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Abstract

Hypothesis testing is a methodological paradigm widely popularized outside the field of pure statistics, and nowadays more or less familiar to the 
largest part of biomedical researchers. Conversely, the equivalence testing is still somehow obscure and misunderstood, although it represents a 
conceptual mainstay for some biomedical fields like pharmacology. In order to appreciate the way it could suit laboratory medicine, it is necessary 
to understand the philosophy behind it, and in turn how it stemmed and differentiated along the history of classical hypothesis testing. Here we 
present the framework of equivalence testing, the various tests used to assess equivalence and discuss their applicability to laboratory medicine 
research and issues.
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Lessons in biostatistics

Introduction – historical genesis of 
difference testing

Chance is part of nature, and whatever we did 
there is always a probabilistic aspect we necessari-
ly should deal with. This was utterly clear to re-
searchers at the beginning of 20th century, which 
were involved in the positivistic approach to natu-
ral sciences, especially agriculture (1). In this field, 
they had the opportunity to manipulate nature to 
produce changes, but at the same time they had 
the necessity to recognize whether what they ob-
served was the consequence of an intervention or 
just a mere fluke (2). Indeed, they already knew 
that nature was variable, and Galton had shown 
that biological traits followed the laws of probabil-
ity (3,4). Therefore, researchers had the necessity 
to turn observations into evidences, and the laws 
of probability gave them means to assess uncer-
tainty in findings.

It’s no surprise that Ronald Fisher, at the time he 
set the hypothesis testing, was employed in an ex-
perimental agricultural station and developed a 

pragmatic view of statistics aimed to rule out 
chance from empirical evidences (5,6). In his frame-
work, Fisher conceived the experimental research 
as a process attempting to induce, through the ap-
plication of a factor, a certain difference in the ob-
servations taken with respect to an untreated con-
dition*. (*NOTE: We would like to remark that this 
narrative description of Fisher’s achievements was 
intentionally oversimplified. For instance, we omit-
ted to mention that “observed differences” were 
instead “average difference between observa-
tions”, through which it was possible to apply the 
Student’s method of statistical comparison using 
probability distributions). However, what he clev-
erly did was approaching the proof of such an ex-
perimental factor starting from the opposite per-
spective of no experimental effect. Although it 
might seem paradoxical, placing an hypothesis of 
null effect gave means for representing observed 
differences as erratic fluctuations produced by 
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chance around an hypothetic value of no-differ-
ence equating zero (5). Of course, this explicitly re-
called the probabilistic description of measure-
ment errors that Gauss had given about half a cen-
tury before and that was already familiar to re-
searchers: the larger the difference from the ex-
pected outcome, the lower the probability of its 
random realization (7). Thus, the observation of 
large differences with an associated low probabili-
ty was unlikely due to a random fluctuation, dis-
proving in turn the null hypothesis. For practical 
reasons of experimental reproducibility, Fisher set 
the probability threshold for disproving random-
ness as low as < 0.05 (or less than 1 out of 20 trials), 
aiming to assure enough confidence when stating 
the alternative hypothesis of an experimental fac-
tor (5). 

Contemporarily to the efforts of Fisher, Egon Pear-
son and mostly Jerzy Neyman refined the con-
cepts of hypothesis testing (5). Neyman, which was 
concerned with mathematics and logic more than 
with experiments, formally showed that the rejec-
tion of a null hypothesis could be achieved only at 
the expense of a certain uncertainty regarding its 
truth. Such an uncertainty corresponded to the 
probability of erroneously rejecting a null hypoth-
esis when there was no effect (he called Type I er-
ror), and equated the Fisher’s threshold for achiev-
ing significance (or α) (Table 1). Noteworthy, Ney-
man also showed that the gain of confidence of 
correctly rejecting a null hypothesis always hap-
pened at the expense of sensitivity of detecting an 
actual effect, a concept he termed statistical power. 
Indeed, he showed that when sensitivity increases, 
the probability of accepting a null hypothesis when 
there is an effect (he called Type II error or β, so 
that sensitivity was 1 - β) decreased (Table 1). 

The “decision making” approach of Neyman is 
usually seen as an alternative to the Fisher’s frame-
work, although the two should be considered 
rather complementary (8). Indeed, Neyman’s ap-
proach helps to demonstrate that the hypothesis 
testing is indeed a difference testing. In fact, un-
certainty is used to show whether a factor is strong 
enough to prove itself against chance. Thus, in the 
“classical framework” the burden of proof is on dif-
ference.

A trick of logic

So far, we have seen that the hypothesis testing 
was devised to prove an experimental hypothesis 
concerning a treatment or factor. Now, let us im-
agine that a researcher was concerned with the 
simple issue of replacing an old instrument with a 
new one. He would measure the same set of items 
using the old device and the new one, and then he 
would statistically compare the data. Could the in-
vestigator conclude the instruments were equal if 
he found no statistically significant difference in 
the compared items? Formally, he could not state 
this at all. In fact, the researcher observed some 
differences between the two sets of measures, but 
they were random to cause no significant changes 
or bias. In other words, any researcher could not 
recognize an instrument by the set of measures it 
produced, and vice versa. Therefore, he could just 
say that the two devices “agreed” in measuring 
the same objects, although he could not conclude 
they were literally “equal”.

However, in some situations it is necessary to state 
explicitly that two compared items not simply 
agree, but are equivalent. The reader should no-
tice at this point that we used the term “equiva-
lent” instead of “equal”, as the latter represents 
something that is practically unachievable due to 
the randomness that arises in any natural process. 
This is a fundamental passage, and must be care-
fully considered, in that “equivalent” means some-
thing that, although not strictly the same, is for-
mally alike. Let us imagine that we compared sev-
eral individuals using anthropometric measures. 
Supposing that they were all related, for instance 
brothers and cousins, reasonably there would be 
no statistically significant difference between 
them. However, an individual would be more like 
his brother than to his cousin, so that the issue 
would be showing which is the amount of differ-
ence in measures that makes any two individuals 
looking substantially alike. Hence, to show “equiv-
alence” between individuals, their differences 
should be less than a certain amount considered a 
mark of significant dissimilarities. Thus, the issue 
would be twofold: first, we should accept the fact 
that missing to show a difference does not imply 
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equivalence, and second, we should answer the 
question on how close is close enough to be con-
sidered (practically) equivalent. It is evident that 
for answering both it is necessary a trick of logic to 
bend the Fisher and Neyman’s framework to the 
needs of equivalence testing.

The rise of equivalence testing

The theoretic discussion on a possible testing pro-
cedure for equivalence is not new in statistics and 
was implicitly addressed by Eric Lehmann yet in 
1959 (9). However, it was just around 1970s that the 
work of Wilfred Westlake on the statistical assess-
ment of equivalent formulations of drugs made of 
it a true practical concern (10-13). He firstly recog-
nized that whatever sufficiently large cohort of 
subjects would have shown as statistically signifi-
cant even a negligible difference, an issue of ex-
cessive study sensitivity known as statistical over-
powering. To control for β level (Table 1), Westlake 
devised a method relying on an interval of maxi-
mum acceptable difference between average re-
sponses of compared drugs (defined as –Δ; +Δ), 
within which the actual difference (indicated as δ) 

of equivalent drugs could stay. In other words, the 
method controlled the study sensitivity setting 
the largest effect size at which the actual differ-
ence was considered negligible. Hence, although 
not producing strictly the same response, the two 
drugs were considered practically interchangeable, 
turning out to be equivalent. The Westlake’s meth-
od concluded equivalence if the confidence inter-
val around δ (a probabilistic measure of the true lo-
cation of δ) rested entirely within –Δ; +Δ. Notewor-
thy, such an approach suffered for inflation of the 
actual probability level (the P-value) by which the 
equivalence was ruled out, and flawed the applica-
tion of Westlake’s method and its analogues in real 
decision making on bioequivalence (14,15). 

David Rocke was among the ones who openly rec-
ognized that the Westlake’s method forced the 
classical framework of difference testing to control 
for β level, while it was devised to control for α in-
stead (16). Hence, in 1983, he proposed to shift the 
burden of proof from difference to non-difference, 
turning upside down the perspective on the ex-
perimental hypothesis. In classical framework, 
equivalence was proven through non-difference 
as follows:

DECISION

Accept H0 Reject H0

TRUTH
H0

correct decision 
(1 - α or specificity) Type I error (α)

H1 Type II error (β) correct decision
(1 - β or sensitivity)

Statement

DIFFERENCE TESTING
H0: there is no difference no difference and there was none a difference but there was none

H1: there is a difference no difference but there was actually 
one  a difference and there was one

EQUIVALENCE TESTING

H0: there is a certain 
difference

a certain difference and there was 
one

no certain difference but there was 
one

H1: there is no certain 
difference

a certain difference but there was 
none

no certain difference and there was 
none

The hypothesis testing framework is shown by the decision-making standpoint. By carefully reading the statements in the lower 
part of the table, it is possible to understand why in difference testing the sensitivity corresponds to 1 - α (showing a difference 
when there is one) and not to 1 - β. The term “equivalence” means “within a certain difference”, so the statement of “no certain 
difference” is indeed synonym of “equivalence”.

Table 1. Hypothesis testing and decision-making
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•	 null hypothesis (H0)  non-difference: |δ| = 0 or 
|δ| ≤ |Δ|

•	 alternative hypothesis (H1)  difference: |δ| > |Δ|.
Thus, he proposed the procedure below:

•	 null hypothesis (H0)  non-equivalence: |δ| ≥ |Δ|
•	 alternative hypothesis (H1)  equivalence: |δ| < 

|Δ|.

Therefore, what was Type II error in difference test-
ing became Type I error in equivalence, allowing 
to easily control for the probability of erroneously 
accepting an inexistent difference (now corre-
sponding to α), overcoming the limitations of 
Westlake’s method (Table 1).  

Around the same years, Walter Hauck and Sharon 
Anderson advanced their procedure, which relied 
on the concept of “interval hypothesis” for testing 
equivalence as the experimental one placed under 
the alternative hypothesis (15). Let mS and mE rep-
resent the average response to a standard and ex-
perimental formulation of a drug, respectively, and 
A being the lower and B the upper (with B > A) 
boundary of the equivalence interval thereof. 
Then, per the Anderson and Hauck’s procedure, it is 
possible to state the hypothesis testing as follows:

•	 null hypothesis (H0)    non-equivalence: mE - 
mS ≤ A or mE - mS ≥ B

•	 alternative hypothesis (H1)    equivalence: A < 
mE - mS < B.

In fact, two sets of observations are said to be not 
equivalent if their average difference mE - mS = δ 
encroaches the equivalence limits, or |δ| ≥ (B - A). 
Now, for a parallel design (two independent 
groups without crossing effect), it is possible to 
build a statistical test using the frame of a Stu-
dent’s two-sided t-test (Figure 1A):

Eq.1.1   T = 
 δ – 0,5 × (A + B)

 S ×   (NE + NS)–1
,

in which the numerator represents the distance 
of the average differences form the center of the 
quivalence interval, NE and NS the size of experi-
mental and standard group respectively, and S 
the pooled sample variance that in this case can 
be estimated as follows:

Eq.1.2   Spooled = 
NE + NS –2

, SE × (NE – 1) +  SS  × (NS – 1) 
2 2

with SE and SS being the standard deviation of 
the experimental and standard group respec-
tively. Then, significance for T can be found us-
ing a Student’s t distribution with ν = NE + NS - 2 
degrees of freedom. Noteworthy, this method 
allows to properly size the study applying in the 
appropriate way the rules of power analysis. In 
fact, in the difference testing, the power refers to 
the uncertainty in rejecting a significant differ-

Figure 1. Rejection region (solid black area under the curve) for 
different procedures to test equivalence. (A) The Anderson and 
Hauck’s two-sided test - each area accounts for α / 2, so that the 
confidence is 1 – α. (B) The Schuirmann’s two one-sided test - 
each area accounts for α, so that the confidence is 1 - 2α.

–3 –2 –1 0 +1 +2 +3

–3 –2 –1 0 +1 +2 +3

A

B
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ence when there is actually one, while in equiva-
lence it is the uncertainty in rejecting equiva-
lence when there is no difference. Anderson and 
Hauck also proved their procedure to be the 
most powerful test for equivalence comparing 
to any confidence interval approach previously 
advanced (15). In other words, they showed that 
given a certain interval of acceptability for equiv-
alence, their method produced the lowest rate 
of false negatives in the sense of erroneously re-
jected equivalent items (in their case drugs for-
mulations). 

The two one-sided tests (TOST)

In 1987, Donald Schuirmann discussed the pow-
er of an alternative procedure to test equiva-
lence, which was based on an adaptation of the 
Westlake’s method to the null hypothesis of 
non-equivalence formulated in 1981 (17,18). Let 
us consider the equivalence interval hypothesis 
as presented so far:

•	 null hypothesis (H0)    non-equivalence: mE - 
mS ≤ A or mE - mS ≥ B

•	 alternative hypothesis (H1)    equivalence: A < 
mE - mS < B.

Then, it can be rewritten “decomposing” the inter-
val in two single hypotheses:

•	 null hypothesis (H01)    inferiority: mE - mS ≤ A
•	 alternative hypothesis (H11)    non-inferiority: 

mE - mS > A,

and

•	 null hypothesis (H02)    superiority: mE - mS ≥ B
•	 alternative hypothesis (H12)    non-superiority: 

mE - mS < B.

Thereby, it is possible to test both null hypotheses 
H01 and H02 applying to each of them a single sid-
ed test at the nominal level of significance α. Thus, 
to prove equivalence, it is necessary that both the 
hypothesis of inferiority and superiority be dis-
proved simultaneously. Formally, the two one-sid-
ed tests (TOST) can be written as shown below for 
a two parallel groups design (Figure 1B and Ap-
pendix A for an example):

Eq.2.1   Tinferiority = , δ – A

 S ×   N –1

 B – δ

 S ×   N –1
and Tsuperiority = 

with N being the total sample size (sum of two 
groups). For each test, the significance level is 
found on a Student’s t distribution with ν = N - 2 
degrees of freedom and S can be estimated per 
Eq.1.2. It must be noticed that the overall signifi-
cance level of the procedure is 1-2α, in that each 
directional one-sided test (of inferiority and su-
periority) has an individual significance level of α 
(see Appendix B for example). The sample size is 
necessary for providing each single one-sided 
test with the adequate sensitivity. The method 
of Schuirmann, as a refinement of Westlake’s 
procedure, can be also seen under the point of 
view of the confidence interval (CI). In that we 
set α = 0.05, thus we can build a (1 - 2α) = 0.9 CI 
around δ choosing the appropriate value of t:

Eq.2.2   90% Cl =  δ ± t ×  S   N –1

If an interval –Δ to +Δ is placed, then the 90% CI 
approach offers the possibility to show how well 
the alternative formulation fits the bioequiva-
lence requirement (see Figure 2 and Appendix B 
for an example). Nowadays the TOST is consid-
ered the standard test for bioequivalence assess-
ment (19).

Figure 2. The confidence interval approach (Westlake’s meth-
od) for TOST-P. The diamond represents the average difference 
(d = 1.1), while the whiskers are the 90% CI (0.18; 2.20); the grey 
shaded area is the interval of equivalence with the dashed lines 
marking its boundaries (-3.12; 3.12). 

2–2 3–3–4 41–1 0 

Di�erence between paired data (d)

Interval of equivalence
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Equivalence or agreement for laboratory 
medicine?

So far, we have seen how the equivalence testing 
stemmed from classical hypothesis testing and be-
came the reference approach for bioequivalence 
problems. In 1995, Hartmann and co-authors clev-
erly addressed the limitations of difference testing 
in statistical procedures for method validation, in-
voking the adoption of principles of bioequiva-
lence assessment (20). Noteworthy, in 2001 Kon-
dratovich and co-authors recognized the suitabili-
ty of equivalence testing for comparative studies 
in laboratory medicine (21). Notably, they also 
showed that for whatever regression model used 
to measure the agreement between paired obser-
vations, it was possible to reformulate its testing 
framework using a composite hypothesis of equiv-
alence:

•	 null hypothesis (H0)    non-equivalence: slope 
≤ 1 - δ or slope ≥ 1 + δ

•	 alternative hypothesis (H1)    equivalence: 1 - δ 
< slope < 1 + δ.

In a broader discussion, provided by Mascha and 
Sessler, it was shown that testing hypothesis of 
equivalence could be easily achieved through re-
gression analysis (see Appendix C) (22). Thus, de-
spite such evidences we might wonder why we 
still ignore equivalence testing in laboratory medi-
cine, if we are often concerned with comparing 
devices and procedures. Do we really need it?

To answer, we should take into consideration two 
main aspects. First, one is of cultural kind, and con-
cerns the way we have been raised in our proba-
bilistic approach to scientific research. Of course, 
in laboratory medicine we have inherited the idea 
of experimental science with the burden of proof 
resting on difference. Hence, although we might 
set comparative studies to answer whether a new 
device or procedure could replace an old one, we 
still approach it by a classic perspective ignoring 
equivalence. Thus, we could figure out to easily fill 
the gap just by popularizing equivalence among 
biomedical researchers, expecting to see all the 
new studies approached through such an alterna-
tive way within the next ten years, as it just hap-
pened in pharmacology. 

However, and this is the second aspect, equiva-
lence could be uneasily handled in laboratory 
medicine. Equivalence cannot stand by itself, but 
demands the external support provided through 
the so-called equivalence interval to gain a mean-
ing. Indeed, it is an aprioristic and conservative ap-
proach that demands to set an interval of allow-
ance before proving the actual existence of any 
bias. On the contrary, agreement is a more liberal 
approach, in that it considers any difference just as 
an erratic and uninfluential factor unless it is prov-
en otherwise. Thereby, it is concerned with bias 
only afterwards, giving room to more pragmatic 
considerations. Thus, apart from our statistical her-
itage, we should set about stating how much dif-
ferent is equivalent when comparing devices and 
procedures, and this could generate some confu-
sion. An interesting example of this scenario was 
offered by Lung and co-authors which discussed 
the suitability of equivalence testing for assessing 
automated test procedures (23). In their manu-
script, when presenting the analysis of data using 
TOST, authors advanced two distinct equivalence 
intervals, ± 2% for assay result and ± 3% for con-
tent uniformity. Translated into real laboratory 
medicine, we should invoke different equivalence 
intervals for different applications, like therapeutic 
drug monitoring and hormone testing, and differ-
ent domains, like comparison between alternative 
analytical methods and comparison between 
standard and non-standard pre-analytical proce-
dures. Therefore, any study on equivalence would 
have its own truth on equivalent methods de-
pending on the criterion adopted, with considera-
ble practical consequences. Let us imagine we set 
an equivalence interval of ± 5% for analytical re-
sults in therapeutic drug monitoring, basing on 
some considerations regarding the allowable un-
certainty at the medical decision limit of the thera-
peutic window. How many methods would result 
equivalent within such a narrow range? Almost 
none if we consider immuno-enzymatic methods, 
very few if we consider high performance liquid 
chromatography (HPLC) methods and some more 
in case of liquid chromatography with tandem 
mass spectrometry (LC-MS/MS) methods. Thus, we 
should figure out a scenario in which immuno-en-
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zymatic methods were banned from laboratories, 
but how could we perform urgent testing in the 
night shift when the LC-MS/MS facility is not oper-
ating? In this regard, Feng and co-authors adopted 
a criterion based on the 15% uncertainty, usually 
accepted for analytical methods validation above 
the lower limit of quantitation, to relax the accept-
ance criterion (24). However, as stated above, it 
should be assessed earlier, which one is more ap-
propriate with respect to a given scenario. Hence, 
authoritative organizations in the field of labora-

tory medicine, like the International Federation of 
Clinical Chemistry, should discuss the topic before 
thinking the equivalence replacing the agreement 
in comparative studies. Otherwise, researchers 
should be concerned with showing the suitability 
of a certain criterion of equivalence, before assess-
ing the equivalence itself. 

Potential conflict of interest

None declared.

Appendix A – TOST for comparisons on single sample

Then, we can calculate the T statistics using the 
data above:

•	 hypothesis of inferiority: T = (1.1- (- 3.12)) / (9.57 / 
20)0.5 = 6.10

•	 hypothesis of superiority: T = (3.12 – 1.1) / (9.57 / 
20)0.5 = 2.92.

The critical value of T corresponding to a t distri-
bution with N – 1 = 19 degrees of freedom at α = 
0.05 is 1.73. Thus we can write:

•	 hypothesis of inferiority: T observed > t critical 
 reject  conclude non-inferiority

•	 hypothesisof superiority: T observed > t critical 
 reject  conclude non-superiority.

Thus, as data support both non-inferiority and 
non-superiority, we can conclude the two proce-
dures being equivalent within a margin of ± 5%. 
We remark that the normality of d distribution 
must be checked before carrying out the TOST-P, 
and mostly outliers should be checked and even-
tually removed to reduce the skew. As an alterna-
tive, the same procedure can be adapted to non-
parametric Wilcoxon test (26). Calculations were 
performed using electronic spreadsheet and print-
ed tables of critical t values.

In the following example, the application of the 
TOST for comparing hypothetical results of a labo-
ratory assay produced by a standard and an alter-
native procedure of sampling, considering a ± 5 % 
of equivalence interval on results with respect to 
the standard one is presented. In this case, we will 
use a simple within-subjects repeated-measures 
single group design without crossing-over, and 
thus we will carry out the procedure using a two 
one-sided paired t-test. This is also known as TOST-
P (25).

Let us consider first the set of N = 20 paired data:

•	 standard: 23, 28, 33, 36, 41, 44, 44, 48, 52, 56, 66, 
68, 72, 79, 84, 88, 91, 93, 99, 102

•	 alternative: 25, 28, 39, 38, 38, 43, 46, 49, 53, 52, 
61, 73, 77, 82, 86, 86, 95, 96, 97, 105.

The linear correlation is r = 0.99, the average differ-
ence d = 1.1 with variance = 9.57 and standard de-
viation of paired difference SD = 3.09. The average 
of standard group is ms = 62.35, so a ± 5 % differ-
ence corresponds to an interval A = - 3.12 and B = 
3.12. Recalling the formula of a paired t-test, we 
can build a TOST-P as follows:

TOST – Pinferiority = . d – A

 SD ×   N –1

 B – d

 SD ×   N –1
TOST – Psuperiority = 
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APPENDIX B – TOST-P and the confidence interval approach

Equivalence of procedures shown in Appendix A 
can be proven also using the Westlake-Schuri-
mann’s method of confidence interval. Let’s con-
sider the average difference d = 1.1 and its stand-
ard deviation SD = 3.09, the confidence interval can 
be written as:

90% Cl =  d ± t ×  SD   N –1
.

In this case, the confidence is at 1 - 2α level, so 
that t = 1.33 and not 1.73 as previously. There-
fore we can write:

•	 upper boundary = 1.1 + 1.33 x (3.09 x 0.22) = 
2.02

•	 lower boundary = 1.1 - 1.33 x (3.09 x 0.22) = 0.18.
Recalling that the ± 5% equivalence interval 
around the average result of the standard proce-
dure was ± 3.12, we can conclude that the actual 
90 CI% is in within and thus the evidence of equiv-
alence is supported (Figure 2). Figure 3 represents 
all the possible conclusions that can be drawn ob-
serving the overlapping between 90% CI and the 
equivalence interval. It should be remarked that 

APPENDIX C – interval of equivalence for Passing-Bablok regression

Let us imagine that we decided to compare two 
analytical methods and we obtained a set of two 
paired results as follows (we reduced the size to 10 
pairs for simplicity):

•	 Reference: 24, 25, 33, 40, 45, 49, 56, 63, 71, 79
•	 Alternative: 22, 26, 38, 42, 51, 53, 58, 69, 73, 80.

The estimation of regression parameters using the 
Passing and Bablok model gave a slope of 1.02 and 
the 95% CI estimated with the jack knife proce-
dure was 0.83 to 1.12, showing no proportional 
bias (28). However, we were interested in finding 
whether the two methods resulted equivalent 
within a ± 15% bias, that is equivalent to the inter-
val:

•	 lower equivalence boundary: (1 - 0.15) x no bias 
slope = 0.85 x 1 = 0.85

•	 upper equivalence boundary: (1 + 0.15) x no 
bias slope = 1.15 x 1 = 1.15 

 Thus, we applied the Westlake-Schuirmann’s 
method as described in Appendix B and calculat-
ed the 90% CI using the same jack knife procedure 
as before. With an average pseudo median slope 
equal to 0.97 and a standard error 0.08, the 90% CI 
for a critical t value of 1.38 with 9 degrees of free-
dom at α=0.1 it was:

•	 lower 90% CI boundary: 0.97 - (1.38 x 0.08) = 0.87
•	 upper 90% CI boundary: 0.97 + (1.38 x 0.08) = 

1.08

Figure 3. The interpretation of 90% CI with respect to the in-
terval of equivalence. Equivalence can be stated only when 
the whole confidence interval (whiskers) about the average 
difference (diamond) rests within the equivalence boundaries 
(dashed lines), otherwise equivalence can be ruled out; how-
ever, if the confidence interval encroaches the equivalence 
boundaries just on one side the test is inconclusive (i.e. neither 
it can be stated nor ruled out the equivalence). 

2–2 3–3–4–5 1–1 0 

Di�erence between data (δ)

not equivalent

equivalent

inconclusive

inconclusive

Berger and Hsu in 1999 strongly criticized the 1 - 
2α confidence level, proposing alterative proce-
dures to build ordinary 1 - α confidence intervals 
(27).
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Thus, we found the 90% CI resting within the ± 
15% bias, letting us to conclude the method being 
equivalent at the given bias. All calculations were 
performed using Microsoft Excel spreadsheet and 
full details are available through supplementary 
material of this manuscript.

In should be noticed that we used the jack knife 
method instead of the nested bootstrapping, so 

that CI value herein might differ from what usually 
returned by statistical packages. The use of jack 
knife is purely didactical, in that, although less pre-
cise with small sized samples, it is easier to carry 
out with a simple electronic spreadsheet without 
any particular adjunctive function and better intel-
ligible (full calculations are available through the 
MS Excel file which can be provided on request). 
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