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JOHAN VAN BENTHEM 

THE LOGICAL STUDY OF SCIENCE* 

ABSTRACT. The relation between logic and philosophy of science, often taken for 

granted, is in fact problematic. Although current fashionable criticisms of the usefulness of 

logic are usually mistaken, there are indeed difficulties which should be taken seriously 
- 

having to do, amongst other things, with different "scientific mentalities" in the two 

disciplines (section 1). Nevertheless, logic is, or should be, a vital part of the theory of 

science. To make this clear, the bulk of this paper is devoted to the key notion of a 

"scientific theory" in a logical perspective. First, various formal explications of this 

notion are reviewed (section 2), then their further logical theory is discussed (section 3). 

In the absence of grand inspiring programs like those of Klein in mathematics or 

Hubert in metamathematics, this preparatory ground-work is the best one can do here. 

The paper ends on a philosophical note, discussing applicability and merits of the 

formal approach to the study of science (section 4). 
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1. INTRODUCTION 

1.1 Logic and Philosophy of Science 

That there exists an intimate connection between logic and the 

philosophy of science would seem to be obvious, given the fact that 

the two subjects were still one until quite recently. Bolzano and Mill 

exemplify this in their work; but, even in the twentieth century, main 

currents like Hempel's 'hypothetico-deductive' view of science, or 

Popper's 'falsificationism' presuppose an obvious, if often implicit, 
link with logic. This is true to an even greater extent of Carnap's 

program of 'logical reconstruction' of science, still echoing in con 

temporary research like that of Sneed 1971. So, what is the problem? 
These contacts are, on the whole, rather superficial 

- 
going no 

deeper than elementary logic. The Carnap-Suppes-Sneed tradition is a 

favourable exception; but, there as well, advanced applications of 

logic remain isolated examples: occasionally, one encounters Padoa's 

Method (1901), Beth's Theorem (1953) or Craig's Theorem (1953). 

Highlights of modern logic, like Cohen's forcing technique or non 

standard model theory, have found no applications at all.1 Moreover, 

the technical work which is being done often seems to lack contact 

with actual science. 

Are these just maturation problems in an otherwise promising 

marriage, or is there something fundamentally wrong 
- 

calling for a 

rapid divorce? The latter diagnosis is given by more and more people, 

following Kuhn and, especially, Feyerabend. In the philosophy of 

science, they say, the 'logical point of view' is inappropriate, or, at 

best, inadequate (to the extent of being useless). The scientific reality 
one should be concerned with is either too 'dynamic', or too 'com 

plex' to be captured by formal tools.2 

This type of criticism will not be discussed here. Either it amounts 

to such authors stating general personal preferences for different 

approaches, say history or sociology of science - indeed quite honour 

able subjects 
- 

or, when specific complaints are adduced, these will 

invariably be found to illustrate not so much the inadequacy of logic 
as that of the author's logical maturity.3 The problem to be treated 

here is rather that logicians and philosophers of good will have not 

yet been able to get a successful enterprise going comparable to 

foundational research in mathematics. 
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In the final analysis, there may be deep (and, no doubt, dark) 
reasons for this failure - 

prohibiting a non-trivial logic of science. And 

in fact, some logicians prefer to accept defeat without a struggle, 
under the cover of manoeuvres like the following. 'Logic is the 

philosophy of mathematical or deductive science, the philosophy of 

natural science is for the philosophers.' Or again: 'Philosophy of 

Science is, by definition, the pragmatic component of (applied) logic'. 
Both ways, the logician can remain at home. As I see it, however, it is 

far too early for such conclusions. Logic never had a good try at the 

theory of science - and this paper is devoted to clearing the ground for 

such attempts. Like some bearded German once said, the important 

thing is not to re-interpret the problematic situation, but to change it. 

1.2 Logicians and Philosophers of Science 

It would be an interesting historical project to describe the adventures 

of logicians in mathematics as compared with those of formal 

philosophers of science in their fields of study. Subterranean grum 

blings apart, mathematics has been quite hospitable to logic 
- even 

absorbing whole logical sub-disciplines like set theory, model theory 
or recursion theory. No similar development has taken place, 

however, in, e.g., physics or biology. Far from experiencing 

Schadenfreude, logicians should worry about this - 
making common 

cause with those philosophers of science engaged in foundational or 

methodological research.4 Why has this not happened long ago al 

ready? Again, historical causes may be advanced but there are also 

some serious methodological obstacles. These should be mentioned 

first, so as to look each other straight in the face. 

To begin with, there is a difference in 'mentality' between logicians 
and many formal philosophers of science. Briefly, logicians want 

theorems where these philosophers often seem content with 

definitions. This observation reveals more than just the usual acade 

mic animosity between closely related disciplines. To see this, it 

suffices to compare an (admirable) book like Reichenbach 1956 with 

Suppes 1973. Reichenbach discusses various formal issues concerning 

Time without ever formulating problems admitting of deductive solu 

tions in the form of elegant theorems. In the Suppes volume, in 

contrast, one finds conceptual analyses leading to (and probably 

guided by) beautiful formal results - 
say representation theorems 



434 JOHAN VAN BENTHEM 

coupling Robb's causal analysis of Space-Time with the Special 

Theory of Relativity. 
This difference in mentality may well reflect a difference in goals: 

say, formal 'explications' in Carnap's sense as an aim in itself versus 

formal definitions as a means for obtaining desired theorems. Put 

another way, Frege and Hubert did not formulate their formal con 

ception of theories in order to publish papers called 'the logical 
structure of arithmetic', but in order to carry out their programs 

(derivation of all arithmetical statements as laws of pure logic; proofs 
of consistency). But, does not the philosophy of science know such 

guiding programs as well, say that of the 'Unity of Science'? In a 

sense, yes, but there is a subtle difference. The above mentioned 

logical programs made claims which were falsifiable5; and indeed they 
were falsified - 

witness, e.g., G?del's Incompleteness Theorems. It is 

mainly this characteristic which made them so fruitful. (Compare the 

analogous case of 'squaring the circle'.) In contrast, it is hard to see 

how programs like the Unity of Science, or even its implementations 
like 'fitting each scientific theory into the Sneed formalism'6 could be 

refuted at all. Who is going to unfold the really inspiring banner? 

To a certain extent, the preceding paragraphs amounted to a polite 
invitation to philosophers of science: invest more heavily in technical 

logical theory. But, on the other hand, there looms the equally 

deplorable obstacle of the self-imposed isolation of logic. Certainly, 

nowadays many first-rate logicians are opening up to problems out 

side the familiar circle of mathematics, notably those of the semantics 

of natural language. But the boundaries of logic should be set 'wider 

still and wider', or so I will now try to argue. 

1.3 L?gica Magna 

Contemporary logic is a flourishing discipline, both as 'mathematical 

logic' (witness the handbook Barwise 1977) and as 'philosophical 

logic'. Therefore, organisational schemes like the one to be presented 
below might well be thought superfluous 

- 
being rather the symptom of 

a subject in its infancy. (The most grandiose conceptions of logic 
were drawn up in times of logical stagnation.) The only excuse for the 

following is its modest aim, namely to make people realize (or 

remember) what more logic is, or could be. 
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Logic I take to be the study of reasoning, wherever and however it 

occurs. Thus, in principle, an ideal logician is interested both in that 

activity and its products, both in its normative and its descriptive 

aspects, both in inductive and deductive argument.7 That, in all this, 
she is looking for stable patterns ('forms', if one wishes) to study is 

inevitable, but innocent: the assumption of regularity underlies any 

science. These patterns assume various shapes: the 'logical form' of a 

sentence of inference, the 'logical structure' of a book or theory, 

'logical rules' in discourse or debate. 

Given any specific field of reasoning, the ideal logician chooses her 

weapons. Which level of complexity will be attacked: sentences, 

inferences, texts, books, theories?8 Furthermore, which perspective is 

most suitable; syntactic, semantic or pragmatic? Finally, which tools 

are to be used in the given perspective: which formal language, which 

type of theory of inference and of which strength? Thus she decides, 

e.g., to study certain ethical texts using a tensed deontic predicate 

logic with a Kripkean "world course" semantics - or a theory of 

quantum mechanics using a propositional language receiving a prag 

matic interpretation in terms of verification games. Even so, many 

aspects of the chosen field may remain untouched by such analyses, 
of course. Fortunately, then, there are various neighbouring dis 

ciplines with related interests to be consulted. 

On this view there is no occasion for border clashes, but rather for 

mutual trade with not just philosophy, mathematics and linguistics, 
but also, e.g., with psychology and law. These are not idle recom 

mendations, but important tasks. An enlightened logician like Beth, 
for instance, realized the danger of intellectual sterility in a standard 

gambit like separating the genesis of knowledge in advance from its 

justification (thus removing psychology to beyond the logical horizon, 

by definition) 
- witness Beth and Piaget 1966. Another type of project 

which should become culturally respectable among logicians is the 

systematic comparison of mathematical and juridical modes of 

reasoning (cf. Toulmin 1958). But, not even mathematical logic itself 

covers its chosen field in its entirety. A book like Lakatos 1976 makes 

it clear how eminently logical subjects 
- on the present view of logic, 

that is - have fallen out of fashion with the orthodox mathematico 

logical community. 

Finally, it may be noted that such cross-connections would also 
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provide the dishes which, after all, a spice like 'logical awareness' is 

supposed to flavour. Only the most insensitive palates tolerate spices 
in pure form .... 

2. FORMAL NOTIONS OF 'THEORY' 

The key concept in the study of science would seem to be that of a 

'theory'.9 In accordance with the remarks made in section 1.2, we will 

approach its formal study in this section keeping in mind both 

definitions and pleasant results. First, a short historical sequence of 

definitions is given (2.1), which may already be richer than most 

logicians are aware of. Nevertheless, it should be emphasized that 

this is not a representative historical account, but a didactical tale for 

a rather special purpose. Then, there is a review showing how 

versatile and flexible an arsenal modern logic provides for the sys 

tematic development of such definitions (2.2). Further logical theoriz 

ing, in order to produce subsequent results, is the subject of the 

following section (3). Hopefully, the intellectual interest of the enter 

prise advocated here will become clear as we proceed. 

2.1 A Short History from Hilbert to Sneed 

To many people, 'the logical view' of a theory is that of a formal 

system, whose components are a formal language, a set of axioms and 

an apparatus of deduction deriving theorems from these. It is one of 

the amazing achievements of the early modern logicians that they 

managed to do so much with this extremely unrealistic notion. 

Nowadays, it has become fashionable to blame the formalists for the 

'poverty' of this concept, when compared with actual practice (that 

they would never have denied this is conveniently forgotten). But, 

given their aims, one should rather congratulate them for their happy 

choice of this austere but fruitful notion. Like so often in the 

development of science, it paid to be simple-minded. 

Nevertheless, different aims may call for richer concepts. E.g., in 

many cases one needs the additional observation that developing a 

theory consists in a judicious interplay of proof and definition. Thus, 

definability becomes a logical concern of equal importance with 

derivability. The complications to be considered here are of a different 

kind, however - as will appear from the following sequence, whose 
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main theme is how to account for the additional complexity of 

empirical theories in natural science. Still, our story begins inside 

mathematics proper: 

2.1.1 David Hilbert 

As is well-known, Hubert's Program of consistency proofs presup 

posed the above-mentioned view of mathematical theories, which had 

developed in the course of millennia of geometrical studies. But, 

moreover, it was based upon a global view of mathematics as consis 

ting of a 'finitistic' core surrounded by more abstract hull theories like 

analysis or set theory. The core consists of simple concrete manipu 
lations with numbers; say, encoded in some fragment of arithmetic. 

These threatening to become extended beyond human comprehen 

sion, 'higher' theories (possibly adding infinite objects) are invented, 

amongst others, to speed up proofs and indeed the very process of 

arithmetical discovery. (Cf. Smorynski 1977.) 

Thus, one could formalize a typical mathematical theory as a 

two-stage affair: a 'concrete' part Tx (with language Lx) translated 

into some 'abstract superstructure' T2 (with language L2), or maybe 
contained in some mixed theory TX2 (with language Lx + L2). These 

two set-ups are obviously related: for convenience, the latter will be 

discussed henceforth. 

For Hilbert, the consistency of Tx was beyond doubt: but that of 

Tu was not10 - whence the attempt to prove it by means within the 

range of Tx. Another side of the matter was pointed out by Kreisel: 

Hilbert assumed that such abstract extensions did not create new 

concrete insights (they only make it easier to discover proofs for 

them). Formally, this means that Tu is a conservative extension of Tx: 

if TXt2\-cp then Tx\-<p,for all Lx-sentences <p. 

All this was refuted by G?del. (Take for Tx: Peano Arithmetic, and 

for Tu, say, Zermelo-Fraenkel Set Theory 
- 

<p being the relevant Liar 

Sentence.) Nevertheless, the above notion of 'theory' remains inter 

esting, especially in view of later developments. 
Before turning to these, one more aspect of Hilbert's views is to be 

noted. It would be rash to assume that the underlying logic of Tx will 

be predicate logic. For one thing, one might want to have a more 

constructive logic at this level11 
- but this is not the issue here. It is 
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rather that the complexity of Li-statements is important. Clearly, 
individual statements, like 7 + 5= 13 are 'concrete' - but what about 

quantification? Hilbert seems to have allowed universal statements, 

like Vxyx + y <x y; but not, e.g., quantifier combinations like Vx 

3y<p(x, y) 
- unless these could be reformulated constructively. That 

such combinations are rather 'abstract' is brought out by the Skolem 

equivalence introducing theoretical functions: 

Vx3ycp(x, y)^3/Vx<p(x,/x). 

Only when such an / may be given constructively 
- 

say Vx3yx < y as 

Vxx < Sx - is this permitted. Thus, one uses only a fragment of predicate 

logic in formulating Ti.1213 

2.2.2 Frank Ramsey 

Hilbert's view of theories was inspired by mathematics. One could 

say, perhaps, that the 'finistic' part introduces empirical con 

siderations (actual manipulation of concrete symbols), but only in a 

very weak sense. A little later, in 1929, Ramsey wrote a short paper 

called 'Theories', which lay dormant for a long time. (Cf. Ramsey 

1978). In it, he describes the role of theories, also and notably 

empirical theories, as follows. First, there is the so-called 'primary 

language' containing the prima facie descriptions of our various 

experiences. These descriptions may be observed regularities (laws) 
or reports of individual observations (consequences). Then, in order to 

systematize this complex field, one introduces a so-called 'secondary 

language', with a higher level of abstraction. A dictionary will trans 

late 'primary' concepts into 'secondary' ones, and the latter will be 

organized by means of some simple set of axioms, from which the 

original laws and consequences are derivable. 

Evidently, there are similarities with the Hilbert view. Notice, for 

instance, how 'laws' correspond to the above universal statements. 

For empirical theories, this restriction is even more reasonable than in 

the original mathematical context. E.g., one may observe particles at 

certain positions, or state universal extrapolations from these, like 'in 

this trajectory each position is occupied at most thrice'. But, a 

localization principle like 'each particle is somewhere at each instant' 

amounts to the theoretical claim that a position function exists. 

Another analogy lies in the possible uses of various conditions on the 
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relevant Skolem functions. In the Hilbert case, one would like these 

to be 'constructive'. In the empirical case, one would like them to be 

continuous (and hence approximable by means of constructive or 

measurable functions).14 
In order to bring out the postulated character of the secondary 

language, Ramsey stressed that a theory could be regarded as an 

existentially quantified second-order sentence, viz. 3Y(A(Y) & 

D(Y,X))- where Y is the secondary vocabulary, A the 'axioms', and 

D the 'dictionary' coupling Y to the primary vocabulary X. Thus, not 

too much ontological reality should be ascribed to theoretical entities: 

a methodological turn which is quite typical for Ramsey's philosophy 
in general. Notice that the whole point is based upon the following 

simple logical observation: 

ifA(Y),D(Y,X)\-S(X), then 3Y(A(Y) & D(Y,X))hS(X); 

where S is any primary statement. There is a connection here with 

Hubert's Program (cf. Smorynski 1977): if you have 'primary' reasons 

for believing in 3Y(A(Y) & D(Y,X)) (consistency) then you have 

primary reasons for believing in the truth of any primary consequence 

S(X) of the whole secondary theory (conservation). 
This syntactic point of view is quite true to the spirit of Ramsey's 

work, which appeared in the pre-semantical stage of modern logic. Its 

full impact only became clear in a semantical setting, however, as we 

shall see later on. 

Intermezzo. In authoritative text books on the philosophy of science, 
like Nagel 1961, one finds the so-called 'statement view' of scientific 

theories. There, such a theory is taken to possess an observational as 

well as a theoretical vocabulary. The first is interpreted by actual 

inspection, measurement, and so on - 
the second receives a 'partial' 

interpretation derived from the first through so-called 'cor 

respondence principles'. This division (taken for granted in Ramsey's 

approach) turns out to be difficult to implement precisely. E.g., 

original strong proposals, like explicit definability ('reduction') of 

theoretical vocabulary to observational terms, turned out to be un 

tenable. Nagel is not unaware of relevant logical work. He discusses 

Craig's Theorem, which may be taken to mean that, if one can find a 

recursive axiomatization for some mixed 'observational/theoretical' 

theory, then one can also find such an axiomatization for its obser 
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vational part alone: a weaker form of reduction.15 Although there are 

certain 'semantic' elements in this picture, its main emphasis is still 

syntactical. 
It is interesting to find that Nagel does refer to Ramsey's views, be 

it in passing, in his discussion of instrumentalist views of theories 

versus realist ones. On his account, the Ramsey sentence was desig 
ned to turn an otherwise undetermined theoretical statement form 

(meant instrumentalistically as a 'convenient short-hand' for some 

complex set of observation reports) into a determinate statement. 

(Our account turned things the other way around: an otherwise too 

strong statement about specific theoretical entities was weakened to a 

merely existential statement. Nevertheless, Nagel is right in classify 

ing Ramsey on the instrumentalist side - and it is ironical that the 

revived 'semantical' Ramsey has become popular with latter day 

realists.) 
In order to pick up the main thread of our story, we go back to 

1947, when E. W. Beth proposed a 'semantic conception of theories' 

(cf. Beth 1947), still alive in the work of authors like F. Suppe or B. C. 

van Fraassen. Briefly, Beth proposes to view theories as describing 
certain structures (physical systems, 'histories', or what you like), on 

the pattern of Tarski semantics. Thus, e.g., laws of the theory may be 

viewed as restrictions on the trajectories open to the system in phase 

space. These were prophetic ideas - and that before the first flowering 
of logical model theory. 

A more influential author propagating similar views is P. Suppes, 
whose 'set-theoretic predicate' approach to theories was formulated 

and applied in the fifties already. (Cf. Suppes 1957, Suppes I960.)16 

E.g., Newtonian particle mechanics would be defined as a class of 

set-theoretic structures (time-dependent systems) satisfying certain 

Newtonian conditions formulated in set-theoretic terminology. These 

may be taken as the (syntactic) axioms of mechanics - set theory then 

serving as the underlying apparatus of deduction; but this is not 

usually made explicit 
- let alone a full first-order predicate-logical 

axiomatization. We will have more to say about such a ianguage-free' 

approach (as it is sometimes called) below. For the moment, just note 

the historical precedent of Klein's 'Erlanger Program' in which 

geometry was approached purely 'structurally' through the study of 

(invariants of) certain groups of transformations on geometric spaces. 

Suppes did use model-theoretic tools occasionally 
- 

e.g., Padoa's 
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method in his discussion of Mach (cf. Suppes 1957). Nevertheless, the 

set-theoretic predicate approach does not fit in smoothly with the 

perspective of logical model theory 
- 

being biased on the structural 

side, so to speak. Therefore, our next author is more in line with the 

present exposition. 

2.1.3 Marian Przelecki 

There is a strong Polish tradition in formal semantics of scientific 

theories, and the little book Przet?cki 1969 provides an elegant 

example of this. (Its inspiration is derived partly from earlier work by 

Ajdukiewicz. Cf. Giedymin 1978.) The author presents a model 

theoretic account of empirical theories in the following steps. To 

begin with, there is an observational language L0 whose predicates 
are interpreted in a certain concrete domain U0 by means of osten 

si?n. (More precisely, by means of paradigmatic cases and extrapola 

tion from these.) This domain l/0 is gradually enlarged by us to an 

empirical domain U of 'physical objects'. (Thus, electrons and galax 

ies join dishes and babies.) L0-structures will be all those structures 

with domain U which contain l/0 (with its fixed interpretation) as a 

substructure. Next, a theoretical vocabulary Lt is added, calling for 

suitable enrichment of the L0-structures. The relevant model-theoretic 

concept is that of expansion, yielding L0+ Lt-structures consisting of 

some Lo-structure to which interpretations have been added (without 

changing the domain U) for the Lrterms. Yet not all such expansions 
will do: 'meaning postulates' are necessary in terms of the Li 

vocabulary. Finally, the syntactic part of the theory is a set T of 

first-order L0+ Lrsentences defining some class of L0+ Lrstruc 

tures. 

This framework gives rise to various logical questions, e.g. 

concerning different kinds of definability of Lt-vocabulary in terms of 

L0-vocabulary. Indeed, the book contains a wealth of notions and 

results which cannot be reviewed here. (Recall that this is not meant 

to be a comprehensive historical survey.) Probably the most striking 
one is Przet?cki's attempt to separate a theory T into an 'analytical' 

part A, containing meaning postulates without empirical import, and a 

'synthetical' part S doing the real work of making empirical claims 

(by excluding certain L0-models). The People's Republic of Poland 

has invested many years of research into this elusive equation T = 
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A + S, without finding satisfactory answers. Nevertheless, in this 

connection, some interesting questions have been raised. E.g., A 

should clearly be 'semantically non-creative'; in the sense that it 

should not exclude L0-structures: each L0-structure must be expand 
able to an L0 +Li-structure which is a model for A. A true model 

theorist, Przet?cki wants to find the syntactic side of this coin. Is it 

that A is 'syntactically non-creative', in the sense that the only 

Lo-sentences derivable from it are the universally valid ones?17 This 

type of question is the precursor of a more general one (treated by 

Przet?cki in related publications) to which we now turn. 

The L0 + Li-theory T has a class of models MOD(T). Accordingly 
it may be said to describe the class MOD(T) ? L0 of those L0 
structures which can be expanded to L0+Lt-structures in which T 

holds. Notice the way in which Ramsey's idea is implemented: this 

class of Lo-structures receives a 'second-order existential' description 
in this way. Now, let us return to the original syntactic version of 

Ramsey's ideas, in the following form. We have an L0-theory T0 
which is contained in the L0+ L?-theory T; i.e., 

(1) if T0\-(p then T\-<p, for each L0-sentence <p. (Extension) 

Then, what about the connection between MOD(T0) (those Lo 
structures which are models of T0) and the class MOD(T) ? L0 des 

cribed by T? Clearly, at least, it should hold that T does not exclude 

models of T0: 

(2) MOD(To) ?5 contained in MOD(T) \ L0. (Ramsey Extension) 

But, the above syntactic requirement does not guarantee this: maybe 
T has Lo-consequences outside of T0. Now, there was also the old 

Hilbert requirement of conservative extension, reading 

(3) if Thp then T0hp, for each L^sentence <p. (Conservative 

Extension) 

And, indeed, (2) implies (3), as is easily seen. (Notice that (2) does not 

imply (1).) Do the two conditions match precisely? Unfortunately, the 

answer is negative. 

Counter-example: Let T0 be the complete first-order theory stating 
that Time has a beginning 0, and proceeds from there via a 1-1 

successor operation S ('to-morrow') never making loops. (Infinitely 
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many axioms are needed to secure this.) The latter phenomenon is 

explained in the (finitely axiomatizable) theory T having a transitive 

relation B ('before') such that Vxy(Sx 
= 

y -> Bxy), as well as a pro 

perty E ('early') such that EO, Vx(Ex-^ESx), Vx3y(Bxy & lEY), 

Vx(~IEx-?Vy(Bxy ->~lEy)). (Time goes from 'early' to 'late', never to 

return.) Now, the natural numbers (N, 0, S) form a model for T0 

which cannot be expanded to a model for T.18 (More 'empirical' 

counter-examples would take too much space to present in full here.) 

Thus, this typical model-theoretic attempt to establish a duality has 

failed. Still, there is a result which one can prove, viz. the equivalence 
of Conservative Extension with the following weaker version of 

Ramsey Extension: 

(4) each L0-structure in MOD(T0) has an L0-elementary 
extension to some L0+ Lt-structure in MOD(T). 

Thus, the condition that the original empirical situations (Lo-struc 

tures) be 'enrichable' with suitable theoretical entities to L0+ Li 
structures which are models for T, is now related to their being thus 

'extendable' - addition of individuals becoming allowed as well. Given 

the fact that this is a not unknown procedure in physics (postulating 
new particles, or whole planets) model-theoretic curiosity has led to a 

not unreasonable amendment on Ramsey's views. 

These considerations will have given an impression of Przet?cki's 
model-theoretic spirit. Now, finally, we turn to maybe the most 

influential author on formal philosophy of science in recent years: 

2.1.4 Joseph Sneed 

In his book Sneed 1971, this author gave an analysis of classical particle 
mechanics using a formal machinery which transcends the above in 

various interesting respects. Since this work has become well-known 

(largely through allied work; cf. Stegm?ller 1979), it will suffice to 

mention only those ideas which are relevant to the present discussion. 

In the above picture of a theory, with ingredients T0, MOD(T0), T, 

MOD(T), it is implicitly assumed that a division into non-theoretical 

('observational', if you wish) vocabulary (L0) and theoretical vocabu 

lary (Lt) has been effected satisfactorily. In practice, however, this is 

a difficult problem, as we have seen - and Sneed gives an ingenious 
solution (the exact nature of which need not concern us here). 
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Another fruitful practical perspective of his work is the emphasis on 

what it means to apply a theory to a given empirical situation. On the 

Ramsey view, adopted by Sneed, this becomes: to show how 

theoretical ('super-natural') concepts may be introduced (forces, 

wishes, and so on) turning the situation into a model for the whole 

theory T. 

Will such an addition always be possible? More precisely, will any 

model of T t L0 
= 

{(p E L0|Th<p} (clearly, the most'fitting'choice for the 

empirical part T0) be expandable to a model for T? The answer is 

negative: evidently, T is a conservative extension of this T0, and we 

are asking if it is also a Ramsey extension. Thus, the problem remains 

like in the preceding sub-section. In Sneed's terminology, then, the 

theoretical vocabulary need not always be 'Ramsey eliminable' from 

the theory. If one wishes this, it will have to be postulated.19 

Next, we turn from questions about 'at least' to questions about 'at 

most'. Will just any theoretical expansion do? (Recall that Przet?cki 

introduced 'meaning postulates' at this point.) This seems implausible. 

Thus, suitable restrictions are to be formulated. Sneed considers the 

requirement that, given any model for T0, there be a unique expan 

sion of it to a model for T. Model Theory gives one the cash value of 

this proposal for a large class of languages. By Beth's Definability 

Theorem, this 'implicit definability' amounts to explicit definability of 

Lt in terms of L0 (on the basis of T). Thus, old-fashioned reduc 

tionism would re-emerge! 
This line of thought should not be pursued, as Sneed realized, 

because it is too 'local'. The kind of restriction one wants is a more 

'global' one, concerning cross-connections between expansions of 

different empirical situations. What we have in reality is a class of 

empirical situations, which are expanded simultaneously in such a 

way that certain 'constraints' are obeyed. Two typical examples of 

such constraints are the following 

(Cl) particles in different empirical situations should receive 

the same mass values through different expansions. 

('Mass' is a theoretical function in Sneed's analysis.) 

Thus, the earth gets the same mass in the Solar System as in the 

Milky Way. 
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(C2) the physical join of two particles receives the sum of their 

separate mass values 

(whether present 
- at some earlier or later time - in the 

situation considered, or not). 

Thus, the picture of an empirical theory now becomes, say, (T0, 

MOD(T0), T, MOD(T), C) 
- where C is the set of constraints. Applying 

such a theory to a class E of empirical situations means finding a 

simultaneous expansion of E satisfying C such that the resulting class 

is contained in MOD(T). (Obviously, at least, E will have to be a 

'suitable' candidate, in the sense that it is contained in MOD(T0).) 
In later publications (cf. Balzer and Sneed 1977/8), this picture is 

stripped of its linguistic content, leaving a purely set-theoretic 'lan 

guage free' formulation in the Suppes tradition. E.g., MOD(T) is 

replaced by an arbitrary class X of Lt-structures while C becomes a 

class of subclasses of the L0+ Lt-universe satisfying certain con 

ditions. (Closure under set-theoretic inclusion is one of these.) This 

move will be discussed in section 2.2. 

Clearly, it is the notion of 'constraint' which complicates the 

above picture from a model-theoretic point of view. Thus, it is 

worthwhile to speculate a little about possible alternatives. In fact, 

there seem to be several promising escape routes, open to further 

exploration. The first is to have one single domain for the language L0 

(as already proposed in Przet?cki 1969), considering the 'empirical 

situations' as its subdomains. Ramsey expansion would then apply to 

the whole 'universal' L0-structure: immediately guaranteeing con 

straints like (Cl) above.20 Possible objections might be that this 

becomes too global, and also that it is not obvious how all constraints 

may be captured without further complications. As for the 'globality', 
notice that one need not think of a literally 'universal' domain: it 

would suffice to consider a class of L0-structures directed by model 

theoretic inclusion - 
introducing their direct union for convenience 

only. This observation opens up a second route which is conceptually 
attractive as well. 

Up to now, we have followed ordinary model theory in assigning a 

class MOD(To) of 'isolated' L0-structures to a theory T0. But, already 
in mathematical practice, one is normally confronted with 'structured' 

classes of such models, with relations and operations connecting 
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them. Thus, it would be natural, e.g., to replace MOD(T0) by the 

category CAT(T0) of T0-models plus their connecting natural mor 

phisms. The particular choice of morphisms will then be dictated by 
the necessities of the theory considered. E.g., one might think of 

isomorphic embeddings (as substructures). On this view, constraints 

come in as follows. One wants to expand a class of L0-structures 

together with its categorial structure: i.e., the expanded class should 

be an Lt-subcategory 
- the original morphisms remaining morphisms.21 

Put fashionably, the forgetful functor should yield CAT(T0) when 

applied to CAT(T). Some reflection shows that this takes care of the 

constraint (Cl) as well.22 As it stands, the requirement will even be 

too strong in many cases. E.g., it seems reasonable that isomorphic 

empirical situations (being equivalent up to a co-ordinate trans 

formation, say) receive isomorphic expansions; but not each single 

Lo-isorphism need remain an L0-\-Lt-isomorphism! (E.g., not each 

purely topological automorphism of Space need remain a metrical 

isomorphism, when Space is metricized in accordance with the 

topology.) This second possibility may well have considerable model 

theoretic interest in itself, whether it accommodates all constraints or 

not. (An example will be found in the appendix, section 5.) 
This concludes our historical survey. A very rich and promising 

formal notion of 'theory' has emerged 
- whose logical study is still in 

its infancy. For example, the fate of the usual properties of and 

relations between such theories (normally defined in terms of formal 

systems) is still to be explored. Some relevant suggestions and dis 

cussions will be found in section 3. Finally, it should be remarked that 

this survey is by no means representative of contemporary logical 
views of theories, being inspired by a model-theoretic standpoint. 

Thus, interesting different tracks have remained outside our scope 

(cf., e.g., Wessel 1977). That there are new frontiers for logicians will 

have become abundantly clear, however; and that was our goal. 

2.2 A Systematic Logical Perspective 

A phrase like 'the logical structure' of a theory is misleading in that it 

suggests one single (or one preferred) logical approach to the study of 

science. Certainly, there is one single logical research mentality, but 

an aspect of that is precisely the plurality of available logical ap 

proaches. Thus, depending on one's specific aims, there are many 
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choices available (cf. section 1.3). For the study of scientific theories, 

in particular, the following perspectives should be kept in mind. 

2.2.1 Syntax 

It was remarked in 2.1 already how the syntactic notion of a formal 

system turned out to be a happy choice for many enquiries. It was 

also recalled that this notion arose from a long development of 

Euclidean geometry 
- in which the axiomatic organisation of deductive 

knowledge proved its value as a means for efficient organisation and a 

stimulus for rapid development of deductive knowledge. Even so, one 

has a variety of syntactic approaches. E.g., in the actual computer 
formalization of mathematics in the Eindhoven AUTOMATH project 

(cf. Van Benthem Jutting 1979), one needed a syntactic text logic 

consisting of a version of the typed lambda-calculus in a natural 

deduction presentation. Apart from providing a catalogue of truths, 

such a system also provides a model for actual mathematical prose. 

(Indeed, modern computer languages are a natural and interesting 
extension at the text level of the syntactic approach in logic.) Similar 

projects for the natural sciences would no doubt inject invaluable 

practical experience into the now often purely a priori debate 

concerning the possibilities of their formalization. 

2.2.2 Structures 

Before the 19th century, no distinction was made in geometry be 

tween syntactic derivation and spatial intuition. After the advent of 

non-Euclidean geometry, this separation led to the concept of 

geometrical structures ('spaces') modelling certain purely syntactic 

sets of geometrical sentences. The resulting interplay is exemplarily 
illustrated in, e.g., Tarski 1959. But, purely 'structural' views of 

theories arose very early too: witness Klein's 'Erlanger Program' 

mentioned in section 2.1, or Poincar?'s group-theoretic approach to 

geometry and mechanics. 

In the natural sciences, lip service was paid for a long time to 

axiomatic ideals; but, in practice, structural views lie even more at 

hand there. E.g., Newtonian mechanics might easily be identified with 

a certain class of real 'mechanical systems'. Which brings one to the 

question just which 'structures' are most suitable for use in the logic 

of natural science. 
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For a start, let us quickly dispose of a 'philosophical' pseudo 

objection. 'Mathematics is about abstract structures, natural science 

about non-formal Reality'. This is true; only it is too true. What 

natural scientists deal with are models or representations of reality, 

and these go into the logical study of science. So, which models? 

True, the ordinary model-theoretic notion of 'structure' seems rich 

enough in principle to accommodate any kind of system (cf. Suppes 

1960, Montague 1974) 
- but it would also be natural to try and work 

with systems in the sense of general system theory, because of their 

explicit time-dependent presentation. (Cf. Arbib and Padulo 1974.) 

E.g., system-theoretical representation theory contains many 'logical' 

lessons.23 

In this connection, it may be of interest to observe that a classical 

paper in the logical study of quantum mechanics formulates its main 

result on 'hidden variables' (a topic with a syntactical ring) in struc 

tural Hilbert space terms, rather than as a result about classical and 

quantum-mechanical axiomatic theories. (Cf. Kochen and Specker 

1967.) 

Does not all this mean that the ladder of linguistic form can be 

thrown away, now that one has arrived at the structural 'reality' 
behind scientific theories? This would seem to be the 'set-theoretic 

view' discussed earlier on. And indeed for many problems this is a 

perfectly sensible thing to do - witness much work by Sneed and 

Suppes. E.g., the obvious problem which presentations of systems 

describe the same 'real' system (in different co-ordinates, say) is a 

structural problem about suitable isomorphism classes. Or, when 

Ashby talks about relations of analogy between finite machines (cf. 

Ashby 1976), the insight that mutually homomorphic machines are 

isomorphic owes nothing to underlying syntactic theories. Other 

interesting questions may require the full structural-linguistic per 

spective, however: as will be illustrated below. 

If this be so, then why the friction one sometimes observes be 

tween the 'set-theoretic' and the 'model-theoretic' approach? (Cf. 

Przet?cki 1974.) Inevitably, in such cases, there are priority disputes 

poisoning the atmosphere: whose perspective is 'better'V* E.g., on the 

set-theoretic side, it is claimed that one loses nothing 
- 

except maybe 

troubles (with non-standard models for mathematical theories, which 

one did not want anyway). This seems short-sighted, however. Why 

not leave the door open, e.g., to 'non-standard mechanics', when 
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mathematicians are just discovering the delights of non-standard 

analysis? 

Throwing away the linguistic ladder forever means cutting oneself 

off from the original motivation of many structural concepts.25 A 

similar warning was given by Dieudonn? to mathematicians wanting 
to apply logical gadgets like ultraproducts without being bored with 

stories about their logico-linguistic origin. This is possible, of course, 
but one deprives oneself from understanding their full importance, as 

well as the heuristic fuel for further discoveries in the same vein. 

2.2.3 Semantics 

Since logical model theory is such a well-known field (cf. Chang and 

Keisler 1973), it will suffice here to draw attention to just a few 

relevant points. To begin with, here is a short list of questions 

concerning theories which are meaningful only in a semantical per 

spective. 

(1) Does mechanical 'determinism' as a structural notion - that is, 

given ? past history, only one continuation is possible into the future 

(in the relevant set of structures) 
- 

imply 'determinism' as a linguistic 
notion: i.e., the relevant state variables at time t + 1 are explicitly 
definable in terms of those at time t - on the basis of the mechanical 

axioms? (Cf. Montague 1976: 'Deterministic Theories'.) 

(2) In geometry, "a point relation is said to be objective if it is 

invariant with respect to every automorphism. In this sense the basic 

relations are objective, and so is any relation logically defined in 

terms of these. [...] Whether every objective relation may be so 

defined raises a question of logical completeness [...]' (Weyl 1963, p. 

73): a model-theoretic question, to be sure. (Cf. the appendix (section 5) 
for some relevant results.) Finally, the direction may also be reversed, 
as in 

(3) Do linguistic 'relativity principles' like Einstein's - viz. that 

'physical equations' be invariant under the Lorentz transformation - 

admit of a structural characterization? 

One could ask scores of similar questions, say about the relation 

between 'linear' functions and 'linear' polynomial forms, all of them 

illustrating the same peculiarity of model theory: to look for a 

systematic duality between syntactic and structural points of view. 

Another point which deserves constant attention is the following. 
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The great success of plain Tarski semantics should not make one 

forget that, in principle, any link between language and structures is 

of model-theoretic interest. Thus, e.g., non-classical semantics of the 

forcing variety, or the 'vague' semantics of Fine 1975 are equally 

respectable. In particular, then, the choice of a certain class of 

structures does not commit one yet to a fixed underlying apparatus of 

deduction: classical, intuitionist, or otherwise.26 This observation, by 
the way, provides one with an excellent opportunity to make more 

exact sense of the famous 'Revisability Thesis' in Quine 1951.27 

2.2.4 Pragmatics 

Between them, syntax and structures (and hence: Model Theory) 
would seem to exhaust all possible logical perspectives upon theories. 

But, moreover, many pragmatic themes concerning our actual hand 

ling of the above notions can be studied by logical means. Thus, 

theories as scientific activities rather than products of such activities 

are not irrevocably outside the scope of logic. Just a few examples 
will have to provide the backing for this claim here. 

In the purely syntactic perspective, there is already the matter of 

the heuristic of proofs. (Cf. Lakatos 1976, mentioned in section 1.3, 
or Hintikka and Remes 1974.) Moreover, the logical study of the 

actual defense or attack of sentences in dialogues has been initiated in 

works like Lorenzen and Lorenz 1978. 

In the semantic perspective too, there is room for pragmatic stu 

dies. E.g., model theory presupposes that successful interpretation has 

taken place already. How? Here is where 'game-theoretical seman 

tics' in the style of Hintikka may become useful (cf. Saarinen 1979). 

There is also a connection here with actual measurement (cf. note 15), 
as well as with Giles' approach to physical theories (cf. Giles 1979). 

Indeed, the volume Hooker 1979 signals an interesting 'logico-prag 
matic' turn in the study of physical theories. Nevertheless, it will be 

clear that these references are only the first landmarks in a hopefully 
fruitful new area of logic. 

Finally, the pragmatic perspective provides an appropriate occasion 

for stating a concluding remark about the notions considered here. 

Exclusive concentration upon theories as intellectual products may 

reveal a lot about the 'edifice of science', but it may also generate 
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pseudo-problems. E.g., is the rationality of science in jeopardy when 

two of its beams do not fit exactly 
- 

say, Newtonian mechanics and 

Einsteinian mechanics? Will 'continuous growth' be endangered? Of 

course not: the continuity of science is guaranteed by the (re-) 

construction worker's know-how of common intellectual rules, stra 

tegies, and the like. Take away specific languages, axioms, or even 

whole theories: this cat will still retain its rational grin. 

3. FORMAL QUESTIONS CONCERNING THEORIES 

The preceding section illustrates how logic may be viewed as the 

study of non-trivial scientific theories.28 More specifically a whole 

range of logical considerations and tools was reviewed. A theory 
should always be studied with specific questions in mind and these 

call for a suitable choice of logical perspective. This brings us back to 

one of the observations made in section 1.2 about logical research 

being guided by the lure of theorems on the horizon. Here a related 

question will be treated. What becomes of the logician's pet theorems 

when her subject is used in the present context? To take just one 

curious weed which is rather dear to her: does Lindstr?m's Theorem 

have any significance in this more general area? In a sense, yes, 

insofar as this theorem (and abstract model theory in general) is 

concerned with the general properties of logical languages plus 
semantics. It has been argued that scientific theories may be based 

upon quite different logics; and abstract model theory may help 

provide reasons for choices, by telling one which pleasant meta 

theorems will be gained or lost in each case. (Cf. Pearce 1980A for an 

application of abstract model theory to the Sneed framework.) 
More systematically, some favourite topics and results of logical 

research will be reviewed now (be it very sketchily) with respect to 

their possible relevance to the study of scientific theories in general. 
This will serve as a first measure of the required angle of logical 
re-orientation. 

To be sure, there exist some important logical topics already in the 

metascience of empirical theories, like causal explanation or analyticity. 
The point is that we want more. 

To begin with, classical research into the foundations of mathematics 

has produced mainly results in the following area. 
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3.1 Properties of Theories 

In the syntactic tradition, there is a multitude of notions with a logical 

pedigree. Let us just follow the traditional text book list: special 

forms of axioms, derivability, definability, then the familiar triad 

consistency, completeness, independence, and, finally, decidability (or 

complexity of the theorem set). Many of the well-known standard 

results of logic are in this area: Craig's Theorem, G?del's Theorems, 
Church's Theorem. Some of the original problems inspiring these 

would seem to become less urgent in the case of empirical theories. 

E.g., consistency will be a minor concern - 
the much-praised 'physical 

intuition' being there to keep us straight.29 Similarly, one might want 

to 'neutralize' G?del's results, so to speak, searching rather for 

'partial completeness' for the non-mathematical parts of our theories. 

Questions in the structural tradition are often mathematical ones in 

their own right, having become respectable in empirical science even 

before the adolescence of modern logic. One example of a pertinent 
result which might be called 'logical' in spirit is the theorem in 

Zeeman 1964 to the effect the that the only mappings between 

physical reference frames preserving causal connectibility are those 

of the Lorentz group. 

Some relevant model-theoretic topics were mentioned already in 

section 2.2.3. A more systematic list follows the semantic duals of the 

above topics.30 Forms of axioms (more generally: complexity of 

definition), are connected with the preservation theorems so dear to 

logicians. This topic of the relation between structural closure con 

ditions and explicit definability seems of wide interest. In this con 

nection, key results like Keisler's characterization of elementary 

classes, conjuring up first-order definitions out of structural data in 

terms of closure under isomorphisms and ultraproducts, should have 

great inspirational value. Next, completeness theorems linking syn 

tactic derivability with structural consequence retain an obvious 

interest. (A nice example is the finding in Giles 1979 that the logic of a 

certain 'physical game theory' is precisely Lukasiewicz's system Loo.) 
Padoa's Method and Beth's Theorem tying up explicit definability 
with structural determination have already been applied repeatedly in 

the theory of empirical science (cf. Suppes 1960, Montague 1974, 

Rantala 1977). Of the above-mentioned triad, consistency retreats into 

the back-ground 
- the possession of models for theories being presup 
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posed model-theoretically. Moreover, independence has fallen out of 

favour with the logicians themselves already, being of purely acade 

mic interest. Completeness, however, is connected with the important 
structural phenomenon of categoricity, which may have wider im 

portance. 

What becomes clear from this quick look is not that all these logical 
results remain interesting as they stand - 

only that this type of result 

remains of potential interest if it can be formulated and proven in the 

more complex setting of empirical theories as developed in section 

2.1. Here is one example, arbitrarily chosen. Take Tennenbaum's 

beautiful theorem stating that the standard natural numbers are the 

only countable model of Peano Arithmetic with recursive operations 

of addition and multiplication. Here is a more 'empirical' one in the 

same spirit. The only countable models for linearly ordered Time 

which are homogeneous (in some natural sense) are the rationals, the 

integers and their lexicographic product (in that order). (Cf. van 

Benthem 1980.) What about a result in this spirit for mechanics? 

Interest in the edifice of science, or the succession of scientific 

theories ('scientific progress', if one wishes) will soon lead into the 

following less settled area. 

3.2 Relations between Theories 

Some syntactic relations between theories have been discussed in 

section 2.1 already, notably extension and conservative extension. 

Important relevant results are, e.g., the theorem of Craig and Vaught 

1958 stating that each recursively axiomatized theory ( in a language 

with identity) is finitely axiomatizable using additional predicates; or 

G?del's non-conservation results. Such questions may well be trans 

ferred to the empirical sciences. E.g., is classical mechanics a con 

servative extension of classical analysis? (If not, this would be an 

interesting example of 'feed-back' from application to applied theory.) 

These notions of extension may be regarded as special cases of the 

relations of interpretability and embeddability (respectively) whose 

formal definitions are as follows. Tx (in Lx) is interpretable in T2 (in L2) if 

there exists some L2-formula U with one free variable (the "universe") 
as well as some effective translation t from the non-logical constants in 

Lx to fitting (possibly complex) L2-expressions, such that T2\-(r(a))u for 

each axiom a of Tx. (Here r(a) is the result of replacing each non-logical 
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constant in a by its r-counterpart; while the superscript "U" indicates 

subsequent relativisation of all quantifiers in r(a) to U.) For technical 

reasons, one also requires that T2|-3xU(x). It then follows that (r((p))u 

becomes derivable in T2 for each theorem <p of Ti. In case this 

implication can also be reversed, i.e., only Tptheorems are provable 

(through t, U) in T2, Tx has been embedded in T2. These arose already in 

the early history of Euclidean versus non-Euclidean geometries. Notice, 

for example, that Klein's 'circle interior' model establishes an inter 

pretation from hyperbolic geometry into a conservative extension of 

Euclidean geometry (obtained by adding an individual constant for a 

circle). As an example of a relevant logical result, here is a kind of 

'compactness theorem for inner models' (cf. van Benthem 1980a): "If Tx 

(in Li), T2 (in L2) are theories such that each finite part of Tx is 

interpretable in T2 (constants in Lx D L2 being translated identically), 

then the whole theory Tx is interpretable in some conservative extension 

of T2".31 In general, there is a scarcity of results concerning these 

notions. Lately, however, logicians have been studying questions like 

the above for special cases. E.g., for extensions of Peano Arithmetic, 

one has the stronger 'Orey Compactness Theorem' (cf. Lindstr?m 1979). 

Speaking structurally, empirical science is replete with 'reduction 

phenomena' calling for logical analysis: thermodynamics versus sta 

tistical mechanics, classical mechanics versus relativistic or quantum 

mechanics, etc. Very often no uniform satisfactory logical notions 

have been forged yet to get a good grip on these. (Cf. Pearce 1981, 

however.) 

To illustrate this, here is a small example concerning Time. Sup 

pose one has always worked with dense time - on the pattern of the 

rationals <Q, <), say. Now it becomes clear that time is discrete at 

some deeper level, on the pattern on the integers (Z, <). The resulting 
structure could be the lexicographic product Q x Z consisting of a 

dense unbounded linear sequence of copies of the integers. Notice 

that the theory of this structure is that of discrete time! Should one 

say that the original Q is reducible to the new 'richer' Q x Z - 
and, if 

so, in which sense? There are various relations to choose from. E.g., 
Q is clearly isomorphic ally embeddable into QxZ. Conversely, the 

obvious contraction mapping is a ^ -homomorphism from QxZ onto 

Q, satisfying, in its backward direction, the 'p-morphism' clause of 

modal logic (cf. Segerberg 1971). (Notice that the contraction is not a 

< -homomorphism.) The correct view of the situation would seem to be 
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the following, however: Q is reducible to a certain 'level' of Q x Z, in 

the sense of being isomorphic to a quotient of the latter structure 

under some suitable equivalence relation. (Notice that the above 

equivalence was not & congruence in the model-theoretic sense.) This 

notion of reduction seems of potential wide application.32 
Third comes the model-theoretic perspective upon the previous two 

sets of notions. Duality relations between syntactic 'conservative 

extension' and structural 'Ramsey extension' were already treated in 

section 2.1. As for interpretability, an interesting duality result will be 

found in Pearce 1980B, which also contains many useful references to 

the technical literature. (Even so, powerful criteria are still lacking to 

disprove interpretability or embeddability in given cases.) One partial 
result is the following easy consequence of the Compactness 

Theorem: 'A finitely axiomatized theory Tx is interpretable in T2 up to 

disjunction33 if and only if each model for T2 contains a substructure 

with L2-definable domain and predicates which is a model for TV' 

Thus, structural 'local' definability is equivalent to 'global' definability 

up to disjunction. A simple syntactic trick enables one to get rid of 

the latter phrase: any 'disjunctive' interpretation may be replaced by 
a 'single' one - and so we have a second duality result for inter 

pretability. Unfortunately, its 'structural' clause is of a V3-form 

which does not make for easy counter-examples (unlike in the case of 

G?del's Completeness Theorem or Beth's Definability Theorem). Cf. 

the appendix (section 5) for more related results. 

Even in this unsatisfactory state, there is an interesting 

phenomenon to be observed here, namely a 'reversal of direction'. 

This is a common event in semantics: the experienced reader will 

have pondered already about cases like Sneed's account of how to 

'apply' a theory, where content and applicability threaten to become 

inversely proportional. In the present case, the relevant observation is 

that syntactic 'reducibility' from Tx to T2 amounts to structural 

'reducibility' from models of T2 to models of Ti.34 Thus, e.g., struc 

tural relations like the nonembeddability of orthomodular Hilbert 

space lattices into Boolean algebras (cf. Kochen and Specker 1967) do 

not correspond smoothly to non-interpretability of the quantum 

mechanical axiomatic theory into that of classical mechanics! 

Similarly, the structural formulation in Suppes 1960 of the thesis that 

biology may be reduced to physics' in the following terms: 'for any 

model of a biological theory it [is] possible to construct an isomorphic 
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model within physical theory' is very hard to fathom in syntactic terms. 

Given these uncertainties at such an elementary level, we will 

refrain from formulating the far more involved (and numerous) 

notions of 'reducibility' arising from the richer concept of 'theory' 

developed in section 2. Nevertheless, picking out the fruitful ones 

from among the many Sneedian proposals (cf. Balzer and Sneed 

1977/8) will be one of the logicians' first tasks. 

To conclude, let us return once more to the above temporal 

illustration. The structural reduction relation between Q and QxZ 

was that of division by the equivalence relation of 'being only finitely 

many discrete steps apart'. What about a corresponding syntactic 

formulation? At first sight, this seems hopeless, the two syntactical 

theories being inconsistent: density versus discreteness. So, a 

scientific revolution? That would be a spectacular, but evidently 

rather shallow conclusion. A better description is the following. From 

the theory of unbounded dense linear Time (Tx, language Lx) one 

passes on to a two-sorted theory T2 retaining Tx at one level and 

having the theory of unbounded discrete linear Time at the other - 

together with some obvious 'bridge principles' between the two sorts. 

Further model-theoretic questions might concern the matter just 
when the 'upper sort' is explicitly definable in terms of the 'lower 

sort'. (In the present example, it is clearly too aristocratic for that.) 

4. PHILOSOPHICAL AFTERMATH 

This paper has been extremely general, not only in its background 
considerations (section 1), but also in its technical development 

(sections 2, 3; as well as the appendix to follow). Nevertheless, 

production of more logical generalities is not advocated here - to the 

contrary. (The present author has taken a vow that this paper has 

been his last sin against his own precepts.) Recall the observation 

made in section 1.2: logical research should be guided by specific 

results one wants to obtain. Now, it has often been noted that both 

the internal dynamic of a theoretical subject and the demands from its 

applications may set such goals. The latter source of inspiration 
deserves the main emphasis at the present juncture: witness also 

Suppes' editorial exhortation in Suppes 1973 to carry the banners 

from mathematics to the logical study of Space, Time and Kinema 

tics. A route of march is not the same as a Cause, certainly; but, it is 
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all we have to propose by way of a general Program. The remainder 

of this section will be devoted to some feelings about the scope of 

such an undertaking. 

4.1 What Is 'Application'? 

In section 1.1 it was argued, as against proponents of the a priori 

inadequacy of logic, that the only way to find out how far logic will 

take us in the study of science is to go and try. But, in order to avoid 

unnecessary disillusions, some prior thought about what is meant by 

'application' of logic seems appropriate. Quite generally, its frequent 
use in scientific talk - and its usefulness at the academic money 

tap 
- should not hide the fact that 'application' is a very diffuse term, in 

urgent need of clarification. For the latter purpose, indeed, a separate 

paper (or book) would be required: here only a few relevant points 

will be made. 

'Applying logic' in the study of a certain scientific theory means 

using logical tools: a neat, but un-informative statement. For, these 

'tools' may be anything from methods and theorems to mere notions 

or notations. Sometimes, the only 'tool' would even be that esoteric 

(though real) quality called 'logical sophistication' 
- 

everything else 

being supplied by hard work. This situation is not different in prin 

ciple from that of any formal discipline. Maybe some engineers are 

able to 'apply' mathematics to problems as a kind of magic wand - but 

most applications require the creation of new mathematics on the 

spot. 

The preceding paragraph should not be misunderstood to imply that 

some vague 'logical point of view' is all that matters. For instance, if 

one merely used logical notions in the study of science, then what 

would be the difference with, say, the information-theoretic sauce 

('sender', 'receiver', 'channel') which has poisoned so many infant 

sciences in the cradle by substituting labels for analyses? (Cf. the 

danger of a renascent Aristoteleanism referred to in note 6.) It was 

precisely the contention of sections 1.1 and 1.2 that application of 

logic in the philosophy of science should not stop here: notions 

should be tied up with 'regulative' theorems (already existing, or 

created especially for the purpose). And - an esoteric logical sophisti 

cation able to produce these requires a very down-to-earth training in 

technical logic.... 

Thus, the question arises what it means to apply a logical theorem. 
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Very often, these will serve as no more than 'methodical traffic lights'. 

E.g., recursion theory tells us that certain grammars are too weak to 

generate given languages, whereas others are worth trying. (Cf. the 

famous ascending hierarchy in Chomsky 1957.) Similarly, Beth's 

Theorem warned us that a certain formulation of constraints in 

section 3.1 paved the way to Reductionism. Notice the familiar 

Popperian point exemplified here: failure is the only definitive form of 

success.35 Positive results may be less informative, because the 

reason for their success remains unclear. (Cf. note 27 about the 

success of 'classical' calculi of deduction.) 
It may be of interest to observe how critics of modern logic fail to 

acknowledge this point. E.g., the influential polemic Perelman 1976 

establishes the fundamental inadequacy of formal logic in the study 
of juridical reasoning by means of examples like the following. In the 

French legal tradition after the Code Napol?on judges were required 
to give their verdicts on the presuppositions that the Law contained 

neither 'conflicts' nor 'gaps', while a decision could be reached in a 

simple methodical objective way. (By the way, the honourable motive 

behind this strictness was to minimize juridical arbitrariness; thus 

protecting the citizens. Nevertheless, this ideal turned out untenable 

in practice: there remained an irreducible component of interpretation 
on the part of judges.) Now, as for the methodological background of 

this ideal, Perelman remarks (correctly) that it amounts to requiring 
the Law to be a consistent, complete and decidable theory: a rare 

species even in mathematics, and so... one more example of the 

inadequacy of logic. In the light of the preceding paragraph, however, 
an application of logic has been given, demonstrating the inherent 

limitations of certain conceptions of Law; thus creating room for 

more sophisticated methodical conceptions, or supplementary con 

siderations of content (rather than mere form). 
Another reason why positive results may be of doubtful ap 

plicability is their (necessarily) general nature. E.g., having a general 

recursion theory requires some distance from practice 
- which results 

in paradigms of 'constructivity' like primitive recursive functions 

easily becoming physically non-computable. Many logical existence 

theorems are proven by means of quite un-realistic 'constructions', as 

was noted already in connection with Craig's Theorem (cf. note 15). 

Thus, logical methods (as embodied in such proofs) may be largely 

inspirational. 
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In the present author's experience, however, an optimistic search 

for manageable instances will usually be a successful strategy in 

concrete cases. Reality may be harsh, but she is not mean. 

4.2 In Praise of Formalism 

Nobody devoid of 'logical sensitivity' will be converted by apologies 

for formal methods. Thus, one should never make them to un 

sympathetic audiences. (Unless one has to do so in order to 

make a living, of course.) As one need not make them to sympathetic 

audiences, a rather silent conclusion seems to follow .... 

Still, to whomever it may concern, a few virtues of 'the formal 

approach' will be extolled here, which are praised too seldom in the 

prevailing cultural climate (whether by opponents or defenders). I do 

not take 'formal' or 'exact' philosophy to be a road to instant 

rationality and rock-bottom insights. It is, if anything, a means for 

re-fitting our raft (precariously afloat on Neurath's ocean), gauging the 

depth of our intellectual ignorance underneath. Accordingly, the 

choice for this type ?f work (instead of all-embracing philosophies) 

has always seemed to me a matter of intellectual honesty rather than 

poverty. 

Honesty is a virtue, of course, but not a particularly exciting one. 

Let me, therefore, be more explicit about the merits of being formal 

and precise 
- 

or, better, about making things a little more formal and 

precise. For one thing, it forces us to become clearer about cherished 

intuitions - 
teaching us the invaluable art of being wrong. (Saying that 

the world is an 'Organic Whole' means risking, and learning, nothing: 

saying that it is a Finite State Machine is a heroic and instructive 

mistake.) Moreover, as we unravel our concepts, their real wealth is 

unveiled, and hitherto unexplored possibilities are opened up. Hence 

formal precision is a stimulus to creative phantasy 
- as has been 

stressed in Piaget 1973. The fashionable opposition of 'creative 

freedom' and 'logical armour' does not do justice to logic (nor, one 

fears, to creativity). 

Here is also where a task of logic emerges which I take to be of 

vital importance to the philosophy of science. It should provide a 

'conceptual laboratory' where ideas are tested out under ideal cir 

cumstances. Very importantly too, there should be a 'conceptual 

sanctuary' (or 'mental asylum'?), where old discarded scientific ideas 
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are kept alive36 - like strains in a pollen bank for grain, which may be 

needed again at some future time. Hopefully, in this way, logic could 

help a great deal in closing the self-imposed gap between the worlds 

of common sense and science from which our culture is suffering. 

5. TECHNICAL APPENDIX 

The main text of this paper is rather sketchy, detailed technical 

arguments having been suppressed. In order to establish at least some 

logical credentials, here are some samples of more technical work 

around our general theme. 

I. Invariance From a Model-Theoretic Perspective 

A typical model-theoretic line of research might be the following. One 

starts studying a certain domain, say the discrete two-dimensional 

lattice ZxZ; endowed with a certain structure, say the ternary 
relation 'further (from) than'. First comes a structural question. 

Which bijections of the lattice are automorphisms with respect to this 

structure? (The answer would be, in this case, precisely the group of 

translations, rotations and reflections.) These automorphisms give rise 

to invariants: n-ary relations on the domain which are mapped onto 

themselves by all automorphisms in the group. (Cf. previous remarks 

about Klein's Program.) These invariants form a very interesting 

class, being closed under operations like complement, intersection or 

projection. Could, then, all invariants be characterized linguistically 

using some suitable language? Clearly, at least, the original relation is 

an invariant, together with all relations which are predicate-logically 
definable from it. (Cf. the earlier quotation from Weyl 1949.) Does the 

converse hold too? This is a difficult question, calling for 'internal' 

definability results (relativized to some mother structure), rather than 

'external' ones like Keisler's characterization of elementary classes. 

Here come a few pertinent results. (Cf. also Rantala 1977a.) 

PROPOSITION 1. In finite structures, invariance for automorphisms 

implies first-order definability. 

Proof: Let 3) be some finite structure, and AQDn some invariant. 

A direct combinatorial argument will produce a first-order definition. 

Here we just observe, however, that this also follows from pro 
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position 3 to be proven below, if we can only show that (3, A) is 

(L-I-A)-saturated. Thus, let x be any sequence of, say, s variables, 

and 2 = 
2(x) some set of (L + A)-formulas involving finitely many 

parameters in D which is finitely satisfiable in 3. Saturation requires 

that 2 be simultaneously satisfiable. Suppose it were not. Then, for 

each s-tuple d in Ds, there exists some formula cr? in 2 such that o\j is 

false at d. But, there being only finitely many such s-tuples, it would 

follow that some finite subset of 2 is non-satisfiable in 3 : contradic 

ting the original assumption on 2. Q.E.D. 

In infinite structures, proposition 1 may fail, however. Counter 

example: In the structure IN0Z consisting of the natural numbers 

followed by a copy of the integers, in the usual ordering, IN is 

invariant for automorphisms, without being first-order definable in 

terms of the ordering relation. 

Often, model-theoretic results arise only when single structures are 

replaced by their theories. Thus, let T be some first-order theory in a 

language L-l-A, where A is some n-ary relation symbol. Indeed, a 

duality between invariance and definability is now forthcoming: 

PROPOSITION 2. A2 is an L-automorphic invariant in each model 

for T if and only if A is explicitly definable in T up to disjunction. 

Proof: From right to left, clearly, if 

ThVx(Ax~?i((x)) v ... v Vx(Ax^?m(x)) 

where 8\,..., 8m are L-formulas - 
then, in each model for T, A will be 

first-order defined by some 6?. Hence, it will be invariant in the above 

sense. 

Secondly, for the converse, Svenonius' Theorem may be applied 

(Chang and Keisler 1973; theorem 5.3.3). Let 3 be an L-structure 

with (L + A)-isomorphic expansions (3, A), (3), A') to models for T. 

By the invariance of A, then A = A' ((L + A)-automorphisms being 

L-automorphisms). By the above-mentioned theorem this implies 

explicit definability up to disjunction. Q.E.D. 

In order to apply such changed results to 'internal' problems like the 

original geometrical one, it would have to be shown that, e.g., any 

given invariant A in Z x Z gives rise to a theory T = 
Th((Z x Z, A)) in 
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each of whose models the interpretation of A is an invariant. We do 

not solve this problem here. 

Finally, there does exist a kind of structure inside which invariance 

implies explicit definability without further ado - an observation which 

will be used below: 

PROPOSITION 3. If A is an L-automorphic invariant in an (L + A) 

saturated structure 3, then it is first-order L-definable in 3. 

Proof: Let this A be an n-ary relation. Consider any n-ary 

sequence a of objects in A. Now, the L-type of a in 3 cannot be 

satisfied outside of A. Otherwise, L-homogeneity (a consequence of the 

given saturation property) would provide an L-automorphism of 3 not 

mapping A onto itself. Put differently, the (L + A)-set consisting of the 

L-type of a together with the formula "~1 Ax is not satisfiable in 3. Hence 

some finite subset of it will not be satisfiable - 3 being (L + A) 

saturated. Say 

{ti(x), ...,ts(x), ~1Ax} 

is not satisfiable in 3 ; where tx, ... ,ts are true of a. Equivalently, 

(1) Vx(T?(x)-?Ax) is true in 3; 

where Ta=def ti & ... & ts. 

Moreover, since each a in A will satisfy some such L-formula r?, the 

(L + A)-set 

{-\Ta\aG A}U{Ax} 

is not satisfiable in 3 either. Hence, again by saturation, there exist 

finitely many sequences ax,..., at in A such that 

(2) Vx(Ax -> t(x)) is true in 3 ; 

where t = 
def t?, 

v . .. v 
r?t. 

In combination with (1), it then follows that 

Vx(t(x)<-?Ax) is true in 3: 

A has been L-defined. Q.E.D. 

II. The Categorial Mode of Thinking 

The categorial perspective mentioned in connection with Sneed's 

constraints may be used to provide a characterization of first-order 
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definability inside a structure. To see this, let 3 be some L-structure, 
A some n-ary invariant in it. Now, 3 belongs to the category CAT 

(L) of all L-structures, with L-isomorphic embeddings (not neces 

sarily surjective) for its morphisms, and the ultraproduct construction 

as a characteristic operation. (Unfortunately, I do not know of any 

categorial definition of ultraproducts in terms of their 'morphological' 

behaviour.) 

PROPOSITION 4. A is first-order L-definable in 3 if and only if 

CAT(L) is simultaneously expandable to a sub-category of CAT 

(L + A) containing (3, A) such that all morphisms and operations of 

CAT(L) remain the same in CAT(L + A). 

Proof: If A is first-order L-definable, say A = 
<p?, then the obvious 

expansion of each L-structure 3' to (3', ??') will do. For, L-isomor 

phisms remain (L + A)-isomorphisms by their fundamental preser 
vation property, and Los' Theorem guarantees the same for 

ultraproducts. 

Conversely, suppose that CAT(L) has been expanded as indicated. 

Let U be any countably incomplete a-good ultrafilter over some 

index set I; where |i| 
= 

max(^V0, |D|) and a = 
|I|+. Consider the 

expanded ultrapower 11^ 3 in CAT(L + A) 
- which equals Uv(3, A), 

by assumption. Notice that this ultraproduct is (L + A)-saturated; by 

Chang and Keisler 1973, theorem 6.1.8. Moreover, AUu? is invariant in 

the ultraproduct: L-automorphisms of this structure being automa 

tically (L -I- A)-automorphisms, by assumption. The promised con 

clusion then follows at once from proposition 3. Q.E.D. 

Hopefully, this line of thought will yield more results. (This specula 
tion in the first draft of this paper was verified in Pearce 1980B.) 

III. Varieties of Reduction 

The notion of 'reduction' has been shown to admit of various logical 

explications in section 3.2. First, a syntactic result of that section will 

be proven here. 

Let Tx (T2) be a first-order theory in language Lx (L2). Translations t 

from Lx to L2 will assign, possibly complex, L2-predicates to Lr 

primitives 
- those in Lx n L2 being mapped identically. (Thus, one 

implements the idea that a partial correspondence is given in ad 
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vanee.) 'Interpretation' of Tx in T2 means that some translation r(Tx) 

may be proven in T2, possibly relativized to a unary L2-predicate 

denoting some sub-domain. Since Tx may be infinitely axiomatized, a 

'compactness theorem' would be helpful here. But, in fact, ?s was 

stated in note 31, no such result holds in general. (Cf. Lindstr?m 1979, 

however.) What we do have is the following: 

PROPOSITION 5. If each finite subset of Tx is interpretable in T2, 
then the whole theory Tx is interpretable in some conservative exten 

sion of T2. 

Proof: Take a new unary predicate constant U not occurring in either 

Li or L2. Now, consider T2 U T V (where all quantifiers occurring in Tx 
are relativized to U). Tx is trivially interpretable in this new theory. Thus, 

it only matters to show that the latter is a conservative extension of T2. 

To see this, let <p be any L2-sentence such that T2U T^Vy. It follows 

that, for finitely many ax,..., ak E Tx, T2 U {aV, , ?u }h<p. 

Equivalently, taking a to be the conjunction of these formulas, 

T2\-au^xp. Then, since neither U nor the (Lx 
- 

L2)-vocabulary of a 

occur in T2, it follows for the universal second-order closure 

V(a 
u -> 

<p) 
- 

taken with respect to U and Lx-L2- that T2hV(a u-?(p). 

Next, by the assumption on Tx and T2, there exists some translation 

t of Lx into L2, as well as some unary L2-predicate ? such that 

T2\-(r(a))?. From the previous paragraph, it then follows that 

T2\-(j(a)? 
-> 

<p, and hence T2h<p. Q.E.D. 

In section 3.2 the following model-theoretic interpretation result was 

stated, for finitely axiomatized theories Tx: 

PROPOSITION 6. Tx is interpretable in T2 up to disjunction if and 

only if each model for T2 contains an L2-definable sub-domain 

together with L2-definable predicates which is a model for Tx. 

Proof: From left to right, this is obvious. Conversely, if Tx is not 

interpretable as indicated, then T2 united with the set of all negations 
of L2-definable translations of Tx (relativized to all possible L2 
definable domains) is a finitely satisfiable set of formulas. By com 

pactness, then, it will be simultaneously satisfiable. In other words, T2 

possesses a model without any definable submodel for Tx. Q.E.D. 

Next, the 'syntactic trick' mentioned in section 3.2 works as exem 
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plified by the following special case. Suppose that 

T2Htx(Tx)u> a 3x1/0 v (T2(TX)V> a 3x17z). 

Call the first disjunct a, and set 

U(x) 
= 

dei(Ux(x) a a) v (U2(x) a la). 

Notice that T2h3xU(x). Then, for arbitrary Li-predicates P, set 

T(P)(X) 
= def (ti(P)(x) a a) v (t2(P)(x) a la). 

A simple argument about models of T2 establishes that T2\-r(Tx)u. 

Further refinements, using 'cross-structural' categorial conditions 

as in II above, yield a duality result for interpretability 'tout court'. 

Instead of embarking upon this course, however, we prefer to review 

the whole topic from a different angle, namely that of combination of 

theories. 

One has got two first-order theories Tx (in Lx) and T2 (in L2), 

possibly sharing some vocabulary Lx n L2. Let us assume that both 

are intended to describe the same kind of objects. The weakest form 

of combination would seem to be: 

(1) the deductive union of Tx and T2 is consistent in Lx + L2. 

Robinson's Joint Consistency Theorem tells us that this occurs just 
when Tx \ Lx n L2 and T2\ LXC\L2 contain no mutually contradictory 
theorems. Notice that Tx U T2 need not be a conservative extension of 

either Tx or T2: both theories may have learnt in the process. Some 

reflection upon Robinson's proof shows that, e.g., Tx U T2 will be a 

conservative extension of T2 if and only if T? ? Lx n L2 is contained in 

T2\ LXD L2. 

(For, the direction from left to right is obvious. Conversely, for any 

L2-sentence <p, if Ttf?, then T2U{"l<p} has got a model 3. By the 

assumption, then, the (Lx n L2)-theory of 3 united with Tx will be 

finitely satisfiable - and hence it has a model 3'. Starting from 3 and 

3', one builds alternating elementary chains, whose unions may be 

folded together into an (Lx + L2)-structure verifying Tx U T2 while 

falsifying <p. Cf. Chang and Keisler 1973.) 

Next, stronger connections between Tx and T2 may arise upon 

addition, such as: 

(2) Tx U T2 is contained in some definitional extension of T2. 
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I.e., given certain L2-definitions of (Lx 
? 

L2)-vocabulary, Tx becomes 

derivable from T2. This is the earlier definition of 'interpretation' 

leaving out the complication of possible relativization to sub-domains, 
that is. In this case, automatically Tx U T2 is a conservative extension 

of T2 (cf. the proof of proposition 5 above), though not necessarily of 

Tx. The latter need not even happen on the stronger connection that 

'definitional reducibility' occurs: 

(3) Tx U T2 coincides with some definitional extension of T2. 

Contrary to our experience with the mis-match between Conservative 

Extension and Ramsey Extension, the latter connection between 

theories admits of an elegant structural characterization: 

PROPOSITION 7. Tx is definitionally reducible to T2 if and only if 

each model for T2 admits of exactly one expansion to a model for Tx. 

Proof: First, suppose that Tx is definitionally reducible to T2 
- 

say, 

Tx U T2 is axiomatizable by T2 plus L2-definitions 8 as above. Now, 
consider any model 3 for T2. By interpreting the (Lx 

- 
L2)-vocabulary 

through 8, 3 is expanded to an (Lx + L2)-structure 3+ which satisfies 

(T2 plus 8 and hence) Tx U T2. A fortiori, then, 2>+ is a model for Tx: 
and the 'at least' has been taken care of. Next, as for 'at most'. If 3+, 
3+f are any two expansions of 3 to models for Tx, then (Tx U T2, and 

hence) 8 will hold in both. Therefore, the respective interpretations of 

the (Li 
- 

L2)-vocabulary must coincide: i.e., 3+= 3*'. 

Conversely, suppose that the above structural condition holds. Its 

'at most' side means that the implicit definability clause of Beth's 

Theorem is satisfied - and hence explicit L2-definitions 8 of the (Lx 

L2)-vocabulary are derivable in Tx U T2. It follows that Tx U T2 may be 

(re-)axiomatized as the union of its L2-part (Tx U T2) ? L2 with 8. For, 

clearly, both of these are derivable from Tx U T2. Moreover, vice 

versa, if Tx U T2f-<p(L,, L2), then T, U T2\-?(8(Lx), L2) 
- where '?(Li)' 

refers to suitable L2-replacements through 8-, whence the L2-formula 

?(8(Lx), L2) belongs to (Tx U T2) \ L2. In conjunction with 8, then, the 

latter theory reproduces the original formula <p(Lx, L2). 

Thus, in order to prove definitional extension of Tx to T2, it now 

suffices to show that (Tx U T2) ? L2 coincides with T2. Put differently, 
it remains to be shown that Tx U T2 is a conservative extension of T2. 

But this follows from the 'at least' side of the above structural 

condition. For, if <p is any L2-formula such that T2?<p, then T2 U {l<p} 
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will have a model: which can be expanded to some model for 

Ti U T2 U {l<p} 
- whence Tx U T2V(p. Q.E.D. 

These were pleasing notions 
- 

but, rather un-realistic. For, in actual 

practice, the theories to be added will usually refer to different kinds 

of objects. Consider, e.g., Elementary Geometry (cf. Tarski 1959) 
with primitives (ternary) 'betweenness' and (quaternary) 'equidis 
tance' for Tx, and the algebraic theory of the reals (IR 

= 
(R, 0,1, +, )) 

for T2. As was noted already in section 3.2, a two-sorted combination 

is more appropriate 
- 

possible sortal connections becoming the main 

issue. E.g., in this case, equidistance induces an equivalence relation 

between pairs of points allowing for a bridge notion of 'length' 

satisfying certain bridge principles for 'addition' (etc.). The relation 

between such more complex syntactic notions of reduction and the 

usual representation theorems will not be investigated here. 
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NOTES 

* 
I would like to thank David Pearce and Veikko Rantala for their helpful comments. 

1 
An exception to this rule is V. Rantala's paper 'Correspondence and Non-Standard 

Models: A Case Study', in Acta Philosophica Fennica 30 (1979), 366-378. As for 

'ordinary' applications, there is, of course, a variety of publications by Robinson 

himself and co-workers. 
2 

Regrettably, defeatist (or elitist) logicians have used similar excuses to justify their 

exclusive concentration upon pure mathematics. 
3 
What is usually criticized is some static elementary text book version of logic. E.g., in 

the otherwise very interesting work Psychology of Reasoning (Batsford, London, 

1972), P.C. Wason and P.N. Johnson-Laird give the following example to show that 

'actual reasoning transcends any formal modelling.' The two sentences 'if prices 

increase, the firm goes bankrupt' and 'prices increase only if the firm goes bankrupt' 

are stated to be 'logically equivalent', having the same logical form 'i->B\ But, in 

practice, people feel a difference, due to additional temporal or causal content, and so .... 

The authors seem unaware of the fact that observations like these are precisely at the basis 

of modern logical semantics. E.g., in tense logic, the two logical forms would be 'I -? 
future 

B' and 'I 
? 

past B\ respectively. 

And that without expecting red carpets. There seems to be a growing tendency among 
such philosophers of science to regard logic as just one auxiliary discipline among 

many: set theory, topology, game theory, system theory, etc. 
5 

This is Popper's main insight 
- 

applied to the philosophy of science itself. 
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6 
In this connection, one sometimes fears that a New Aristoteleanism is in the air, 

confusing labeling phenomena with understanding them. 
7 

It almost goes without saying that her interest will also cover the most diverse 

purposes of reasoning: rationalization, justification, extraction of information, refu 

tation, explanation. In particular, the latter two form an obvious link with Hempelian or 

Popperian philosophy of science. 
8 

Notice how, on this view, there is a continuous spectrum from the logical study of 

(natural) language to that of scientific theories. 
9 

Yet more complex entities have been proposed, like 'theory nets' (Sneed) or 'research 

programs' (Lakatos). But, even then, the level of theories remains a convenient starting 

point. 
10 

Speaking historically, this view may have been inspired by Kant's doctrine that only 

knowledge which is related to (possible) experience is free from contradiction, whereas 

'pure reason' runs the constant risk of antinomies. 
11 

Or should one argue to the opposite effect: non-constructive logic is harmless for 

constructively given domains: one has to be more careful once non -constructive 

domains are considered (the intuitionist position)? As so often, metaphors point either 

way. 
12 

There might be a problem here. If T\ is axiomatized by means of universal 

statements, and one is only allowed to use universal statements in proofs, could not it 

be that certain universal theorems become unprovable: because their predicate-logical 

proof requires intermediate steps of higher quantifier complexity? Fortunately, the 

answer is negative: as may be seen, for instance, by using semantic tableaus. 
13 

An interesting border-line case is, e.g., Goldbach's Conjecture to the effect that each 

even natural number greater than two is the sum of two primes. We do not know any 

explicit functions /, g yielding only primes such that each even number n equals 

/(n) + g(n). But, there are (trivially) recursive functions /, g such that, if n can be 

written as a sum of two primes at all, then f(n) + g(n) will be such a sum. Does this 

make Goldbach's Conjecture an acceptable 'concrete' statement? Or should one require 

primitive recursive Skolem functions? 
14 

A relevant example (A.S. Troelstra) is the following. In the real numbers, it is 

constructively provable that the equation y3-3y + x = 0 has solutions for each value of 

the parameter x. But, there is no continuous function /: IR-?IR such that 

Vx(/x)3-3(/x) + x=0. 

(A 'cusp catastrophe' occurs.) 
15 

By the way, here is an instructive counter-example to the claim that philosophers 

can get by with a knowledge of just logical results. For, as it happens, Craig's method 

of proof produces a 'tricky' set of axioms for the observational sub-theory, without any 

practical use. Thus, afthough it is good to know that a 'reduction' exists in principle, a 

lot of work remains to be done to produce convincing and interesting examples. 
16 

This contribution by no means exhausts Suppes' important work in the philosophy of 

science. To mention just one other example, his papers on measurement theory have a 

clear interest for the semantics of 'observational' terms. 
17 

The answer is negative, maybe surprisingly. Cf. Przet?cki 1969. 
18 

Notice that, in this case, T\-<p if and only if T0h<p, for each L0-sentence <p (T0 being 



THE LOGICAL STUDY OF SCIENCE 469 

complete). Hence, the example also refutes the conjecture that the conjunction of (1) 

and (3) would be a syntactic counterpart to the structural condition that MOD(To) 

equals MOD(T) \ L0. 
19 

Originally, it was hoped that, at least, it would be a decidable matter, given a theory 

T, if its theoretical vocabulary is Ramsey eliminable. This conjecture was refuted, 

however, in van Benthem 1978. 
20 

As for C2, it would have to be decomposed into a law 

Vxy m(x U y) 
= 

m(x) 4- m(y) 

(with 'U! denoting physical join) plus the identity constraint Cl. 
21 

For an example of this type of requirement from a quite different area, cf. H. Ehrig, 

H.-J. Kreowski and P. Padawitz: 'Stepwise Specification and Implementation of 

Abstract Data Types', in Proceedings ICALP 5 (1978), Springer Lecture Notes in 

Computer Science 62, 205-226. Here the morphisms are algebraic homomorphisms. 
22 

Let p occur in both D\ and Di. Now, D\ and Di will have a common empirical 

superstructure D containing p. Since this relation must be preserved at the theoretical 

level, p will receive the same theoretical function values in the expansions of D, D\ and 

D2. 
23 

One would also like to see the Kripke structures of modern tense logic applied in the 

semantics of scientific theories. (The 'empirical structures' of recent work by R. 

W?jcicki are of this kind.) 
24 

There are parallel discussions concerning the status of natural laws: linguistic 

expressions or structural 'sequencing relations'? Cf. Suppe 1976. 
25 

E.g., the 'subset condition' on Sneed's set-theoretic constraints is intelligible (and 

even correct) only if the constraint has ('had'?) a universal explicit formulation. 

'Universal-existential' constraints like 'any two particles occur together in at least one 

empirical situation' do not satisfy the condition. 

Another case in point is the example in Sneed 1971 of a balance in equilibrium with 

finitely many objects on it. Some structuralists will take the predicate-logical 

undefinability of finiteness (and hence of this simple type of empirical situation) to be 

the ultimate verdict upon first-order formalisation. But, what such an analysis would do 

for us is force one to think about the cash value of 'finite' in this particular case. E.g., a 

simple first-order formalisation of the above example would involve a recursion on the 

number of objects, corresponding, in a natural fashion, to progressive addition of 

weights on the balance. 

Finally, in Pearce 1980B it is argued that the incorporation of linguistic aspects into 

the Sneedian frame-work would make it 'still more expressive and comprehensive'. 
26 

It need not even commit one to classical logic on the Tarski semantics. Cf. Vaught 

1960, where the class of formulas classically true in all countable structures with 

decidable predicates is shown to be non-recursively axiomatizable. 
27 

E.g., the preferred role of classical logic may be due largely to its excessive strength 

blasting a way from premises to conclusions - 
making people ignore the possibility that 

the same theory might have been organized using weaker logical means, allowing for 

subtler distinctions to be made. One traditional example is intuitionist Heyting Arith 

metic, which enables one to derive the Law of Excluded Middle for atomic statements 

as a (mathematical) theorem. A recent exciting example is the proof in M. Dunn: 



470 JOHAN VAN BENTHEM 

'Quantum Mathematics' (Department of Philosophy, Bloomington, 1980) that Peano 

Arithmetic axiomatized with quantum logic produces all additional classical logical 

laws as mathematical theorems. 
28 

One would like to see at least one text book of model theory organized around this 

theme. 
29 

Although ... would you board a rocket to Mars, immediately after the publication of an 

inconsistency in the theory of differential equations? 
30 

The organisational principle of Chang and Keisler 1973, viz. that of various methods 

of model construction, seems less suitable from the present perspective (cf. note 28). 

Still, awareness of such 'proliferation principles' gives a feeling for the ontological 

abundance of the structural universe. 
31 

The latter addition is necessary: without it, counter-examples may be given. E.g., 

take for T2 the first-order theory of (N, O, S) and for T, : T2 plus {c# s'0, i = 
0, 1,2,...}. 

(The required calculation is not as trivial as it seems at first sight.) 
32 

To get better acquainted with these various notions, notice that Z is isomorphically 

embeddable in Q, as well as being isomorphic to one of its quotients (contract all 'pins' 

(n, n + 1] for integer n). Both converses fail. As for the model-theoretic notion of 

reducibility to be introduced below, Z is not isomorphic to any definable substructure 

of Q- and the converse fails as well. 

33I.e., there exist L2-formulas U\,... ,Uk as well as translations ti, ..., Tk of the 

non-logical constants in L, into L2 such that T2(-(ti(Ti)Ui a 3xUi) 

v ... v (Tk(Tx)Uk 
a 3xUk). 

34 
One might try to restore symmetry by formulating dualities concerning embed 

dability rather than interpretability. E.g., 'for each Li-sentence <p, Tih<p if and only if 

T2Kt(<p))1/, is equivalent to: [some symmetric condition on MOD(Ti), MOD(T2), t, U]\ 
35 

As the famous Dutch Calvinist prime minister Colijn once remarked to his political 

opponents: 'In negation lies our strength'. 
36 

A prime example is the Leibnizian 'relational' view of Space and Time; cf. Suppes 

1973. 
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