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Preface:
Toward a postmodern synthesis of

evolutionary biology

The title of this work alludes to four great books: Paul Auster’s novel The
Music of Chance (Auster, 1991); Jacques Monod’s famous treatise on
molecular biology, evolution, and philosophy, Chance and Necessity (Le
hazard et la necessite) (Monod, 1972); the complementary book by Fran-
cois Jacob, The Logic of Life (Jacob, 1993); and, of course, Charles 
Darwin’s The Origin of Species (Darwin, 1859). Each of these books, in
its own way, addresses the same overarching subject: the interplay of 
randomness (chance) and regularity (necessity) in life and its evolution.

Only after this book was completed, at the final stage of editing, did
I become aware of the fact that the phrase Logic of Chance has already
been used in a book title by John Venn, an eminent Cambridge logician
and philosopher who in 1866 published The Logic of Chance: An Essay
on the Foundations and Province of the Theory of Probability. This work
is considered to have laid the foundation of the frequency interpretation
of probability, which remains the cornerstone of probability theory and
statistics to this day (Venn, 1866). He is obviously famous for the inven-
tion of the ubiquitous Venn diagrams. I am somewhat embarrassed that I
was unaware of John Venn’s work when starting this book. On the other
hand, I can hardly think of a more worthy predecessor.

My major incentive in writing this book is my belief that, 150 years
after Darwin and 40 years after Monod, we now have at hand the data
and the concepts to develop a deeper, more complex, and perhaps, more
satisfactory understanding of this crucial relationship between chance
and necessity. I make the case that variously constrained randomness 
is at the very heart of the entire history of life.

The inspiration for this book has been manifold. The most straight-
forward incentive to write about the emerging new vision of evolution is
the genomic revolution that started in the last decade of the twentieth
century and continues to unfold. The opportunity to compare the com-
plete genome sequences of thousands of organisms from all walks of life
has qualitatively changed the landscape of evolutionary biology. Our



inferences about extinct, ancestral life forms are not anymore the wild
guesses they used to be (at least, for organisms with no fossil record). On
the contrary, comparing genomes reveals numerous genes that are con-
served in major groups of living beings (in some cases, even in all or most
of them) and thus gives us a previously unimaginable wealth of informa-
tion and confidence about the ancestral forms. For example, it is not
much of an exaggeration to claim that we have an excellent idea of the
core genetic makeup of the last common ancestor of all bacteria that
probably lived more than 3.5 billion years ago. The more ancient ances-
tors are much murkier, but even for those, some features seem to be
decipherable. The genomic revolution did more than simply allow credi-
ble reconstruction of the gene sets of ancestral life forms. Much more
dramatically, it effectively overturned the central metaphor of evolution-
ary biology (and, arguably, of all biology), the Tree of Life (TOL), by
showing that evolutionary trajectories of individual genes are irreconcil-
ably different. Whether the TOL can or should be salvaged—and, if so,
in what form—remains a matter of intense debate that is one of the
important themes of this book.

Uprooting the TOL is part of what I consider to be a “meta-revolu-
tion,” a major change in the entire conceptual framework of biology. At
the distinct risk of earning the ire of many for associating with a much-
maligned cultural thread, I call this major change the transition to a post-
modern view of life. Essentially, this signifies the plurality of pattern and
process in evolution; the central role of contingency in the evolution of
life forms (“evolution as tinkering”); and, more specifically, the demise of
(pan)adaptationism as the paradigm of evolutionary biology. Our unfal-
tering admiration for Darwin notwithstanding, we must relegate the Vic-
torian worldview (including its refurbished versions that flourished in the
twentieth century) to the venerable museum halls where it belongs, and
explore the consequences of the paradigm shift.

However, this overhaul of evolutionary biology has a crucial counter-
point. Comparative genomics and evolutionary systems biology (such as
organism-wide comparative study of gene expression, protein abundance,
and other molecular characteristics of the phenotype) have revealed sev-
eral universal patterns that are conserved across the entire span of cellu-
lar life forms, from bacteria to mammals. The existence of such universal
patterns suggests that relatively simple theoretical models akin to those
employed in statistical physics might be able to explain important aspects
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of biological evolution; some models of this kind with considerable
explanatory power already exist. The notorious “physics envy” that seems
to afflict many biologists (myself included) might be soothed by recent
and forthcoming theoretical developments. The complementary rela-
tionship between the universal trends and the contingency of the specific
results of evolution appears central to biological evolution—and the cur-
rent revolution in evolutionary biology—and this is another central
theme of this book.

Another entry point into the sketch of a new evolutionary synthesis
that I am trying to develop here is more specific and, in some ways, more
personal. I earned my undergraduate and graduate degrees from
Moscow State University (in what was then the USSR), in the field of
molecular virology. My PhD project involved an experimental study of
the replication of poliovirus and related viruses that have a tiny RNA
molecule for their genome. I have never been particularly good with my
hands, and the time and place were not the best for experimentation
because even simple reagents and equipment were hard to obtain. So
right after I completed my PhD project, a colleague, Alex Gorbalenya,
and I started to veer into an alternative direction of research that, at the
time, looked to many like no science at all. It was “sequence gazing”—
that is, attempting to decipher the functions of proteins encoded in the
genomes of small viruses (the only complete genomes available at the
time) from the sequences of their building blocks, amino acids. Nowa-
days, anyone can rapidly perform such an analysis by using sleek software
tools that are freely available on the Internet; naturally, meaningful inter-
pretation of the results still requires thought and skill (that much does
not change). Back in 1985, however, there were practically no computers
and no software. Nevertheless, with our computer science colleagues, we
managed to develop some rather handy programs (encoded at the time on
punch cards). Much of the analysis was done by hand (and eye). Against
all odds, and despite some missed opportunities and a few unfortunate
errors, our efforts over the next five years were remarkably fruitful.
Indeed, we managed to transform the functional maps of those small
genomes from mostly unchartered territory to fairly rich “genomescapes”
of functional domains. Most of these predictions have been subsequently
validated by experiment, and some are still in the works (bench experi-
mentation is much slower than computational analysis). I believe that our
success was mostly due to the early realization of the strikingly simple but
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surprisingly powerful basic principle of evolutionary biology: When a dis-
tinct sequence motif is conserved over a long evolutionary span, it must
be functionally important, and the higher the degree of conservation, the
more important the function. This common-sense principle that is of
course rooted in the theory of molecular evolution has served our pur-
poses exceedingly well and, I believe, converted me into an evolutionary
biologist for the rest of my days. What I mean is not so much theoretical
knowledge, but rather an indelible feeling of the absolute centrality and
essentiality of evolution in biology. I am inclined to reword the famous
dictum of the great evolutionary geneticist Theodosius Dobzhansky
(“Nothing in biology makes sense except in the light of evolution”)
(Dobzhansky, 1973) in an even more straightforward manner: Biology is
evolution.

In those early days of evolutionary genomics, Alex and I often talked
about the possibility that our beloved small RNA viruses could be direct
descendants of some of the earliest life forms. After all, they were tiny
and simple genetic systems, with only one type of nucleic acid involved,
and their replication was directly linked to expression through the trans-
lation of the genomic RNA. Of course, this was late-night talk with no
direct relevance to our daytime effort on mapping the functional
domains of viral proteins. However, I believe that, 25 years and hundreds
of diverse viral and host genomes later, the idea that viruses (or virus-like
genetic elements) might have been central to the earliest stages of life’s
evolution has grown from a fanciful speculation to a concept that is com-
patible with a wealth of empirical data. In my opinion, this is the most
promising line of thought and analysis in the study of the earliest stages
of the evolution of life.

So these are the diverse conceptual threads that, to me, unexpect-
edly converge on the growing realization that our understanding of evo-
lution—and, with it, the very nature of biology—have forever departed
from the prevailing views of the twentieth century that today look both
rather naïve and somewhat dogmatic. At some point, the temptation to
try my hand in tying together these different threads into a semblance of
a coherent picture became irresistible, hence this book.

Some of the inspiration came from outside of biology, from the
recent astounding and enormously fascinating developments in physical
cosmology. These developments not only put cosmology research
squarely within the physical sciences, but completely overturn our ideas
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about the way the world is, particularly, the nature of randomness and
necessity. When it comes to the boundaries of biology, as in the origin of
life problem, this new worldview cannot be ignored. Increasingly, physi-
cists and cosmologists pose the question “Why is there something in the
world rather than nothing?” not as a philosophical problem, but as a
physical problem, and explore possible answers in the form of concrete
physical models. It is hard not to ask the same about the biological world,
yet at more than one level: Why is there life at all rather than just 
solutions of ions and small molecules? And, closer to home, even assum-
ing that there is life, why are there palms and butterflies, and cats and
bats, instead of just bacteria? I believe that these questions can be given
a straightforward, scientific slant, and plausible, even if tentative,
answers seem to be emerging.

Recent advances in high-energy physics and cosmology inspired this
book in more than only the direct scientific sense. Many of the leading
theoretical physicists and cosmologists have turned out to be gifted writ-
ers of popular and semipopular books (one starts to wonder whether
there is some intrinsic link between abstract thinking at the highest level
and literary talent) that convey the excitement of their revelations about
the universe with admirable clarity, elegance, and panache. The modern
wave of such literature that coincides with the revolution in cosmology
started with Stephen Hawking’s 1988 classic A Brief History of Time
(Hawking, 1988). Since then, dozens of fine diverse books have
appeared. The one that did the most to transform my own view of the
world is the wonderful and short Many Worlds in One, by Alex Vilenkin
(Vilenkin, 2007), but equally excellent treatises by Steven Weinberg
(Weinberg, 1994), Alan Guth (Guth, 1998a), Leonard Susskind
(Susskind, 2006b), Sean Carroll (Carroll, 2010), and Lee Smolin (in a
controversial book on “cosmic natural selection”; Smolin, 1999) were of
major importance as well. These books are far more than brilliant popu-
larizations: Each one strives to present a coherent, general vision of both
the fundamental nature of the world and the state of the science that
explores it. Each of these visions is unique, but in many aspects, they are
congruent and complementary. Each is deeply rooted in hard science
but also contains elements of extrapolation and speculation, sweeping
generalizations, and, certainly, controversy. The more I read these books
and pondered the implications of the emerging new worldview, the more
strongly was I tempted to try something like that in my own field of 
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evolutionary biology. At one point, while reading Vilenkin’s book, it
dawned on me that there might be a direct and crucial connection
between the new perspective on probability and chance imposed by
modern cosmology and the origin of life—or, more precisely, the origin
of biological evolution. The overwhelming importance of chance in the
emergence of life on Earth suggested by this line of enquiry is definitely
unorthodox and is certain to make many uncomfortable, but I strongly
felt that it could not be disregarded if I wanted to be serious about the
origin of life.

This book certainly is a personal take on the current state of evolu-
tionary biology as viewed from the vantage point of comparative
genomics and evolutionary systems biology. As such, it necessarily blends
established facts and strongly supported theoretical models with conjec-
ture and speculation. Throughout the book, I try to distinguish between
the two as best I can. I intended to write the book in the style of the
aforementioned excellent popular books in physics, but the story took a
life of its own and refused to be written that way. The result is a far more
scientific, specialized text than originally intended, although still a largely
nontechnical one, with only a few methods described in an oversimpli-
fied manner. An important disclaimer: Although the book addresses
diverse aspects of evolution, it remains a collection of chapters on
selected subjects and is by no account a comprehensive treatise. Many
important and popular subjects, such as the origin of multicellular organ-
isms or evolution of animal development, are completely and purpose-
fully ignored. As best I could, I tried to stick with the leitmotif of the
book, the interplay between chance and nonrandom processes. Another
thorny issue has to do with citations: An attempt to be, if not comprehen-
sive, then at least reasonably complete, would require thousands of ref-
erences. I gave up on any such attempt from the start, so the reference
list at the end is but a small subset of the relevant citations, and the selec-
tion is partly subjective. My sincere apologies to all colleagues whose
important work is not cited.

All these caveats and disclaimers notwithstanding, it is my hope that
the generalizations and ideas presented here will be of interest to many
fellow scientists and students—not only biologists, but also physicists,
chemists, geologists, and others interested in the evolution and origin 
of life.
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The fundamentals of evolution: Darwin
and Modern Synthesis

In this chapter and the next, I set out to provide a brief summary of
the state of evolutionary biology before the advent of comparative
genomics in 1995. Clearly, the task of distilling a century and a half of
evolutionary thought and research into two brief, nearly nontechnical
chapters is daunting, to put it mildly. Nevertheless, I believe that we
can start by asking ourselves a straightforward question: What is the
take-home message from all those decades of scholarship? We can
garner a concise and sensible synopsis of the pregenomic evolution-
ary synthesis even while inevitably omitting most of the specifics.

I have attempted to combine history and logic in these first two
chapters, but some degree of arbitrariness is unavoidable. In this
chapter, I trace the conceptual development of evolutionary biology
from Charles Darwin’s On the Origin of Species to the consolidation
of Modern Synthesis in the 1950s. Chapter 2 deals with the concepts
and discoveries that affected the understanding of evolution between
the completion of Modern Synthesis and the genomic revolution of
the 1990s.

Darwin and the first evolutionary synthesis: Its
grandeur, constraints, and difficulties
It is rather strange to contemplate the fact that we have just cele-
brated the 150th anniversary of the first publication of Darwin’s On
the Origin of Species (Darwin, 1859) and the 200th jubilee of Darwin
himself. Considering the profound and indelible effect that Origin
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2 the logic of chance

had on all of science, philosophy, and human thinking in general (far
beyond the confines of biology), 150 years feels like a very short time.

What was so dramatic and important about the change in our
worldview that Darwin prompted? Darwin did not discover evolu-
tion (as sometimes claimed overtly but much more often implied,
especially in popular accounts and public debates). Many scholars
before him, including luminaries of their day, believed that organ-
isms changed over time in a nonrandom manner. Even apart from
the great (somewhat legendary) Greek philosophers Empedokles,
Parmenides, and Heraclites, and their Indian contemporaries who
discussed eerily prescient ideas (even if, oddly for us, combined
with mythology) on the processes of change in nature, Darwin had
many predecessors in the eighteenth and early nineteenth cen-
turies. In later editions of Origin, Darwin acknowledged their con-
tributions with characteristic candor and generosity. Darwin’s own
grandfather, Erasmus, and the famous French botanist and zoolo-
gist Jean-Bapteste Lamarck (Lamarck, 1809) discussed evolution in
lengthy tomes.1 Lamarck even had a coherent concept of the mech-
anisms that, in his view, perpetuated these changes. Moreover, Dar-
win’s famed hero, teacher, and friend, the great geologist Sir
Charles Lyell, wrote about the “struggle for existence” in which the
more fecund will always win. And, of course, it is well known that
Darwin’s younger contemporary, Alfred Russel Wallace, simultane-
ously proposed essentially the same concept of evolution and its
mechanisms.

However, the achievements of all these early evolutionists
notwithstanding, it was Darwin who laid the foundation of modern
biology and forever changed the scientific outlook of the world in
Origin. What made Darwin’s work unique and decisive? Looking
back at his feat from our 150-year distance, three breakthrough gen-
eralizations seem to stand out:

1. Darwin presented his vision of evolution within a completely
naturalist and rationalist framework, without invoking any tele-
ological forces or drives for perfection (or an outright creator)
that theorists of his day commonly considered.

2. Darwin proposed a specific, straightforward, and readily
understandable mechanism of evolution that is interplay
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between heritable variation and natural selection, collectively
described as the survival of the fittest.

3. Darwin boldly extended the notion of evolution to the entire
history of life, which he believed could be adequately repre-
sented as a grand tree (the famous single illustration of Origin),
and even postulated that all existing life forms shared a single
common ancestor.

Darwin’s general, powerful concept stood in stark contrast to the
evolutionary ideas of his predecessors, particularly Lamarck and
Lyell, who contemplated mostly, if not exclusively, evolutionary
change within species. Darwin’s fourth great achievement was not
purely scientific, but rather presentational. Largely because of a well-
justified feeling of urgency caused by competition with Wallace, Dar-
win presented his concept in a brief and readable (even for prepared
lay readers), although meticulous and carefully argued, volume.
Thanks to these breakthroughs, Darwin succeeded in changing the
face of science rather than just publishing another book. Immediately
after Origin was published, most biologists and even the general edu-
cated public recognized it as a credible naturalist account of how the
observed diversity of life could have come about, and this was a
dynamic foundation to build upon.2

Considering Darwin’s work in a higher plane of abstraction that is
central to this book, it is worth emphasizing that Darwin seems to
have been the first to establish the crucial interaction between
chance and order (necessity) in evolution. Under Darwin’s concept,
variation is (nearly) completely random, whereas selection introduces
order and creates complexity. In this respect, Darwin is diametrically
opposed to Lamarck, whose worldview essentially banished chance.
We return to this key conflict of worldviews throughout the book.

Indeed, with all due credit given to his geologist and early evolu-
tionary biologist predecessors, Darwin was arguably the first scholar
to prominently bring the possibility of evolutionary change (and, by
implication, origin) of the entire universe into the realm of natural
phenomena that are subject to rational study. Put another way, Dar-
win initiated the scientific study of the time arrow—that is, time-
asymmetrical, irreversible processes. By doing so, he prepared the
ground not only for all further development of biology, but also for
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the advent of modern physics. I believe that the great physicist Lud-
wig Boltzmann, the founder of statistical thermodynamics and the
author of the modern concept of entropy, had good reason to call
Darwin a “great physicist,” paradoxical as this might seem, given that
Darwin knew precious little about actual physics and mathematics.
Contemporary philosopher Daniel Dennett may have had a point
when he suggested that Darwin’s idea of natural selection might be
the single greatest idea ever proposed (Dennett, 1996).

Certainly, Darwin’s concept of evolution at the time Origin was
published and at least through the rest of the nineteenth century faced
severe problems that greatly bothered Darwin and, at times, appeared
insurmountable to many scientists. The first substantial difficulty was
the low estimate of the age of Earth that prevailed in Darwin’s day.
Apart from any creation myth, the best estimates by nineteenth-cen-
tury physicists (in particular, Lord Kelvin) were close to 100 million
years, a time span that was deemed insufficient for the evolution of life
via the Darwinian route of gradual accumulation of small changes.
Clearly, that was a correct judgment—the 100 million years time range
is far too short for the modern diversity of life to evolve, although no
one in the nineteenth century had a quantitative estimate of the rate of
Darwinian evolution. The problem was resolved 20 years after Darwin’s
death. In the beginning of the twentieth century, when radioactivity
was discovered, scientists calculated that cooling of the Earth from its
initial hot state would take billions of years, just about the time Darwin
thought would be required for the evolution of life by natural selection.

The second, more formidable problem has to do with the mecha-
nisms of heredity and the so-called Jenkin nightmare. Because the
concept of discrete hereditary determinants did not exist in Darwin’s
time (outside the obscure articles of Mendel), it was unclear how an
emerging beneficial variation could survive through generations and
get fixed in evolving populations without being diluted and perishing.
Darwin apparently did not think of this problem at the time he wrote
Origin; an unusually incisive reader, an engineer named Jenkin,
informed Darwin of this challenge to his theory. In retrospect, it is
difficult to understand how Darwin (or Jenkin or Huxley) did not
think of a Mendelian solution. Instead, Darwin came up with a more
extravagant concept of heredity, the so-called pangenesis, which even
he himself did not seem to take quite seriously. This problem was
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resolved by the (re)birth of genetics, although the initial implications
for Darwinism3 were unexpected (see the next section).

The third problem that Darwin fully realized and brilliantly
examined was the evolution of complex structures (organs, in Dar-
win’s terms) that require assembly of multiple parts to perform their
function. Such complex organs posed the classic puzzle of evolution-
ary biology that, in the twentieth century, has been evocatively
branded ‘irreducible complexity.’4 Indeed, it is not immediately clear
how selection could enact the evolution of such organs under the
assumption that individual parts or partial assemblies are useless.
Darwin tackled this problem head-on in one of the most famous pas-
sages of Origin, the scenario of evolution of the eye. His proposed
solution was logically impeccable, plausible, and ingenious: Darwin
posited that complex organs do evolve through a series of intermedi-
ate stages, each of which performs a partial function related to the
ultimate function of the evolving complex organ. Thus, the evolution
of the eye, according to Darwin, starts with a simple light-sensing
patch and proceeds through primitive eye-like structures of incremen-
tally increasing utility to full-fledged, complex eyes of arthropods and
vertebrates. It is worth noting that primitive light-sensing structures
resembling those Darwin postulated on general grounds have been
subsequently discovered, at least partially validating his scenario and
showing that, in this case, the irreducibility of a complex organ is illu-
sory. However, all the brilliance of Darwin’s scheme notwithstanding,
it should be taken for what it is: a partially supported speculative sce-
nario for the evolution of one particular complex organ. Darwin’s
account shows one possible trajectory for the evolution of complexity
but does not solve this major problem in general. Evolution of com-
plexity at different levels is central to understanding biology, so we
revisit it on multiple occasions throughout this book.

The fourth area of difficulty for Darwinism is, perhaps, the deep-
est. This major problem has to do with the title and purported main
subject of Darwin’s book, the origin of species and, more generally,
large-scale evolutionary events that are now collectively denoted as
macroevolution. In a rather striking departure from the title of the
book, all indisputable examples of evolution that Darwin presented
involve the emergence of new varieties within a species, not new
species let alone higher taxa. This difficulty persisted long after 
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Darwin’s death and exists even now, although it was mitigated first by
the progress of paleontology, then by developments in the theory of
speciation supported by biogeographic data, and then, most convinc-
ingly, by comparative genomics (see Chapters 2 and 3). Much to his
credit, and unlike detractors of evolution up to this day, Darwin
firmly stood his ground in the face of all difficulties, thanks to his
unflinching belief that, incomplete as his theory might be, there was
no rational alternative. The only sign of Darwin’s vulnerability was the
inclusion of the implausible pangenesis model in later editions of
Origin, as a stop-gap measure to stave off the Jenkin nightmare.

Genetics and the “black day” of Darwinism
An urban legend tells that Darwin had read Mendel’s paper but
found it uninspiring (perhaps partly because of his limited command
of German). It is difficult to tell how different the history of biology
would have been if Darwin had absorbed Mendel’s message, which
seems so elementary to us. Yet this was not to be.

Perhaps more surprisingly, Mendel himself, although obviously
well familiar with the Origin, did not at all put his discovery into a
Darwinian context. That vital connection had to await not only the
rediscovery of genetics at the brink of the twentieth century, but also
the advent of population genetics in the 1920s. The rediscovery of
Mendelian inheritance and the birth of genetics should have been a
huge boost to Darwinism because, by revealing the discreteness of
the determinants of inheritance, these discoveries eliminated the
Jenkin nightmare. It is therefore outright paradoxical that the original
reaction of most biologists to the discovery of genes was that genetics
made Darwin’s concept irrelevant, even though no serious scientist
would deny the reality of evolution. The main reason genetics was
deemed incompatible with Darwinism was that the founders of
genetics, particularly Hugo de Vries, the most productive scientist
among the three rediscoverers of Mendel laws, viewed mutations of
genes as abrupt, saltational hereditary changes that ran counter to
Darwinian gradualism. These mutations were considered to be an
inalienable feature of Darwinism, in full accord with Origin. Accord-
ingly, de Vries viewed his mutational theory of evolution as “anti-
Darwinian.” So Darwin’s centennial jubilee and the 50th anniversary



1 • the fundamentals of evolution 7

of the Origin in 1909 were far from triumphant, even as genetic
research surged and Wilhelm Johansson introduced the term gene
that very year.

Population genetics, Fisher’s theorem, fitness
landscapes, drift, and draft
The foundations for the critically important synthesis of Darwinism
and genetics were set in the late 1920s and early 1930s by the trio of
outstanding theoretical geneticists: Ronald Fisher, Sewall Wright,
and J. B. S. Haldane. They applied rigorous mathematics and statis-
tics to develop an idealized description of the evolution of biological
populations. The great statistician Fisher apparently was the first to
see that, far from damning Darwinism, genetics provided a natural,
solid foundation for Darwinian evolution. Fisher summarized his
conclusions in the seminal 1930 book The Genetical Theory of Nat-
ural Selection (Fisher, 1930), a tome second perhaps only to Darwin’s
Origin in its importance for evolutionary biology.5 This was the begin-
ning of a spectacular revival of Darwinism that later became known as
Modern Synthesis (a term mostly used in the United States) or neo-
Darwinism (in the British and European traditions).

It is neither necessary nor practically feasible to present here the
basics of population genetics.6 However, several generalizations that
are germane to the rest of the discussion of today’s evolutionary biol-
ogy can be presented succinctly. Such a summary, even if superficial,
is essential here. Basically, the founders of population genetics real-
ized the plain fact that evolution does not affect isolated organisms or
abstract species, but rather affects concrete groups of interbreeding
individuals, termed populations. The size and structure of the evolv-
ing population largely determines the trajectory and outcome of evo-
lution. In particular, Fisher formulated and proved the fundamental
theorem of natural selection (commonly known as Fisher’s theorem),
which states that the intensity of selection (and, hence, the rate of
evolution due to selection) is proportional to the magnitude of the
standing genetic variation in an evolving population, which, in turn, is
proportional to the effective population size.

Box 1-1 gives the basic definitions and equations that determine
the effects of mutation and selection on the elimination or fixation of
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mutant alleles, depending on the effective population size. The qual-
itative bottom line is that, given the same mutation rate, in a popula-
tion with a large effective size, selection is intense. In this case, even
mutations with a small positive selection coefficient (“slightly” benefi-
cial mutations) quickly come to fixation. On the other hand, muta-
tions with even a small negative selection coefficient (slightly
deleterious mutations) are rapidly eliminated. This effect found its
rigorous realization in Fisher’s theorem.

Box 1-1: The fundamental relationships defining the roles
of selection and drift in the evolution of populations

Nearly neutral evolution dominated by drift

1/Ne >>|s|

Evolution dominated by selection

1/Ne <<|s|

Mixed regime, with both drift and selection important

1/Ne ≈|s|

Ne: effective population size (typically, substantially less than the
number of individuals in a population because not all individuals
produce viable offspring)

s: selection coefficient or fitness effect of mutation:

s = FA – Fa

FA, Fa: fitness values of two alleles of a gene

s>0: beneficial mutation

s<0: deleterious mutation

A corollary of Fisher’s theorem is that, assuming that natural
selection drives all evolution, the mean fitness of a population cannot
decrease during evolution (if the population is to survive, that is). This
is probably best envisaged using the imagery of a fitness landscape,
which was first introduced by another founding father of population
genetics, Sewall Wright. When asked by his mentor to present the
results of his mathematical analysis of selection in a form accessible to
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Figure 1-1 Fitness landscapes: the Mount Fujiyama landscape with a single
(global) fitness peak and a rugged fitness landscape.

biologists, Wright came up with this extremely lucky image. The
appeal and simplicity of the landscape representation of fitness evolu-
tion survive to this day and have stimulated numerous subsequent
studies that have yielded much more sophisticated and less intuitive
theories and versions of fitness landscapes, including multidimen-
sional ones (Gavrilets, 2004).7 According to Fisher’s theorem, a popu-
lation that evolves by selection only (technically, a population of an
infinite size—infinite populations certainly do not actually exist, but
this is convenient abstraction routinely used in population genetics)
can never move downhill on the fitness landscape (see Figure 1-1). It
is easy to realize that a fitness landscape, like a real one, can have
many different shapes. Under certain special circumstances, the
landscape might be extremely smooth, with a single peak correspon-
ding to the global fitness maximum (sometimes this is poetically
called the Mount Fujiyama landscape; see Figure 1-1A). More realis-
tically, however, the landscape is rugged, with multiple peaks of dif-
ferent heights separated by valleys (see Figure 1-1B). As formally
captured in Fisher’s theorem (and much in line with Darwin), a pop-
ulation evolving by selection can move only uphill and so can reach
only the local peak, even if its height is much less than the height of
the global peak (see Figure 1-1B). According to Darwin and Modern
Synthesis, movement across valleys is forbidden because it would
involve a downhill component. However, the development of popula-
tion genetics and its implications for the evolutionary process
changed this placid picture because of genetic drift, a key concept in
evolutionary biology that Wright also introduced.
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As emphasized earlier, Darwin recognized a crucial role of
chance in evolution, but that role was limited to one part of the evolu-
tionary process only: the emergence of changes (mutations, in the
modern parlance). The rest of evolution was envisaged as a determin-
istic domain of necessity, with selection fixing advantageous muta-
tions and the rest of mutations being eliminated without any
long-term consequence. However, when population dynamics
entered the picture, the situation changed dramatically. The founders
of quantitative population genetics encapsulated in simple formulas
the dependence of the intensity of selection on population size and
mutation rate (see Box 1-1 and Figure 1-2). In a large population with
a high mutation rate, selection is effective, and even a slightly advan-
tageous mutation is fixed with near certainty (in an infinite popula-
tion, a mutation with an infinitesimally small positive selection
coefficient is fixed deterministically). Wright realized that a small
population, especially one with a low mutation rate, is quite different.
Here random genetic drift plays a crucial role in evolution through
which neutral or even deleterious (but, of course, nonlethal) muta-
tions are often fixed by sheer chance. Clearly, through drift, an evolv-
ing population can violate the principle of upward-only movement in
the fitness landscape and might slip down (see Figure 1-2).8 Most of
the time, this results in a downward movement and subsequent
extinction, but if the valley separating the local peak from another,
perhaps taller one is narrow, then crossing the valley and starting a
climb to a new, perhaps taller summit becomes possible (see Figure
1-2). The introduction of the notion of drift into the evolutionary nar-
rative is central to my story. Here chance enters the picture at a new
level: Although Darwin and his immediate successors saw the role of
chance in the emergence of heritable change (mutations), drift intro-
duces chance into the next phase—namely, the fixation of these
changes—and takes away some of the responsibility from selection. I
explore just how important the role of drift is in different situations
during evolution throughout this book.

John Maynard Smith and, later, John Gillespie developed the the-
ory and computer models to demonstrate the existence of a distinct
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Figure 1-2 Trajectories on a rugged fitness landscape. The dotted line is an
evolutionary trajectory at a high effective population size. The solid line is an
evolutionary trajectory at a low effective population size.

mode of neutral evolution that is only weakly dependent on the effec-
tive population size and that is relevant even in infinite populations
with strong selection. This form of neutral fixation of mutations
became known as genetic draft and refers to situations in which one or
more neutral or even moderately deleterious mutations spread in a
population and are eventually fixed because of the linkage with a bene-
ficial mutation: The neutral or deleterious alleles spread by hitchhiking
with the linked advantageous allele (Barton, 2000). Some population-
genetic data and models seem to suggest that genetic draft is even
more important for the evolution in sexual populations than drift.
Clearly, genetic draft is caused by combined effects of natural selec-
tion and neutral variation at different genomic sites and, unlike drift,
can occur even in effectively infinite populations (Gillespie, 2000).
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Genetic draft may allow even large populations to fix slightly deleteri-
ous mutations and, hence, provides them with the potential to cross
valleys on the fitness landscape.

Positive and purifying (negative) selection: Classifying
the forms of selection
Darwin thought of natural selection primarily in terms of fixation of
beneficial changes. He realized that evolution weeded out deleteri-
ous changes, but he did not interpret this elimination on the same
plane with natural selection. In the course of the evolution of Modern
Synthesis, the notion of selection was expanded to include “purifying”
(negative) selection; in some phases of evolution, this turns out to be
more common (orders of magnitude more common, actually) than
“Darwinian,” positive selection. Essentially, purifying selection is the
default process of elimination of the unfit. Nevertheless, defining this
process as a special form of selection seems justified and important
because it emphasizes the crucial role of elimination in shaping (con-
straining) biological diversity at all levels. Simply put, variation is per-
mitted only if it does not confer a significant disadvantage on any
surviving variant. To what extent these constraints actually limit the
space available for evolution is an interesting and still open issue, and
I touch on this later (see in particular Chapters 3, 8, and 9).

A subtle but substantial difference exists between purifying selec-
tion and stabilizing selection, which is a form of selection defined by
its effect on frequency distributions of trait values. These forms
include stabilizing selection that is based primarily on purifying selec-
tion, directional selection driven by positive (Darwinian) selection,
and the somewhat more exotic regimes of disruptive and balancing
selection that result from combinations of multiple constraints (see
Figure 1-3).
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Figure 1-3 Four distinct forms of selection in an evolving population: (A) Stabi-
lizing selection (fitness landscape represented by solid line); (B) Directional
selection (fitness landscape represented by solid line); (C) Disruptive selection
(fitness landscape represented by solid line); (D) Balancing selection (fitness
landscape changes periodically by switching between two dotted lines).

Modern Synthesis
The unification of Darwinian evolution and genetics achieved prima-
rily in the seminal studies of Fisher, Wright, and Haldane prepared
the grounds for the Modern Synthesis of evolutionary biology. The
phrase itself comes from the eponymous 1942 book by Julian Huxley
(Huxley, 2010), but the conceptual framework of Modern Synthesis is
considered to have solidified only in 1959, during the centennial cel-
ebration of Origin. The new synthesis itself was the work of many
outstanding scientists. The chief architects of Modern Synthesis were
arguably experimental geneticist Theodosius Dobzhansky, zoologist
Ernst Mayr, and paleontologist George Gaylord Simpson. Dobzhan-
sky’s experimental and field work with the fruit fly Drosophila
melanogaster provided the vital material support to the theory of pop-
ulation genetics and was the first large-scale experimental validation
of the concept of natural selection. Dobzhansky’s book Genetics and
the Origin of Species (Dobzhansky, 1951) is the principal manifesto of
Modern Synthesis, in which he narrowly defined evolution as “change
in the frequency of an allele within a gene pool.” Dobzhansky also
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famously declared that nothing in biology makes sense except in the
light of evolution9 (see more about “making sense” in Appendix A).
Ernst Mayr, more than any other scientist, is to be credited with an
earnest and extremely influential attempt at a theoretical framework
for Darwin’s quest, the origin of species. Mayr formulated the so-
called biological concept of species, according to which speciation
occurs when two (sexual) populations are isolated from each other for
a sufficiently long time to ensure irreversible genetic incompatibility
(Mayr, 1963). Simpson reconstructed the most comprehensive (in his
time) picture of the evolution of life based on the fossil record (Simp-
son, 1983). Strikingly, Simpson recognized the prevalence of stasis in
the evolution of most species and the abrupt replacement of domi-
nant species. He also introduced the concept of quantum evolution,
which presaged the punctuated equilibrium concept of Stephen Jay
Gould and Niles Eldredge (see Chapter 2).

The consolidation of Modern Synthesis in the 1950s was a some-
what strange process that included remarkable “hardening” (Gould’s
word) of the principal ideas of Darwin (Gould, 2002). Thus, the doc-
trine of Modern Synthesis effectively left out Wright’s concept of ran-
dom genetic drift and its evolutionary importance, and remains
uncompromisingly pan-adaptationist. Rather similarly, Simpson him-
self gave up the idea of quantum evolution, so gradualism remained
one of the undisputed pillars of Modern Synthesis. This “hardening”
shaped Modern Synthesis as a relatively narrow, in some ways dog-
matic conceptual framework.

To proceed with the further discussion of the evolution of evolu-
tionary biology and its transformation in the age of genomics, it seems
necessary to succinctly recapitulate the fundamental principles of
evolution that Darwin first formulated, the first generation of evolu-
tionary biologists then amended, and Modern Synthesis finally codi-
fied. We return to each of these crucial points throughout the book.

1. Undirected, random variation is the main process that provides
the material for evolution. Darwin was the first to allow chance
as a major factor into the history of life, and this was arguably one
of his greatest insights. Darwin also allowed a subsidiary role for
directed, Lamarckian-type variation, and he tended to give these
mechanisms more weight in later editions of Origin. Modern
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Synthesis, however, is adamant in its insistence on random muta-
tions being the only source of evolutionarily relevant variability.

2. Evolution proceeds by fixation of rare beneficial variations and
elimination of deleterious variations: This is the process of nat-
ural selection that, along with random variation, is the principal
driving force of evolution, according to Darwin and Modern
Synthesis. Natural selection, which is obviously akin to and
inspired by the “invisible hand” of the market that ruled econ-
omy according to Adam Smith, was the first mechanism of evo-
lution ever proposed that was simple and plausible and that did
not require any mysterious innate trends. As such, this was
Darwin’s second key insight. Sewall Wright emphasized that
chance could play a substantial role in the fixation of changes
during evolution rather than only in their emergence, via
genetic drift that entails random fixation of neutral or even
moderately deleterious changes. Population-genetic theory
indicates that drift is particularly important in small popula-
tions that go through bottlenecks. Genetic draft (hitchhiking) is
another form of stochastic fixation of nonbeneficial mutations.
However, Modern Synthesis in its “hardened” form effectively
rejected the role of stochastic processes in evolution beyond the
origin of variation and adhered to a purely adaptationist (pan-
adaptationist) view of evolution. This model inevitably leads to
the concept of “progress,” gradual improvement of “organs”
during evolution. Darwin endorsed this idea as a general trend,
despite his clear understanding that organisms are less than
perfectly adapted, as strikingly exemplified by rudimentary
organs, and despite his abhorrence of any semblance of an
innate strive for perfection of the Lamarckian ilk. Modern Syn-
thesis shuns progress as an anthropomorphic concept but nev-
ertheless maintains that evolution, in general, proceeds from
simple to complex forms.

3. The beneficial changes that are fixed by natural selection are
infinitesimally small (in modern parlance, the evolutionarily
relevant mutations are supposed to have infinitesimally small
fitness effects), so evolution occurs via the gradual accumula-
tion of these tiny modifications. Darwin insisted on strict grad-
ualism as an essential staple of his theory: “Natural selection
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can act only by the preservation and accumulation of infinitesi-
mally small inherited modifications, each profitable to the pre-
served being. ...If it could be demonstrated that any complex
organ existed, which could not possibly have been formed by
numerous, successive, slight modifications, my theory would
absolutely break down.” (Origin of Species, Chapter 6). Even
some contemporaries of Darwin believed that was an unneces-
sary stricture on the theory. In particular, the early objections
of Thomas Huxley are well known: Even before the publication
of Origin, Huxley wrote to Darwin, “You have loaded yourself
with an unnecessary difficulty in adopting Natura non facit
saltum so unreservedly” (http://aleph0.clarku.edu/huxley/).
Disregarding these early warnings and even Simpson’s concept
of quantum evolution, Modern Synthesis uncompromisingly
embraced gradualism.

4. An aspect of the classic evolutionary biology that is related to
but also distinct from the principled gradualism is 
uniformitarianism (absorbed by Darwin from Lyell’s geology).
This is the belief that the evolutionary processes have remained
essentially the same throughout the history of life.

5. This key principle is logically linked to gradualism and unifor-
mitarianism: Macroevolution (the origin of species and higher
taxa), is governed by the same mechanisms as microevolution
(evolution within species). Dobzhansky, with his definition of
evolution as the change of allele frequencies in populations,
was the chief proponent of this principle. Darwin did not use
the terms microevolution and macroevolution; nevertheless,
the sufficiency of intraspecies processes to explain the origin of
species and, more broadly, the entire evolution of life can be
considered the central Darwinian axiom (or perhaps a funda-
mental theorem, but one for which Darwin did not have even
an inkling of the proof). It seems reasonable to speak of this
principle as “generalized uniformitarianism”: The processes of
evolution are the same not only throughout the history of life,
but also at different levels of evolutionary transformation,
including major transitions. The conundrum of microevolution
versus macroevolution is, in some ways, the fulcrum of evolu-
tionary biology, so we revisit it repeatedly throughout this book.

http://aleph0.clarku.edu/huxley/
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6. Evolution of life can be accurately represented by a “great
tree,” as emphasized by the only illustration in Origin (in
Chapter 4). Darwin introduced the Tree of Life (TOL) only as
a general concept and did not attempt to investigate its actual
branching order. The tree was populated with actual life forms,
to the best of the knowledge at the time, by the chief German
follower of Darwin, Ernst Haeckel. The founders of Modern
Synthesis were not particularly interested in the TOL, but they
certainly embraced it as a depiction of the evolution of animals
and plants that the fossil record amply supported in the twenti-
eth century. By contrast, microbes that were increasingly rec-
ognized as major ecological agents remained effectively outside
the scope of evolutionary biology.

7. A corollary of the single TOL concept deserves the status of a
separate principle: All extant diversity of life forms evolved
from a single common ancestor (or very few ancestral forms,
under Darwin’s cautious formula in Chapter 14 of Origin; see
Darwin, 1859). Many years later, this has been dubbed the Last
Universal Common (Cellular) Ancestor (LUCA). For the
architects of Modern Synthesis, the existence of LUCA was
hardly in doubt, but they did not seem to consider elucidation
of its nature a realistic or important scientific goal.

Synopsis
In his book On the Origin of Species, Charles Darwin meticulously
collected evidence of temporal change that permeates the world of
living beings and proposed for the first time a plausible mechanism of
evolution: natural selection. Evolution by natural selection certainly is
one of the most consequential concepts ever developed by a scientist
and even has been deemed the single most important idea in human
history (Dennett, 1996). Somewhat paradoxically, it is also often
branded a mere tautology, and when one thinks in terms of the sur-
vival of the fittest, there seems to be some basis for this view. How-
ever, considering the Darwinian scenario as a whole, it is easy to grasp
its decidedly nontautological and nontrivial aspect. Indeed, what
Darwin proposed is a mechanism for the transformation of random
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variation into adaptations that are not random at all, including elabo-
rate, complex devices that perform highly specific functions and so
increase the fitness of their carriers. Coached in physical terms and
loosely following Erwin Schroedinger’s famous treatise, Darwinian
evolution is a machine for the creation of negentropy—in other
words, order from disorder. I submit that this was the single key
insight of Darwin, the realization that a simple mechanism, devoid of
any teleological component, could plausibly account for the emer-
gence, from random variation alone, of the amazing variety of life
forms that appear to be so exquisitely adapted to their specific envi-
ronments. Viewed from that perspective, the “invisible hand” of natu-
ral selection appears almost miraculously powerful, and one cannot
help wondering whether it is actually sufficient to account for the his-
tory of life. This question has been repeatedly used as a rhetoric
device by all kinds of creationists, but it also has been asked in earnest
by evolutionary biologists. We shall see in the rest of this book that
the answers widely differ, both between scientists and between dif-
ferent situations and stages in the evolution of life.

Of course, Darwinism in its original formulation faced problems
more formidable and more immediate than the question of the suffi-
ciency of natural selection: Darwin and his early followers had no sen-
sible idea of the mechanisms of heredity and whether these
mechanisms, once discovered, would be compatible with the Darwin-
ian scenario. In that sense, the entire building of Darwin’s concept
was suspended in thin air. The rediscovery of genetics at the begin-
ning of the twentieth century, followed by the development of theo-
retical and experimental population genetics, provided a solid
foundation for Darwinian evolution. It was shown beyond reasonable
doubt that populations evolved through a process in which Darwinian
natural selection was a major component. The Modern Synthesis of
evolutionary biology completed the work of Darwin by almost seam-
lessly unifying Darwinism with genetics. As it matured, Modern Syn-
thesis notably “hardened” through indoctrinating gradualism,
uniformitarianism, and, most important, the monopoly of natural
selection as the only route of evolution. In Modern Synthesis, all
changes that are fixed during evolution are considered adaptive, at
least initially. For all its fundamental merits, Modern Synthesis is a
rather dogmatic and woefully incomplete theory. To name three of
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the most glaring problems, Modern Synthesis makes a huge leap of
faith by extending the mechanisms and patterns established for
microevolution to macroevolutionary processes; it has nothing to say
about evolution of microbes, which are the most abundant and
diverse life forms on Earth; and it does not even attempt to address
the origin of life.
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