
University of Alberta

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

THE LOGICAL DESIGN OF A MULTIMEDIA DATABASE
FOR A

NEWS-ON-DEMAND APPLICATION

by

Chiradeep Vittal
M. Tamer Özsu
Duane Szafron

Ghada El Medani

Technical Report 94-16
December 1994

The Logical Design of a Multimedia Database
for a

News-on-Demand Application

 Chiradeep Vittal
M. Tamer Özsu
Duane Szafron
G. El Medani

Laboratory for Database Systems Research
Department of Computing Science

University of Alberta
Edmonton, Alberta

Canada T6G 2H1
{vittal,ozsu,duane,ghada}@cs.ualberta.ca

Technical Report 94-16
December 1994

ii

Abstract

We describe the design of a multimedia database for a distributed news-on-
demand multimedia information system. News–on–demand is an applica-
tion that utilizes broadband network services to deliver news articles to sub-
scribers in the form of multimedia documents. Different news providers in-
sert articles into the database, which is then accessed by remote users over a
broadband network. Multimedia documents are composite objects where the
component objects have spatial and temporal relationships which need to be
captured in the database. Modeling of multimedia documents involves three
issues: (1) modeling of individual document components (i.e., monomedia
objects such as text, images, etc), (2) modeling of the document structure, and
(3) modeling of the presentation structure. We take an object-oriented ap-
proach to dealing with these issues. Within (1), our research has so far con-
centrated on text. We use an annotation based scheme where entire text is
stored as a single document and the formatting mark-ups are represented as
annotations on the text. To model the structure of multimedia news docu-
ments, we follow the SGML/HyTime international standard by designing a
document type declaration (DTD) for multimedia news articles. We build an
object oriented model of multimedia news documents based on this DTD. Fi-
nally, we model the presentational aspects (e.g., fonts, number of columns,
playing of audio and video) as objects and store them in the database..

Acknowledgment

This research is supported by a grant from the Canadian Institute for Tele-
communications Research (CITR) under the Network of Centres of Excellence
program of the Government of Canada.

iii

TABLE OF CONTENTS

1. INTRODUCTION ..1

2. APPLICATION ENVIRONMENT ...4

2.1 THE NEWS-ON-DEMAND APPLICATION ... 4

2.2 MULTIMEDIA NEWS DOCUMENTS... 5

2.3 A SAMPLE MULTIMEDIA NEWS ARTICLE... 6

2.4 QUERYING ... 8

2.5 SYSTEM ARCHITECTURE AND RETRIEVAL PROCESS ... 9

2.6 MODELING OF NEWS-ON-DEMAND ARTICLES11

3. MODELING OF MONOMEDIA OBJECTS ..12

3.1 THE TYPE SYSTEM FOR ATOMIC TYPES... .12

3.2 STORAGE MODEL FOR TEXT... .13

4. MODELING DOCUMENT STRUCTURE..16

4.1 SGML PRINCIPLES... .17

4.2 DOCUMENT TYPE DECLARATION18

4.3 TYPE SYSTEM FOR ELEMENTS21

4.3.1 Element Types.. .21

4.3.2 Structured Elements .. .22

4.3.3 Structured Text Elements .. .23

4.3.4 Other Text Elements .. .25

5. PRESENTATION INFORMATION...26

5.1 HYTIME OVERVIEW26

5.1.1 Architectural Forms... .26

5.1.2 HyTime Modules .. .27

5.2 FINITE COORDINATE SPACES... .28

5.2.1 HyTime Measurements.. .28

5.2.1 Axes and Finite Coordinate Spaces.. .28

5.2.3 A DTD Fragment for Closed Captioned Video... .30

5.3 FORMATTING INSTRUCTIONS... .31

5.4 TYPE SYSTEM FOR PRESENTATION INFORMATION32

5.4.1 HyTime Elements.. .32

5.4.2 Other Elements .. .34

iv

5.5 OTHER TYPES IN THE SYSTEM35

6. COMPOSITION HIERARCHY – AN EXAMPLE..36

7. A VISUAL QUERYING FACILITY...39

8. RELATED WORK ...40

9. CONCLUSIONS AND DISCUSSIONS..44

REFERENCES..46

APPENDIX 1. DTD FOR MULTIMEDIA NEWS ARTICLES..............................49

APPENDIX 2. DTD FOR STYLE SHEETS...51

APPENDIX 3. TYPE SYSTEM FOR DTD ARTICLE...52

v

LIST OF FIGURES

FIGURE 1. PROCESSING ENVIRONMENT ... 4

FIGURE 2. SAMPLE NEWS DOCUMENT PRESENTATION... 6

FIGURE 3. DATABASE SYSTEM ARCHITECTURE10

FIGURE 4. ATOMIC TYPES HIERARCHY13

FIGURE 5. ANNOTATIONS TO MARK-UP TEXT DOCUMENTS15

FIGURE 6. SIMPLIFIED ELEMENT TYPE HIERARCHY21

FIGURE 7. TYPE SYSTEM FOR STRUCTURED ELEMENTS... .24

FIGURE 8. TYPE HIERARCHY FOR OTHER TEXT ELEMENTS... .25

FIGURE 9. AXES, EVENTS, AND EXTENTS29

FIGURE 10. EXTENTS ALONG THE TIME AXIS FOR CC VIDEO30

FIGURE 11. TYPE HIERARCHY FOR HYTIME ELEMENTS... .34

FIGURE 12. STYLE SHEEET ELEMENT TYPES... .35

FIGURE 13. PARTIAL OBJECT COMPOSITION HIERARCHY .. .36

FIGURE 14. COMPOSITION HIERARCHY FOR THE SYNCHRONOUS

 PORTION OF THE EXAMPLE DOCUMENT... .37

vi

1

1. INTRODUCTION

Multimedia information systems integrate diverse media sources such as
text, video, speech and images to enable a variety of multimedia applications.
Many of the current multimedia information systems do not use database
management technology, for two main reasons. Some systems are single-user
systems running on personal computers. In other systems, the designers per-
ceive that database management systems (DBMSs) introduce performance
penalties that cannot be tolerated due to real-time constraints. The use of
DBMSs in these systems has, by and large, been restricted to storing meta-
information about the data – clearly a directory service – rather than as the
repository of the multimedia data.

We contend that the multimedia database is at the heart of a multimedia
information system. A multimedia database stores two types of entities:

1. the monomedia objects such as text, data, audio, video, and still images
as well as the documents that contain these objects, and

2. meta-information, such as the temporal relationships among monome-
dia objects and the quality-of-service (QoS) data, that are used by other
system components.

The challenge is to provide an integrated repository for all multimedia
objects so that they can be accessed by all system components. In this report we
describe an object-oriented database design of a multimedia database for a
news-on-demand application. The issues that we address range from logical
database modeling to the development of an objectbase management system
(OBMS)1 with application-specific query languages. Here, we concentrate only
on the logical database modeling aspects.

There are three characterizing features of our work: (1) the central use of
DBMS technology, (2) the reliance on object-oriented systems, and (3) strict
adherence to international standards. Each of these features need to be justi-
fied.

Despite the existence of a number of “multimedia file systems,” tradi-
tional file systems are not appropriate for this task. One reason for this is the
standard argument in favor of DBMSs: file systems leave to the user the re-
sponsibility of formatting the file for multimedia objects as well as the man-
agement of a large amount of data. The size of multimedia objects have been
discussed extensively in literature; for example, each of the following takes 1
Mbytes of storage in uncompressed form [Fox91]: six seconds of CD-quality
audio, single 640x480 color image with 24 bits/pixel, single frame (1/30 sec-

1 We prefer the term “objectbase management system” to the more common “object-oriented da-
tabase management system” since what is stored and managed in these systems are not only
data, but encapsulated “objects” such as images, text, etc, and the operations that can be ap-
plied to them.

2

ond) CIF video, or one digital X-ray image (1024x1024) with 8 bits/pixel. The
development of multimedia computing systems can benefit from traditional
DBMS services such as data independence (data abstraction), high-level access
through query languages, application neutrality (openness), controlled multi-
user access (concurrency control), fault tolerance (transactions, recovery), and
access control. A second important reason is that multimedia objects have
temporal and spatial relationships such as synchronization, and display loca-
tion of information between captioned text and video. These relationships
should be modeled explicitly as part of the stored data. Thus, even if the mul-
timedia data is stored in files, their relationships need to be stored as part of
the meta-information in some DBMS. As indicated above, this has been the
traditional role of DBMSs in multimedia information systems; the term
“multimedia database” often refers to a centralized directory service for data
stored in various file systems. Finally, multimedia applications are generally
distributed. Both the target application (news-on-demand) and many other
multimedia applications require multiple servers to address their storage re-
quirements. Thus, distributed DBMS technology [ÖV91] can be put to use to
efficiently and transparently manage data distribution; distributed file systems
are no match to distributed DBMSs in their functionality.

We use object technology for a variety of reasons. First, multimedia ob-
jects are complex in their structure. The primitive objects (monomedia ob-
jects) are not only simple strings or numbers (e.g., names, addresses, and sala-
ries of employees), but also include video, digitized voice and images. Multi-
media documents are structured complex objects containing a number of
these primitive objects. Each component of the document may itself be com-
posite, resulting in combinations of audio and video, image and text, etc. The
structure of the document (i.e., the relationships between various document
components) enables the contents of the document to be understood by the
reader. The structure is strictly hierarchical in nature, with the document it-
self sitting at the root of the tree. As an example, a book is made up of chap-
ters; chapters consist of sections; sections consist of paragraphs and figures,
and so on. In other words, there is a distinction between the document con-
tent and the structure of the document.

For a database where such multimedia documents are stored, there
should be facilities for (a) accessing objects based on their semantic contents,
and (b) accessing different components of these objects. Furthermore, there
are relationships among the multimedia objects (i.e., classification, specializa-
tion/generalization, and aggregation hierarchies) that need to be modeled
[DG92].

Second, multimedia information systems require an extensible data
model that allows application designers to define new types as part of the
schema. Furthermore, the applications themselves must be able to add and
delete new object types dynamically. Therefore, multimedia systems must not
have static schemas and the DBMS must be able to handle dynamic schema

3

changes. Object-oriented systems meet these requirements much better than
relational ones.

We also have an ulterior motive in the use of OBMS technology. For
years, research and development of OBMS technology has been motivated by
the claim that it is best suited to meet the demands of “advanced” applica-
tions which include multimedia information systems. Unfortunately, reports
of functional applications that use OBMS technology are scarce. Consequently,
we would like to test this often repeated claim.

The third characterizing feature of our work is our adherence to interna-
tional standards for multimedia document representation. This is essential i n
a project such as ours which involves many partners. Furthermore, the target
application demands that a standard representation be used, for which vari-
ous authoring tools are available. The tools themselves can be different, but
they should at least be based on the same document representation. This is
one way to support heterogeneity of tools while providing a unified database
representation.

SGML (Standard Generalized Markup Language) [ISO86] has been chosen
as the standard to follow because of its better suitability for the target applica-
tion, its relative power, its widespread use (for example, the Hypertext
Markup Language, HTML, that is the basis of World Wide Web is an applica-
tion of SGML) and its role as the basis of the ISO 10744 HyTime [ISO92] hy-
permedia representation standard. SGML mostly deals with textual docu-
ments whereas HyTime adds support for hypermedia documents (e.g., links,
video, etc.). We provide an overview of SGML and HyTime concepts in Sec-
tions 4.1 and 5.1, respectively.

The platform we use to implement our design is the ObjectStore database
management system [LLOW91]. ObjectStore uses C++ as its programming
language interface. The development environment is the C Set++ package on
IBM/RS6000 machines running AIX.

The rest of this report is organized as follows. In Section 2, we describe the
application environment, highlighting the important characteristics of the
target application and a running example that is used in this report. Sections 3
to 5 present the main contributions of the report and address the three main
design issues: how to represent and store individual multimedia objects i n
the database, how to represent and store the multimedia document structure
in the database, and how to represent and store spatio-temporal relationships
in the database. Section 6 presents an example that ties in the concepts intro-
duced in sections 3 to 5. We provide, in Section 7, a brief overview of a visual
querying facility that we have developed for the multimedia database. Section
8 reviews related work reported in literature. We conclude, in Section 9, with
a discussion of the current status of this project.

4

2. APPLICATION ENVIRONMENT

2.1 The News-on-Demand Application

News-on-demand is an application which provides subscribers (or e n d
users) of the service access to multimedia documents that are inserted into a
distributed database by news providers (or information sources). The news
providers are commercial news gathering/compiling organizations such as
wire services, television networks, and newspapers. The news items that they
provide are annotated and organized into multimedia documents by the
service providers (who may also be news providers). The subscribers access
this multimedia database and retrieve news articles or portions of relevant
news articles. This is typically a distributed service where clients access the ar-
ticles over a broadband network from distributed servers (see Figure 1).

The scenario for the News-On-Demand application just described brings
up two issues:

1. There are several news providers inserting documents into the database
from different remote sites, over a network. This means that everybody
has to follow a standard for news article representation and encoding to
enable transmission over the network and insertion into the database. In
other words, the representation of the document should be architecture

Figure 1. Processing Environment

DTD’s

SGML/
HyTime

Compiler

Type
System

…

Query
Processor

Service Providers End Users

SGML/HyTime
Processing System

Database
Processing System

5

independent. There is a similar concern at the user’s end, where differ-
ent browsers and interfaces may be used to access the articles.

 The choice of SGML/HyTime as the standard for document representa-
tion is reflected in the overall organization of the news-on-demand mul-
timedia information system application (Figure 1). News providers
compose hypermedia articles on their own authoring systems. These ar-
ticles are then translated to the SGML/HyTime representation. A
SGML/HyTime compiler checks the document being inserted against the
document type declaration (DTD) which describes the acceptable docu-
ment structure. It then instantiates the appropriate objects in the data-
base. Subscribers use a querying interface to access articles and/or article
components from the database, which can also be queried by various sys-
tem components (the quality-of-service negotiation module, the syn-
chronization module) to obtain relevant meta-information. Our sub-
project currently focuses on the database processing side of Figure 1.

2. Once inserted into the database, the news article is not updated by either
the news provider or the subscriber. Thus, we have a read–only model
for the database. The news provider may insert newer versions of the
news article however, as time progresses. The database management sys-
tem would handle the version management issues.

2.2 Multimedia News Documents

A document is a structured collection of pieces of information related to a
particular subject. In a multimedia document, these pieces of information are
not restricted to conventional text, but include other media such as audio,
video, and images. These media themselves may be composite, so that we
may have combinations of audio and video, image and text, etc. The structure
of the document (i.e., the relationships between various document compo-
nents) enables the contents of the document to be understood by the reader.
The structure is strictly hierarchical in nature, with the document itself sitting
at the root of the tree. As an example, a book is made up of chapters; chapters
consist of sections; sections consist of paragraphs, and so on. In other words,
there is a distinction between the document content and the structure of the
document.

Two types of structure can be identified: the logical structure and the pres-
entation structure of the document. The logical structure refers to the logical
organization of document components; the presentation structure refers to
the layout of the components actually displayed to the reader. The logical
structure of a book would be the organization into chapters, sections, para-
graphs and so on; while the presentation structure has information on the
number of columns of text used to display the document, the fonts and font
sizes used to display the chapter titles, etc.

6

Documents often have links to other documents or document compo-
nents. Common examples of such links in paper based documents are biblio-
graphic references, footnotes and cross-references. Text overlaid with a link
structure is called hypertext. In the case of multimedia documents, this term
is changed to hypermedia.

2.3 A Sample Multimedia News Article

This section describes a sample multimedia news document that will be
used as a running example throughout this report. As mentioned before, a
document is a collection of information pieces related to a certain subject. As
an example, we use a news article about the recently concluded Common-
wealth Games. Since there is so much information, there is more likely a se-
ries of articles on the subject. We choose the inauguration of the Games by
the Queen as the subject of the article. We will describe the document com-
ponents in terms of the media present in the document; the full document is
depicted in Figure 2.

• The text portion consists of the written report on the inauguration cere
mony. Included in this is data that may not be shown in the final docu-

Queen opens Games
Victoria, Aug. 18. The Queen today officially inaugurated the 15th
 Commonwealth Games in Victoria, B.C., at the University of Victoria. The
Centennial Stadium was filled to it’s capacity of 30,000.

 Queen Elizabeth II
Some 3500 athletes from 64 countries are competing in track and field
events, swimming, gymnastics, lawn bowling etc. Lacrosse is being intro-
duced as an exhibition sport in the Games.

 Speech Video Coverage More News
–– C. Dickens

Figure 2. Sample News Document Presentation

7

ment presented for viewing, such as the keywords associated with the
document. Other textual logical components of the document would be
the title, the (optional) subtitle, an (optional) abstract paragraph, the date
and location of the news item, the paragraphs that make up the article
content, the author, and perhaps the titles of any images appearing in the
text.

• The images in the document are any pictures related to the subject of the
article. For example, since one of the main subject of the article is the
Queen, her picture may be an appropriate component of the document.
The image can be stored in any format (GIF, TIF, JPEG, etc.). The presen-
tation of the image is also independent of the logical structure, because
we may choose to reproduce the image inline with the rest of the docu-
ment, or display it in a separate window.

• The sound or audio component of the document is the recording of the
speech given by the Queen at the inauguration. Here again, the represen-
tation format is independent of the logical structure of the document.
The tone and volume of the audio playback are examples of presentation
attributes.

• The video component could be the television recording of the speech.
The representation format of the video data (MPEG, MJPEG, Quicktime,
etc.), and the presentation aspects (frame rate, size of the window, etc.)
may not be information relevant to the logical structure of the docu-
ment. Video is seldom displayed on its own – there are associated media
played back, or synchronized along with the video. Therefore, in the T V
clip featuring the Queen’s speech, the voice of the Queen is synchronized
with the video so that the viewer does not find the lip movements out
of phase with the sound of the voice being played back. There could be
text subtitles displayed along with the video, giving the French transla-
tion of the speech.

• The subscriber typically would like more information on the various
events and people mentioned in the article that may not be found in the
document itself. By providing links to documents, or document compo-
nents where further information can be found, the document enhances
its information capacity. Another possibility is that the user may want to
make comments, or annotations on the text that would be visible the
next time the document is retrieved.

In Figure 2, the links to other documents are marked by underlined text.
There could be other more obvious icons used to denote the link. This may
depend on the preferences of the viewer, the type of terminal and the
author’s own choice. Again, this is a presentational aspect separate from the
logical structure of the document.

8

It is important to note that Figure 2 represents only one possible
‘rendition’ of the news article. The user for example may prefer not to see any
text at all, or if the available display is an ASCII terminal, only the text portion
may be presented, causing the system to skip the retrieval of the image, audio,
and video components of the documents.

2.4 Querying

As noted before, queries on the document are read-only in nature with no
updates after the document is inserted. The following retrieval scenario
elaborates on the type of queries the user may perform. A detailed description
can be found in [EÖSV95].

• The user wishes to see some articles on the Commonwealth Games. Al-
ternatively, the request may be to view some articles featuring the Queen
in them. Therefore, the database is queried for all documents with the
keywords Commonwealth Games in them (or, the Queen).

• The database returns a list of titles of articles with the required keywords.
Along with the title, the user may also see an abstract paragraph of the
article. Other information displayed could be the list of media types i n
the article, and the nominal cost of retrieval of the document. This cost
changes as the user negotiates the quality of service desired (or can be
paid for) with the system. Note that each of these additional pieces of in-
formation is obtained by the user interface by querying the documents i n
the list.

• The user selects one particular article (for example, the one described i n
the previous section), and retrieves the document after negotiating the
cost of access.

• The retrieval process itself could trigger additional queries to the docu-
ment in the database. For example, the physical location of the different
media types could be on different servers. This has to be determined by
the processes involved in the retrieval (cf. Section 2.5). If the different
components of the article need to be synchronized in time, the playback
schedule is determined from the synchronization information present
in the document. The cost, the schedule, the quality of service parame-
ters, and the physical location of the media, are called meta-information.
Querying for meta-information is a very important support feature pro-
vided by the database.

• Although a keyword based search is the most likely scenario, there are
other queries possible that would return a list of documents matching
the search criteria. For example:

- return documents with a particular text string within the text of the
article.

9

- return documents with video, but no text.

- return documents with a certain location and date.

- return documents by a certain author , etc.

• Queries can be performed on the displayed document too. Text string
matching is a common example. Following the links within the docu-
ment could result in more queries by the system to determine the meta-
information associated with the new document.

• The database can be queried for presentation information. Presentation
information includes synchronization information, information on
how the document is spatially laid out on the rendition medium, and
formatting of various document components. Emphasis elements could
be set out in italics (as in Lacrosse, in Figure 2), titles in 18 point bold
font, and images could be displayed in grayscale, rather than color. The
browser displaying the document would query the database to determine
this information. The presentation style could either chosen by the user,
or a pre-defined presentation style could be used.

• Other complex queries such as “return all documents with quotes by the
Queen, on the Commonwealth Games”. Note that we only deal with
queries on information already in the database. We do not consider que-
ries that require the database to “understand” the document.

2.5 System Architecture and RetrievalProcess

The stored multimedia data is classified as continuous media , or non-
continuous media. Continuous media refers to those types which have to be
presented at a particular rate for a particular duration of time. These include
audio and video. Continuous media presents some of the more pressing is-
sues in multimedia information systems and significantly influences the de-
sign and the load of the system. Non-continuous media such as text and still
images do not have the real–time constraints of audio and video. In our sys-
tem, continuous media and non-continuous media are stored on different
servers.

Figure 3 shows the architecture of the distributed multimedia system
with data distributed between a number of non-continuous media servers
(NCM servers) and a number of continuous media servers (CM servers). The
distribution of data is transparent to the users since they interact with a query-
ing facility [EÖSV95] at the client, rather than directly accessing individual
servers. All accesses to the servers are routed through the client OBMS.

The current architecture however does not integrate the continuous me-
dia servers with the database. Instead, the database stores meta-information
about the files on the continuous media file server. The database is queried by
the client routines to determine the location of a particular piece of multime-
dia data. After obtaining the file name and the server on which it resides on,

10

the file is accessed directly from the file server. This architecture is necessary
since the database system chosen for implementation of the application does
not provide any native support for continuous media.

The retrieval of the document involves several system components, each
of which must access the database to determine information necessary for the
completion of their tasks.

CM
Server #1

CM
Server #n

NCM
Server #1

NCM
Server #n ……

ATM Network

Figure 3. Database System Architecture

Briefly, the user chooses a document to display after having browsed the
database through a Visual Query Interface [EÖSV95]. The user negotiates
through the Quality of Service Negotiator [Hafi94] with the distributed system
for the desired level of quality and cost of access. Then the Synchronization
component [LG94] takes over by coordinating the delivery of several streams
of monomedia data over the network. To do this, it has to request the Con-
tinuous Media File Server [NY94] to retrieve the appropriate files and start
the streams.

The QoS negotiation module has to determine the media types in the
document, their QoS parameters, the capabilities of the user’s hardware and
the bandwidth availability in order to perform it’s task. To do this, it queries
the database for the first two pieces of information. The synchronization

11

component needs to know the constraints between the media types in the
document in order to determine the schedule of delivery of data over the
network. The continuous file server needs to know the names and location of
the files it is supposed to retrieve. The database stores the so-called Universal
Object Identifier (UOI) for each monomedia object which the continuous me-
dia server uses to determine the name and location of the file(s) containing
the object.

2.6 Modeling of News-on-Demand Documents

The discussion on the sample multimedia document revealed the three
layered view of the document. In addition, the document possesses hyper-
links to other documents and document components. Storage of meta-
information and architecture independence are issues arising out of the ap-
plication requirements. In modeling these requirements there are three issues
which need to be addressed:

• The different media components of the document (i.e., text, image,
audio, and video) need to be represented in the database. These are called
monomedia objects and their representation in the database is critical for
good performance.

• The second issue that needs to be considered is the representation of the
document structure. Not every multimedia information system repre-
sents the document structure explicitly. For example, a multimedia sys-
tem that uses postscript files for text documents containing images, ig-
nores the hierarchical structure of the document. It is important to rep-
resent this structure explicitly both for querying and for presentation.

• In hypermedia documents, one has to deal with the representation of the
spatio-temporal relationships between monomedia objects. These rela-
tionships are important for presentation purposes – spatial relationships
are used to model the placement of the various components on the
screen while temporal relationships are essential for the synchronization
of monomedia objects during presentation (e.g., audio synchronization
with video or captioned text with video).

The following three sections presents our approach to addressing these is-
sues. Section 3 presents the type system which is used to model and represent
monomedia objects. Section 4 deals with type system used to model docu-
ment structure and of necessity, some SGML concepts. Section 5 deals with
presentation issues, including a discussion of HyTime. The type system is ex-
panded to include HyTime representations of spatio-temporal relationships
and link structures. Section 6 describes the composition hierarchy of the
document, illustrating how the type system gets instantiated.

12

3. MODELING OF MONOMEDIA OBJECTS

The storage of continuous media such as audio and video is a challenging
problem, particularly if content-based indexing of these media is considered.
We have not yet started research on these issues. Content-based indexing of
images is a problem that we have recently started to investigate. The chal-
lenge is to combine indexing techniques with standard methods for storing
these media. Since the continuous media file server is not yet integrated with
the multimedia database, we only store descriptive information about audio
and video in the database.

As mentioned before, the object oriented database chosen for implemen-
tation does not provide native support for multimedia data other than text
(or strings). These data types are what we call ‘atomic types’.

3.1 The Type System for Atomic Types

Figure 4 illustrates the type hierarchy for atomic types. The full descrip-
tion of these types is given in Appendix 3. Instances of atomic types hold the
raw (mono) media representation along with other information relevant to
the QoS scheduler and synchronization module. Since there is not support
for the monomedia types from the database (except for text), we use arrays of
characters to store these media.

The continuous media is on a file server not under the control of the
DBMS. To access these media files, the database is queried for the list of con-
tinuous media type instances in the document. These instances store the loca-
tion of the file, the host on which the file exists, and also the Universal Object
Identifier used by the file server to determine other location information.
There is no need to do this for the non-continuous media data types which
are managed by the DBMS software.

Figure 4. Atomic Types Hierarchy

Atomic

Text SyncText Temporal

NCMType CMType

Video Audio

Image

13

Accordingly, there are two subtypes of atomic media types one for non-
continuous media (NCMType) and another for continuous media (CMType).
The attributes and methods which are relevant to both classes of media are
abstracted in the Atomic type. These are the length and generic QoS pa-
rameters such as jitter, cost and delay [Hafi94].

The NCMType media are further subtyped into Text and Image media
types. NCMType has the attribute content which is an array of characters. The
Text subtype has additional methods: match which implements a pattern
matching algorithm, and substring which returns a portion of the text ob-
ject given the two integers representing the start and end locations. The Im-
age type has additional attributes such as the width, height and colors of the
image. Both these types have attributes for the QoS parameters specific to the
media they model. The Image type is further subtyped to reflect the different
storage formats possible which entails more attributes.

A similar subtyping scheme is seen on the CMType side of the type hierar-
chy. The Video type is subtyped to handle different storage formats. Synchro-
nized text (SyncText) is not subtyped from the NCMType Text, since it is
stored as a file, not as an object in the database. The methods match, and
substring cannot be applied to the synchronized text media since the file is
located on a server which may or may not be accessible to the DBMS. The
Temporal supertype of video and audio is due to the fact that both have a
duration in the time axis.

3.2 Storage Model for Text

Text (a character string) is an atomic type which is supported in the data-
base system. However, in the news articles, the text component of the article
is richly structured; i.e., consists of many components (also called elements) ,
hierarchically arranged. One alternative for representing text components of a
multimedia document is to define object types for each of these structure
components and associate with each of them a fragment of the complete text
of the article.

Storing the text content of the article by fragmenting it in this manner can
have serious performance implications. For example, to store the second in-
stance of the paragraph element in the sample document (Figure 2), we need
three fragments – the emphasis element, the link element and the rest of the
text. Accessing the text of the paragraph now involves three accesses to persis-
tent store.

Although there are strategies such as clustering to improve performance,
with large objects involved, these techniques may be inadequate. In any case,
the pointer swizzling overhead of these objects cannot be overcome by clus-
tering. Furthermore, if pattern-matching methods are defined on text ele-
ments, it would be necessary to re-assemble the entire text component of the
document which has performance implications.

14

In addition to performance issues, there are modeling complications as
well. One problem is to decide what the granularity of the fragmentation
should be – paragraphs? sentences? words? The granularities can be deter-
mined by the granularities of the logical elements of the document. Thus,
each logical element would contain a fragment of the text. For example, there
would be an Emphasis type for instances of logical emphasis elements. This
can cause several copies of the same piece of text residing in various logical
element instances. The second problem which arises is as follows: suppose an
emphasis starts at some position in one word and runs until some position of
a subsequent word (i.e., does not cover entire words). Since there is a logical
emphasis element in the mark-up of this document, it would be necessary to
create an Emphasis type and store the emphasized text as the value of one in-
stance of this type. However, this precludes the possibility of querying for ei-
ther one of those two words involved in the emphasized string.

To avoid fragmenting the textual elements in this manner, we store the
entire text content as a single string. To associate a particular instance of an
element with its text content we store the first and last character locations of
that portion of text in the entire text content. We call pairs of integers such as
these, annotations.

Using this model the text content of the sample news document is :

Queen opens GamesVictoria, Aug. 18. The Queen today officially inaugurated the
15th Commonwealth Games in Victoria, B.C., at the University of Victoria. The
Centennial Stadium was filled to its capacity of 30,000. Queen Elizabeth IISome
3500 athletes from 64 countries are competing in track and field events, swim-
ming, gymnastics, lawn bowling etc. Lacrosse is being introduced as an exhibi-
tion sport in the Games.

In this example, the second paragraph instance has the annotation [235,
420]. The subelements of the paragraph have the annotations [258, 272] (link),
and [352, 360] (emphasis). The graphical representation of the annotations
approach is depicted in Figure 5.

Every document instance in the database has a “base” object
(article_root) associated with it which stores the text string forming the
text content of the article, and the lists of annotations associated with each text
element type. To display the document, the browser can scan these lists effi-
ciently and determine the presentation of the text. We map this representa-
tion to a type system by defining a type, Text, whose instances store entire text
documents as represented in Figure 5. We also define a type to correspond to
every allowable annotation, as specified in the document DTD.

There are two distinct advantages of using this storage model for text
elements:

• Displaying the text becomes faster, and more efficient because multiple
accesses to persistent store are avoided.

15

Queen opens GamesVictoria,
Aug. 18. The Queen today
officially inaugurated the
15th Commonwealth Games
in Victoria, B.C., at the Uni-
versity of Victoria. The Cen-
tennial Stadium was filled to
it’s capacity of 30,000.
Queen Elizabeth IISome
3500 athletes from 64 coun-
tries are competing in track
and field events, swimming,
gymnastics, lawn bowling
etc. Lacrosse is being intro-
duced as an exhibition sport
in the Games.
C. Dickens

• Indexes can be built on these annotation objects which can aid searches
for element instances. For example, it is possible to search for all empha-
sized text in a document.

There is one disadvantage of this approach. Updates to the text content
are expensive, since a change to the content of a document may cause the
values of annotations to change. This can be avoided to a certain extent by
specifying annotations relative to some enclosing structure, say with respect
to a paragraph. Then the annotations of the paragraphs change after updates
but the annotations of the paragraph’s sub-elements remain safe.

Figure 5. Annotations to Mark-Up Text Documents

Figure

Paragraph 2

Begin

End

Link 2

Begin

End

Emphasis

Begin

End

Begin

End

16

4. MODELING DOCUMENT STRUCTURE

The logical structure of the document and the presentation information
associated with it are necessary for the contents of a document to be under-
stood. Certain queries (cf. Section 2.4), and the presentation of the document
also rely on the logical structure of the document. Hyperlinks are made to
logical document components.

Document representation formats store one or both of these pieces of in-
formation. Markups are used frequently to represent this information. De-
scriptive markups are used to mark off logical components, and also repre-
sent presentation information. As an example, the popular document format-
ter, LaTeX uses \section to delimit sections and \bf to indicate bold font.
Other proprietary document representation formats such as Postscript and
RTF only use markups to represent presentation information; the logical
structure is not stored. The markup in LaTeX is also descriptive only; there
are no means of specifying the hierarchical relationships between document
elements (for example that subsections can only occur within sections).

The International Organization for Standardization (ISO) has published
two standards for document representation – Office document Architecture
(ODA) and Interchange Format, and the Standard Generalized Markup Lan-
guage (SGML) (numbers ISO 8613 and ISO 8879 respectively). Both representa-
tions are used to model document structure. Both allow internal storage for-
mats, and are architecture independent. However, SGML is especially attrac-
tive for the following reasons:

“SGML can be used for publishing in its broadest definition, ranging
from single medium conventional publishing to multimedia data-
base publishing. SGML can also be used in office document processing
where the benefits of human readability and interchange with pub-
lishing systems are required.” [ISO86]

In addition, the ISO standard for hypermedia representation, called
HyTime (ISO 10744), uses SGML representation syntax and is admirably suited
to work with SGML documents. HyTime provides a standard way of repre-
senting links, and also defines their processing. In particular, it deals with
structured information and the ability to link from and to structured infor-
mation. HyTime also provides a way to represent scheduling and rendering
information.

One of the reasons for the success of the World Wide Web is the use of a
standard Hypertext Markup Language (HTML) for document representation.
HTML is an application of SGML, and therefore a subset of SGML. The con-
cept of the WWW is close to the idea of “open” hypermedia, in which links
can be made to any piece of information – including non-hypermedia repre-
sentation. HyTime is an attempt at following open hypermedia [DD94].

17

SGML describes the logical structure of the document by using markups
to mark the boundaries of logical elements of the document. Although SGML
is called a language, it is more of a meta-language, which is the key to its flexi-
bility.

4.1 SGML Principles

Markups were traditionally used in document formatting programs to
indicate processing instructions to the formatter. For example, before the be-
ginning of each paragraph, there would be a markup indicating the amount
of indentation for the first line of the paragraph, the number of blank lines to
leave before starting the paragraph, etc. This is known as procedural m a r k u p
in which the presentation information was mixed with document structure
and document. In the following description, bold fonts denote SGML terms;
italicized words are important concepts which are not restricted to SGML.

The generalized markup [ISO86] approach of SGML separates the descrip-
tion of structure from the processing of the structure. The philosophy is that
processing instructions can be bound to the logical elements (e.g., paragraph,
section, section title, etc.) at the time of formatting, or display. Descriptive (or
generalized) markup identifies logical elements using start tags and end tags
to mark their boundaries. The elements are identified by their generic identi-
fiers (GI), or tags. In the following example, the GI is ‘hdline’, and marks off
the headline of the sample news document :

<hdline> Queen Opens Games </hdline>

The processing instruction which is stored separately, in this case could be
that, “set all hdline elements in 18pt bold Helvetica font”.

Furthermore, the markup in SGML is rigorous [ISO86] in that elements
can contain other elements to form a hierarchy. Thus, chapter elements can
contain title and section elements; section elements can contain para-
graph elements and so on; the instances form a tree, enabling manipulation
of subtrees. In other words, an SGML document consists of instances of
document elements arranged in a hierarchical structure.

SGML does not specify what these elements should be, or their hierarchy.
Instead, the list of elements types, and the relationships between them is ex-
pressed as a formal specification called a Document Type Declaration (DTD).
A DTD is written in SGML by the document designer for each category of
document being designed. In our case, we need to write a DTD for news arti-
cles, but there could be DTDs for books, letters, technical manuals etc. There-
fore, each DTD defines a new markup language with which documents be-
longing to the category of documents the DTD defines can be marked up. In
this sense, SGML is a meta-language.

18

4.2 Document Type Declaration

A DTD specifies element types, the hierarchical relationships among ele-
ments, and attributes associated with them. Attributes contain information
that is not part of the document content. For example, if there is a security
level attribute associated with chapter elements, then users without the
same level of security clearance could be denied access to the subtree starting
at that instance of a chapter element. In the example multimedia news
document of Figure 2, the following element types can be identified: article,
headline, location, date, paragraph, figure, figure caption, emphasis, author,
linkarticle, headline, location, date, paragraph, figure, figure caption, empha-
sis, author, link.

Note that the article itself is considered as an element. There are other
elements possible, such as list, quote, table, emphasis2 (for a differ-
ent type of emphasis), keywords, source, etc., which we won’t consider,
except for keywords. If we omit the audio and video elements, the marked-
up example news article looks like the following:

Note that the start tags are ended by their corresponding end tags. Also,
there are certain elements which may not be displayed, such as the keywords
element. From this example markup, we could conclude that a news article
consists of a headline, followed by a date, followed by keywords, followed by
the authors name, followed by paragraphs, interspersed with figures. The
other elements – links and emphasis always occur within other elements.
Therefore, our first entry into the DTD would be :

<article>
<hdline> Queen Opens Games </hdline>
<keywords> Queen Elizabeth, Royalty, Sports </keywords>
<date> 18/8/94 </date>
<location> Victoria, B.C. </location>
<paragraph>The Queen today officially inaugurated the 15th
<link linkend=cwealth.sgml>Commonwealth Games </link>
in Victoria, B.C., at the University of Victoria. The Centennial Sta-
dium was filled to it’s capacity of 30,000.
</paragraph>
<figure filename=queen.gif>
<figcaption>Queen Elizabeth II</figcaption>
</figure>
<paragraph> Some 3500 athletes from
<link linkend=list.sgml>64 countries </link>
are competing in track and field events, swimming, gymnastics, lawn
bowling etc. <emphasis> Lacrosse </emphasis> is being intro-
duced as an exhibition sport.
</paragraph>
</article>

19

<!ELEMENT article - - (hdline, date, keywords, author,

This definition means precisely what we just described. The data on the left
side of the dashes names the element, the right side defines its content model.
The connector ‘,’ implies ‘followed by’, the connector ‘*’ denotes zero or more
occurrences, and ‘|’ stands for ‘or’. Note that the content model breaks up
neatly into two components: the front matter, and the body of the article.
Therefore, we rewrite the above declaration to look like:

<!ELEMENT article - - (front, body) >

The markup in the document should be changed to reflect this extra level of
hierarchy.

Next, we try to define the content models of the elements occurring on
the right hand side of these element declarations. Note that the elements
keywords, hdline, date, emphasis, link, and author do not have
other elements within them; they only contain text strings. In SGML syntax,
these strings are called #PCDATA. This means that these elements have iden-
tical content models, and only the right hand side of the element type declara-
tion will differ. If we combine all these declarations into one, we get :

In the sample document, paragraph elements contain strings of text in-
terspersed with emphasis and link elements. Both of these subelements are
optional. The figure element contains one subelement, the figure caption
element, figcaption. The figcaption element just contains text strings, or
#PCDATA. We assume this subelement to be always present. Using these infer-
ences and assumptions, we come up with :

<!ELEMENT paragraph - - (#PCDATA | emphasis | link)+>

<!ELEMENT figure - - (figcaption)>

<!ELEMENT figcaption - - (#PCDATA)>

The second step is to define attributes for the element types, if any. Look-
ing back at the marked up document, link and figure elements have start
tags of a slightly different nature. The additional information provides values
for attributes of these elements. Thus, the markup

<link linkend=cwealth.sgm> Commonwealth Games</link>

implies that the link element has an attribute called linkend, whose
value is cwealth.sgml in this particular instance of a link type. Writing the
attribute lists for link and figure elements in the DTD :

<!ATTLIST link

(paragraph|figure)*)>

<!ELEMENT front - - (hdline, date, keywords, author)>
<!ELEMENT body - - (paragraph|figure)* >

<!ELEMENT (keywords|hdline|date|emphasis|link|author)

 - - (#PCDATA) >

 linkend CDATA #REQUIRED>

20

<!ATTLIST figure
 filename CDATA #REQUIRED>

The CDATA refers to the data type of the attribute (string in this case). The
#REQUIRED means that any instance of the link element has to have a value
associated with the linkend attribute. Other options are #IMPLIED (attribute
need not be instantiated), and #FIXED (attribute can be instantiated to only
one value).

In our DTD, we chose to make figcaption a separate element, rather
than an attribute of the element type figure. This enables a search on the col-
lection of all figure captions. This also allows us to redefine the figcaption
element to have a more complex content model, in future versions of the
DTD.

There is a third type of entry in the DTD, called entity. Entities are useful
to include files and non-SGML data in the document and also as short forms
for frequently used content models in the DTD. We do not consider entities
in our design. We assume that the SGML document to be inserted does not
contain any ENTITY entries.

To summarize, the three types of entries in a DTD are element type decla-
rations, attribute lists, and entities. There are several optional features of
SGML not mentioned here; they will not be used. Attributes and entities are
features used extensively by HyTime, the hypermedia markup language.
HyTime is discussed in the next section. The DTD ‘design’ process outlined
here is only a toy example – it is meaningless to try and derive a description
for a whole category of documents from a single instance. However, since we
are designing the application from scratch, without any extensive set of real
documents to analyze, we have to start with a concept of a multimedia news
article and design our DTD based on this. The complete DTD based on this
concept is presented in Appendix 1.

The DTD is our main basis for our logical structure that models the data-
base design for multimedia news documents. The DTD does not (yet) give any
presentation information. While the philosophy of SGML is to leave out the
presentation information, the HyTime markup language allows us to specify
temporal and spatial relationships between document components. This is
described in Section 5.

Each element type in the DTD (including HyTime elements) is modeled
as a type in our type hierarchy. The type hierarchy then incorporates the logi-
cal structure and presentation information. It should be possible to map the
instances of all element types to their content2. The contents are ‘primitive’
data types, or atomic types.

2The elements with EMPTY content models (for example HyTime elements conforming to the
axis AF) of course may not have any data content associated with them. If they have attrib-

21

4.3 Type System for Elements

The type system includes over fifty types for various document element
types (including HyTime elements, ‘normal’ elements and style sheet ele-
ments), and their supertypes. Although the type system was built up more or
less bottom up, a top down description of the inheritance hierarchy will make
things clearer.

4.3.1 Element Types

 Figures 6 to 8 show the type hierarchies for logical document elements.
The supertype of all elements is the Element type. This models the fact that
all elements need to maintain a reference to their parent element in the
document instance hierarchy, so that the hierarchy can be navigated starting
from any element. When links are made to arbitrary elements in different
documents, or when searches are performed over several documents, it is of-
ten useful to know the article these element instances belong to. Therefore,
all elements maintain references to the article they belong to. Element is sub-
typed into TextElement, Structured and HyElement.

Looking at the DTD for news articles, we note that the article has been di-
vided into two components – one called async, and the other called sync.

Figure 6. Simplified Element Type Hierarchy

This reflects the fact that continuous media (i.e., media which have syn-
chronization constraints need to be handled by HyTime elements, and nor-
mal SGML elements are adequate to deal with text and image data. The su-
pertype HyElement encompasses all the HyTime elements used in the DTD.
We delay a discussion of these types to until after we have described the
HyTime standard in Section 5.

utes which specify their content, then it is possible to map them to the instances of the atomic
media types (cf. Section 6.3).

Element

StructuredTextElement HyElement

StructuredText AudioVisual Sync Article

22

Due to the annotation based storage model, elements defined for textual
data in the DTD have an attribute whose value is the annotation of the ele-
ment in the article instance. Their supertype is the TextElement type. This
supertype has methods to manipulate these annotation values. The other
method is getString which returns the string value captured by the annota-
tion. The type hierarchy (other than StructuredText which is described i n
Section 4.3.3) rooted at this type is illustrated in Figure 8, and discussed in Sec-
tion 4.3.4.

4.3.2 Structured Elements

The type Structured is a supertype for elements in the DTD with com-
plex content models. By complex we mean, not EMPTY, or (#PCDATA). That is,
structured elements can have child elements in the document instance and
need to maintain references to them. Correspondingly these elements have
the method getNth which returns a reference to their nth child element.
Since the types of these child elements are so diverse, the only common su-
pertype is Element, which is the return type of this method. This method gets
redefined by the subtypes so that the return type becomes more specific.

Elements which are both structured and based on text have a supertype
StructuredText. The subtypes of this type includes all text elements with
complex content models, like list, section, figure, frontmatter, etc.
The type system rooted at this type is described in Section 4.3.3 and shown i n
Figure 7.

Instances of the Article type are at the root of the composition hierar-
chy. According to the DTD, they should have references to instances of the
Frontmatter, Async and Sync types. In addition, the date, source, subject,
and author are attributes (type String) of Article. Although these values
are already stored (by means of annotations) as instances of Date, Source,
Subject, and Author types respectively (and are child elements of instances
of Edinfo). We would like to index the collection of Article instances on
the values of these attributes, since queries predicated on these are likely to be
frequent [EÖSV95]. ObjectStore collections can only be indexed on attributes.
The string value of instances of Date, Source, Subject,and Author can
only be obtained by the application of the method getString(). Hence, al-
though we could have methods getDate, getSource, getSubject, and
getAuthor for the Article type, it would not have been possible to build
indices on these methods.

AudioVisual and Sync are the other two subtypes of Structured. In the
DTD, the element audio-visual models one set of logically related HyTime
elements such as axis, fcs, extlist, etc. For instance, if the document was
one hour of a television broadcast, there would be one audio-visual each
for the news, for the commercial segments, etc. The whole broadcast would be
modeled by the sync element, and captured by the Sync type. Sync instances
are collections of AudioVisual instances.

23

Structured elements have complex content models and pose peculiar
problems while modeling the content models. The first problem is due to the
‘or’ connector (‘|’)in the content model. For example, the Async element has
the content model:

<!ELEMENT async - - (section|figure|link)*>

If we have three fields for the Async type each of which is list of refer-
ences of the type of one of the three elements listed on the right hand side,
then we lose the relative orderings between say, Section instances and Fig-
ure instances which are the children of the Async instance. The other solu-
tion is to have just one list of references of the common supertype of Sec-
tion, Figure, and Link; this is StructuredElement in this case. This
leads to type checking problems since even references to Paragraph ele-
ments can now be inserted into the list.

The solution is to use union types: the parameter of the list of children is
the union type of the three types: Section, Figure, and Link. Unions are
present in the C++ data model; ObjectStore allows named union types to be
made persistent. However, a discriminant method has to be provided to dif-
ferentiate between the types in the union, and the user has to ensure that the
right type is being accessed (i.e., the user has to do some type checking). The
solution we adopt is to create an abstract supertype of Section, Figure, and
Link. The parameter of the list is then this supertype. There are no type
checking problems now. The drawback is that it creates an explosion of types
in the system. We call abstract supertypes created for this purpose pseudo-
union types.

The second problem occurs in the use of the ‘follows’ connector (‘,’). For
example the element frontmatter has the content model:

<!ELEMENT Frontmatter --(Edinfo,Hdline,Subhdline,Abs-p)>

This means that instances of Edinfo, Hdline, Subhdline, and Abs-p must
follow each other in any document instance. To capture this in our type sys-
tem, we need a mechanism to order the attributes of the type Frontmatter.
Again, this feature is not present in the data model of ObjectStore. We as-
sume an implicit ordering of attributes in this case. The behavior of the
Frontmatter type is such that it enforces the ordering. Thus, when the
method getNth(3) is applied to an instance of Frontmatter, the result is a
reference to an instance of the type Subhdline.

4.3.3 Structured Text Elements

Instances of StructuredText type are text elements (i.e. those whose
content is represented by annotations) which have subelements. There are
ten such elements, and since their child elements are so diverse in their types,
the return type of the getNth method is TextElement.

Figure 7 shows the hierarchy. The subtypes of StructuredText redefine
the return type of the getNth method, and also have additional methods.

24

For example, the List type has methods to get and set its title. The type Sec-
tion has the same method (and so the two have a common abstract su-
pertype, which is not shown here).

The type Figure illustrates the relationship between atomic types and
element types. One of the attributes of Figure is Image, which is a reference
to an instance of a subtype of the type Image. The other attribute of Figure is
float, a string valued attribute which indicates the position at which the
image has to be displayed relative to the text.

The type Paragraph has a children attribute which is a list of the
subelements of paragraph in the DTD. These are emphasis elements, list
elements, figure elements, link elements and quotes. Paragraphs can also con-
tain plain text not wrapped in any other element. Therefore the parameter of
the child list is the pseudo-union type formed by creating the supertype of Em-
phasis, List, Figure, Link, String, and Quote types. Similarly, the
Async type has a child list as an attribute which is a list whose parameter is
the pseudo-union supertype of Section, Figure, and Link types. The
Hdline type is quite similar to Paragraph in that the parameter of the list of
children is Emphasis, Quote, Link, and String. Hdline is subtyped to
Subhdline; this is a classification step only.

Abs-p is the type whose instances store the abstract paragraph of the arti-
cle – this is just one paragraph, according to the DTD. The Section type has a
title attribute; the other children are a list whose parameter is the pseudo-
union supertype of Paragraph and List. The Edinfo type which models
the editorial information of the article has one attribute each for the location
(Loc), date (Date), source (Source), author list (list of Author), keywords
(Keywords), and subject (Subject). The Frontmatter type models the head-
lines and other matter usually found at the beginning of news articles. It has

Figure 7. Type System for Structured Text Elements

StructuredText

ListItem Section

Figure

Async

Hdline Paragraph

Link

Frontmatter

List Abs-pEdinfo

Ilink_AF

Subhdline

25

as its children Edinfo, Hdline, Subhdline, and Abs-P element types –
these are the attributes of Frontmatter. We delay the discussion of Link to
the section on HyTime element types.

4.3.4 Other Text Elements

The other text elements consist of text only with no subelements. Most of
the types here do not have any additional methods or attributes other than
those present in TextElement; they have been created as subtypes purely as a
classification step, and to retain the uniform approach of modeling all ele-
ment types as types in the type system. Figure 8 illustrates the hierarchy.

The exceptions are quote, author and date which have additional
methods and attributes, as a result of additional attributes being defined in the
DTD. The attributes of these elements and the attribute list found in the DTD
have a one-to-one mapping; Quote has a source attribute, Author has a des-
ignation attribute, Date has integer attributes for the day, month and year
components.

TextElement

Loc Source

Author Subject Date

QuoteEmphasis

Emph1 Emph2

FigcaptionEdinfoElement

Keywords

Figure 8. Type Hierarchy for Other Text Elements

26

5. PRESENTATION INFORMATION

This section first presents an overview of HyTime concepts and how they
can be used to represent links and temporal/spatial information. Then the
approach to representing presentation information for SGML elements is dis-
cussed.

5.1 HyTime Overview

The formal name for HyTime is ISO/IEC 10744: Hypermedia/Time–Based
Structuring Language. This indicates that HyTime is based on (a) links, (b)
document structure, and (c) representation of temporal information. For the
document structure aspect, HyTime simply uses SGML representation of
document structure. This means that HyTime uses DTDs to represent docu-
ment categories. The other two features are discussed in the following subsec-
tions. First, we define a few important HyTime concepts.

5.1.1 Architectural Forms

The fact that HyTime also uses DTDs to represent document categories
leads us to the idea that we could define one catch-all DTD for hypermedia
documents which would allow us to represent links, temporal information,
and other special needs of hypermedia documents. The DTD would contain
element type declarations for these special elements needed by hypermedia
documents (for example, link elements). The syntax defined by this DTD
(recall that SGML is a meta–language, and DTDs define languages), plus the
semantics for the special elements, would be our hypermedia ‘language’. This
approach is too restrictive for a number of reasons – people would like to use
their own names for these special elements, the semantics defined for the
elements may be too basic to be useful for certain applications, etc.

The solution adopted by HyTime is to call these special elements
architectural forms (AF). For example, there is an architectural form called
clink, which defines a so-called contextual link. A contextual link is a link
with an anchor rooted in a particular context, exactly like the links shown i n
the sample news document. To use architectural forms in our HyTime
document instances, we first define element types which conform to the
specification of the architectural form. Then we use instances of these con-
forming element types. If we want to use the clink architectural form (AF) as
the link element in our news article DTD, we would have the following
declarations :

<!ELEMENT link - - (#PCDATA)>

<!ATTLIST link
HyTime NAME #FIXED “clink”
linkend CDATA #REQUIRED>

The value of the HyTime attribute of link is fixed to clink. This informs the
HyTime parser that the element is supposed to conform to the clink archi-

27

tectural form. To conform to an AF, an element declaration (or instance)
should have the HyTime attribute set correctly, and also have the other attrib-
utes declared for the AF in the HyTime standard. For the clink AF, there is a
linkend attribute declared in the standard; therefore our link element
should also define that attribute in our DTD.

The list of architectural forms is a major portion of the HyTime standard
– there are 69 of them. This list forms a meta–DTD for HyTime. The architec-
tural forms are abstract elements types which get instantiated to concrete
element types in the DTD [DD94]. The meta-declarations in the HyTime stan-
dards also include the meta-content models. Conforming element instances
have to adhere to the meta-content model of the AF to which they conform.

5.1.2 HyTime Modules

The HyTime standard is divided into modules, each of which describes a
group of concepts and architectural forms. These modules are:

• Base Module which describes some basic concepts in HyTime, including
the concept of Architectural Forms. A few AFs are also defined.

• Measurement Module which describes the basic units of measurement
in time and space and other domains.

• Location Address Module which gives architectural forms for locating
pieces of data (so that they can be linked from and to). It uses some fea-
tures of the measurement module.

• Hyperlinks Module which gives two architectural forms for the defini-
tion and processing of hyperlinks.

• Scheduling Module which defines some architectural forms used to
schedule events in space and time.

• Rendition Module which defines AF’s used to represent presentational
information about HyTime documents.

Each module may use certain features of other modules lower down in the
hierarchy; thus the location address module does define AF’s which use AF’s
defined in the rendition module. Each HyTime DTD would declare the
names of the modules it requires support for.

In our DTD for news articles, we use certain features of the base module
(as do all HyTime documents), some of the location address module, some of
the hyperlinks module, and some of the scheduling module. We skip the de-
scription of all these modules, except for the scheduling module. Concepts
needed from other modules will be defined where required.

28

5.2 Finite Coordinate Spaces

To represent relatively simple spatial and temporal constraints be-
tween document elements, we use the finite coordinate space (fcs) architec-
tural form defined in the scheduling module. This in turn requires features
of the measurement and location modules. In the discussion that follows,
several architectural forms will be used in the examples but not explained. It
is hoped that the relevant ideas can be abstracted. The following convention
is used: whenever an element type name appears with a ‘my_’ prefix in an
example, then it conforms to the architectural name that follows the ‘my_’
prefix.

5.2.1 HyTime Measurements

HyTime measurements are expressed in integer terms, and they are
made between fixed maximum and minimum values. All measurements are
associated with axes. The units of measurement along axes are called quanta.
There are various types of quanta defined in HyTime, besides the normal
units of measurement – including characters, words, nodes in trees, etc. For
example, if we create an axis with character quanta for the sentence: “The
Queen today officially inaugurated”, then the following markup, adapted
from [DD94] (using various architectural forms), picks out the word ‘Queen’.

<my_dimspec>

<my_marklist>5 5 </my_marklist>

</my_dimspec>

The dimspec AF allow us to specify a dimension or a range of quanta. The 5th
quantum on the axis, is the character ‘Q’, counting five quanta starting from
this point gives the word ‘Queen’.

5.2.2 Axes and Finite Coordinate Spaces

HyTime models space and time using axes of finite dimensions. A fi-
nite coordinate space is a set of such axes. The following element declaration
in a DTD defines a time axis conforming to the axis architectural form and
having an addressable range from 1 to 100,000 seconds.

<!ELEMENT time - - EMPTY >

<!ATTLIST time

HyTime NAME #FIXED “axis”

axismeas CDATA #FIXED “SISECOND”

axisdim CDATA #FIXED “100000” >

Recall that axes are measured in integer terms in quanta. The quantum here
is the SI second. An FCS can be considered to be a Cartesian product of
HyTime axes which is mapped to the real world space and time at the time of
presentation/rendition. Figure 9 describes the various concepts used. The fi-

29

nite coordinate space shown here has three axes: two spatial, and one tempo-
ral.

In HyTime, an event is simply an extent in the FCS. An extent is a set of
ranges along the various axes defining the FCS.

Figure 9 shows the extents marked on all three axes for the event denoted
by the box. An event schedule consists of one or more events. Extents are
specified using the extlist architectural form. Events are created using the
event AF; event schedules using the evsched architectural form. The docu-
ment instan ce associates a data object with the event. The semantics and the
manner in which the events are rendered are defined by the application. The
(meta) element type declarations for these architectural forms are :

<!ELEMENT axis - - EMPTY>

<!ELEMENT fcs - - (evsched+)>

<!ELEMENT evsched - - (event+)>

<!ELEMENT event - - (%HyBrid;)>

The HyBrid; content model means that the content model is unrestricted.
Any element, including non-HyTime elements can appear in the content
model. Although the attribute lists are not given above, we note that the
event AF has an attribute called exspec which is of the type IDREFS. This
means that this attribute gives the IDs of various HyTime elements conform-
ing to the extlist architectural form. These extlist elements give the ex-
tents of the event along the axes of the FCS.

Y axis

X axis

Time Axis

Extent

Event

Figure 9. Axes, Events, and Extents (adapted from [DD94])

30

5.2.3 A DTD Fragment for Closed Captioned Video

In the sample document shown in Figure 2, there is an icon to indicate
that there is a video presentation associated with the article. This could be, for
example, the recording of the Queen’s speech, along with French subtitles
displayed at intervals at the bottom edge of the screen. We call this closed cap-
tioned video (CC Video). Using various HyTime architectural forms, we now
write the DTD fragment corresponding to the CC Video concept.

In the CC Video document, we have three types of events, which roughly
correspond to the three types of media present – audio, video, and
(synchronized) text. Figure 10 shows only the time axis to display the extents
of these events, for the first 65 seconds of the presentation. We see that there
are five events of type text (because we assume the number of subtitles to be
five, in the 65 seconds), and one each of the audio and video types. There are
spatial extents also – we create two axes to represent the X and Y coordinates
on the workstation screen (we presented our time axis in the last section).

<!ELEMENT X - - EMPTY>

<!ATTLIST X

HyTime NAME #FIXED “axis”

axismeas CDATA #FIXED “virspace”

axisdim CDATA #FIXED “1024” >

The DTD declaration for the Y axis is similar, except for the value of the axis-
dim attribute which is 900. The measurement units are in a HyTime defined
unit called “virtual space”, or virspace, which is used when there are no other
pre-defined units available. In this case, the virspace corresponds to pixels on

Video

Audio

Text

Time10 20 22 30 33 42 70 7544 56 59

Figure 10. Extents Along the Time Axis for Events in CC Video

31

a workstation screen (assumed to be 1024 x 900).

As mentioned before, we have three types of events, which have extents
along all three axes (although the audio event will not use the spatial axes).
All three DTD entries are collapsed into one :

<!ELEMENT (audio|video|text) - - EMPTY>

<!ATTLIST (audio|video|text)

file CDATA #REQUIRED

-- HyTime Attributes--

HyTime NAME #FIXED “event”

exspec IDREFS #REQUIRED>

In this case, we choose to associate a file with each event. This could be a por-
tion of a file, or an object in a database. The filename is given by the value of
the file attribute in the element instance.

We define the event schedule which can represent the timeline shown i n
Figure 10, which consists of one audio, one video, and several text events:

<!ELEMENT my_evsched - - (video, audio, text+)>

For a complete DTD, including attribute lists, refer to the Appendix 1. What
remains is the declaration of the FCS :

<!ELEMENT my_fcs - - (my_evsched+)>

And finally, we declare our CC Video document (which we call audio-
visual to make it more general) to be :

<!ELEMENT audio-visual -- (X,Y,time,my_fcs,my_extlist)>

The my_extlist element instances are used to specify the extents of the
event instances.

5.3 Formatting Instructions

The SGML philosophy is to bind the processing instructions to the logical
elements of the document as late as possible, i.e., only at formatting time.
However, we need to include this information in our database. The list of as-
sociations between logical elements and their processing instructions is
known as a style sheet. The alternatives are to use the LINK feature of SGML
(quite different from hyperlinks), or the international standard being defined
for specifying formatting instructions called DSSSL [Herw94]. This is
incomplete, and therefore is not a candidate for representation in our data-
base. Therefore, what we need to store is a representation of the style sheet.

To represent the style sheet in the database as a separate piece of infor-
mation from the document instance we extend our type system to include a
DTD for style sheets. An example DTD for a style sheet specification would be
(adapted from [Gold90]) :

<!ELEMENT rule - - (source, spec+)>

32

<!ELEMENT source - - (#PCDATA) >

<!ELEMENT spec - - (#PCDATA, value)>

<!ELEMENT value - - (#PCDATA) >

An example instance of a style sheet [Gold90] would be :

This specifies that the logical element list item should have square bullets
marking the item, and should be indented by 7 spaces, and should be set i n
courier bold font.

It should be noted that style sheets are inadequate to specify the entire
range of processing instructions. One example is context sensitive processing
– the processing of an emphasis element may depend on whether it occurs i n
the abstract paragraph or in the main body of text. Another aspect is the layout
of text – for example in two or three column formats. The first can be handled
using the LINK option of SGML [Gold90]. For the second problem, we can as-
sociate this information as processing instructions for the root of the docu-
ment instance tree; in this case the instance of an article element.

5.4 Type System for Presentation Information

HyTime uses SGML syntax for hypermedia representation. Since we use
HyTime to model temporal and spatial information, the same concept of a
document can be extended to include the presentation layout as well. To rep-
resent processing instructions, we have another category of documents – the
DTD for style sheets. This too is a collection of elements with hierarchical re-
lationships.

5.4.1 HyTime Elements

The type HyElement in Figure 6 is the supertype for all HyTime elements
in the type system. Its immediate subtypes are those modeling the architec-
tural forms used in the DTD. The attributes of HyElement are its ID (assigned
by the author of the document, or by the document authoring software), and
the string representing the name of the architectural form. This models the

3The elements with EMPTY content models (for example HyTime elements conforming to the
axis AF) of course may not have any content associated with them. If they have attributes
which specify their content, then it is possible to map them to the instances of the atomic me-
dia types (cf. Section 6.3).

<rule>

<source>listitem</source>

 <spec>bullets<value>square</value> </spec>
 <spec>indent<value> 7 </value></spec>
 <spec>font<value> courier bold </value></spec>
</rule>

33

assumption that every HyTime element can be linked to, and should answer
the architectural form it conforms to. Appendix 3 contains a full description
of the HyElement type system which is illustrated in Figure 11.

Of the nine HyTime architectural forms used in the DTD, the most im-
portant are the fcs and the ilink AFs. The ilink AF has a %HyBrid; content
model, therefore it could be a Structured element depending upon the DTD
designer. We create a type for this AF, called Ilink_AF, as a subtype of the
HyElement type. In the DTD for news articles, the link element has a com-
plex content model and conforms to the ilink AF. Therefore, the Link type is
a subtype of both Ilink_AF and Structured. According to the HyTime stan-
dard, the ilink AF has to have the attributes linkends and anchrole (anchor
role). The ilink AF can be used to specify multiple destinations per link, and
can link any element to any other element. The linkends attribute is there-
fore a list of Element references. The anchor role is a (#PCDATA) valued at-
tribute, and is therefore of the type String. The Ilink type has the pure vir-
tual method traverse which takes the object ID of a destination element
(present in the linkends attribute), and performs a traversal according to the
applications semantics (hence Ilink is an abstract type, like most other types
representing architectural forms). This method is defined in the Link sub-
type.

Figure 11. Type Hierarchy for HyTime Elements

The fcs element is important because it provides the interface to the other
system components to (a) determine the types of media objects present in the

TextElement Structured HyElement

StructuredText

Ilink_AF Evsched_AF

Extlist_AF

Event_AF Fcs_AF
Axis_AF

Dimspec_AF

Link

Temporal

Saudio Spatial

SvideoStext

Av-fcs Av-evsched

Av-extlist

X Time

Xdimspec Ydimspec

Tdimspec

Marklist_AF

Axes-marklist

Y

34

continuous media, (b) to determine the playout schedule of the media objects
which are a part of the fcs. The attributes and methods of the Av-fcs type il-
lustrate how this information can be obtained. It has a method GetSchedule
which returns an object of type TimeFlowGraph which contains the schedule
of the objects. The method GetVideoObjects returns a list of references to
objects of type Video (an atomic type). These atomic objects can be queried for
location and QoS information.

The other HyTime elements (Figure 11) are architectural forms used i n
the DTD. The axis architectural form has a %HyBrid; content model; the axes
used in the DTD all have EMPTY content models, and hence do not have
Structured as a supertype. All three axes (x, y, and time) declared in the
DTD are similar, except for the dimensions, measurement units, and meas-
urement granularity, which are reflected in the values of the axisdim, ax-
ismeas, and axismdu attributes. However they have different semantics i n
the DTD; thus they are separate subtypes of Axis_AF.

The event architectural form also has a ‘%HyBrid;’ content model i n
HyTime, but the events in the DTD all have EMPTY content models. The
Event_AF type has been subtyped to represent the three different types of
events possible in the finite coordinate space – text, video and audio (Stext,
Svideo, and Saudio). The intermediate supertypes Spatial and Temporal
reflect the fact that Saudio has a purely temporal dimension, while Svideo
and Stext have both spatial and temporal dimensions. These types have at-
tributes which reference the atomic type instances which store the media as-
sociated with these objects. For instance, an Stext type instance will have a
reference to an instance of SyncText. The Exspec attribute reference the Ex-
tlist instances which hold the values of the extents of these elements along
the three axes.

The extlist architectural form has the concrete element type Av-extlist.
The children of this element are the three elements conforming to the dim-
spec architectural form. Therefore the Av-extlist type is a subtype of the
Structured type. The three subtypes of Dimspec_AF (not shown in the dia-
gram) are exactly the same, but are separate for classification purposes. They
contain elements conforming to the marklist AF, and are hence Structured
elements.

5.4.2 Other Elements

The elements of the style sheet DTD are shown in Figure 12. There are 7
elements in that DTD, of which only 3 are structured elements (style-
sheet, rule, and spec). All the elements consist of strings. It is preferable not
to use the annotation model to store these text elements. This is because the
size of the style sheet is small (no large objects, and a few lines of text). There-
fore the types modeling the elements of this DTD are either subtypes of
Structured, or are direct subtypes of Element.

35

5.5 Other Types in the System

When the concept of annotations representing text content was discussed,
it was said that an object in the system held the lists of annotations present i n
a document instance. We call the type of this object ‘article_root’. The at-
tributes and methods of this type are described in the appendix.

Instances of article_root have references to the instance of the arti-
cle type which is at the root of the hierarchy in the document instance. They
also have a reference to the Text object which holds the string content of the
article. When the user poses a query to the database to retrieve documents
matching a certain keyword, a reference to the instance of the article_root
is returned. This object has all the information needed to render the text por-
tion of the document, and also can efficiently access the content of individual
elements instances, for example keywords.

There is also a type to model annotations, called Annotation. This has
the two integer location values as attributes, and methods to manipulate
these values.

Figure 12. Style Sheet Element Types

Element

StructuredElement

Cat-name Source-element

Pres-attr Value

Style-sheet Rule Spec

36

6. COMPOSITION HIERARCHY – AN EXAMPLE

The discussion in the previous section concentrates on the type system
without looking at the composition hierarchy that emerges among objects ac-
cording to the document structure. The composition hierarchy is based on the
attributes of each type. Instead of presenting the attributes abstractly, we will
demonstrate how the structure of the example document is mapped to a
composition hierarchy as objects are instantiated and their attribute values
set. This discussion refers to Figures 13 and 14, where object instances of type
X are denoted as MyX and the arrows are from objects to their component ob-
jects.

The root of the composition hierarchy (Figure 13) is one instance of the
Article type object, called MyArticle. MyArticle has three attributes, among
others, that point to a Frontmatter type object, called MyFrontmatter, an
Async type object, called MyAsync, and a Sync type object, called MySync.
MyFrontmatter, holds the information in the document that is delimited by
the markup <front> and </front> . As discussed in Section 4, the body of
the document is separated into an asynchronous part (MyAsync) and a syn-
chronous part (MySync). The asynchronous part describes the text and image
part of the document.

According to the DTD of Appendix 1, each document is separated into sec-
tions first. In our example, we assume that the figure which consist of the
Queen’s picture and the text before it is one section (even though it is only
one paragraph) and the part after the figure is a second section. Thus, there

Figure 13. Partial Object Composition Hierarchy

MyArticle

MyFrontmatter MyAsync MySync

MyEdinfo MyHdline MySection-1 MyFigure MySection-2

MyAuthor

MyKeywords

MyDate

MyLocation

MyParagraph-1
MyParagraph-2

MyLink-1

MyFigCaption

MyLink-2 MyEmph-1

37

are two Section type objects (MySection-1 and MySection-2) as well as one
Figure type object, MyFigure which are components of MyAsync.

The rest of the hierarchy should be obvious. Note that there are composi-
tion paths from some of these objects to instances of atomic types (Figure 4).
For example, MyFigure has a link to an object of type Image (or one of its sub-
types depending on the type of the Image) for the Queen’s picture.

The synchronous part of the document that corresponds to the audio and
video is shown in Figure 14. In the sample news document of Figure 2, it is
assumed that a closed captioned video of the Queen’s speech is associated
with the article.

This consists of the video, synchronous with the speech (audio), along
with captions which appear periodically, giving the French translation of the
speech. The three media are modeled as events in the finite coordinate space
described in the DTD. The whole “audio visual” therefore consists of the two
spatial axes (the time axes), the finite coordinate space, and the list of event
extents along the axes.

Since there is only one closed captioned video, there is only one instance
of the AudioVisual element in Figure 14, which has as its children the in-
stances of the axes, the instance of the Av-fcs, and multiple instances of ex-
tent lists (MyAv-extlist).

MySync

MyAudio-Visual

MyX MyY MyTime MyAv-fcs MyAv-extlist-1 MyAv-extlist-2 . . .

MyXdimspec MyYdimspec MyTdimspec

 MyAv-evsched

 MyAudio MyVideo MyStext-1 MyStext-2 MyStext-3 . . .

Figure 14. Composition Hierarchy for the Synchronous Portion of the Example
Document

38

 The Av-fcs instance itself contains just one event schedule (there could
be several; for example if the speech had been partitioned into logical seg-
ments). The event schedule is just the collection of the events occurring i n
the FCS. Since the audio and video data are not segmented, there is just one
audio event, one video event; there are however several synchronized text
(Stext) event instances, one for each caption.

According to the DTD, each extent list consists of dimension specifications
(dimspec), which in turn consist of marker lists (list of positions along the
axes). The first two instances of the Av-extlist type are shown in the figure;
the contained dimspec instances are shown for the second. We omit the
marker list since it is too involved to display in one figure.

Not shown in the composition hierarchy is the occurrence of instances of
atomic types. In Figure 13, MyFigure has a reference to an instance of Image.
In Figure 14, My-Audio has a reference to an instance of Audio, MyVideo to
an instance of Video, and MyStext-1, etc. have references to instances of
SyncText.

39

7. A VISUAL QUERYING FACILITY

Many of the tools that access multimedia information systems are based
on browsing. In the case of hypermedia documents, these browsing tools may
become sophisticated enough to allow navigation via links, playing of audio
and video components, etc. Many tools ignore the equally important query
facility which allows ad hoc querying of the multimedia news database. Our
research deals with this aspect of hypermedia document access.

We are ultimately interested in the development of query languages, ac-
cess primitives, and visual query facilities that would allow sophisticated que-
rying of these databases, including content-based querying of all types of data.
However, we are a long way from reaching that goal. What we have devel-
oped at this point is a visual query facility that allows elaborate searching of
textual parts of documents and provides means for accessing other monome-
dia objects by means of keywords. The full description of this facility is given
elsewhere [EÖSV95]; what we will provide here is a brief overview of a few
important aspects relevant to the topic of this report.

An important aspect of the visual query facility is its tight integration
with the OBMS. Each of the allowed functions has a corresponding Ob-
jectStore query specification. Thus, each user request is translated into an in-
vocation of a query on the database and the translation of the result to the
visual form that is requested.

A second important feature is its adherence to the SGML/HyTime princi-
ple of separating the storage from the presentation. As mentioned earlier, the
stored text, for example, may indicate that part of it is emphasized. The em-
phasized text can be displayed in various formats (e.g., italics, bold, reverse
video). These presentation specifications are stored in the database as style
sheets (cf. Section 5.3) which are then accessed by the visual query facility. Our
current implementation is sophisticated in its handling of textual data, but
relatively naive in dealing with continuous media (for example, we always
open a new window for video with its own controls).To represent the style
sheet in the database as a separate piece of information from the document
instance, we extend our type system to include the DTD for style sheets.

We also separate certain presentational features, such as window size,
control panel for various displays, etc., from the style sheet and consider
these as the user profile. This is because styles are associated with individual
logical elements, but there are other presentational features that are
independent of the types of element being displayed. For example, one user
may specify that clicking a video button in a document should start playing
the video immediately while another user’s preference may be to open up a
video control window with VCR-type controls. These choices are made more
frequently than the choices of styles, and may require a different storage
model than the one adopted for the document content which assumes no
updates to the content.

40

8. RELATED WORK

The issue of database design for multimedia data has been tackled from
the relational as well as the object oriented data modeling perspectives. The
design involves (a) defining a model for multimedia documents, and (b) de-
fining models for multimedia data. Documents, multimedia documents i n
particular, are richly structured. With the addition of hyperlinks (leading to
hypermedia), the information capacity of the document is increased dramati-
cally. Document models try to capture the structure of documents and the
functionality of hyperlinks. Since multimedia data (specifically time based
media such as audio and video) differ from traditional data in their synchro-
nization and temporal requirements, they require a data model different from
conventional models. These are usually object oriented models. Thus, for ex-
ample, we have defined Atomic types to model these data.

Of the various media types which make up a multimedia document, the
text component is by far the most richly structured. This structure is usually
explicitly made visible by the document authoring system. Current technol-
ogy is not sophisticated enough to do the same for other media types such as
images, video, and audio. These structures involve spatial and temporal con-
straints. Nevertheless, it is foreseeable in the future that these media will be
just as richly structured (if not more) as text.

The utility of object oriented database systems for hypermedia applica-
tions (vis a vis relational systems) is highlighted in [Bala94]. Perhaps the ear-
liest object oriented approach is [WKL86] which discusses building a multi-
media database on top of Orion. In [BCKL+94], the task of incorporating sup-
port for text in a relational DBMS is tackled. To enable queries on structured
text documents in SGML format, extensions to SQL are proposed. Instances of
document categories (defined by different SGML Document Type Declarations
(DTD)) are fields of a new data type called TEXT. Each TEXT field consists of
the contiguous text content of the document along with the parse tree. Ele-
ments in the DTD can be part of the query; it is also possible to pose queries
about the DTD itself. The EXPAND operator can be used to convert parts of
the parse tree into fields of a relation. Updates to the TEXT field are not han-
dled. The obvious drawbacks are listed in Section 1.1. Including multimedia
data and HyTime elements would not be possible in this design. The ap-
proach of storing the text content contiguously and not fragmenting it is simi-
lar to our approach. However, we store the locations (or annotations) of the
start and end of element instances; the parse tree is implicit in the composi-
tion hierarchy (cf. Section 6). Other approaches to object oriented models for
multimedia data include [CAF+91].

A novel object oriented model for a video database is proposed in [OT93].
The model is schemaless, and includes inheritance by inclusion as a inheri-
tance mechanism. This means that instances, not types, inherit attributes.
Therefore, the hierarchical structure of a video object would be described by a

41

series of derivations, and not by composition. Incorporatingstructured video
data will be a future extension to our design (through an extension to the
DTD). However in the above model, it is not clear as to how one can navigate
the structure – how does one get to the third scene of a movie, for instance?

Querying of SGML documents is also the focus of [CACS94], where exten-
sions of two OBMS query languages are proposed. The paper highlights the
issues associated with the object oriented modeling of SGML document struc-
ture. In particular, two extensions to the data model of an object oriented da-
tabase system (O2) are proposed. They are: (a) ordered tuples, or the ordering
of attributes of a type, and (b) union types. The extensions to the query lan-
guage are (a) the contains predicate to handle querying on strings, (b) implicit
selectors to handle queries over union types, and (c) two new sorts to query
text without exact knowledge of it’s structure.

Types representing unstructured document elements are inherited from
basic (atomic) types such as Text and Bitmap. This means that textual docu-
ment elements are fragments of the text content of the document, which im-
poses a performance/storage overhead. However, the authors believe that the
improved access flexibility makes the new language particularly suitable for
extensions to SGML, such as HyTime. Structured document elements have
types associated with them; however there are no inheritance relationships
shown between them. The issue of dynamic additions of new DTDs to the
schema is not addressed here.

Our approach to handling union types is described in Section 4.3.2. The
ordering of attributes is visible through the behavior of the types. We don’t
handle queries with inexact knowledge of the document structure in our
model. Querying on strings is handled by the method match of the Text
type. Since we do not implement union types in our system, we do not deal
with selectors (queries predicated on the discriminant method). The inheri-
tance relationships described in Section 4.3 and Section 5.4, and the composi-
tion hierarchies described in Section 6 illustrate our approach: every element
is an Element, and may have an instance of an atomic type. If the element is a
TextElement, then it’s content is described by it’s annotation attribute.

The design of an OBMS application to handle the storage of SGML docu-
ments is described in [BAH93]. This design also fragments documents accord-
ing to the document’s SGML type definition, and enables queries on the struc-
ture of the document. The paper does not describe the querying facilities, but
describes in detail how dynamic DTD handling is implemented by means of
meta-classes.

The design follows a layered approach by separating out the DTD specific
features and DTD independent features into two separate layers of classes4.
Document type-specific classes are specializations of the document type- inde-

4 There is a third layer, the HyTime layer, which is under development.

42

pendent classes. This means that features present in all SGML documents
(methods to navigate the document tree for example) can be abstracted out i n
the classes of the document type-independent layer. Furthermore, there are
two meta-classes: terminal and nonterminal . Classes in the document type-
specific layer are instances of either of these meta-classes. The nonterminal
class has a method to create a new document-specific class at run time. The
content model of the new class can be set using another method. Finally, in-
stances of the document type-specific class can be created at run time using the
inherited method createElem(). In this manner, DTDs can be dynamically
created and inserted into the database.

Our approach has similarities to this design. The supertypes TextEle-
ment, Structured, and StructuredText can be said to be document type-
independent types. We have not considered dynamic additions of DTDs to
the database in our design (although ObjectStore has metatypes in it’s data
model and allows the dynamic addition of classes to the ObjectStore database
schema).

The implementation of a persistent object oriented system for HyTime
documents forms part of the paper [KRRK94]. The database (implemented on
ObjectStore) forms part of a HyTime engine which is used to process and dis-
play hypermedia documents represented using the HyTime standard. This
design also fragments the document according to the element types in the
DTD. The design is again layered: there is an SGML layer, a HyTime layer, and
an application layer.

There are only three classes in the SGML layer: the document class, the
element class, and the attribute class. When a document is inserted into the
database, an instance of the document class is created, with its fields as the col-
lection of all instances of the elements of the documents. The element in-
stances in turn have references to their attributes which are instances of the
attribute class. In the HyTime layer, each architectural form (AF) used has a
class associated with it. Instances of these AFs get inserted at document inser-
tion time. The application layer has a class for each element type in the DTD.
These get instantiated by the application process, which obtains information
on them by querying the HyTime and SGML layers. The application then
works from this layer. Updates to these objects get propagated down to the ap-
propriate HyTime and/or SGML layers.

The types representing HyTime elements in our design are all subtypes of
HyElement. This could be considered to be a separate ‘HyTime Layer’. How-
ever, the application specific HyTime elements (for example Stext, Saudio)
are subtypes, of types representing architectural forms, and not a separate
layer. We assume no updates to the instances in the databases.

A document model based on the Office Document Architecture (ODA) is
described in [MRT91] and [BRG88]. ODA is similar to SGML in that it allows
for the specification of the logical structure of the document. In addition, it

43

allows the specification of a layout structure, or the presentation information
associated with the document. The papers mention object oriented models as
candidates to model these structures. They define an additional layer, called
the conceptual structure which is used to capture the semantics of the com-
ponents of the logical structure. In [MRT91], it is recognized that support for
multimediality is required; this is achieved by providing primitive classes for
each media type. Querying this document model, and the optimization of
such queries forms most of the paper [BRG88].

Conceptual structures do not form part of the SGML or ODA standards;
our approach is characterized by a strict adherence to the SGML/HyTime
standard.

An object oriented framework for modeling composite multimedia ob-
jects (such as multimedia documents) is proposed by the Object Systems
Group at the University of Geneva in [GBT94] and [GBT93]. The focus is on
providing a high level interface for multimedia programming. In particular,
[GBT94] deals with data models for time based media, and [GBT93] deals with
so-called audio/video (AV) databases. These databases are collections of digi-
tal audio/video data and processes which can compose and aggregate these
data. An AV database, therefore, not only stores data, but is also “involved
with the capture, presentation and scheduling of complex objects, managing
access and allocation of devices and channel bandwidths, and notifying the
application of presentation-related events”. This model performs almost all
of the functions of a HyTime engine.

Others have focused on the temporal aspects of multimedia data, and
their synchronization. [HR93] describes a model for composing multimedia
objects and the playback of the composite objects. [LG93] describes a temporal
model to capture the timing relationships between objects in composite mul-
timedia objects, and maps it to a relational database.

44

9. CONCLUSIONS AND DISCUSSIONS

In this report we describe an object-oriented database design of a multi-
media database for a news-on-demand application. There are three character-
izing features of our work: (1) the central use of DBMS technology, (2) the re-
liance on object-oriented systems, and (3) strict adherence to international
standards. The database is designed to accommodate actual multimedia ob-
jects as well as meta-information about them. The database schema consists of
an object type system which follows the SGML/HyTime standard for docu-
ment preparation. The other novel aspects of this work are the following:

1. The annotation-based storage of text, which allows for efficient storage of
documents as well as for fast search according to any of the document
markups.

2. The development of a complete type system that is in complete harmony
with the news article DTD that was designed (Appendix 1).

3. The explicit representation of the spatio-temporal relationships in mul-
timedia documents that enables the separation of the presentational con-
siderations from the document structure and content.

This database is implemented on top of ObjectStore running under AIX.
The implementation language is xlC, which is IBM’s implementation of C++
for the AIX environment.

In the long-run, we are developing an extensible OBMS that has inherent
support for multimedia formation systems. We intend to use our own sys-
tem, called TIGUKAT5 [ÖPS+95], to eventually replace ObjectStore. We may
not be able to achieve the same performance, but there will be opportunities
to expand on the functionality and investigate the feasibility of various issues.
The issues that we have started to investigate or will investigate in the future
include (1) the full support for the representation of spatial and temporal rela-
tionships, (2) the development of application specific query languages and
primitives, and the optimization of these queries, (3) content-based indexing
and querying of multimedia objects, and (4) the incorporation of the database
with various storage systems that are fine-tuned for the storage of particular
types of objects (e.g., video file servers, image file systems).

 It is difficult, if not impossible, to investigate all of these issues with a
closed system such as ObjectStore. TIGUKAT is currently being prototyped at
the Laboratory for Database Systems Research of the University of Alberta. It
has a purely behavioral object model where the users interact with the system

5 TIGUKAT (tee-goo-kat) is a term in the language of Canadian Inuit people meaning “objects.”
The Canadian Inuits, commonly knowns as Eskimos, are native to Canada with an ancestry
originating in the Arctic regions of the country.
6
7

45

by applying behaviors to objects. In this way, full abstraction of modeled enti-
ties is accomplished since users do not have to differentiate between attributes
and methods.

A purely behavioral approach offers several benefits including consis-
tency, understandability and portability. TIGUKAT’s object model is uniform.
Everything in the system, including types, classes, collections, behaviors,
functions as well as meta-information, is a first-class object with well-defined
behavior. Thus, there is no separation between objects and values. The
schema information is a natural part of the database that can be queried like
other objects. The uniformity of the model eliminates the separation between
the schema and the objects and provides reflective capabilities to the system
[PÖ93]. This allows the schema objects (i.e., types, behaviors, classes, collec-
tions) to be accessed using the query language just like other objects, simplify-
ing dynamic schema evolution management.

We have included “time” as an inherent feature of the object model
[GÖ93] by defining time as a type which can then be specialized in various
forms (e.g., discrete time intervals, continuous time). The inclusion of time as
a basic object management feature enables the direct representation of syn-
chronization of the presentation of multimedia objects (i.e., temporal rela-
tionships between objects). There is a complete query model for TIGUKAT,
including an SQL-like query language, a powerful object calculus and a set of
object algebra operations [PLÖS93] which can be extended with application-
specific constructs and primitives.

46

REFERENCES

[BAH93] K. Böhm, K. Aberer, C. Hürer. Extending the scope of document
handling: The design of an OODBMS application framework for
SGML document storage. Technical Report P-93-24, GMD-IPSI,
Germany, 1993.

[Bala93] V. Balasubramaniam. “State of the art review on hypermedia issues
and applications,” Internal document, Graduate School of Man-
agement, Rutgers University, Newark, New Jersey, 1993.

[BCK+94] G. E. Blake. et. al, “Text/relational database management systems:
Harmonizing SQL and SGML”, In Proc. First Intl. Conf. Appl. of Da-
tabases, pages 267-280, June 1994.

[BRG88] E. Bertino, F. Rabitti, and S. Gibbs. “Query processing in a multime-
dia document system”, ACM Trans. Office Information Systems,
6(1):1–41, January 1988.

[CACS94] V. Christophides, S. Abiteboul, S. Cluet and M. Scholl. “From struc-
tured documents to novel query facilities”, In Proc. ACM SIGMOD
Intl. Conf. Management of Data, pages 313-324, May 1994.

[CAF+91] S. Christodoulakis, N. Ailamaki, M. Fragonikolakis, Y. Kapetanakis,
and L. Koveos. “An object-oriented architecture for multimedia in-
formation systems,” Q. Bull. of IEEE Tech. Comm. on Data Engi-
neering, 14(3): 4–15, September 1991.

[DD94] S. J. DeRose and D. G. Durand. Making Hypermedia Work – A
User’s Guide to HyTime, Kluwer Publishers, 1994.

[DG92] N. Dimitrova and G. Golshani. “EVA: A query language for multi-
media information systems,” In Proc. Int. Workshop on Multime-
dia Information Systems, pages 1–20, February 1992.

[EÖSV95] G. El Medani, M.T. Özsu, D. Szafron and C. Vittal. “A visual query
facility for multimedia databases,” submitted to 2nd International
Conference on Multimedia Computing and Systems, May 1995.

[GBT93] S. Gibbs, C. Breiteneder and D. Tsichritzis, “Audio/video databases:
An object-oriented approach”, In Proc. 9th Intl. Conf. on Data Engi-
neering, pages 381-390, 1993.

[GBT94] S. Gibbs, C. Breiteneder and D. Tsichritzis. “Data modeling of time-
based media”, In Proc. ACM Intl. Conf. on Management of Data,
pages 91–102, May 1994.

[Gold90] C. F. Goldfarb. The SGML Handbook, Oxford University Press, 1990.

[GÖ93] I. Goralwalla and M.T. Özsu. “Temporal extensions to a uniform
behavioral object model,” In Proc. 12th Int. Conf. on Entity-
Relationship Approach, pages 115–127, Dallas, Texas, December
1993.

47

[Hafi94] A. Hafid et. al. On news-on-demand service implementation. Publi-
cation #928, Département d’Informatique et de Recherche Opéra-
tionnelle, Université de Montrèal, September 1994.

[Herw94] E. van Herwijnen. Practical SGML, Kluwer Publishers, 1994.

[HR93] R. Hamakawa and J. Reikmoto. “Object composition and playback
models for handling multimedia data”, In Proc. First ACM Intl.
Conf. Multimedia, pages 273–281, October 1993.

[ISO86] International Standards Organization. Information Processing –
 Text and Office Information Systems – Standard Generalized
Markup Language (ISO 8879), 1986.

[ISO89] International Standards Organization. Office Document Architec-
ture (ODA) and Interchange Format (ISO 8613), 1989.

[ISO92] International Standards Organization. Hypermedia/Time-based
Structuring Language: HyTime (ISO 10744), 1992.

[KRRK94] J. F. Koegel, L. W. Rutledge, J. L. Rutledge, C. Keskin. “HyOctane: A
HyTime engine for an MMIS”, In Proc. First ACM Intl. Conf. Mul-
timedia, October 1993.

[LG93] T.D.C. Little and A. Ghafoor. “Interval-based conceptual models for
time-dependent multimedia data”, IEEE Trans. Know. and Data
Eng., 5(4):551-663, April 1993.

[LG94] L. Lamont and N. D. Georganas, “Synchronization architecture and
protocols for a multimedia news service application”, Proc. IEEE In-
ternational Multimedia Computing and Systems Conf. Boston, May
1994.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. “The Ob-
jectStore database system,” Communications of the ACM, 34(10): 50-
63, October 1991.

[MRT91] C. Meghini, F. Rabitti, and C. Thanos. “Conceptual modeling of
multimedia documents,” IEEE Computer , 24(10): 23–30, October
1991.

[NY94] R. Ng and J. Yang. “Maximizing buffer and disk utilizations for
news-on-demand,” In Proc. 20th Int. Conf. on Very Large Data
Bases, pages 451-462, 1994.

[OT93] E. Oomoto and K. Tanaka. “OVID: Design and implementation of a
video-object database system,” IEEE Trans. Knowledge and Data
Man., 5(4):629–643, August 1993.

[ÖPS+95] M.T. Özsu, R. Peters, D. Szafron, B. Irani, A. Lipka, and A. Munoz.
“TIGUKAT: A uniform behavioral objectbase management”, VLDB
Journal, in press (to appear January 1995).

48

[PLÖS93] R. Peters, A. Lipka, M.T. Özsu and D. Szafron. “An extensible query
model and its languages for a uniform behavioral object manage-
ment system”, In Proc. 2nd Int. Conf. on Information and Knowl-
edge Management , pages 403–412, November 1993, Washington,
D.C.

[PÖ93] R.J. Peters and M.T. Özsu. “Reflection in a uniform behavioral ob-
ject model,’‘ In Proc. 12th Int. Conf. on Entity-Relationship Ap-
proach, pages 37–49, Dallas, Texas, December 1993.

 [WKL86] D. Woelk, W. Kim, and W. Luther. “An object-oriented approach to
multimedia databases,” In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 311–325, May 1986.

49

 DOCUMENT TYPE DECLARATION FOR MULTIMEDIA NEWS ARTICLES

DOCTYPE article SYSTEM “article.dtd” [

<!-- HyTime Modules Used -->
<?HyTime support base>
<?HyTime support measure>
<?HyTime support sched manyaxes=3>
<?HyTime support hyperlinks>

<! -- Non-HyTime Notations used -->
<!NOTATION virspace PUBLIC -- virtual space unit (vsu)--

“+//ISO/IEC 10744//NOTATION Virtual Measurement Unit//EN”>

<! -- Document Structure -->
<!ELEMENT article - - (frontmatter, async, sync)>
<!ELEMENT frontmatter - - (edinfo, hdline, subhdline, abs-p)>
<!ELEMENT edinfo - - (loc & date & source & author+ &

keywords & subject)
<!ELEMENT (loc|source|subject) - - (#PCDATA)>
<!ELEMENT (hdline|subhdline) - -

(emph1|emph2|quote|link|#PCDATA)+>
<!ELEMENT date - - (#PCDATA)>
<!ELEMENT (author|keywords) - - (#PCDATA)>
<!ELEMENT abs-p- - paragraph>
<!ELEMENT async- - (section|figure|link)*>
<!ELEMENT section - - (title?, (paragraph|list)*)>
<!ELEMENT title- - (#PCDATA) >
<!ELEMENT paragraph

 - - (emph1|emph2|list|figure|link|quote|#PCDATA)*>
<!ELEMENT (emph1|emph2|quote) - - (#PCDATA) >
<!ELEMENT list - - (title?, listitem+)>
<!ELEMENT listitem - - (paragraph)*>
<!ELEMENT link - - (emph1|emph2|quote|figure|#PCDATA)+>
<!ELEMENT figure - - (figcaption?) >
<!ELEMENT figcaption - - (#PCDATA) >
<!ELEMENT sync - - (audio-visual+)>
<!ELEMENT audio-visual - -(x, y, time, av-fcs, av-extlist+)>
<!ELEMENT (x|y|time) - - EMPTY>
<!ELEMENT av-fcs - - (av-evsched+)>
<!ELEMENT av-evsched - - (audio*, video*, stext*)>
<!ELEMENT (audio|video|stext) - - EMPTY >
<!ELEMENT av-extlist- - (xdimspec, ydimspec,tdimspec)>
<!ELEMENT (xdimspec|ydimspec|tdimspec) - - (axes-marklist)>
<!ELEMENT axes-marklist - - (#PCDATA)>

<!ATTLIST article
id ID #REQUIRED
HyTime NAME #FIXED HyDoc>

<!ATTLIST quote
source CDATA #IMPLIED>

<!ATTLIST author
designation CDATA #IMPLIED>

50

<!ATTLIST figure
filename CDATA#REQURED
format CDATA#REQUIRED>

<!ATTLIST (x|y|time)
HyTime NAME #FIXED axis
id ID #IMPLIED
axismeas CDATA#FIXED “virspace”
axismdu CDATA#FIXED “ “
axisdim CDATA#FIXED “virspace”>

<!ATTLIST link
HyTime NAME #FIXED ilink
id ID #REQUIRED
linkends IDREFS #IMPLIED>

<!ATTLIST av-fcs
HyTime NAME #FIXED fcs
id ID #REQUIRED
axisdefs CDATA#FIXED “x y time”>

<!ATTLIST av-evsched
HyTime NAME evsched
id ID #REQUIRED
axisord CDATA#FIXED “x y time”
basegran CDATA#FIXED “vsu vsu vsu”>

<!ATTLIST (audio|video)
HyTime NAME #FIXED event
id ID #REQUIRED
filename CDATA#REQUIRED
format CDATA#REQUIRED>

<!ATTLIST stext
HyTime NAME #FIXED event
id ID #REQUIRED
filename CDATA#REQUIRED >

<!ATTLIST av-extlist
HyTime NAME #FIXED extlist
id ID #REQUIRED>

<!ATTLIST av-dimspec
HyTime NAME #FIXED dimspec
id ID #REQUIRED>

<!ATTLIST axes-marklist
HyTime NAME #FIXED marklist
id ID #REQUIRED

]>

51

APPENDIX 2. DTD FOR STYLE SHEETS

<!DOCTYPE style-sheet SYSTEM “style-sheet.dtd” [
<!ELEMENT style-sheet - - (cat-name, rule+)>
<!-- Document category name, e.g. “article” -->
<!ELEMENT cat-name - - (#PCDATA)>
<!-- rule which maps element (source) to style (spec)-->
<!ELEMENT rule - - (source, spec*)>
<!ELEMENT source - - (#PCDATA)>
<!-- each presentation attribute has a value -->
<!ELEMENT spec - - (pres-attr, value)>
<!ELEMENT pres-attr - - (#PCDATA)>
<!ELEMENT value- - (#PCDATA)>

<!-- No Attributes for any of the style sheet elements -->
]>

52

APPENDIX 3. TYPE SYSTEM FOR DTD ARTICLE

Note1: All data members (attributes) are protected, which means that they are
visible only to their type’s subtypes. Corresponding get/set methods are
implicitly assumed in most cases.

Note2: Pointer types are indicated by the suffix ‘_oid’. For example, a pointer
to an object of type Element is shown as Element_oid.

Note3: The notation for methods is as follows:
methodA: TypeA

 means that the return type of methodA is TypeA.

methodB: TypeA × TypeB → TypeC
 means that methodB takes two arguments of types TypeA and TypeB and
 returns an object of type TypeC.

1. ATOMIC TYPES

Atomic
 supertypes : root
 subtypes : NCMtype, CMtype

 attributes
length : Integer
QosParam : QosParameterClass_oid

length gives the size of object in characters
QosParam is a list of general parameters such as the jitter,
delay, cost, throughput, and guarantee class

 methods

NCMType
 supertypes : Atomic
 subtypes : Image, Text

 attributes
content : String

content is an array of characters (char [] in C++)
 methods

compress :
uncompress :

compress and uncompress take no arguments, and
compress/uncompress the character stream

53

Text
 supertypes : NCMType
 subtypes: none

 attributes
TextQoS : QosTextClass_oid

TextQoS stores the QoS parameters relevant to (non-
synchronized) text

 methods
 match : String → SearchResult

subString : Integer x Integer → String

match returns the result of matching its argument against
the text. SearchResult contains the location as well as the
surrounding text.
substring returns the substring located by the two integer
arguments

Image
 supertypes : NCMType
 subtypes: (GIF_Image, JPEG_Image, etc will be subtyped when required) none

 attributes
width : Integer
height : Integer
ImageQoS : QosImageClass_oid

width and height of image, common to all storage formats
ImageQoS stores the QoS parameters relevant to Images
only

 methods

CMType
 supertypes : Atomic
 subtypes: SyncText, Temporal

 attributes
filename : FilePathClass_oid
location : SiteClass_oid
UOI : 128 byte value

filename and location give information on the loca-
tion of the file on the particular server.
 UOI is the universal object identifier which gives additional
site-independent information. The SiteClass gives additional
information on the transport protocol which is used by the
QoS module

 methods

54

SyncText
 supertypes : CMtype
 subtypes: none

 attributes
SyncTextQos : QoSSyncTextClass_oid

 methods

Temporal
 supertypes : CMtype
 subtypes: Video, Audio

 attributes
duration : Integer

duration of playback in seconds
 methods

scale : real → Temporal_oid
scale the media on the time axis

Video
 supertypes : Temporal
 subtypes: none (MPEGVideo, MJPEGVideo, etc will be subtyped when required)

 attributes
width : Integer
height : Integer
frameRate : Integer
bitRate : Integer
videoQos : QoSVideoClass_oid

width, height, frameRate, and bitRate are
attributes presumably common to all video storage formats
videoQos gives the QoS parameter list specific to video
media, such as packetsize, and color.

 methods

Audio
 supertypes : Temporal
 subtypes:

 attributes
numChannels : Integer
codingLaw : String
sampleRate : Integer
bitsperSample : Integer
AudioQos : QoSAudioClass_oid

AudiQos gives the QoS parameter list specific to audio
media, such as packetsize

 methods

55

2. ELEMENT TYPES

Note1: To implement the heterogeneous collections that are required to store
the child elements of structured elements, several abstract supertypes
which are the ‘union’ types of the child elements have been created. These
supertypes are subtypes of Element, HyElement, TextElement,
Structured, or StructuredText. Consequently, most types listed here
have more supertypes, which are these ‘union’ types. To avoid the explo-
sion in the name space, these supertypes are not listed in the following
text. Only one such type is shown: the phrase type. The children attrib-
ute of the paragraph type illustrates its use.

Note2: The notation List<A> means a list of objects of type A.

Element
 supertypes : root
 subtypes : Text Element , Structured, HyElement

 attributes
parent : Element _oid
ArticleElement : Article_oid

parent is the oid of the element’s parent in the hierarchy of
the document instance
ArticleElement is the article to which the element be-
longs to

 methods
 GetParent : Element _oid

 SetParent : Element _oid
These methods get refined by all subtypes

TextElement
All elements which can be represented by annotations
 supertypes : Element
 subtypes : EdinfoElement, Figcaption, Emphasis, Quote, StructuredText

 attributes
absoluteAnnote : Annotation_oid
relativeAnnote : Annotation_oid

TextElements are annotations by definition . The abso-
lute annotation is with respect to the articles text content. The
relative annotation is w.r.t the immediate parent element of
the text element.

 methods

 getString : String;
returns the string enclosed in the annotation

56

Structured
SGML/HyTime elements with a complex content model.
 supertypes : Element
 subtypes : StructuredText, sync, article, audio-video, body, fcs_AF, Evsched_AF,

dimspec_AF
 attributes

children : List<Element_oid>
Structured elements have children by definition. The least
common supertype of all possible children of all Struc-
tured elements is Element. This attribute is private, so
that it can be specialized by the subtypes of Structured.

 methods
getNth : Integer → Element_oid

returns the oid of the Nth child of the element where N is the
argument. Return type is specialized in the subtypes.

StructuredText
This type and all its subtypes model text elements (TextElement) with a hi-
erarchical structure.
 supertypes: Text Element, Structured
 subtypes : section, figure, async, frontmatter, article, edinfo, list, listitem, hdline,

paragraph
 attributes

children : List < TextElement_oid >
The actual implementation of the collection of child elements
could be different, for example a number of lists. A pri-
vate data member, again.

 methods
 getNth : Integer → TextElement_oid

returns the oid of the Nth child of the element where N is the
argument. Refined from Structured

HyElement
HyTime architectural forms have this as a supertype.
 supertypes : Element
 s ubtypes : Ilink_AF, Fcs_AF, Evsched_AF, Event_AF, Axis_AF, Extlist_AF,

Marklist_AF, Dimspec_AF
 attributes

id : String
AForm : String

All HyTime elements are required to have IDs in the News
article DTD. HyTime elements should also be able to answer
the name of the architectural form they conform to.

 methods
getAForm : String

57

Fcs_AF
 supertypes : HyElement, Structured
 subtypes : Av-fcs

 attributes
evsched : List <Evsched_AF_oid>

The content model of fcs is (evsched)+. Hence the
child elements are only of type Evsched_AF

 methods
getNth : Integer → Evsched_AF_oid

Refined from Structured type

Av-fcs
 supertypes : Fcs_AF
 subtypes : (none)

 attributes
t_axis : Time_oid
x_axis : X_oid
y_axis : Y_oid
t_fcsmdu : String
x_fcsmdu : String
y_fcsmdu : String

These attributes store the knowledge about the axes and the
measurement data units (fcsmdu) along various axes.

 methods
GetTimeSchedule : TimeFlowGraph
GetSpatialSchedule : SpatialScheduleInfo
GetVideoObjects : List <Video_oid>
GetAudioObjects : List <Audio_oid>
GetSyncTextObjects : List <Text_oid>
GetImageObjects : List <Image_oid>

GetTimeSchedule returns the time flow graph repre-
senting the playback schedule.
GetSpatialSchedule returns a representation of the
spatial ordering of the events in the fcs.
GetXXXObjects return a list of object references to atomic
types representing these media. These references can then be
used to retrieve QoS and location information.

Ilink_AF
 supertypes : HyElement
 subtypes : link

 attributes
linkends : List <Element_oid>
anchrole : String

Ilink can link to multiple destination, and can link to any
element. Hence linkends is a list of Element references
anchrole is fixed in the DTD, according to the HyTime
standard.

58

 methods
traverse : Element_oid → null

traverse defines some semantics for traversing a link.
This is refined in each subtype.

Link
 supertypes : Ilink_AF, Structured
 subtypes : none

 attributes
children : List of Phrase_oid

the content model of the link element is a phrase.
 methods

getNth : Integer → Phrase_oid

traverse : ΤextElement_oid → null

traverse : StructuredElement_oid → null

traverse : TextElement → null
getNth is a refined method of Structured.
traverse is polymorphic. Depending upon the type of
the destination element supplied as an argument, there are
different implementations.

Evsched_AF
 supertypes : HyElement, Structured
 subtypes : Av_evsched

 attributes
axisord : String
apporder : String
sorted : String
basegran : String
gran2hmu : List<Integer>
pls2gran : List<Integer>
children : List<Event_AFoid>

 methods
All the attributes, except for children are attributes of the
architectural form listed in the HyTime standard.

Av_evsched
 supertypes : Evsched_AF
 subtypes : none

 attributes
textEvents : List<Stext>
audioEvents : List<Saudio>
videoEvents : List<Svideo>

the text, audio and video events are stored in individual lists
so that the implementation of GetTimeSchedule in the
Av-fcs type becomes simpler.

 methods

59

Event_AF
 supertypes : HyElement
 subtypes : temporal

 attributes
exspec : Extlist_AF_oid
pls2gran : List<Integer>

All the attributes are attributes of the architectural form listed
in the HyTime standard.

 methods

Temporal
 supertypes : Event_AF
 subtypes : Spatial, Saudio

 attributes
taxis : Time_oid

 methods
getTimeExtents : List<Extents>

returns the portions of the time axis the event occupies

Spatial
 supertypes : Temporal
 subtypes : Stext, Svideo

 attributes
x_axis : X_oid
y_axis : Y_oid

 methods
getXExtents : List<extents>
getYExtents : List<extents>

These methods return the extents of the event object along
the spatial axes.

Stext
 supertypes : spatial
 subtypes : none

 attributes
content : SyncText_oid

 methods

Saudio
 supertypes : temporal
 subtypes : none

 attributes
content : Audio_oid

 methods

60

Svideo
 supertypes : spatial
 subtypes : none

 attributes
content : Video_oid

 methods

Axis_AF
 supertypes : HyElement
 subtypes : X, Y, Time

 attributes
axismeas : String
axismdu : String
axisdim : String

All are HyTime Standard attributes
 methods

X, Y, Time
 subtypes: none
 supertypes: Axis_AF

 attributes

 methods

subtyped for classification purposes

Extlist_AF
 subtypes: none
 supertypes: HyElement, Structured

 attributes
children : List<Dimspec_oid>

The Standard specifies a more complex content model which
includes a number of architectural forms which are not going
to be used in this implementation.

 methods

Av-extlist
 supertypes: Extlist_AF
 subtypes: none

 attributes
time_spec : Tdimspec_oid
x_spec : Xxdimspec_oid
y_spec : Ydimspec_oid

children of Av-extlist are Dimspec elements, which
are stored as attributes, rather than a list. The dimspec ele-
ments are used to mark off portions of axes.

 methods

61

Dimspec_AF
 supertypes: StructuredText
 subtypes: Tdimspec, Xdimspec, Ydimspec

 attributes
mark1 : Integer
mark2 : Integer

dimspec is a pair of integers marking off positions along an
axis.

 methods

Xdimspec, Ydimspec, Tdimspec
 supertypes: Dimspec_AF
 subtypes: none

subtyped for classification purpose only. They also represent
elements in the DTD

Figure
 supertypes: StructuredText
 subtypes: none

 attributes

image : Image_oid
caption : Figcaption_oid
float : String

image refers to the raw image associated with the figure
float has a value which indicates where the figure is to be
displayed relative to the surrounding text (here, top, bottom)

 methods
 getCaption : String

returns the caption associated with the figure (null if there is
no caption).

Phrase
 supertypes : none
subtypes: Emphasis, Quote, String

 attributes

 methods
abstract supertype for emphasis and quote elements. An ex-
ample of an ‘union’ type used to implement heterogeneous
collections for the children attribute of Structured
elements.

62

Paragraph
 supertypes: StructuredText
 subtypes : none

 attributes
children : List<(Phrase,List,Link,Figure)_oid>

 methods
 getNth : Integer → (Phrase,List,Link,Figure)_oid

List
 supertypes : StructuredText
 subtypes: none

 attributes
title : String
number : Integer
children : List <Listitem_oid>

title is the list header or title (which can be null).
number is the number of list items in the list.

 methods

 getNthListitem: Integer → Listitem_oid

Listitem
 supertypes: StructuredText
 subtypes: none

 attributes
children : List <Paragraph_oid>

 methods
getNth : Integer → Paragraph_oid

getNth refined from StructuredText to reflect the fact
that the only children of listitem are paragraph in-
stances.

Section
 supertypes : StructuredText
 subtypes: none

 attributes
title : String
children : List <(Paragraph, List)_oid>

 methods
getNth : Integer → (Paragraph, List)_oid

the return type of getNth for this type is the supertype of
paragraph and list types.

63

Async
 supertypes : StructuredText
 subtypes : none

 attributes
children : List <Section, Figure, Link oids>

 methods
getNth : Integer → (Section,Figure,Link)_oid

the return type of getNth for this type is the supertype of
Section, Figure and Link types.

Edinfo
 supertypes : StructuredText
 subtypes: none

 attributes
location : Loc
date : Date
source : Source
authors : List <Author >
subject : Subject
keywords : Keywords
abstract : Abs-p

 methods
the return type of getNth for this type is EdinfoEle-
ment_oid

Frontmatter
 supertypes : StructuredText
 subtypes: none

 attributes
children : List<(Edinfo,Hdline,Subhdline,

Abs-p)_oid>
 methods

getNth : Integer →
(Edinfo,Hdline,Subhdline,Abs-p)_oid

the return type of getNth for this type is the supertype of
EdinfoElement, Hdline, and Abs-p types.

Hdline
 supertypes: StructuredText
 subtypes : Subhdline

 attributes
children : List<(Phrase,Link)_oid>

 methods
 getNth : Integer → (Phrase,Link)_oid

64

Subhdline
 supertypes: Hdline
 subtypes :

 attributes
children : List<(Phrase,Link)_oid>

 methods
 getNth : Integer → (Phrase,Link)_oid

Abs-p
 supertypes: StructuredText
 subtypes : Subhdline

 attributes
paragraph : Paragraph_oid

 methods

EdinfoElement
 supertypes: TextElement
 subtypes: Loc, Source, Author,Subject,Date

 attributes
parent : Edinfo_oid

 methods
GetParent : Edinfo_oid

Keywords
 supertypes: EdinfoElement
 subtypes: none

 attributes
number : Integer

number of keywords
 methods

Loc, Source, Subject
 supertypes : EdinfoElement
 subtypes : none

 attributes

 methods

Subtyped only for classification purposes

Date
 supertypes: EdinfoElement
 subtypes: none

 attributes
day : Integer
month : Integer
year : Integer

 methods

65

Author
 supertypes: EdinfoElement
 subtypes: none

 attributes

 bio : Paragraph
 photo : Image
 designation : String
 affiliation : String

 methods
 all attributes are derived from attribute values found in the
markup. They could be null, or empty.

Emph1, Emph2
 supertypes : Emphasis
 subtypes : none

 attributes
(none)

 methods
(none)

subtyped only for classification purposes

Figcaption
 supertypes : TextElement
 subtypes : none

 attributes
(none)

 methods
(none)

subtyped only for classification purposes

Quote
 supertypes : TextElement
 subtypes : none

 attributes
source : String
style : String
date : Date

source is who the quote is attributed to, and style is the
either block, or embedded. date is the date (if any) associ-
ated with the quote. All these values are obtained from the
attributes given in the markup for the quote element.

 methods

66

Sync
 supertypes : Structured
 subtypes : none

 attributes
children : List<AudioVisual_oid>

 methods
getNth : AudioVisual_oid

return type of getNth is AudioVisual_oid

AudioVisual
 supertypes : Structured
 subtypes : none

 attributes
x_axis : X_oid
y_axis : Y_oid
t_axis : Time_oid
fcs : Av-fcs_oid
extlists : List<Av_extlist_oid>

 methods
getNth : (X, Y, Time, Av-fcs,Av-extlist)_oid

Article
 supertypes : Structured
 subtypes : none

 attributes
location : String
date : String
source : String
subject : String
authors : List<String>
keywords : List<String>

attributes replicated from the edinfo type, so that indexes
can be built on them for faster searching.

front : Frontmatter_oid
async : Async_oid
sync : Sync_oid

child elements stored as attributes instead of a list.
base : Article_root_oid

reference to the object which has the text content, the lists of
annotations, and the collection of all elements.

 methods

67

Article_root
 supertypes: Root
 subtypes : none (yet)

 attributes
textblock : Text_oid
imageList : List<Image_oid>
audioList : List<Audio_oid>
videoList : List<Video_oid>
stextList : List<SyncText_oid>

The list of atomic objects in the article. Annotations are de-
fined on the text contained in the textblock attribute.

article : Article_oid
The instance of the article element which is at the root
of the document hierarchy.

loc : Annotation_oid
keywords : Annotation_oid
source : Annotation_oid
author : Annotation_oid
subject : Annotation_oid
date : Annotation_oid
figcaptions : List<Annotation_oid>
Emph1 : List<Annotation_oid>
Emph2 : List<Annotation_oid>
quote : List<Annotation_oid>
list : List<Annotation_oid>
paragraph : List<Annotation_oid>
figure : List<Annotation_oid>
section : List<Annotation_oid>
frontmatter : List<Annotation_oid>
async : List<Annotation_oid>
listitem : List<Annotation_oid>
link : List<Annotation_oid>
edinfo : List<Annotation_oid>
hdline : List<Annotation_oid>
subhdline : List<Annotation_oid>
abs-p : List<Annotation_oid>
title : List<Annotation_oid>

Annotation lists for text elements
 methods

Annotation
 supertype : Root
 subtype : none

 attributes
first : Integer
last : Integer

 methods

