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Summary

1.

 

Of the many models for species–abundance distributions (SADs), the lognormal has been
the most popular and has been put forward as an appropriate null model for testing against
theoretical SADs. In this paper we explore a number of  reasons why the lognormal is
not an appropriate null model, or indeed an appropriate model of any sort, for a SAD.

 

2.

 

We use three empirical examples, based on published data sets, to illustrate features
of  SADs in general and of  the lognormal in particular: the abundance of  British
breeding birds, the number of trees > 1 cm diameter at breast height (d.b.h.) on a 50 ha
Panamanian plot, and the abundance of certain butterflies trapped at Jatun Sacha,
Ecuador. The first two are complete enumerations and show left skew under logarithmic
transformation, the third is an incomplete enumeration and shows right skew.

 

3.

 

Fitting SADs by 

 

χ

 

2

 

 test is less efficient and less informative than fitting probability
plots. The left skewness of  complete enumerations seems to arise from a lack of
extremely abundant species rather than from a surplus of rare ones. One consequence is
that the logit-normal, which stretches the right-hand end of the distribution, consistently
gives a slightly better fit.

 

4.

 

The central limit theorem predicts lognormality of abundances within species but
not between them, and so is not a basis for the lognormal SAD. Niche breakage and
population dynamical models can predict a lognormal SAD but equally can predict
many other SADs.

 

5.

 

The lognormal sits uncomfortably between distributions with infinite variance and
the log-binomial. The latter removes the absurdity of the invisible highly abundant half
of the individuals abundance curve predicted by the lognormal SAD. The veil line is a
misunderstanding of the sampling properties of the SAD and fitting the Poisson log-
normal is not satisfactory. A satisfactory SAD should have a thinner right-hand tail than
the lognormal, as is observed empirically.

 

6.

 

The SAD for logarithmic abundance cannot be Gaussian.
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Introduction

 

The numbers of individuals of each of several species in
a sample, assemblage or community produces a species–
abundance distribution (SAD). There have been many
suggestions as to which statistical distribution fits
a particular species–abundance distribution or a set

thereof  (for reviews see May 1975; Magurran 1988,
2004; Tokeshi 1993; Marquet, Keymer & Cofré 2003).
Most suggested distributions have little theoretical
justification.

Hubbell (2001) has developed a well-known neutral
theory that leads to a new distribution, the zero sum
multinomial (ZSM). This is based on continuum veg-
etation (Williamson 2003), where every point is occu-
pied and occupied by precisely one individual. In its
basic form the Hubbell theory applies, even roughly, to
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rather few animal communities (such as some coral
reefs). Nevertheless, it is a SAD derived from theory
rather than from an empirical fit and so there is interest
in seeing how well it performs compared with empirical
SADs. So far, the ZSM has been compared only with
the lognormal distribution (in which the logarithms of
the abundances of the different species follow a normal
(Gaussian) distribution), which has been put forward
as an appropriate null model for a SAD. McGill
(2003a) talks of ‘reasonable null models’ and ‘the null
lognormal hypothesis’, Nee & Stone (2003) of ‘[the log-
normal] an older, simpler null model’ and justify that
by the central limit theorem. Harte (2003), too, says ‘A
hand-waving justification for the lognormal distribu-
tion is that it could arise from the central limit theorem’
and, going back a little, Taylor (1978) said ‘Common
logic suggests that the frequency distribution for N
individuals (which vary logarithmically) in S species
(which is a Poisson variate) … is a Log-normal’.

Our object in this paper is to explore a number of
reasons why the lognormal is not an appropriate null
model, or indeed an appropriate model of any sort, for
a SAD. Others before us have objected to the log-
normal (Lambshead & Platt 1985; Hughes 1986; Dewdney
2003) primarily on features of empirical distributions.
We also start with examples which show why the log-
normal is popular, and we then consider three issues.
Under fitting, we discuss not only the results of statistical

tests but also a new point, that there is a closely related
distribution, the logit-normal, which often fits better.
Under causes, we look at the central limit theorem and
other derivations and provide a new argument against
the use of the former for SADs. Under mathematical
consequences, we discuss the canonical hypothesis and
a new suggestion, the log-binomial, and argue that
the lognormal cannot, on theoretical grounds, be a SAD.
Our examples will often, for convenience, be drawn
from our own publications; we are not attempting a
comprehensive review.

 

Three examples

 

First, we present three rank abundance graphs, also
known as dominance diversity graphs, and three his-
tograms (Fig. 1). Note that the left-hand end of  the
histograms is the right-hand end of the rank abundance
graphs; we shall use ‘left-hand end’ to refer to the his-
togram form.

The first example is of British breeding birds (Fig. 1a),
long thought to have an archetypal lognormal distri-
bution (Fisher 1952; Williams 1964, pp. 45–47), but
certainly unusual because it uses counts (for the rarer
species) and estimates (for the more commoner) of the
total population and so, in that sense, is not a sample
but a complete enumeration (Lambshead & Platt 1985).
The data are from Gaston & Blackburn’s (2000)

Fig. 1. Rank abundance plots and histograms for (a) British breeding birds (b) trees in the 50 ha plot on Barro Colorado Island,
Panama, with d.b.h. > 1 cm and (c) butterflies from Jatun Sacha, Ecuador. Note the few singletons in (a) and the many in (c).
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Appendix III, derived from Stone 

 

et al

 

. (1997), which
they regarded as ‘the current British assemblage’.
It comprises approximately 125 000 000 individuals.
There are various other listings at other dates, and with
different definitions of what constitutes this assemblage,
that could have been used but the conclusions are the same.

Complete enumerations are rare. Our second example
is another, an exact count of  the trees greater than
1 cm diameter at breast height (d.b.h.) in a 50 ha plot
on Barro Colorado Island (BCI), Panama in 1990
(Fig. 1b). Impressively, every such tree (243 704 of
them) has been mapped to the nearest 10 cm (Condit
1998; Williamson 2003). There are three such publicly
available surveys, differing only in their date (Center
for Tropical Forest Science, Panama, http://ctfs.si.edu/
datasets /BCIdata.html). Chave (2004) uses the average
of these three, Plotkin & Muller-Landau (2002) another
> 1 cm data set. Hubbell & Foster (1983) used trees
with d.b.h. > 20 cm, McGill (2003a), Volkov 

 

et al

 

. (2003)
and Etienne & Olff  (2004) all use enumerations of
trees > 10 cm d.b.h. Hubbell & Foster (1983) say ‘This
[20 cm] lower cut-off  is sufficiently small for all trees
in the “canopy” to have been counted, at the risk of
including some individuals of primarily subcanopy
species. As is often the case, the canopy of  the BCI
forest is difficult to define rigorously.’ Leigh (1999, p. 95)
puts the BCI canopy at 35 m which, from well-known
biophysical rules, implies a minimum d.b.h. of nearer
40 cm or the trees would buckle (McMahon & Bonner
1983). The 10 cm d.b.h. cut-off  would seem to include
many non-canopy trees, even though the canopy height
in tropical forests is very variable (Leigh 1999), and so
is a questionable set for testing Hubbell’s theory and
the ZSM. We prefer the > 1 cm set, using the latest such
set publicly available, because it includes more indi-
viduals and so is more effective for examining the
lognormal. It is, however, the least like continuum vegeta-
tion and so the least appropriate for testing the ZSM,
but we introduce the ZSM only as it has been a recent
prompt for declaring the lognormal an appropriate
null hypothesis. The > 10 cm set can be found from
Condit 

 

et al

 

. (2002); there is yet another BCI data set,
using biomass, from Condit, Hubbell & Foster (1996).
The > 20 cm set seems not to be publicly available in
electronic form.

Our third example is of the more common, sample,
type of  data set and is for a subset of  butterflies from
the Jatun Sacha Biological Station and Reserve, Napo
Province, Ecuador (Fig. 1c; read from the graphs in
DeVries, Murray & Lande 1997; see also Lande, Engen
& Saether 2003). These are the trappable so-called
fruit-feeding nymphalids, but we will refer to them as
butterflies. It is a remarkably large sample of 6690 indi-
viduals, but a complete enumeration would include
more species. This is often described as truncation, but
this is misleading (Dewdney 1998). We will, to be
neutral, call it incomplete enumeration. Incomplete
enumerations are seldom random samples of anything
definable. They may be systematic samples of  some-

thing that can be specified, although environmental
variation and differences in the detectability or observ-
ability of species may make that difficult.

As is common, all three rank abundance graphs in
Fig. 1 are sigmoidal, with a central inflection, although
the butterflies are scarcely so. The lognormal is also
sigmoidal on such a plot, and sigmoidal rank abundance
plots have been taken in the past as evidence of  log-
normality (e.g. Williamson 1972; McGowan & Walker
1993). In the butterflies, rather conspicuously, and the
trees, to a lesser extent, the most common observation
is of singletons, species represented by only one indi-
vidual. This, too, is common (Pielou 1969), but contrary
to Dewdney’s (1998, 2000, 2003) claim it is far from
universal [Fig. 1a; Williamson 1981 (Lepidoptera);
McGowan & Walker (1993 (copepods and phyto-
plankton); Williamson 1987 (birds); Whittaker 1965
(Great Smoky plants); Whittaker 1969 (Brookhaven
plants); Wilson 1991 (various plant communities)].
Incomplete enumeration leads to many singletons but,
as the tree data show, the converse is not true.

 

Fitting the lognormal

 

Much of the early work on the lognormality of SADs
simply plotted the data as a histogram and decided that
they did (or did not) look normal. Williams (1964) used
probit plots as well. Nowadays it is simple to compute
better tests. As has often been said (e.g. McGill 2003c;
Ulanowicz 2003), testing by fitting is not sufficient. If
the data fail to fit a theoretical distribution, then that is
evidence against the theory. However, if  the data do fit,
all that can be said is that the theory might be correct.
Much more stringent tests come from considering the
consequences of theory and seeing if  those are matched
by the data. We come to those consequences in the last
section. Here, we make some points about fitting and
some of the results that have been found.

 

  

 

Nee & Stone (2003) say ‘the lognormal is trivially easy
to fit’ but that is only true with the, rather rare, com-
plete enumerations. With incomplete enumerations,
as Gray (1987) warns, it is necessary to allow for the
incompleteness. As will be seen, assuming a simple
truncation, the standard method that has been used
(O’Hara & Oksanen 2003) is not correct, but what is
correct is still uncertain. Consequently, we will fit our
three examples as if  they were all complete enumera-
tions even though only two of them are (or in the case
of the British birds, is an estimated approximation). Even
when the lognormal has been fitted, there is still an
important choice of how to test the goodness of that fit.

The usual method of fitting has been to generate a
histogram from the data, following Preston (1948), and
then to use a 

 

χ

 

2

 

 test on the deviation from expectation
of  the observed values for the bins (the classes into
which species are grouped, e.g. McGill 2003a; Volkov

http://ctfs.si.edu/
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et al

 

. 2003). This is weak. Each bin must have a suffi-
ciently large expectation to make the 

 

χ

 

2

 

 test valid. That
loses information. The test also ignores any pattern in
the deviations across the bins, again losing information.
The situation is often made worse by following Preston’s
(1948) method of choosing the divisions between bins.
This is described mathematically by Engen (1978) and
used explicitly by Nee, Harvey & May (1991), Olszewski
& Erwin (2004) and others. Preston used the powers of
two, i.e. 1, 2, 4, 8, etc., as his bin boundaries, which involves
splitting any observation that falls on a boundary, any
species whose abundance is an exact power of  two,
between the two bins on either side. Half  is put on each
side, but the shape of the normal curve shows that that
is not quite right. The effect is serious for the low num-
bers just mentioned; it is of no account at, for instance,
65 536. Some authors have avoided such splitting by
moving the bin margins slightly. Magurran (1988, 2004)
and others (see Lande 

 

et al

 

. 2003) use 1–2 (or 1, 2), 3–4,
5–8, etc., while Gray (1987), Plotkin & Muller-Landau
(2002), O’Hara & Oksanen (2003) and Chave (2004)
use 1, 2–3, 4–7, etc. Both schemes mean that neither
the bin boundaries nor their medians double exactly.

All these difficulties are overcome easily by using the
powers of two as the centre of bins, not their edges. The
boundaries then come at 2

 

n

 

/2

 

1

 

/

 

2

 

 (or 2

 

n–

 

1

 

/

 

2

 

), namely 0·71,
1·4, 2·8, 5·7, etc., avoiding all integers. This is used,
without comment, by Hubbell (2001) and should gen-
erally be adopted when a histogram is wanted and is
used in Fig. 1. It can be used equally for other powers,
substituting any chosen number for 2. Using triplings
rather than doublings, Williams (1964) and DeVries

 

et al

 

. (1997) used divisions at 3

 

n

 

/2, which is close to but
less precisely geometric than 3

 

n

 

/3

 

1

 

/

 

2

 

. Computer soft-
ware may do this automatically, but just what it is doing
should be watched carefully.

Rather than using histograms, it is better and relatively
easy to use the individual observations of species abun-
dance by producing a normal probability plot (Fig. 2).
This is more efficient in the technical statistical sense,
using all the information in the data. Normal probability
plots are available in many statistical packages; the normal
scores involved are usually available separately. Various
tests are then available for these plots and indeed can be
calculated without plotting. The ones we discuss below
are Anderson–Darling, Shapiro–Wilks or the equivalent
Ryan–Joiner, and Kolmogoroff–Smirnov. Lilliefor’s
probabilities are thought better with the Kolmogoroff–
Smirnov test under some circumstances (

 



 

6·1, Statsoft, Inc.), but have not been used here.

 

  

 

(i) General results

 

If  the lognormal was a correct theory of assemblages,
then the top two normal probability plots in Fig. 2
should show a good fit (lying along the straight line)
being complete enumerations, but the third, the incom-

plete enumeration, should fit badly, particularly at low
values at the left-hand end. In fact, the third plot seems
to give the best fit. This is quantified in Table 1, which
brings out the important point that different tests give
different results. On the Anderson–Darling test all
three data sets are non-normal. The Ryan–Joiner test,
as so often in our experience, gives results that match
what the eye sees, namely that the British birds are not
normal while the Ecuadorian butterflies are. BCI trees
are also just significantly not normal at 

 

P

 

 

 

∼

 

 0·03. That
changes again with the Kolmogoroff–Smirnov test,
where only the British birds are not normal.

Another result that is clear to the eye in Fig. 2 but is
not brought out by the tests is that the worst-fitting
parts of  the curves are at the right-hand ends of  the
British birds and BCI trees. In both cases, compared to
the fitted line, there is a deficiency in the abundance of
the extremely common species. The topmost points,

Fig. 2. Probability plots of the three rank abundance plots in
Fig. 1. Note that in the top two cases the least good fit is at the
right-hand end, not the left-hand one.
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the most abundant species, would have to move to the
right, to be even more abundant, to lie on the fitted line.
That brings us to the question of skewness.

 

(ii) Skewness

 

That the SAD for British birds is not a symmetrical
curve, as it should be if  it were lognormal, but is skewed
to the left (left-skew, negative skew, longer tail to the
left, shorter to the right) was first noted by Nee 

 

et al

 

.
(1991), omitting on rational grounds some of  the
species included here. This was confirmed by Gaston &
Blackburn (2000) (this set) and by Gaston, Blackburn
& Gregory (1997) and Hubbell (2001), with a set
derived from Gibbons, Reid & Chapman (1993).
Hubbell (2001) found also skewness in the BCI tree data.
Gregory (2000), surveying the breeding bird data for 48
European regions or countries, found that 40 sets were
left-skewed, one was symmetrical and seven right-skewed.
He, as did Nee 

 

et al

 

. (1991), used 

 

g

 

1

 

, the standard third
moment measure of skewness. The values of 

 

g

 

1

 

 in our
three examples are: British birds 

 

−

 

0·435 (  = 6·938,

 

P

 

 < 0·01), BCI trees 

 

−

 

0·138 (  = 0·976, NS), Ecuado-
rian butterflies +0·464 (  = 4·772, 

 

P

 

 < 0·05), all using
test statistic 2 from http://www.xycoon.com. So our
complete enumerations are left-skewed with the birds
and the butterflies significantly skewed on this test.

As Nee 

 

et al

 

. (1991) noted, Hutchinson (1967) had
commented on this long ago, saying ‘MacArthur (personal
communication), however, has noted that the Preston
curves, when sufficiently unveiled, generally have a some-
what asymmetrical form; if any value of the ordinate above
which the entire curve is in the wholly positive quadrant
is taken, the area to the left of the mode will be a little
greater than the area to the right.’ By taking areas above
a nonzero ordinate value of a histogram, MacArthur
neatly side-stepped the problem of detecting skewness
in incomplete enumerations (so-called veiled data).

The usual description of this left skew (see Gaston &
Blackburn 2000; Hubbell 2001) is to say that there is a
surplus in the long left-hand tail. McGill (2003b) thinks
this is a sampling effect, Magurran & Henderson (2003)
think it comes from including casuals, and Gregory (2000)
says ‘driven by a very small number of vagrant breeders’.
McGill’s sampling effect seems special to his data,
Magurran & Henderson have several definitions of casuals,
all of which seem somewhat arbitrary, and Gregory’s
vagrant breeders include one endemic and several that
seem definitely established. However, all that is probably

irrelevant, because Fig. 2 indicates that for both British
birds and BCI trees the skewness comes from a defi-
ciency in common species, not from a surplus of rare ones.
It seems better to say that the complete enumerations
have a short right-hand tail than a long left-hand one.

There are various ways of showing skewness, of which
Fig. 3 provides one. The method is a modification of a

Table 1. Tests for fit to a lognormal of three species–abundance data sets, giving the number of species, probabilities for the
Anderson–Darling, Ryan–Joiner (equivalent to Shapiro–Wilks test) and Kolmogoroff–Smirnov tests, and the correlation
coefficient used in the Ryan–Joiner test
 

 

No. 
spp.

Anderson–Darling 
test

Ryan–Joiner 
test

Kolmogoroff–Smirnov 
test

Correlation 
coefficient

British breeding birds 217 < 0·001 < 0·01 < 0·01 0·9839
BCI trees, > 1 cm 1990 304 < 0·001  0·033 > 0·15 0·9946
Ecuadorian butterflies 130  0·001 > 0·100 > 0·15 0·9947

χ1
2

χ1
2

χ1
2

Fig. 3. Modified Tukey symmetry plots of the three rank
abundance plots in Fig. 1. These show the left skew of the two
complete enumerations (birds and trees) and the right skew of
the incomplete enumeration (butterflies).

http://www.xycoon.com
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suggestion by Tukey in Wilk & Gnanadesikan (1968).
Tukey suggested plotting 

 

n

 

1+

 

j

 

 + 

 

n

 

max

 

−

 

j

 

 on the ordinate
against 

 

n

 

1+

 

j

 

 – 

 

n

 

max

 

−

 

j

 

 for 

 

j

 

 = 0 to max/2 on the abscissa,
which gives a horizontal line if  the distribution is
symmetrical. It is a touch simpler to use the rank of the
observation on the abscissa. In other words, the obser-
vations in pairs is summed from the two ends and
worked inwards to the median. If  the plot dips down to
the left, as in the top two graphs of Fig. 3, then the dis-
tribution is left-skewed; if  down to the right, as for the
butterflies, then it is right-skewed. This plot shows the
pattern of  skewness throughout the graph, not just
whether or not it is skewed. The kick from the single-
tons among the BCI trees is conspicuous and can also
be seen in the butterfly data, but apart from that it is
not possible to say from these graphs which end is pro-
ducing an effect. This is because saying which end only
makes sense in comparison with a particular function,
as in Fig. 2.

 

(iii) Comparisons with other distributions

 

There is a great deal in the literature about which SAD
function fits which types of data better. Gray (1987)
showed that there was considerable inconsistency and
dogma. As our intention is merely to show that the
lognormal is not a suitable null hypothesis, that work
would be relevant if  some other SAD had been shown
to be consistently better, or better in certain situations.
The evidence seems not to be as strong as that. If  one
SAD were universally better there would be little
argument that it should be preferred and all others
discarded. That, however, is not what has been found. The
lognormal sometimes fits better than the other SADs
that have been suggested, sometimes worse.

The most recent comparisons of fit to the lognormal
have been for the ZSM. McGill (2003a) claimed that
the lognormal was better, but he had trouble simulating
the ZSM. Volkov 

 

et al

 

. (2003) produced a simpler algo-
rithm for the ZSM, although still requiring numerical
integration, and concluded that for BCI trees the ZSM
gave the better fit but that ‘the lognormal does slightly
better than the neutral theory for the Pasoh data set,
obtained in a tropical tree community in Malaysia.’
Etienne & Olff  (2004) used an ingenious new method to
obtain the ZSM distribution and found, again with
BCI > 10 cm d.b.h. trees, that the lognormal did better,
but only weakly so. McKane 

 

et al

 

. (2004) provide an
analytical solution for the Hubbell local community.
Olszewski & Erwin (2004) fitted that to four fossil bra-
chiopod communities and find the ZSM is platykurtic
compared to the lognormal and has similar likeli-
hoods. The only safe conclusion from all this hard work
would seem to be that the lognormal and the ZSM fit
tropical forest tree (and possibly other) data about
equally well. Plotkin & Muller-Landau (2002) fitted
various SADs to BCI data and found that the gamma
distribution (which we do not discuss in this paper)
fitted best. Our discussion of the central limit theorem,

below, suggests why the ZSM and the lognormal might
be expected to be similar. Before that we consider a
SAD that seems to work consistently better than the
lognormal (and so presumably the ZSM) in complete
enumerations.

 

(iv) Comparison with the logit-normal distribution

 

Range sizes for species usually can vary between a well-
defined minimum and a well-defined maximum. In
Britain, using hectad recording (recording by 10 km

 

×

 

 10 km grid squares), the range size can vary from one
hectad up to the total number of hectad grid squares
that exist. This led Williamson & Gaston (1999) to
show that the logit transformation of range size was
appropriate, and that the logits of the ranges of sets of
species were usually normally distributed. This trans-
formation has proved useful in several contexts
(Williamson 1998; Gaston 2002; Preston, Pearman &
Dines 2002; Williamson, Preston & Telfer 2003).

The logit is log(

 

p

 

/

 

q

 

) where 

 

p

 

 is the proportion of the
variable from 0 to 1, while 

 

q

 

 = (1

 

−

 

p

 

). Writing 

 

p

 

 as 

 

n

 

/

 

s

 

,
where 

 

n

 

 is the number of observations (hectads in a
British range study) and 

 

s

 

 is the maximum, then 

 

q

 

 is
(

 

s-n

 

)/

 

s

 

. Williamson & Gaston (1999) found it desirable
to let 

 

s

 

 vary, to allow for hectads that had not been
properly recorded. Extending that, if 

 

s

 

 becomes very large,
then 

 

q

 

 ceases to vary and the logit becomes propor-
tional to log(

 

p

 

). In that sense, the logarithm is a natural
limit of the logit. If  logit-normal distributions are con-
sidered with variable 

 

s

 

, then their limit is the lognormal
when 

 

s

 

 becomes indefinitely large.
The abundance of species is also limited, but it is not

clear what that limit is for a particular assemblage or
community. Should it be the maximum numbers any
one species can attain, or should it be the maximum for
the sum of all species, or some other value? If  logits are
fitted to abundances by finding an optimum 

 

s

 

, are they
more normally distributed than the logarithms of the
abundances? Is the logit-normal a better fit than the
lognormal?

Testing this idea with bird population data from a
variety of European countries, i.e. complete enumerations
(Gregory 2000), we found a curious result (Williamson,
Gaston & Gregory, in preparation). Whether or not the
fit was significantly good (using the Ryan–Joiner test),
the logit-normal always fitted better than the log-
normal. This effect can be seen for British birds and BCI
trees, with the logit transformation improving the fit at
the right-hand end (Fig. 4, Table 2) but otherwise hav-
ing little effect. As the high abundances are now nearer
the limit (the limit for the lognormal being infinity),
there appears to be less of a shortage of abundant spe-
cies. Table 2 shows that for these two sets the optimal fit
comes with a maximum abundance not much greater
than that of the most common species. The only differ-
ence in significance from Table 1 is that, under the
Ryan–Joiner test, BCI trees move from being just
significantly a bad fit to just not significantly so at the
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conventional 5% level but, as the correlation coefficients
show, the British bird data also fit a touch better. The
transformation has no effect on the Ecuadorian but-
terfly data, where there was no shortage of  abundant
species in the first place, compared to the fitted lognormal.

Although the effect is small and we have only two
results to present here, we make bold to say that the
logit-normal gives a consistently better fit to empirical
SADs than the lognormal in complete enumeration
data. We would expect that it will also perform better
than the ZSM, as that is so close to the lognormal.
Should that be confirmed, then, on the argument given
earlier, neither the lognormal nor the ZSM are accept-
able as SADs for complete enumerations.

 

Suggested causes of the distribution

 

    
    


 

The quotations in the Introduction from Nee & Stone
(2003), Harte (2003) and Taylor (1978) show that it is
commonplace for biologists to think that a lognormal
SAD follows from the central limit theorem applied to
multiplicative processes. The central limit theorem
says, approximately, that a variable subject to a (mod-
erately large) number of independent additive effects
will tend to be distributed normally. In that case, inde-
pendent samples from the same population will be
normally distributed. Le Cam (1986) gives the exact
mathematics, some history and notes that Polyá dubbed
the theorem central because of its importance. If  the
effects are multiplicative rather than additive then the
variable will have a lognormal distribution. ‘The cen-
tral limit theorems … are the groundwork on which all
existing theories of the genesis of the lognormal have
been erected.’ (Aitchison & Brown 1957, p. 52).

This argument is satisfactory for the populations of
a single species but not for a set of species, as has been
pointed out by Pielou several times (and by other authors
following her, e.g. Williamson 1988). For example,
‘The … argument justifies … the hypothesis that the
sizes of separate and independent populations of some
one species (in separate noninteracting communities)
will be random variates from a lognormal distribution.
… But it does 

 

not

 

 follow (as is sometimes assumed) that
the distribution of  population sizes of  a number of

 

different

 

 species, occurring together and forming a single
community, must also be lognormal.’ (Pielou 1975,
p. 48). This reasoning can also be looked at the other way.
Only if  the populations are separate independent
samples of the same entity will the central limit theorem
hold. Samples from different places or different times
of a single species may be from the same entity; samples
of different species are definitely samples of different
entities unless the species have identical demographic
parameters. For SADs that suggests that the Hubbell
model, which has almost those assumptions, should
lead to a lognormal SAD. In practice, as noted above,
the Hubbell ZSM is scarcely distinguishable from a log-
normal with tropical tree data. Note that all the quo-
tations given in the Introduction regarding the central
limit theorem postdate Pielou, showing how difficult
it is to overcome a widespread and attractive fallacy.
Possibly, the assertion that the conditions of the theorem
have not been met is not sufficiently compelling.

Table 2. Tests for fit to a logit-normal of three species–abundance data sets, giving the number of species, the multiple that s (the
right-hand limit) is of the maximum observed population size (see text for details), probabilities for the Anderson–Darling, Ryan–
Joiner (equivalent to Shapiro–Wilks test), Kolmogoroff–Smirnov tests, and the correlation coefficient used in the Ryan–Joiner
test
 

 

No. 
spp. Multiple

Anderson–Darling 
test

Ryan–Joiner 
test

Kolmogoroff–Smirnov 
test

Correlation 
coefficient

British breeding birds 217 1·01 < 0·001 < 0·01 < 0·01 0·9901
BCI trees, > 1 cm 1990 304 1·38  0·001  0·0542 > 0·15 0·9954
Ecuadorian butterflies 130 5·88+  0·001 > 0·100 > 0·15 0·9947

Fig. 4. Probability plots of the optimal logit transformation
of plots (a) and (b) in Fig. 1. Compared with Fig. 2, the difference
is primarily in the right-hand end, which now fits better.
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Here is a slightly more elaborate (and new) argu-
ment. Consider a data matrix of the logarithms of the
abundances of  several species. In this matrix, rows
represent species, and columns independent samples
of the set. The columns could be different years if  the
dynamics of all the species make the yearly abundances
of each independent. Then, from the argument above,
each row can be expected to tend to lognormality
(Dennis & Patil 1988). The matrix as a whole then will
be the sum of a set of lognormal distributions each, in
general, with a different mean and variance. As Allen,
Li & Charnov (2001) show, such a sum will not be log-
normal. Each column is an independent sample of
the total matrix and so, again will not be lognormal.
Despite the application of the central limit theorem to
each row, the SADs of  the columns will not be log-
normal. In practice, even the rows will only sometimes be
lognormal as there will be other factors acting. Halley
& Inchausti (2002) found that about half  of the 544
population time series, all more than 30 years long,
they examined appeared lognormal, although they did
not allow for autocorrelation or trends in the data. Nor
are they from the ‘separate noninteracting communi-
ties’ which Pielou (above) states correctly as being
needed for the central limit theorem to apply properly.

It might be thought that the rather loose argument
for applying the central limit theorem to SADs was just
mildly inaccurate. In fact, it is clearly wrong and has no
validity except in a purely neutral model.

 

    


 

Niche apportionment models start with a totality of
niche space and then subdivide that space according to
various rules (Tokeshi 1999). What Tokeshi calls the
random fraction model divides the space into two ran-
dom parts; one part is chosen at random and again
divided at random and so on. The sizes of the resulting
set of  random pieces of  niche space will approach a
lognormal distribution. That was shown first by
Kolmogoroff (1941), and applied first to species abun-
dance distributions by Bulmer (1974). There are some
important assumptions, notably that the size of a niche
fragment translates linearly into a population abun-
dance, that species divide niche space into contiguous
distinct volumes, and that niche space is saturated,
without gaps. It is generally thought that none of those
assumptions is exactly true or even true at all; but the
model is the only plausible one, apart from Hubbell’s
neutral theory and the Engen & Lande theories dis-
cussed below, that predicts a distribution approaching
the lognormal.

If  the niche apportionment rules are different, the
resulting distribution of niche sizes will be different.
Sugihara (1980) proposed making the division always
3 : 1 instead of  random and claimed to produce a
canonical lognormal distribution. As Nee 

 

et al

 

. (1991)
showed by simulation, his rule produces a slightly

left-skewed distribution and so not a lognormal and
even less a canonical lognormal. He may, by chance,
have produced something that actually matches the
SADs of British birds and BCI trees; but other rules,
such as Tokeshi’s power fraction model, also produce a
mild left skew.

None of the variety of rules suggested for niche
apportionment models are particularly plausible from
general ecological knowledge and none is to be obvi-
ously preferred to another. Without more work attach-
ing the models to ecological reality, the best that can be
said is that they produce plausible distributions that
provide quite good fits, under some tests, to some real
data. As this stage they can neither be dismissed nor
accepted. Sugihara 

 

et al

 

. (2003) construct a hierarchical
framework for niches which may have some promise
in getting to a (nonlognormal) species–abundance
function.

   

A more satisfactory biological approach than either
the central limit theorem or niche apportionment
would be to build species abundance models from the
collective dynamics of a set of species. In a sense, that is
exactly what Hubbell’s neutral model does, so the ZSM
can be regarded as a population dynamic model. Chave
(2004) shows why the ZSM may also fit in non-neutral
equilibrial situations. Ecologists in general have reacted
strongly against Hubbell’s model on various grounds,
including that there are obvious differences in the
population dynamics of different species (e.g. Enquist,
Sanderson & Weiser 2002; Nee 2003; Nee & Stone
2003). Curiously, many of them still revere the equally
neutral MacArthur–Wilson model. Hubbell’s model
does produce impressive fits to data but the ZSM, as we
have seen, is very close to the lognormal; indeed, effec-
tively indistinguishable from it in the tropical forest
data.

Engen, Lande and their colleagues are developing
more conventional population dynamic models based
on competition communities. These are sets of species
at the same trophic level that, in the model, interact
only by competition. Our three examples may approx-
imate to that, the trees the most, the birds the least. In
their earlier papers (Engen & Lande 1996a,b), where
the models include speciation, the form of intraspecific
density dependence is important. Logistic dependence
(d ln n/dt = a–bn) led to a gamma SAD while the
lognormal SAD arose from Gompertz dependence
(d ln n /dt = a·exp(–bt)). The gamma SAD is the stand-
ard generalization of the log-series (Kempton & Taylor
1974). Developing these models purely ecologically
(Lande et al. 2003), a set of  stochastic differential
equations with Gompertz density dependence, demo-
graphic and both general and specific environmental
stochasticity can lead to a lognormal SAD, if  the
intrinsic rates of natural increase (r) are normally dis-
tributed. Other models involve migration (Engen 2001).
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It is at least clear that community models can be built
that will result in a variety of SAD functions, including
the lognormal. Testing these theories is very difficult.
Who has any idea of the functional shape (or shapes) of
intraspecific density dependence or the distribution of
intrinsic rates of increase across a set of species? Testing
the consequences rather than the intrinsic details of
these theories is easier, as is evident in Hubbell’s approach.
Altogether, population modelling seems to us a better
approach than niche theories. All the more reason then
not to develop models that have the unfortunate
mathematical consequences of the lognormal discussed
in the next section.

Consequences of the mathematical nature of the 
lognormal distribution

Only the consequences of a theory can produce good
evidence in its favour. Here, the theory is that a math-
ematical distribution, the lognormal, describes the
abundance of species. The nature of the distribution
and its consequences determine whether it is a satisfac-
tory description and may indicate the limits of its scope.
In this section we look at six such features of the lognormal.
The conclusions vary between condemning the theory
and neutrality about it; none offer support for it.

(i) The lognormal distribution borders unsatisfactory 
distributions

The mathematics of the lognormal distribution are, of
course, well known (Aitchison & Brown 1957; Shimizu
& Crow 1988), and we will not revisit them here. Ulanowicz
(2003) points out that the lognormal is at the interface
between well-behaved negative exponentials and a
power-law family of  distributions that have infinite
theoretical variances. He says ‘it is sometimes not easy to
decide whether data represent a lognormal distribution
or whether they might better portray a closely related,
but more poorly behaved, power-law formula’. Simi-
larly, Schmoyer et al. (1996) note that the log-t distri-
butions (t as in Student’s t-test) have infinite variances
and that the lognormal is the log-t with an infinite
number of degrees of freedom. In both cases, of course,
real finite samples must have finite variances, but could
be drawn from theoretical distributions with infinite
variances. The Cauchy distribution is the standard
example of one such in textbooks.

The distributions with infinite variance all have
thicker tails than the lognormal. As we will show below,
the lognormal already has too thick a right-hand tail to
be plausible. The same argument would show that these
infinite-variance distributions are even less plausible.

(ii) The lognormal is not additive and is taxonomically 
restricted

The addition of two lognormal curves with different
means or different variances or both leads to a distri-

bution that is not lognormal. So if the lognormal applies,
for instance, to passeriform birds and to charadriiform
birds, it cannot apply to all birds and, conversely, if  it
applies to all birds it cannot apply to individual orders
of birds. In practice, the lognormal has been applied to
taxonomically limited sets without examining subsets.
Indeed, that is what we did with our three examples. It
is far from clear at what level it should apply. This
difficulty is common to all other SAD functions that
have been proposed, which suggests that we are far
from a satisfactory theory of SADs, irrespective of the
validity of the lognormal.

(iii) The lognormal is continuous

It has been noted in the literature from time to time that
SADs are intrinsically discrete but the lognormal is
continuous (Kempton & Taylor 1974; Pielou 1975;
Williamson 1981; Magurran 1988). Equally, it has been
said that the discrete SAD might be the realization of
an underlying continuous process (Pielou 1977). Most
other SAD functions are discrete. However, as the
argument in (v) below will bring out, in practice SADs
are only evidently discrete at low numbers and having
a discrete function for abundant species is not helpful.
For instance, most British bird populations are esti-
mated to only two significant figures. A logarithmic
transformation for population size has long been rec-
ognized as desirable (Williams 1964; Williamson 1972;
Gaston & McArdle 1994) and logarithms are in general
not integers. The Poisson lognormal is one attempt to
bridge the transition but has not been found satisfac-
tory (see (vi) below).

One consequence of the continuous nature of the
lognormal is that it goes to infinity in both directions
or, converted back to an arithmetic scale, has a tail
ending at zero on the left and a long thin tail going to
infinity on the right. The former is regarded by Dewdney
(1998, 2000, 2003) as showing the lognormal to be
unrealistic as, in his survey, all empirical SADs had a
high point at the left-hand side; the singleton class
is the most common. The latter is the cause of  an un-
satisfactory individuals abundance curve (see below). A
discrete distribution could perhaps circumvent both
these difficulties, but that they are difficulties is a valid
objection to the lognormal.

(iv) The right-hand tail is too thick

This objection is lethal to the theory that the lognormal
describes the abundance of species yet, oddly, has led to
a large literature about how interesting it is. The prob-
lem was discussed first in Preston (1948) and developed
into the theory of  canonical lognormals in Preston
(1962), with exceptions noted in Preston (1980). By
simple manipulation (Preston 1948; Aitchison & Brown
1957), the species–abundance distribution can produce
an individuals–abundance distribution, the number of
individuals of species with particular abundances. The



418
M. Williamson & 
K. J. Gaston

© 2005 British 
Ecological Society, 
Journal of Animal 
Ecology, 74, 
409–422

latter is also a normal (Gaussian) curve, right-shifted.
Preston developed this into the canonical lognormal
hypothesis, whereby the most abundant species had
individuals at the maximum of the individuals abun-
dance curve. This is shown in many books (e.g. Magurran
1988, 2004).

In Preston’s canonical view, the whole of the right-
hand half  of the individuals abundance curve is miss-
ing. Taking a less rigid link between the two curves, as
in Preston (1948) or May (1975), the missing part is still
approximately a half. The lognormal SAD predicts the
existence of many extremely abundant species that do
not exist. It is standard that a theory that predicts an
absurdity must be wrong. Surprisingly, this obvious
argument against the feasibility of a lognormal SAD
seems not to have been made before. The canonical log-
normal is, then, not something interesting but some-
thing absurd. We agree with Dennis & Patil (1988) that
‘The enthusiasm ecologists have for this [Preston’s
Canonical] hypothesis must be judged from a statistical
standpoint as premature.’

It is the right-hand tail of the lognormal that gener-
ates the non-existent part of the individuals abundance
curve. An appropriate theory should generate an indi-
viduals abundance curve that matches what is observed.
It follows that such a theory must have a thinner
right-hand tail than the lognormal. This is indeed what
we noted is observed in fitting lognormals; the right-
hand tail is empirically thinner than the lognormal.

(v) The log-binomial and the individuals abundance 
curve

As noted above, on one side the lognormal borders
unsatisfactory distributions. On the other side it can be
said to border the log-binomial. This is not a realistic
distribution and has not appeared in the SAD litera-
ture before. Nevertheless, it makes a useful point about
the relationship of the SAD and the individuals abun-
dance curve. We develop the argument numerically. It is
easily put into algebraic form.

Consider a small binomial distribution: 1, 6, 15, 20,
15, 6, 1. Suppose, in the spirit of Preston, that these are
the numbers of species that have exactly 1, 2, 4, 8, 16, 32
and 64 individuals. Then, the individuals abundance
distribution, from cross-multiplying, is 1, 12, 60, 160,
240, 192, 64. The binomial distribution, the SAD, is
given by the coefficients in the expansion of (x + y)6,
while the individuals abundance distribution is given
by the coefficients of (x +2y)6. The 2 in 2y comes from
using a doubling between classes; it would be 3y had we
used triplings as, for instance, do DeVries et al. (1997).
The individuals abundance curve is significantly left-
skewed ( = 10·27, P < 0·01). As the normal is the
limit of the binomial, it could be said that the symmet-
rical lognormal individuals curve borders asymmetrical,
left-skewed, log-binomial individuals curves.

In the sense that it produces a realistic individuals
abundance curve, echoing what is seen empirically, the

log-binomial is an improvement on the lognormal.
By allowing species to have only exactly 2n (or 3n or
any other such series) individuals it is clearly most un-
realistic. No doubt the realism could be improved by
regarding the 2n classes as bin markers and allowing
the species to have numbers included in the bin. The
argument for the individuals abundance curve would
then become approximate, but the result would still be
a strong left skew. We do not consider this to be a line
worth pursuing. The log-binomial has been introduced
solely to show the exceptional nature of the symmetrical,
normal, shape of the lognormal individuals abundance
curve.

(vi) Preston’s veil line is a misunderstanding

Preston (1948) developed the theory of the lognormal
SAD using histograms in ‘octaves’, i.e. a doubling
between bins. He thought that in samples, what we have
called incomplete enumerations, the left-hand part of
the histogram would be truncated. Some of the bins
would not be observed. He also thought that doubling
the sample would reveal exactly one more bin at the
left-hand end and similarly for other increases in
sample size.

This view has remained popular despite its neglect
of  proper sampling. Grundy (1951) was sceptical:
‘Heuristically, the sample may be supposed to include
most of the species to the right of the veil line, and few
of those to the left’, but suggested no improvement. He
also noted the unfortunate nature of Preston’s binning,
which we have already discussed, and adds ‘Preston
does not, however, seem to use this [equation 5, a for-
mula for using probits], since he adopts a method of
grouping into octaves by which half  the species appear-
ing as singletons in the sample are assigned to the left of
the veil line.’

From the literature, two points emerge. The first is
that sampling does often appear to give an appearance
of truncation (e.g. Taylor 1978, using different samples;
Gaston & Blackburn 2000, using proper subsamples).
The second is that increasing the sample does not
just add new bins on the left, it changes the shape of the
curve. Complete enumerations are left-skewed and
incomplete enumerations are often right-skewed (Fig. 3).
This can be seen, although it was not discussed, in
Hutchinson’s (1967) tabulation of Patrick’s diatom data,
and seen and discussed in Hubbell & Foster (1983) for
trees at BCI.

Dewdney (1998) developed a new theory for sam-
pling from SADs. This uses a Poisson approximation
to the hypergeometric distribution involved in taking
finite samples without replacement. For some SADs,
such as the log-series, sampling does not change the
shape. He did not produce an expression for the sampled
lognormal but plots such a curve showing the increased
right skew. All that can be said is that the shape will
change and the change will not involve a veil line but
a diminution growing stronger going leftwards. This

χ1
2
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diminution looks like a truncation when the data are
presented as histograms. In rank abundance plots it
normally produces a great number of singletons (Fig. 1c)
and log right skew (Fig. 3c). The problem of sampling
from the lognormal is made more difficult by the
samples being necessarily discrete. Nevertheless, there
will always (contra Wilson 1991) be a sampling effect
in incomplete enumerations.

One mathematical attempt to deal with the problems
of  sampling and discreteness was the development
of the Poisson lognormal (Grundy 1951; Cassie 1962;
Pielou 1969, 1975, 1977; Bulmer 1974; Slocomb, Stauffer
& Dickinson 1977). The argument necessarily has
several assumptions about sampling. It is not clear if  it
is these assumptions, or the more general assumption
that it is a lognormal SAD that is being sampled, that
leads to an unfortunate and clearly incorrect result.
Taking the simpler truncation view, the Poisson log-
normal gives an estimate of the number of species that
have been truncated which, added to the species that
have been observed, leads to an estimate of the total
number of species. This, of course, only makes sense for
incomplete enumerations. For our example of Ecuado-
rian butterflies, there certainly must be a figure for the
total number of fruit-eating nymphalid species that
occurred in Ecuador, or some part of  it, during the
sampling period and it would be interesting to estimate
it. In other cases, for instance for Lepidoptera caught in
a light trap, it is less clear what set of species would be
estimated. The problem is one of extrapolation, always
a risky process.

Slocomb et al. (1977) say ‘Pielou (1975) points out
that currently available estimates of N [the total number
of  species] are not satisfactory; this observation is
certainly supported by the results presented here and
in Bulmer (1974). This lack of confidence in estimates
of N is unfortunate’. Pielou (1975) says ‘estimates of s*
[the total number of species] obtained by fitting the
Poisson lognormal and the continuous lognormal …
are discrepant. … estimates of  s* rarely inspire con-
fidence. The whole problem is ripe for further investiga-
tion.’ Hughes (1986) and Magurran (1988, 2004) also
note that such estimates are unsatisfactory. O’Hara &
Oksanen (2003) note that different estimates are found
for the number of unobserved species when fitting his-
tograms from when fitting rank abundance curves, but
they are uncertain why. It seems to us that the assump-
tion of  truncation is the central issue. Agreeing with
Dewdney (1998) that sampling does not lead to
truncation means that all calculations based on that
assumption, including fitting Poisson lognormals, should
be set aside.

Pielou (1969, 1977) notes that ‘In many collections it
is found that singleton species (those represented by
one individual) are numerous, often the most numer-
ous’ and Dewdney (1998, 2000, 2003) confirms this.
That is not true if  the collections are large enough.
Collections of many thousands of individuals are often
still small relative to the actual size of the assemblage,

particularly at broader spatial scales. From our examples
and two data sets (copepods and phytoplankton) in
McGowan & Walker (1993) we suggest, tentatively,
that the dominance of  singletons will be lost when
between 100 000 and 1 000 000 individuals have been
studied. Range-size distributions for various groups in
Europe do go down to a size of one hectad (100 km2),
the sampling unit, but such singletons are not the most
common observation, as is seen easily in area domi-
nance (or rank range distribution) plots (Gaston et al.
1998; Williamson & Gaston 1999; Williamson 2002;
Gaston 2003), and even so each hectad normally con-
tains more than one individual, even of rare species.
The BCI trees have numerous singletons but the BCI
plot is only 50 ha (0·5 km2). Scaling up implies 200
individuals per hectad as a median, many thousands in
Panama. The abundance of singletons in published
data shows the effort required to obtain an adequate
SAD rather than showing the shape of such distribu-
tions. A satisfactory theoretical SAD should have few
singletons in large enumerations and be slightly log left-
skewed at that size while smaller enumerations should
have a dominance of singletons viewed arithmetically
and be log right-skewed. The lognormal does not have
these properties (Dewdney 1998).

Conclusions

The lognormal has been an attractive model for
species–abundance distributions for two main reasons:
many empirical rank abundance curves are sigmoidal,
and the central limit theorem seems to give a simple and
natural explanation. The situation has been clouded by
working mostly with incomplete enumerations, usually
called samples. Nevertheless, it is now certain that the
lognormal is unacceptable.

First, empirically, fits to complete enumerations
show a deficiency of observations at the right-hand tail
leading to left skew, and it would seem that the logit-
normal fits better.

Secondly, the central limit theorem leads to a log-
normal distribution of different samples of one species,
or of samples of sets of equivalent species, but fails to do
so for sets of species with different biological charac-
ters. As the last is what is needed, it does not lead to a
biologically realistic SAD. Other theories, either niche
apportionment or based on population dynamics,
that can give rise to a lognormal can also with minor
changes yield other left-skewed distributions.

Thirdly, there are a number of theoretical objections
to the lognormal. By far the most serious of these is
that the lognormal SAD implies a lognormal indi-
viduals abundance curve that in turn implies that there
are many abundant species that are not observed. The
lognormal theory of SADs leads to a false conclusion.
There are also serious problems with the effect of
sampling and discreteness at the left-hand end of the
distribution. These conclusions show that models that
claim to lead to the lognormal SAD must be mistaken.
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So, the distribution of the logarithm of species abun-
dance remains unknown except, as Mandelbrot (1982,
p. 278) said of turbulent fluids, it cannot be Gaussian.
A true log species–abundance distribution must have a
steeper, thinner, right-hand form than the lognormal.
Much data show it to be bell-shaped but we know of no
good reason to prefer, as of now, any one such mathe-
matical function over any other. There are many
suggestions in the literature, but what is needed is a dis-
tribution with a sound theoretical basis that leads to
testable and correct consequences.
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