
The Logic of Explanatory Power

Jonah N. Schupbach and Jan Sprenger∗†

[Forthcoming in Philosophy of Science]

Abstract

This paper introduces and defends a probabilistic measure of the ex-
planatory power that a particular explanans has over its explanandum. To
this end, we propose several intuitive, formal conditions of adequacy for
an account of explanatory power. Then, we show that these conditions
are uniquely satisfied by one particular probabilistic function. We proceed
to strengthen the case for this measure of explanatory power by proving
several theorems, all of which show that this measure neatly corresponds
to our explanatory intuitions. Finally, we briefly describe some promising
future projects inspired by our account.
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1 Explanation and Explanatory Power

Since the publication of Hempel and Oppenheim’s (1948) classic investiga-
tion into “the logic of explanation,” philosophers of science have earnestly
been seeking an analysis of the nature of explanation. Necessity (Glymour,
1980), statistical relevance (Salmon, 1971), inference and reason (Hempel and
Oppenheim, 1948; Hempel, 1965), familiarity (Friedman, 1974), unification
(Friedman, 1974; Kitcher, 1989), causation (Woodward, 2003), and mecha-
nism (Machamer et al., 2000) are only some of the most popular concepts that
such philosophers draw upon in the attempt to describe necessary and suffi-
cient conditions under which a theory explains some proposition.1 A related
project that is, on the other hand, much less often pursued by philosophers to-
day is the attempt to analyze the strength of an explanation – i.e., the degree of
explanatory power that a particular explanans has over its explanandum. Such
an analysis would clarify the conditions under which hypotheses are judged to
provide strong versus weak explanations of some proposition, and it would also
clarify the meaning of comparative explanatory judgments such as “hypothesis
A provides a better explanation of this fact than does hypothesis B.”

Given the nature of these two projects, the fact that the first receives so
much more philosophical attention than the second can hardly be explained by
appeal to any substantial difference in their relative philosophical imports. Cer-
tainly, the first project has great philosophical significance; after all, humans on
the individual and social levels are constantly seeking and formulating expla-
nations. Given the ubiquity of explanation in human cognition and action, it is
both surprising that this concept turns out to be so analytically impenetrable,2

and critical that philosophers continue to strive for an understanding of this
notion. The second project is, however, also immensely philosophically impor-
tant. Humans regularly make judgments of explanatory power and then use
these judgments to develop preferences for hypotheses, or even to infer out-
right to the truth of certain hypotheses. Much of human reasoning – again, on
individual and social levels – makes use of judgments of explanatory power. Ul-
timately then, in order to understand and evaluate human reasoning generally,
philosophers need to come to a better understanding of explanatory power.

The relative imbalance in the amount of philosophical attention that these
two projects receive is more likely due to the prima facie plausible but ulti-
mately unfounded assumption that one must have an analysis of explanation

1See Woodward (2009) for a recent survey of this literature.
2Lipton (2004, 23) refers to this fact that humans can be so good at doing explanation while

simultaneously being so bad at describing what it is they are doing as the “gap between doing
and describing.”
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before seeking an analysis of explanatory power. This assumption is made com-
pelling by the fact that in order to analyze the strength of something, one must
have some clarity about what that thing is. However, it is shown to be much
less tenable in light of the fact that humans do generally have some fairly clear
intuitions concerning explanation. The fact that there is no consensus among
philosophers today over the precise, necessary and sufficient conditions for ex-
planation does not imply that humans do not generally have a firm semantic
grasp of the concept of explanation. Just how firm a semantic grasp of this
concept humans actually have is an interesting question. One claim of this pa-
per will be that our grasp of the notion of explanation is at least sufficiently
strong to ground a precise formal analysis of explanatory power – even if it is
not strong enough to determine a general account of the nature of explanation.

This paper attempts to bring more attention to the second project above by
formulating a Bayesian analysis of explanatory power. Moreover, the account
given here does this without committing to any particular theory of the nature
of explanation. Instead of assuming the correctness of a theory of explanation
and then attempting to build a measure of explanatory power derivatively from
this theory, we begin by laying out several, more primitive adequacy conditions
that, we argue, an analysis of explanatory power should satisfy. We then show
that these intuitive adequacy conditions are sufficient to define for us a unique
probabilistic analysis and measure of explanatory power.

Before proceeding, two more important clarifications are necessary. First,
we take no position on whether our analysis captures the notion of explanatory
power generally; it is consistent with our account that there be other concepts
that go by this name, but which do not fit our measure.3 What we do claim,
however, is that our account captures at least one familiar and epistemically
compelling sense of explanatory power that is common to human reasoning.

Second, because our explicandum is the strength or power of an explana-
tion, we restrict ourselves in presenting our conditions of adequacy to speaking
of theories that do in fact provide explanations of the explanandum in ques-
tion.4 This account thus is not intended to reveal the conditions under which

3As a possible example, Salmon (1971) and Jeffrey (1969) both argue that there is a sense in
which a hypothesis may be said to have positive explanatory power over some explanandum so
long as that hypothesis and explanandum are statistically relevant, regardless of whether they
are negatively or positively statistically relevant. As will become clear in this paper, insofar as
there truly is such a notion of explanatory power, it must be distinct from the one that we have
in mind.

4To be more precise, the theory only needs to provide a potential explanation of the explanan-
dum – where a theory offers a potential explanation of some explanandum just in case, if it were
true, then it would be an actual explanation of that explanandum. In other words, this account
may be used to measure the strength of any potential explanation, regardless of whether the
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a theory is explanatory of some proposition (that is, after all, the aim of an
account of explanation rather than an account of explanatory power); rather,
its goal is to reveal, for any theory already known to provide such an explana-
tion, just how strong that explanation is. Ultimately then, this paper offers a
probabilistic logic of explanation that tells us the explanatory power of a theory
(explanans) relative to some proposition (explanandum), given that that theory
constitutes an explanation of that proposition. In this way, this paper forestalls
the objection that two statements may stand in the probabilistic relation de-
scribed while not simultaneously constituting an explanation.

2 The Measure of Explanatory Power E

The sense of explanatory power that this paper seeks to analyze has to do with
a hypothesis’s ability to decrease the degree to which we find the explanandum
surprising (i.e., its ability to increase the degree to which we expect the ex-
planandum). More specifically, a hypothesis offers a powerful explanation of a
proposition, in this sense, to the extent that it makes that proposition less sur-
prising. This sense of explanatory power dominates statistical reasoning where
scientists are “explaining away” surprise in the data by means of assuming a
specific statistical model; e.g., in the omnipresent linear regression procedures.
But the explaining hypotheses need not be probabilistic; for example, a geol-
ogist will accept a prehistoric earthquake as explanatory of certain observed
deformations in layers of bedrock to the extent that deformations of that par-
ticular character, in that particular layer of bedrock, et cetera would be less
surprising given the occurrence of such an earthquake.

This notion finds precedence in many classic discussions of explanation.
Perhaps its clearest historical expression occurs when Peirce (1935, 5.189)
identifies the explanatoriness of a hypothesis with its ability to render an other-
wise “surprising fact” as “a matter of course.”5 This sense of explanatory power

explanans involved is actually true.
5This quote might suggest that explanation is tied essentially to necessity for Peirce. However,

elsewhere, Peirce clarifies and weakens this criterion: “to explain a fact is to show that it is a
necessary or, at least, a probable result from another fact, known or supposed” (Peirce, 1935,
6.606, emphasis mine). See also (Peirce, 1958, 7.220).

There are two senses in which our notion of explanatory power is more general than Peirce’s
notion of explanatoriness: first, a hypothesis may provide a powerful explanation of a surprising
proposition, in our sense, and still not render it a matter of course; i.e., a hypothesis may make
a proposition much less surprising while still not making it unsurprising. Second, our sense
of explanatory power does not suggest that a proposition must be surprising in order to be
explained; a hypothesis may make a proposition much less surprising (or more expected) even
if the latter is not very surprising to begin with.
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may also be seen as underlying many of the most popular accounts of expla-
nation. Most obviously, DN and IS accounts (Hempel, 1965), and necessity
accounts (Glymour, 1980) explicitly analyze explanation in such a way that a
theory that is judged to be explanatory of some explanandum will necessarily
increase the degree to which we expect that explanandum.

Our formal analysis of this concept proceeds in two stages: In the first stage,
a parsimonious set of adequacy conditions is used to determine a measure of
explanatory power up to ordinal equivalence. In other words, we show that, for
all pairs of functions f and f ′ that satisfy these adequacy conditions, f (e, h)>
(=,<) f (e′, h′) if and only if f ′(e, h) > (=,<) f ′(e′, h′); all such measures thus
impose the same ordinal relations on judgments of explanatory power. This
is already a substantial achievement. In the second stage, we introduce more
adequacy conditions in order to determine a unique measure of explanatory
power (from among the class of ordinally equivalent measures).

In the remainder, we make the assumption that the probability distribu-
tion is regular; i.e., only tautologies and contradictions are awarded rational
degrees of belief of 1 and 0. This is not strictly required to derive the results
below, but it makes the calculations and motivations much more elegant.

2.1 Uniqueness Up to Ordinal Equivalence

The first adequacy condition is, we suggest, rather uncontentious. It is a purely
formal condition intended to specify the probabilistic nature and limits of our
analysis:

CA1 (FormalStructure): For any probability space and regular probability mea-
sure (Ω,A , Pr(·)), E is a measurable function from two propositions
e, h ∈ A to a real number E (e, h) ∈ [−1,1]. This function is defined
on all pairs of contingent propositions; i.e., cases such as Pr(e) = 0 etc.
are not in the domain of E .6 This implies by Bayes’s Theorem that we
can represent E as a function of Pr(e), Pr(h|e) and Pr(h|¬e), and we
demand that any such function be analytic.7

The next adequacy condition specifies, in probabilistic terms, the general
notion of explanatory power that we are interested in analyzing. As mentioned,

6The background knowledge term k always belongs to the right of the solidus “|” in Bayesian
formalizations. Nonetheless, here and in the remainder of this paper, we choose for the sake of
transparency and simplicity in exposition to leave k implicit in all formalizations.

7A real-valued function f is analytic if we can represent it as the Taylor expansion around
a point in its domain. This requirement ensures that our measure will not be composed in an
arbitrary or ad-hoc way.
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a hypothesis offers a powerful explanation of a proposition, in the sense that
we have in mind, to the extent that it makes that proposition less surprising. In
order to state this probabilistically, the key interpretive move is to formalize a
decrease in surprise (or increase in expectedness) as an increase in probability.
This move may seem dubious depending upon one’s interpretation of proba-
bility. Given a physical interpretation (e.g., a relative frequency or propen-
sity interpretation), it would be difficult indeed to saddle such a psychological
concept as surprise with a probabilistic account. However, when probabilities
are themselves given a more psychological interpretation (whether in terms
of simple degrees of belief or the more normative degrees of rational belief),
this move makes sense. In this case, probabilities map neatly onto degrees of
expectedness.8 Accordingly, insofar as surprise is inversely related to expect-
edness (the more surprising a proposition, the less one expects it to be true),
it is straightforwardly related to probabilities. Thus, if h decreases the degree
to which e is surprising, we represent this with the inequality Pr(e) < Pr(e|h).
The strength of this inequality corresponds to the degree of statistical relevance
between e and h giving us:

CA2 (PositiveRelevance): Ceteris paribus, the greater the degree of statistical
relevance between e and h, the higher E (e, h).

The third condition of adequacy defines a point at which explanatory power
is unaffected. If h2 does nothing to increase or decrease the degree to which e,
h1, or any logical combination of e and h1 are surprising, then h1 ∧ h2 will not
make e any more or less surprising than h1 by itself already does. In this case,
tacking h2 on to our hypothesis has no effect upon the degree to which that
hypothesis alleviates our surprise over e. Given that explanatory power has
to do with a hypothesis’s ability to render its explanandum less surprising, we
can state this in other words: if h2 has no explanatory power whatever relative
to e, h1, or any logical combination of e and h1, then explanandum e will be
explained no better nor worse by conjoining h2 to our explanans h1. Making
use of the above probabilistic interpretation of a decrease in surprise, this can
be stated more formally as follows:

CA3 (IrrelevantConjunction): If Pr(e∧h2) = Pr(e)×Pr(h2) and Pr(h1∧h2) =
Pr(h1)× Pr(h2) and Pr(e∧h1∧h2) = Pr(e∧h1)× Pr(h2), then E (e, h1∧
h2) = E (e, h1).

8This is true by definition for the first, personalist interpretation; in terms of the more nor-
mative interpretation, probabilities still map neatly onto degrees of expectedness, though these
are more specifically interpreted as rational degrees of expectedness.
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The following adequacy condition observes that explanatory power, in our
sense, does not depend upon the prior plausibility of the explanans. This is
because the extent to which an explanatory hypothesis alleviates the surprising
nature of some explanandum does not depend on considerations of how likely
that hypothesis is in and of itself. Rather, to decide the effect of a hypothesis
upon the surprise (expectedness) of some explanandum, one compares how
surprising (expected) the explanandum is apart from considerations of the hy-
pothesis to how surprising (expected) it would be granting the truth of the
hypothesis. In making this specific comparison, it is simply not necessary (and
not helpful) to know how plausible the explanatory hypothesis is on its own.
With this sense of explanatory power in mind then, it is perfectly sensible to
talk about two hypotheses that are vastly unequal in their respective plausibili-
ties having the same amount of explanatory power over an explanandum. For
example, dehydration and cyanide poisoning may be (approximately) equally
powerful explanations of symptoms of dizziness and confusion insofar as they
both make such symptoms less surprising to the (approximately) same degree.
And this is true despite the fact that dehydration is typically by far the more
plausible explanans. In light of these considerations, we require the following

CA4 (Irrelevanceof Priors): Values of E (e, h) do not depend upon the values of
Pr(h).9

These four conditions allow us to derive the following theorem (proof in
Appendix 1):

Theorem 1. All measures of explanatory power satisfying CA1-CA4 are mono-
tonically increasing functions of the posterior ratio Pr(h|e)/Pr(h|¬e).

From this theorem, two important corollaries follow. First, we can derive a
result specifying the conditions under which E takes its maximal and minimal
values (proof in Appendix 1):

Corollary 1. E (e, h) takes maximal value if and only if h entails e, and minimal
value if and only if h implies ¬e.

Note that this result fits well with the notion of explanatory power that we are
analyzing, according to which a hypothesis explains some proposition to the

9The following weaker version of CA4 actually suffices in the proof of Theorem 1: When
either h or ¬h implies e, values of E (e, h) and E (e,¬h) do not depend upon the values of Pr(h)
and Pr(¬h). Nonetheless, the notion of explanatory power that we analyze motivates the condi-
tion that explanatory power does not depend upon Pr(h) generally – not merely when h or ¬h
implies e. Accordingly, we include this stronger condition here.
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extent that it renders that proposition less surprising (more expected). Given
this, any h ought to be maximally explanatorily powerful regarding some e
when it renders e maximally unsurprising (expected), and this occurs whenever
h guarantees the truth of e (Pr(e|h) = 1). Similarly, h should be minimally
explanatory of e if e is maximally surprising in the light of h, and this occurs
whenever h implies the falsity of e (Pr(e|h) = 0).

The second corollary constitutes our desired ordinal equivalence result:

Corollary 2. All measures of explanatory power satisfying CA1-CA4 are ordinally
equivalent.

To see why the corollary follows from the theorem, let r be the posterior ra-
tio of the pair (e, h), and let r ′ be the posterior ratio of the pair (e′, h′). Without
loss of generality, assume r > r ′. Then, for any functions f and f ′ that satisfy
CA1-CA4, we obtain the following inequalities:

f (e, h) = g(r)> g(r ′) = f (e′, h′) f ′(e, h) = g ′(r)> g ′(r ′) = f ′(e′, h′),

where the inequalities are immediate consequences of Theorem 1. So any f
and f ′ satisfying CA1-CA4 always impose the same ordinal judgments, com-
pleting the first stage of our analysis.

2.2 Uniqueness of E

This section pursues the second task of choosing a specific and suitably nor-
malized measure of explanatory power out of the class of ordinally equiva-
lent measures determined by CA1-CA4. To begin, we introduce an additional,
purely formal requirement of our measure:

CA5 (Normality andForm): E is the ratio of two functions of Pr(e∧h), Pr(¬e∧
h), Pr(e∧¬h) and Pr(¬e∧¬h), each of which are homogeneous in their
arguments to the least possible degree k ≥ 1.10

Representing E as the ratio of two functions serves the purpose of normaliza-
tion. Pr(e ∧ h), Pr(¬e ∧ h), Pr(e ∧ ¬h) and Pr(¬e ∧ ¬h) fully determine the
probability distribution over the truth-functional compounds of e and h, so it
is appropriate to represent E as a function of them. Additionally, the require-
ment that our two functions be “homogenous in their arguments to the least
possible degree k ≥ 1” reflects a minimal and well-defined simplicity assump-
tion akin to those advocated by Carnap (1950) and Kemeny and Oppenheim

10A function is homogeneous in its arguments to degree k if its arguments all have the same
total degree k.
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(1952, 315). This assumption effectively limits our search for a unique mea-
sure of explanatory power to those that are the most cognitively accessible and
applicable.

Of course, larger values of E indicate greater explanatory power of h with
respect to e. E (e, h) = 1 (being E ’s maximal value) indicates the point at which
explanans h fully explains its explanandum e, and E (e, h) = −1 (E ’s minimal
value) indicates the minimal explanatory power for h relative to e (where h
provides a full explanation for e being false). E (e, h) = 0 represents the neutral
point at which h lacks any explanatory power whatever relative to e.

While we have provided an informal description of the point at which E
should take on its neutral value 0 (when h lacks any explanatory power what-
ever relative to e), it is still left to us to define this point formally. Given our
notion of explanatory power, a complete lack of explanatory power is straight-
forwardly identified with the scenario in which h does nothing to increase or
decrease the degree to which e is surprising. Probabilistically, in such cases, h
and e are statistically irrelevant to (independent of) one another:

CA6 (Neutrality): For explanatory hypothesis h, E (e, h) = 0 if and only if
Pr(h∧ e) = Pr(h)× Pr(e).

The final adequacy condition requires that the more h explains e, the less
it explains its negation. This requirement is appropriate given that the less
surprising (more expected) the truth of e is in light of a hypothesis, the more
surprising (less expected) is e’s falsity. Corollary 1 and Neutrality provide a
further rationale for this condition. Corollary 1 tells us that E (e, h) should
be maximal only if Pr(e|h) = 1. Importantly, in such a case, Pr(¬e|h) = 0,
and this value corresponds to the point at which this same corollary demands
E (¬e, h) to be minimal. In other words, given Corollary 1, we see that E (e, h)
takes its maximal value precisely when E (¬e, h) takes its minimal value and
vice versa. Also, we know that E (e, h) and E (¬e, h) should always equal zero at
the same point given that Pr(h∧ e) = Pr(h)× Pr(e) if and only if Pr(h∧¬e) =
Pr(h)× Pr(¬e). The formal condition of adequacy which most naturally sums
up all of these points is the following.

CA7 (Symmetry): E (e, h) =−E (¬e, h).

These three conditions of adequacy, when added to CA1-CA4, conjointly
determine a unique measure of explanatory power as stated in the following
theorem (Proof in Appendix 2).11

11There is another attractive uniqueness theorem for E . It can be proven that E is also the
only measure that satisfies CA3, CA5, CA6, CA7, and Corollary 1, although we do not include
this separate proof in this paper.
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Theorem 2. The only measure that satisfies CA1-CA7 is

E (e, h) =
Pr(h|e)− Pr(h|¬e)
Pr(h|e) + Pr(h|¬e)

.

Remark: Since, for Pr(h|¬e) 6= 0,

Pr(h|e)− Pr(h|¬e)
Pr(h|e) + Pr(h|¬e)

=
Pr(h|e)/Pr(h|¬e)− 1

Pr(h|e)/Pr(h|¬e) + 1
,

it is easy to see that E is indeed an increasing function of the posterior ratio.
Thus, these conditions provide us with an intuitively grounded, unique

measure of explanatory power.12

3 Theorems of E

We have proposed the above seven conditions of adequacy as intuitively plau-
sible constraints on a measure of explanatory power. Accordingly, the fact that
these conditions are sufficient to determine E already constitutes a strong ar-
gument in this measure’s favor. Nonetheless, we proceed in this section to
strengthen the case for E by highlighting some important theorems that follow
from adopting this measure. Ultimately, the point of this section is to defend
further our assertion that E is well-behaved in the sense that it gives results
that match our clear intuitions about the concept of explanatory power – even
in one case where other proposed measures fail to do so.13

3.1 Addition of Irrelevant Evidence

Good (1960) and, more recently, McGrew (2003) both explicate h’s degree of
explanatory power relative to e in terms of the amount of information concern-
ing h provided by e. This results in the following intuitive and simple measure
of explanatory power:14

12E is closely related to Kemeny and Oppenheim’s (1952) measure of “factual support” F . In
fact, these two measures are structurally equivalent; however, regarding the interpretation of
the measure, E (e, h) is F(h, e) flip-flopped (h is replaced by e, and e is replaced by h).

13Each of the theorems presented in this section can and should be thought of as further
conditions of adequacy on any measure of explanatory power. Nonetheless, we choose to present
these theorems as separate from the conditions of adequacy presented in Section 2 in order to
make explicit which conditions do the work in giving us a unique measure.

14Good’s measure is meant to improve upon the following measure of explanatory power
defined by Popper (1959): [Pr(e|h)−Pr(e)]/[Pr(e|h)+Pr(e)]. It should be noted that Popper’s
measure is ordinally equivalent to Good’s in the same sense that E is ordinally equivalent to the
posterior ratio Pr(h|e)/Pr(h|¬e). Thus, the problem we present here for Good’s measure is also
a problem for Popper’s.
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I(e, h) =ln
�

Pr(e|h)
Pr(e)

�

According to this measure, the explanatory power of explanans h must re-
main constant whenever we add an irrelevant proposition e′ to explanandum
e (where proposition e′ is irrelevant in the sense that it is statistically indepen-
dent of h in the light of e):

I(e ∧ e′, h) = ln

�

Pr(e ∧ e′|h)
Pr(e ∧ e′)

�

= ln

�

Pr(e′|e ∧ h)Pr(e|h)
Pr(e′|e)Pr(e)

�

= ln

�

Pr(e′|e)Pr(e|h)
Pr(e′|e)Pr(e)

�

= ln
�

Pr(e|h)
Pr(e)

�

= I(e, h)

This is, however, a very counterintuitive result. To see this, consider the
following simple example: Let e be a general description of the Brownian mo-
tion observed in some particles suspended in a particular liquid, and let h be
Einstein’s atomic explanation of this motion. Of course, h constitutes a lovely
explanation of e, and this fact is reflected nicely by measure I :

I(e, h) = ln
�

Pr(e|h)
Pr(e)

�

� 0

However, take any irrelevant new statement e′ and conjoin it to e; for example,
let e′ be the proposition that the mating season for an American green tree
frog takes place from mid-April to mid-August. In this case, measure I judges
that Einstein’s hypothesis explains Brownian motion to the same extent that it
explains Brownian motion and this fact about tree frogs. Needless to say, this
result is deeply unsettling.

Instead, it seems that, as the evidence becomes less statistically relevant to
some explanatory hypothesis h (with the addition of irrelevant propositions), it
ought to be the case that the explanatory power of h relative to that evidence
approaches the value at which it is judged to be explanatorily irrelevant to the
evidence (E = 0). Thus, if E (e, h)> 0, then this value should decrease with the
addition of e′ to our evidence: 0< E (e∧e′, h)< E (e, h). Similarly, if E (e, h)< 0,
then this value should increase with the addition of e′: 0> E (e∧e′, h)> E (e, h).
And finally, if E (e, h) = 0, then this value should remain constant at E (e∧e′, h) =
0. E gives these general results as shown in the following theorem (proof in
Appendix 3):

Theorem 3. If P r(e′|e ∧ h) = Pr(e′|e) – or equivalently, Pr(h|e ∧ e′) = Pr(h|e)
– and Pr(e′|e) 6= 1, then:
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• if P r(e|h)> Pr(e), then E (e, h)> E (e ∧ e′, h)> 0,

• if P r(e|h)< Pr(e), then E (e, h)< E (e ∧ e′, h)< 0, and

• if P r(e|h) = Pr(e), then E (e, h) = E (e ∧ e′, h) = 0.

3.2 Addition of Relevant Evidence

Next, we explore whether E is well-behaved in those circumstances where we
strengthen our explanandum by adding to it relevant evidence. Consider the
case where h has some explanatory power relative to e so that E (e, h) > −1
(i.e., h has any degree of explanatory power relative to e greater than the min-
imal degree). What should happen to this degree of explanatory power if we
gather some new information e′ that, in the light of e, we know is explained by
h to the worst possible degree?

To take a simple example, imagine that police investigators hypothesize
that Jones murdered Smith (h) in light of the facts that Jones’ fingerprints were
found near the dead body and Jones recently had discovered that his wife and
Smith were having an affair (e). Now suppose that the investigators discover
video footage that proves that Jones was not at the scene of the murder on
the day and time that it took place (e′). Clearly, h is no longer such a good
explanation of our evidence once e′ is added; in fact, h now seems to be a
maximally poor explanation of e ∧ e′ precisely because of the addition of e′ (h
cannnot possibly explain e ∧ e′ because e′ rules h out entirely). Thus, in such
cases, the explanatory power of h relative to the new collection of evidence
e ∧ e′ should be less than that relative to the original evidence e; in fact, it
should be minimal with the addition of e′. This holds true in terms of E as
shown in the following theorem (proof in Appendix 4):

Theorem 4. If E (e, h)>−1 and Pr(e′|e ∧ h) = 0 (in which case, it also must be
true that Pr(e′|e) 6= 1), then E (e, h)> E (e ∧ e′, h) =−1.

On the other hand, we may ask what intuitively should happen in the same
circumstance (adding the condition that h does not have the maximal degree
of explanatory power relative to e – i.e., E (e, h) < 1) but where the new infor-
mation we gain e′ is fully explained by h in the light of our evidence e. Let h
and e be the same as in the above example, and now imagine that investigators
discover video footage that proves that Jones was at the scene of the murder
on the day and time that it took place (e′). In this case, h becomes an even
better explanation of the evidence precisely because of the addition of e′ to the
evidence. Thus, in such cases, we would expect the explanatory power of h
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relative to the new evidence e ∧ e′ to be greater than that relative to e alone.
Again, E agrees with our intuition here (proof in Appendix 4):

Theorem 5. If 0 < Pr(e′|e) < 1 and h does not already fully explain e or its
negation (0< Pr(e|h)< 1) and Pr(e′|e ∧ h) = 1, then E (e, h)< E (e ∧ e′, h).

While these last two theorems are highly intuitive, they are also quite lim-
ited in their applicability. Both theorems require in their antecedent conditions
that one’s evidence be strengthened with the addition of some e′ that is itself
either maximally or minimally explained by h in the light of e. However, our
intuitions reach to another class of related examples in which the additional
evidence need not be maximally or minimally explained in this way. In situa-
tions where h explains e to some positive degree, it is intuitive to think that the
addition of any new piece of evidence that is negatively explained by (made
more surprising by) h in the light of e will decrease h’s degree of explanatory
power. Similarly, whenever h has some negative degree of explanatory power
relative to e, it is plausible to think that the addition of any new piece of evi-
dence that is positively explained by (made less surprising by) h in the light of
e will increase h’s degree of explanatory power. These intuitions are captured
in the following theorem of E (proof in Appendix 4):

Theorem 6. If E (e, h) > 0, then if P r(e′|e ∧ h) < Pr(e′|e), then E (e ∧ e′, h) <
E (e, h). On the other hand, if E (e, h) < 0, then if P r(e′|e ∧ h) > Pr(e′|e), then
E (e ∧ e′, h)> E (e, h).

4 Conclusions

Above, we have shown the following: First, E is a member of the specific family
of ordinally equivalent measures that satisfy our first four adequacy conditions.
Moreover, among the measures included in this class, E itself uniquely satisfies
the additional conditions CA5-CA7. The theorems presented in the last section
strengthen the case for E by showing that this measure does indeed seem to
correspond well and quite generally to many of our clear explanatory intuitions.
In light of all of this, we argue that E is manifestly an intuitively appealing
formal account of explanatory power.

The acceptance of E opens the door to a wide variety of potentially fruitful,
intriguing further questions for research. Here, we limit ourselves to describing
very briefly two of these projects which seem to us to be particularly fascinating
and manageable with E in hand.

First, measure E makes questions pertaining to the normativity of explana-
tory considerations much more tractable, at least from a Bayesian perspective.
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Given this probabilistic rendering of the concept of explanatory power, one
has a new ability to ask and attempt to answer questions such as, “Does the
ability of a hypothesis to explain some known fact itself constitute reason in
that hypothesis’s favor in any sense?” or, relatedly, “Is there any necessary
sense in which explanatory power is tied to the probability of an hypothesis?”
Such questions call out for more formal work in terms of E attempting to show
whether, and how closely, E (e, h) might be related to Pr(h|e). This further
work would have important bearing on debates over the general normativity of
explanatory power; it would also potentially lend much insight into discussions
of Inference to the Best Explanation and its vices or virtues.

Second, we have presented and defended E here as an accurate normative
account of explanatory power in the following sense: In the wide space of cases
where our conditions of adequacy are rationally compelling and intuitively ap-
plicable, one ought to think of explanatory power in accord with the results of
E . However, one may wonder whether people actually have explanatory intu-
itions that accord with this normative measure. With E in hand, this question
becomes quite susceptible to further study. In effect, the question is whether
E is, in addition to being an accurate normative account of explanatory power,
a good predictor of people’s actual judgments of the same. This question is, of
course, an empirical one and thus requires an empirical study into the degree
of fit between human judgments and theoretical results provided by E . Such
a study could provide important insights both for the psychology of human
reasoning and for the philosophy of explanation.15

15This second research project is, in fact, now underway. For a description and report of the
first empirical study investigating the descriptive merits of E (and other candidate measures of
explanatory power), see (Schupbach, 2010).
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Appendix 1. Proof of Theorem 1 and Corollary 1.

Theorem 1. All measures of explanatory power satisfying CA1-CA4 are mono-
tonically increasing functions of the posterior ratio Pr(h|e)/Pr(h|¬e).

Proof. Pr(h|e), Pr(h|¬e) and Pr(e) jointly determine the probability distribu-
tion of the pair (e, h); so we can represent E as a function of these values: there
is a g : [0, 1]3→ R such that E (e, h) = g(Pr(e), Pr(h|e), Pr(h|¬e)).

First, note that whenever the assumptions of CA3 are satisfied (i.e., when-
ever h2 is independent of all e, h1 and e ∧ h1), the following equalities hold:

Pr(h1 ∧ h2|e) = Pr(h2|h1 ∧ e)Pr(h1|e) = Pr(h2)Pr(h1|e)

Pr(h1 ∧ h2|¬e) =
Pr(h1 ∧ h2 ∧¬e)

Pr(¬e)
=

Pr(h1 ∧ h2)− Pr(h1 ∧ h2 ∧ e)
Pr(¬e)

= Pr(h2)
Pr(h1)− Pr(h1 ∧ e)

Pr(¬e)
= Pr(h2)Pr(h1|¬e).

(1)

Now, for all values of c, x , y, z ∈ (0, 1), we can choose propositions e, h1 and h2
and probability distributions over these such that the independence assump-
tions of CA3 are satisfied and c = Pr(h2), x = Pr(e), y = Pr(h1|e), and
z = Pr(h1|¬e). Due to CA1, we can always find such propositions and dis-
tributions so long as E is applicable. The above equations then imply that
Pr(h1 ∧ h2|e) = c y and Pr(h1 ∧ h2|¬e) = cz. Applying CA3 (E (e, h1) =
E (e, h1 ∧ h2)) yields the general fact that

g(x , y, z) = g(x , c y, cz). (2)

Consider now the case that ¬h entails e; i.e., Pr(e|¬h) = Pr(h|¬e) = 1.
Assume that g(·, ·, 1) could be written as a function of Pr(e) alone. Accordingly,
there would be a function h : [0,1]→ R such that

g(x , y, 1) = h(x). (3)

If we choose y = Pr(h|e) < Pr(h|¬e) = z, it follows from equations (2) and
(3) that

g(x , y, z) = g(x , y/z, 1) = h(x). (4)

In other words, g (and E) would then be constant on the triangle {y < z} =
{Pr(h|e) < Pr(h|¬e)} for any fixed x = Pr(e). Now, since g is an analytic
function (due to CA1), its restriction g(x , ·, ·) (for fixed x) must be analytic as
well. This entails in particular that if g(x , ·, ·) is constant on some nonempty
open set S ⊂ R2, then it is constant everywhere:
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1. All derivatives of a locally constant function vanish in that environment
(Theorem of Calculus).

2. We write, by CA1, g(x , ·, ·) as a Taylor series expanded around a fixed
point (y∗, z∗) ∈ S = {y < z}:

g(x , y, z) =
∞
∑

j=0

�

1

j!

�

(y − y∗)
∂

∂ y
+ (z− z∗)

∂

∂ z

� j

g(x , y∗, z∗)

�

y=y∗,z=z∗
.

Since all derivatives of g(x , ·, ·) in the set S = {y < z} are zero, all terms
of the Taylor series, except the first one (= g(x , y∗, z∗)) vanish.

Thus, g(x , ·, ·) must be constant everywhere. But this would violate the sta-
tistical relevance condition CA2 since g (and E) would then depend on Pr(e)
alone and not be sensitive to any form of statistical relevance between e and h.

Thus, whenever ¬h entails e, g(·, ·, 1) either depends on its second argu-
ment alone, or on both arguments. The latter case implies that there must be
pairs (e, h) and (e′, h′) with Pr(h|e) = Pr(h′|e′) such that

g(Pr(e), Pr(h|e), 1) 6= g(Pr(e′), Pr(h′|e′), 1). (5)

Note that if Pr(e|¬h) = 1, we obtain

Pr(e) = Pr(e|h)Pr(h) + Pr(e|¬h)Pr(¬h) = Pr(h|e)Pr(e) + (1− Pr(h))

=
1− Pr(h)

1− Pr(h|e)
, (6)

and so we can write Pr(e) as a function of Pr(h) and Pr(h|e).
Combining (5) and (6), and keeping in mind that g cannot depend on Pr(e)

alone, we obtain that there are pairs (e, h) and (e′, h′) such that

g
�

1− Pr(h)
1− Pr(h|e)

, Pr(h|e), 1
�

6= g

�

1− Pr(h′)
1− Pr(h|e)

, Pr(h|e), 1
�

.

This can only be the case if the prior probability (Pr(h) and Pr(h′) respectively)
has an impact on the value of g (and thus on E), in contradiction with CA4.
Thus, equality in (5) holds whenever Pr(h|e) = Pr(h′|e′). Hence, g(·, ·, 1)
cannot depend on both arguments, and it can be written as a function of its
second argument alone.

Thus, for any Pr(h|e) < Pr(h|¬e), there must be a g ′ : [0,1]2 → R such
that

E (e, h) = g(Pr(e), Pr(h|e), Pr(h|¬e)) = g(Pr(e), Pr(h|e)/Pr(h|¬e), 1)

= g ′(Pr(h|e)/Pr(h|¬e), 1).
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This establishes that E is a function of the posterior ratio if h and e are nega-
tively relevant to each other. By applying analyticity of E once more, we see
that E is a function of the posterior ratio Pr(h|e)/Pr(h|¬e) in its entire domain
(i.e. also if e and h are positively relevant to each other or independent).

Finally, CA2 implies that this function must be monotonically increasing,
since otherwise, explanatory power would not increase with statistical rele-
vance (of which the posterior probability is a measure). Evidently, any such
function satisfies CA1-CA4.

Corollary 1: E (e, h) takes maximal value if and only if h entails e, and minimal
value if and only if h implies ¬e.

Proof. Since E is an increasing function of the posterior ratio Pr(h|e)/Pr(h|¬e),
E (e, h) is maximal if and only if Pr(h|¬e) = 0. Due to the regularity of Pr(·),
this is the case of and only if ¬e entails ¬h, in other words, if and only if h
entails e. The case of minimality is proven analogously.
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Appendix 2. Proof of Theorem 2 (Uniqueness of E).

Theorem 2. The only measure that satisfies CA1-CA7 (i.e., the only measure of
explanatory power) is

E (e, h) =
Pr(h|e)− Pr(h|¬e)
Pr(h|e) + Pr(h|¬e)

.

Let x = Pr(e ∧ h), y = Pr(e ∧ ¬h), z = Pr(¬e ∧ h) and t = Pr(¬e ∧ ¬h) with
x + y + z+ t = 1. Write E (e, h) = f (x , y, z, t) (by CA5).

Lemma 1. There is no normalized function f (x , y, z, t) of degree 1 that satisfies
our desiderata CA1-CA7.

Proof. If there were such a function, the numerator would have the form
ax + b y + cz + d t. If e and h are independent, the numerator must van-
ish, by means of CA6. In other words, for those values of (x , y, z, t), we
demand ax + b y + cz + d t = 0. Below, we list four different realizations
of (x , y, z, t) that make e and h independent, namely (1/2, 1/4,1/6,1/12),
(1/2,1/3,1/10, 1/15), (1/2, 3/8, 1/14,3/56), and (1/4,1/4, 1/4,1/4). Since
these vectors are linearly independent (i.e. their span has dimension 4), it must
be the case that a = b = c = d = 0. Hence there is no such function of degree
1.

Lemma 2. CA3 entails that for any value of β ∈ (0, 1),

f (β x , y + (1− β)x ,βz, t + (1− β)z) = f (x , y, z, t). (7)

Proof. For any x , y, z, t, we choose e, h1 such that

x =Pr(e ∧ h1) y =Pr(e ∧¬h1)

z =Pr(¬e ∧ h1) t =Pr(¬e ∧¬h1).

Moreover, we choose a h2 such that the antecedent conditions of CA3 are sat-
isfied, and we let β = Pr(h2). Applying the independencies between h2, e and
h1 and recalling (1), we obtain

β x = Pr(h2)Pr(e ∧ h1) = Pr(h2)Pr(e)Pr(h1|e)
= Pr(e)Pr(h1 ∧ h2|e) = Pr(e ∧ h1 ∧ h2),
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and similarly

βz =Pr(¬e ∧ (h1 ∧ h2)) y + (1− β)z =Pr(¬e ∧¬(h1 ∧ h2))

y + (1− β)x =Pr(e ∧¬(h1 ∧ h2)).

Making use of these equations, we see directly that CA3 – i.e. E (e, h1) =
E (e, h1 ∧ h2) – implies equation (7).

Proof of Theorem 2 (Uniqueness of E). Lemma 1 shows that there is no
normalized function f (x , y, z, t) of degree 1 that satisfies our desiderata. Our
proof is constructive: we show that there is exactly one such function of degree
2, and then we are done, due to the formal requirements set out in CA5. By
CA5, we look for a function of the form

f (x , y, z, t) =
ax2+ bx y + c y2+ d xz+ e yz+ gz2+ i x t + j y t + rzt + st2

āx2+ b̄x y + c̄ y2+ d̄ xz+ ē yz+ ḡz2+ ī x t + j̄ y t + r̄z t + s̄ t2

(8)
We begin by investigating the numerator.16 CA6 tells us that it has to be zero if
Pr(e ∧ h) = Pr(e)Pr(h), in other words, if

x = (x + y)(x + z). (9)

Making use of x + y + z+ t = 1, we conclude that this is the case if and only if
x t − yz = 0:

x t − yz = x(1− x − y − z)− yz

= x − x2− x y − xz− yz

= x − (x + y)(x + z)

The only way to satisfy the constraint (9) is to set e = −i, and to set all other
coefficients in the numerator to zero. All other choices of coefficients don’t
work since the dependencies are non-linear. Hence, f becomes

f (x , y, z, t) =
i(x t − yz)

āx2+ b̄x y + c̄ y2+ d̄ xz+ ē yz+ ḡz2+ ī x t + j̄ y t + r̄z t + s̄ t2

16The general method of our proof bears resemblance to Kemeny and Oppenheim’s Theorem
27 in their (1952). However, we would like to point out two crucial differences. First, we
use more parsimonious assumptions, and we work in a different – non-Carnapian – framework.
Second, their proof contains invalid steps, for instance, they derive d = 0 by means of symmetry
(CA7) alone. (Take the counterexample f = (x y − yz + xz − z2)/(x y + yz + xz − z2) which
even satisfies Corollary 1.) Hence, our proof is truly original.
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Now, we make use of Corollary 1 and CA7 in order to tackle the coefficients
in the denominator. Corollary 1 (Maximality) entails that f = 1 if z = 0, and
CA7 (Symmetry) is equivalent to

f (x , y, z, t) =− f (z, t, x , y). (10)

First, applying Corollary 1 yields 1= f (x , 0, 0, t) = i x t/(āx2+ ī x t+ s̄ t2), and
by a comparison of coefficients, we get ā = s̄ = 0 and ī = i. Similarly, we obtain
c̄ = ḡ = 0 and ē = i from 1 = f (x , 0, 0, t) = − f (0, t, x , 0) = i x t/(c̄ t2 + ēx t +
ḡ x2), combining Corollary 1 with CA7, i.e. equation (10).

Now, f has the form

f (x , y, z, t) =
i(x t − yz)

b̄x y + d̄ xz+ i(x t + yz) + j̄ y t + r̄z t
.

Assume now that j̄ 6= 0. Let x , z→ 0. We know by Corollary 1 that in this case,
f → 1. Since the numerator vanishes, the denominator must vanish too, but
by j̄ 6= 0 it stays bounded away from zero, leading to a contradiction ( f → 0).
Hence j̄ = 0. In a similar vein, we can argue for b̄ = 0 by letting z, t → 0 and
for r̄ = 0 by letting x , y → 0 (making use of (10) again: −1= f (0, 0, z, t)).

Thus, f can be written as

f (x , y, z, t) =
i(x t − yz)

d̄ xz+ ī(x t + yz)
=

(x t − yz)
(x t + yz) +αxz

, (11)

by letting α= d̄/i.

It remains to make use of CA3 in order to fix the value of α. Set β = 1/2 in (7)
and make use of f (x , y, z, t) = f (β x , (1− β)x + y,βz, (1− β)z + t) (Lemma
2) and the restrictions on f captured in (11). By making use of (7), we obtain
the general constraint

x t − yz

x t + yz+αxz
=

x(z/2+ t)− z(x/2+ y)
x(z/2+ t) + z(x/2+ y) +αxz/2

=
x t − yz

x t + yz+ xz(2+α)/2
(12)

For (12) to be true in general, we have to demand that α = 1 + α/2 which
implies that α= 2. Hence,

f (x , y, z, t) =
x t − yz

x t + yz+ 2xz
=

x(t + z)− z(x + y)
x(t + z) + z(x + y)
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implying

E (e, h) =
Pr(e ∧ h)Pr(¬e)− Pr(¬e ∧ h)Pr(e)
Pr(e ∧ h)Pr(¬e) + Pr(¬e ∧ h)Pr(e)

=
Pr(h|e)− Pr(h|¬e)
Pr(h|e) + Pr(h|¬e)

(13)

which is the unique function satisfying all our desiderata.
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Appendix 3. Proof of Theorem 3.

Theorem 3. If P r(e′|e ∧ h) = Pr(e′|e) – or equivalently, Pr(h|e ∧ e′) = Pr(h|e)
– and Pr(e′|e) 6= 1, then:

• if P r(e|h)> Pr(e), then E (e, h)> E (e ∧ e′, h)> 0,

• if P r(e|h)< Pr(e), then E (e, h)< E (e ∧ e′, h)< 0, and

• if P r(e|h) = Pr(e), then E (e, h) = E (e ∧ e′, h) = 0.

Proof. Since E (e, h) and the posterior ratio r(e, h) = Pr(h|e)/Pr(h|¬e) are
ordinally equivalent, we can focus our analysis on that quantity:

r(e, h)
r(e ∧ e′, h)

=
Pr(h|e)

Pr(h|¬e)
·

Pr(h|¬(e ∧ e′))
Pr(h|e ∧ e′)

=
1− Pr(e)

Pr(e)
·

Pr(e|h)
1− Pr(e|h)

·
1− Pr(e′|e ∧ h)Pr(e|h)

Pr(e′|e ∧ h)Pr(e|h)
·

Pr(e ∧ e′)
1− Pr(e ∧ e′)

=
1− Pr(e)

1− Pr(e|h)
·

1− Pr(e′|e)Pr(e|h)
1− Pr(e)Pr(e′|e)

=
1+ Pr(e)Pr(e′|e)Pr(e|h)− (Pr(e) + Pr(e|h)Pr(e′|e))
1+ Pr(e)Pr(e′|e)Pr(e|h)− (Pr(e|h) + Pr(e)Pr(e′|e))

(14)

This quantity is greater than one if and only if the numerator exceeds the de-
nominator, i.e. iff

0 < (Pr(e|h) + Pr(e)Pr(e′|e))− (Pr(e) + Pr(e|h)Pr(e′|e))
= Pr(e|h)(1− Pr(e′|e))− Pr(e)(1− Pr(e′|e))
= (Pr(e|h)− Pr(e))(1− Pr(e′|e)) (15)

which is satisfied if and only if Pr(e|h) > Pr(e), and not satisfied otherwise.
Thus, r(e, h) > r(e ∧ e′, h) (and E (e, h) > E (e ∧ e′, h)) if and only if Pr(e|h) >
Pr(e). The other two cases follow directly from (15).

It remains to show that E (e, h) and E (e∧ e′, h) always have the same sign. This
follows from the fact that

Pr(e ∧ e′|h)
Pr(e ∧ e′)

=
Pr(e′|e ∧ h) Pr(e|h)

Pr(e|e′) Pr(e)
=

Pr(e|h)
Pr(e)

.

22



Thus, h is positively relevant to e if and only if it is positively relevant to (e∧e′).
By CA2 and CA6, this implies that E (e∧ e′, h)> 0 if and only if E (e, h)> 0, and
vice versa for negative relevance.
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Appendix 4. Proofs of Theorem 4-6.

Theorem 4. If E (e, h)>−1 and Pr(e′|e∧h) = 0 – in which case, it also must be
true that Pr(e′|e) 6= 1 – then E (e, h)> E (e ∧ e′, h) =−1.

Proof. Under the assumptions of Theorem 1, by application of Bayes’s Theo-
rem,

Pr(h|e ∧ e′) =
Pr(h) Pr(e ∧ e′|h)

Pr(e ∧ e′)
=

Pr(h) Pr(e′|e ∧ h) Pr(e|h)
Pr(e ∧ e′)

= 0.

Thus
E (e ∧ e′|h) =−1< E (e, h).

Theorem 5. If 0 < Pr(e′|e) < 1 and h does not already fully explain e or its
negation – i.e., 0< Pr(e|h)< 1 – and Pr(e′|e∧h) = 1, then E (e, h)< E (e∧e′, h).

Proof. Note first that

Pr(e ∧ e′|h) = Pr(e′|e ∧ h) Pr(e|h) = Pr(e|h). (16)

Analogous to Theorem 3, we prove this theorem by comparing the posterior
ratios r(e, h) and r(e ∧ e′, h), and applying equation (16):

r(e, h)
r(e ∧ e′, h)

=
Pr(h|e)

Pr(h|¬e)
·

Pr(h|¬(e ∧ e′))
Pr(h|e ∧ e′)

=
1− Pr(e)

Pr(e)
·

Pr(e|h)
1− Pr(e|h)

·
1− Pr(e ∧ e′|h)

Pr(e ∧ e′|h)
·

Pr(e ∧ e′)
1− Pr(e ∧ e′)

=
1− Pr(e)

Pr(e)
·

Pr(e ∧ e′)
1− Pr(e ∧ e′)

=
Pr(e ∧ e′)− Pr(e)Pr(e ∧ e′)

Pr(e)− Pr(e)Pr(e ∧ e′)

< 1,

since, by assumption, Pr(e ∧ e′) = Pr(e)Pr(e′|e) < Pr(e). This implies that
E (e, h)< E (e ∧ e′, h).
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Theorem 6. If E (e, h) > 0, then if P r(e′|e ∧ h) < Pr(e′|e), then E (e ∧ e′, h) <
E (e, h). On the other hand, if E (e, h) < 0, then if P r(e′|e ∧ h) > Pr(e′|e), then
E (e ∧ e′, h)> E (e, h).

Proof. First, we note that if Pr(e′|e ∧ h) < Pr(e′|e), then also Pr(e ∧ e′|h) =
Pr(e′|e ∧ h)Pr(e|h)< Pr(e′|e)Pr(e|h). Then we apply the same approach as in
the previous proofs:

r(e, h)
r(e ∧ e′, h)

=
1− Pr(e)

Pr(e)
·

Pr(e|h)
1− Pr(e|h)

·
1− Pr(e ∧ e′|h)

Pr(e ∧ e′|h)
·

Pr(e ∧ e′)
1− Pr(e ∧ e′)

>
1− Pr(e)

Pr(e)
·

Pr(e|h)
1− Pr(e|h)

·
1− Pr(e′|e)Pr(e|h)

Pr(e′|e)Pr(e|h)
·

Pr(e′|e)Pr(e)
1− Pr(e′|e)Pr(e)

=
1− Pr(e)

1− Pr(e|h)
·

1− Pr(e|h)Pr(e′|e)
1− Pr(e′|e)Pr(e)

=
1+ Pr(e)Pr(e′|e)Pr(e|h)− (Pr(e) + Pr(e|h)Pr(e′|e))
1+ Pr(e)Pr(e′|e)Pr(e|h)− (Pr(e|h) + Pr(e)Pr(e′|e))

This is exactly the term in the last line of (14). We have already shown in the
proof of Theorem 3 that this quantity is greater than 1 if and only if Pr(e|h) >
Pr(e), i.e. if E (e, h) > 0. This suffices to prove the first half of Theorem 6. The
reverse case is proved in exactly the same way.
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