci.X

i.e. 'Sum of products' form.

+ C1.X1.X2 + C3.Xi-.X2 +

, (1)

Note that if the variables xu x2 are given the logical value 'l\
the digits following each coefficient 'increase' by '1 ' as the
coefficient number increases, i.e.

/ ( I , 1) = (C1.O.O + C2.0.1 + C3.I.O + C 4 . l . l ) .

A single function in Boolean matrix form is written as:
[Ci c2 c3 c j fxx] = [T]cj rxi"!

U2J
For example, if T = x2 = xt .x2 + xl ,x2, then in canonical

form:
T = (l.Xi.x2 + 0.x,. x2 + I.X1.X2 + O.^i. x2)

giving
[10 10] \xJ = [ J ]

But there is no reason why we should not write any number of
functions in this way:
Given

T = x @y = x.y + x.y ,
U=x.y,
V = x + v

then from

we have 0 1 1 0
0 0 0 1
1 1 1 0

as the reader may verify.
Three points to note here. Firstly, the number of columns

appearing in the 'coefficient' part of the matrix equation is 2"
where V is the number of variables. Secondly, the number of
rows appearing in the 'coefficient' matrix is equal to the
number of functions. Thirdly, the chosen canonical form, and
order of terms must be rigidly adhered to, otherwise incorrect
results occur.
The next problem to be overcome is the solution of a matrix

equation of the form following. Suppose that we are given:
If

n 0 0 n m p i
|o 1 0 oj [ i j [T\

then what are the values of 5 and T1 This is, in effect, the
'multiplication' of a vector by a two-dimensional matrix. In
practical terms we require the solution to the equations

and

when

S =x® y ,

T = x.y

x = 1
y = 1

One method of doing this is to put x = \,y = 1 in the canonical
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equation:
f(x,y) = (c^.x.y + c2.x.y + c3.x.y + c^.x.y)
fs(h 0 = (Ci.0.0 + c 2 .0 .1 + C3.I.O + C4.I.I)

and entering the coefficients for function 'S':
S =fs(l, 1) = (1.0.0 + 0.0.1 + 0 . 1 . 0 + 1.1.1)

= 1
similarly

T= (0.0.0 + 1.0.1 + 0.1.0 + 0.1.1) = 0
Then combining the two we write:

[0 ? °o 0] [!] = [T]
 = [0]

This is clearly rather tedious and we require a faster method and
one which is similar to 'conventional' matrix multiplication.
Since the equations are in canonical form, the values of the

variables (x and y say) can only 'select' one coefficient column
from the coefficient matrix as the answer. In the example above,
<c4 was 'selected' by the values x = 1, y = 1 and the answer
"was given by column 4 of the coefficient matrix. If in the above
example we put x = 0, y = 0, the required solution lies in
column 1 of the coefficient matrix; if x = 1, y = 0 column 3
gives the solution, etc. Therefore, if we write below the co-
efficient matrix the values of the input variables so that the
answer is directly given by the coefficients above them, the
'multiplication' can be performed by inspection, e.g.

r i o o i i m = \s]
[0 1 0 oj LiJ [T\

Whence:

[0 0 1 I]-
Lo 1 0 IJ

•—(additional identifying
matrix)

[oj -

l l
ij

Moreover, and perhaps surprisingly, we have 'solved' for two
Boolean equations simultaneously.
The matrix which we write below the coefficient matrix is

termed the 'unit' or 'identity' matrix. It has the same properties
as the unit matrix in conventional matrix algebra, i.e. the
multiplication of any other vector (or matrix) by the unit
matrix leaves that vector (or matrix) unchanged. It is also a
re-definition of the canonical form discussed above.

For convenience we will define the unit matrix [^4]UNIT
 a s

being a binary progession from left to right and then we can
always derive the respective canonical form from it, e.g. for
two input variables,

MUNIT = [ 0 0 1
[0 1 0

In 'shorthand' we may 'decode' each column of the unit
matrix to give a 'decimal' form, namely:

[^ ']UNIT = [ 0 1 2 3 ]
Then for three variables we can write the unit matrix directly

as
[^'DUNIT = [ 0 1 2 3 4 5 6 7 ] ,

or

LA ] U N I T = [ 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1

[o i o i o i o i
If the variables are say

x
y
_z

then the canonical form is

f(x,y,z) = fa.x.y.z + c2.x.y.z + c3.x.y.z + c4.x.y.z
c5.x.y.z + c6.x.y.z + cn.x.y.z + cs.x.y.z)

Example:
Evaluate

sT
U

simultaneously for x =
Writing the truth table

X

0
0
0
0
1
1
1
1

=
=
=
0,
in

y
0
0
l
l
0
0
1
1

x + y
x.y.z
X

y = i

+ x.y

,z
canonical

z
0
1
0
1
0
1
0
1

S
0
0
1
1
1
1
1
1

= ]

.z

form:
T
0
0
1
0
0
0
0
1

U
1
1
1
1
0
0
0
0

we have immediately:

0 0 1 1 1 1 1 1
0 0 1 0 0 0 0 1
1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

which gives:

UNIT

f
0
1 k

Mathematical treatment of the above
Let U represent union over a field, fl represent intersection
over a field and n represent intersection.

Given the coefficient matrix [C] , the identity matrix
and the variable vector X], then:

/iC*i> x2,... xn) = V "< D fay-3 (2)

Gives
[C] X] = /J

For two input variables xu x2 we have, from (2):
f1(x1,x2) = {cll.(all.xl + an.x,).(a21.jc2 + a21.5c2)

+ Ci2-(tfi2-*i + a12.x1).(a22.x2 + a22.x2)

Conversion of a matrix in binary form to 'decimal' form:

qj = jt^'-'qv, Kj<2' (3)
[q' is decimal form).
The identity matrix is chosen so that in its 'decimal' form

aj = 7 - 1 , l < y < 2 " (4)

2. Boolean matrix multiplication
The method of multiplying two Boolean matrices together is
an extension of the method employed above for the multi-
plication of a vector by a matrix.
We wish to multiply two Boolean matrices, say:

[B] [C] = [Z>]
we write the unit matrix directly under the pre-multiplying
matrix:

[C] = ID]
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Suppose the first column of [C] matches the fourth column of
[/4]UNIT then the first column of [Z>] is equal to the fourth
column of [2?]. Again, suppose that the second column of [C]
matches the second column of \A~] then the second column of
[D] is equal to the second column of [2?]. We proceed in this
fashion until all the columns of [C] (and thus [/)]) have been
operated upon, e.g.

[i
[I

0
0 o

UNIT

We may carry out the same operation in 'decimal' form:
[2 0 3 3] [3 1 0 1] = [3 0 2 0]
[0 1 2 3]« D4]UNIT

In general it can be shown that

[2?] [C] * [C] [2?] ,
one exception is

Note also that the number of columns appearing in each
matrix must be equal to 2" where '«' is the number of variables
upon which the matrix is defined.
This principle may be extended to cover more than two

matrices and the following can be shown to apply:

[2?] [C] [2>] = {[2?] [C]} [2)] = [2?] {[C] ID-]}

[c]x].x]

Fig. l(a)

- X I

Fig. l(b)

Pxi-

Fig. l(c)

Paej-

Fig.

3. An interpretation of matrix multiplication
Consider

[5] [C] X] = / , ]
where [i?] and [C] are two 'coefficient' matrices, X~\ is the
variable vector and / J is the resulting vector. If we first
evaluate [C] A'] we in fact mathematically describe a system
of the form shown in Fig. \{a) where ' C represents a logic
circuit.
The output [C] X~\ we will call X]', and is in fact a new

variable vector. We have reduced the initial equation to

[it] xy = / , ]
which may be interpreted as Fig. 1(6). Alternatively, if we had
first evaluated [5] [C] = [£)] we would have reduced Fig.
l(b) to a single logic block Fig. l(c)).
Boolean matrix multiplication therefore, can be regarded as a

representation of cascaded logic blocks.
It should be noted that matrix multiplication is not limited to

matrices of the same dimensions. Fig. \{d) shows the multiplic-
ation of matrices of differing dimensions, together with a cas-
caded block representation.

Example:
It is required that the two logic units shown in Fig. 2(a) should
be cascaded as shown in Fig. 2(b). What are the functions
appearing at the output ?
Given; truth tables for '£' and ' C :

xb, xc yb,yc fxb fyb fxc fyc

0
0
1
1

0
1
0
1

1
1
1
0

0
0
1
1

0
1
1
0

1
1
0
0

We have
i i i oi [o i i oi
0 0 1 lj [l 1 0 0j

[ o [ / 4 ] u N I T

giving the result:

i o i

As a truth table:

whence

X y fx fy
0 0 1 0
0 1 0 1
1 0 1 1
1 1 1 0

/* = (x-y + x.y_ + x.y) = x + y
fy = (x.y + x.y) =x@y

The answer may be checked by applying Boolean algebra to
each unit in turn, a rather tedious process which illustrates one
of the advantages of Boolean matrix multiplication.

Mathematical treatment of multiplication

[2?] [C] = [D]
may be evaluated as (see Fig. l(d))

drJ = u bm n { n (flta-cv + s t a .gy)} ' ! J r 5 f ; (5)

m = l ( . i= l J 1 ^ 7 ^ / .

In 'decimal' form we write
B{C{J} + 1} = D{J} 1 < 7 < 2 " (6)

where .D{7} represents the number lying in the 7th column of
eg-

[2 3 1 1] [0 2 1 3] = [2 1 3 1]
for
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B C

Fig. 2(b)

For the second column of D:D{2} = B{C{2} + 1}
= B{2 + 1}

= 1
4. The inverse matrix
We may have a system given by [5] [C] = [£»] where [5] and
£Z>] are known and we wish to evaluate [C]. In 'conventional'
matrix algebra we would write [C] = [1?] - 1 [Z>]. The question
jiow arises, does [ 5 ] " 1 exist and how do we find it?

It can be shown that the inverse of a boolean matrix exists if
the matrix is 'non-singular', that is if all columns of the matrix
are different, e.g.

[0 1 0 l]
[l 0 0 lj and [2 3 0 1] are non-singular,

whereas

I"1 ° l l] and [0 0 3 2] are singular

The inverse matrix is found from:

Since [^4]UNIT ' S the ur>it matrix the expression is analogous to

n - l 1
B =B'

Note also that since [/4]UNIT is non-singular by definition,
both [-B]"1 and [5] must be non-singular.

[/)] = [ 2 1 3 2 ]

Pre- and post-multiplication is preserved, e.g.

Given [B] [C] = [D]
then [C] = [B]"1 [D]

[B] = [D] [C]"1

Example:
In Fig. 2{b) suppose that the overall response of the system
is given by [if] [C] Z] = [Z>] JT] where X] represents the

vector

Given

and
[2?] = [3 0 2 1]

find the truth table for [C].
Now [5] is non-singular so its inverse exists. From

[Z?]-1 [2?] = MU N I T

or
[U]-1 [3 0 2 1] = [0 1 2 3]

we construct [i?] ~x by inspection:
[1 3 2 0] [3 0 2 1] = [0 1 2 3]
[0 1 2 3]

Thence the matrix [C], given by [C] = [Z?]-1 [Z>], is:
[C] = [1 3 2 0] [2 1 3 2] = [2 3 0 2]

= [1 1 0 1]
L0 1 0 0J

The truth table for 'C is therefore:
x y fxe fyc
0 0 1 0
0 1 1 1
1 0 0 0
1 1 1 0

The result should be checked by the reader.

Mathematical treatment of the inverse matrix
The inverse matrix is most conveniently expressed by the deci-
mal notation (see (6)).

[ 5 ] is non-singular if

B{J}^B{K} \^J<K^2" (7)

Then with [5] non-singular, [2?]-1 is given by
B~l{B{J} + 1} = 7 - 1 l < / < 2 " (8)

It can be shown that an algebra of singular inverse matrices
exists which enables the generation and manipulation of
functions with 'don't care' conditions. Unfortunately space
will not allow the inclusion of this topic here.

•Pxl-«—

Pain-

Fig. 3(«)

c •
••

c »
m

c

fctt-

B «
«

C

« —
• —

B

^—
• — c
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5. The 'powers' of matrices
Consider Fig. 3(a) which represents a cascade of three identical
logic blocks. We can now evaluate the response of this system
as:

[C] [C] [C] r\=n,
which is written in shorthand form as [C]3 X] = / ] .
Similarly, we may evaluate Fig. 3(6) as [5] [C] [5] [C] = / ]

or
EC]]2 =

Note that in general [[5] [C]]2 # [5]2 [C]2.
The author has found that certain non-singular matrices obey

an indices law similar to that of conventional algebra and such
matrices may be used in synthesis of logic arrays. This, how-
ever, is beyond the scope of this article.
When a problem involves large numbers of variables or

requires high 'powers' of matrices to be evaluated, the use of a
digital computer is clearly essential.

6. Further operations
We may require to analyse the response of the system shown in
Fig. 4(a), having a 'crossed' connection.
One solution is to introduce a new module 'A" containing

a 'crossover'—but what is the form of the matrix to do this ?
It is found that if we take the [A]UNlT matrix (n = 2) and

interchange the ROWS corresponding to 'x' and 'y' the result
is the matrix required, e.g. in Fig. 4(6)

0 1 0
0 0 1

The same result can be obtained by deriving 'X' from a
truth table but is very tedious, especially when the number of
variables is high. The modification of the identity matrix in this
way provides an 'operator' which can be derived quickly and
easily as needs arise. A more complex example appears in
Fig. 4(c).
The concept of an operator is not limited to simple 'cross-

overs' Fig. 4(rf) shows a more interesting problem. To derive
'X', the operator, we first take the D4]UNIT matrix and 'AND'
its two rows together term by term; this becomes the row of
'X' corresponding to V . We then 'OR' the two rows of
[/4]UN1T; this becomes the row of 'X' corresponding to 'y'.
That is, from

UNIT = r° ° i *
[0 1 0 l

we obtain

= [0 0 0 ll
|o i i lj

'x'th row
'yth row

In practice this method can be very powerful in the logical
manipulation of whole functions.
Mathematically it can be shown that if a matrix is multiplied

by the identity matrix having its rows modified in a particular
fashion then the rows of the 'multiplicand' matrix undergo the
same modification.
More complex operators have been developed by the author

to make possible the analysis of circuits of the type shown in
Fig. 5 in any number of dimensions. These operators, when
raised to given powers, cycle the inputs and outputs of the
logic cells so that the organisation of the array is duplicated.
Other operators have been developed which perturb the

columns of a given matrix. It can be shown that this is equiv-
alent to the redefinition of the functions concerned in terms of
combinations of the defining variables, and as such is the first
step in a synthesis procedure.

7. Computer implementation
The operations described above are readily carried out by
a digital computer without resort to special programming
techniques.
A matrix of ten tenth order functions may be represented by

a vector of 1,024 ten-bit integers. The multiplication of two
such matrices allows the manipulation of ten functions simul-

B X C

Fig. 4(6)

0 0 0 0 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

X

y

z
\- -I

=

f
X

f
y

f
z

Fig. 4(c)

X c

Fig. 4(d)
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Tf-f
fy<n+«'(n+l) r

1
1

»•
!
1
1

to-

1
1

•

1
1
1
1

Fig. 5

.fx (n+i)

tf—T

t a n

> - * 1

2. Evaluate the operator [ Y]
Take

UNIT
= To o i l ]

Lo l o l j
'OR' the two rows, giving:

0 1 1 1 as the upper row of
'AND' the two rows, giving:

0 0 0 1 as the lower row of [ 7]

L J 0 0 l

3. Evaluate [A"], a third order system:

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0 1

Interchange top and bottom rows to give required cross-
over, whence:

"0 1 0 1 0 1 0 f
IX] = 0 0 1 1 0 0 1 1

. 0 0 0 0 1 1 1 1

4. Multiply out the matrix equation in decimal form to give
answer:

[ 0 2 3 1 3 2 0 3 ]
0 1 2 3 4 5 6 7

[ 0 4 2 6 1 5 3 7 ]
0 1 2 3 4 5 6 7

taneously. Calculations of this order, quite adequate for most
practical purposes, may be carried out on small machines.

Matrix multiplication is implemented by store interchanging,
and extensive use is made of word comparison when setting up
special operators.
Because both the matrices and operations are rigorously

defined, fast and elegant routines result.
An example is now given which embodies most of the tech-

niques developed in this article.

Example:
Find the response of the system shown in Fig. 6. Given

= [0 1 1 0 1 1 0 l]
[o o i i i o o lj '

11 1 0 1
1 0 1 0
1 0 1 1

|o o o

Solution
1. Write the matrix equation of the system putting in 'dummy'

matrices for the inter-block operators:

[2>] [AT] [C] \_Y]

n
[7
0

•

4
1

3
2

5]
3

n
[0
0

2
1

2
2

3]
3

[2 0 2 3]

finally yielding: [0 3 0 2] \x =

Note that the multiplication of step 4 can be carried out
column by column thus avoiding the tedious process of multi-
plying out completely each matrix in turn. The arrow shows the
evaluation of the second column of the answer.

5. Write truth table of this final matrix:

y
x.y

X

0
0
1
1

y
0
l
0
l

fx
0
1
0
1

fy
0
1
0
0

whence:

8. Conclusion
The main advantages of analysis (and synthesis) of systems by
Boolean matrices of the type discussed is that they define a
system's interconnections and logic functions in a rigorous,
formalised way and are readily manipulated by the digital
computer.
Although it has not been possible to give a complete picture

of all the operations possible using these matrices, indeed this is
still the object of research, it is hoped that the reader will
find these basic concepts useful and worthy of employment in
the digital field.

Fig. 6
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