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THE L̷OJASIEWICZ EXPONENT OF AN ISOLATED WEIGHTED

HOMOGENEOUS SURFACE SINGULARITY

TADEUSZ KRASIŃSKI, GRZEGORZ OLEKSIK, AND ARKADIUSZ PL̷OSKI

(Communicated by Mei-Chi Shaw)

Abstract. We give an explicit formula for the L̷ojasiewicz exponent of an iso-
lated weighted homogeneous surface singularity in terms of its weights. From
the formula we get that the L̷ojasiewicz exponent is a topological invariant of
these singularities.

1. Introduction

Let 𝑓 = 𝑓(𝑧1, . . . , 𝑧𝑛) ∈ ℂ{𝑧1, . . . , 𝑧𝑛} be a convergent power series defining an
isolated singularity at the origin 0 ∈ ℂ𝑛; i.e. 𝑓(0) = 0 and the gradient of 𝑓 ,

∇𝑓 :=

(
∂𝑓

∂𝑧1
, . . . ,

∂𝑓

∂𝑧𝑛

)
: (ℂ𝑛,0) → (ℂ𝑛,0),

has an isolated zero at 0 ∈ ℂ
𝑛. The L̷ojasiewicz exponent ℒ0(𝑓) of 𝑓 is by definition

the smallest 𝜃 > 0 such that there exists a neighbourhood 𝑈 of 0 ∈ ℂ𝑛 and a
constant 𝑐 > 0 such that

∣∇𝑓(z)∣ ⩾ 𝑐 ∣z∣𝜃 for all z ∈ 𝑈.

B. Teissier proved that ℒ0(𝑓) + 1 is equal to the maximal polar invariant of the
singularity 𝑓 ([T], Corollary 2). In particular ℒ0(𝑓) depends only on the analytical
type of the germ {𝑓 = 0} (even more: ℒ0(𝑓) is an invariant of the “𝑐-cosécance”
introduced in [T]). It is an open question whether ℒ0(𝑓) is a topological invariant
of an isolated singularity 𝑓. Let Suff0(𝑓) be the 𝐶0-degree of sufficency of 𝑓 , i.e.
the smallest integer 𝑟 such that 𝑓 is topologically equivalent to 𝑓 + 𝑔 for all 𝑔 with
ord 𝑔 ≥ 𝑟 + 1. Then Suff0(𝑓) = [ℒ0(𝑓)] + 1 ([T], Theorem 8), where [𝑎] is the
integral part of 𝑎 ∈ ℝ. The L̷ojasiewicz exponent can be calculated by means of
analytic paths 𝜑(𝑡) = (𝜑1(𝑡), . . . , 𝜑𝑛(𝑡)) ∈ ℂ{𝑡}𝑛, 𝜑(0) = 0, 𝜑(𝑡) ∕= 0 in ℂ{𝑡}𝑛. If
ord𝜑 := inf𝑛𝑖=1 ord𝜑𝑖, then

ℒ0(𝑓) = sup
𝜑

ord((∇𝑓) ∘ 𝜑)
ord𝜑

(by the Curve Selection Lemma; see also [L-JT]). In the two-dimensional case there
are many explicit formulas for ℒ0(𝑓) in various terms (see [KL], [CK1], [CK2], [L]).
In this paper we investigate the problem of determining the L̷ojasiewicz exponent
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for weighted homogeneous isolated singularities. Let us recall that if (𝑤1, . . . , 𝑤𝑛)
is a sequence of 𝑛 rational numbers (weights) such that 𝑤𝑖 ≥ 2 for 𝑖 = 1, . . . , 𝑛, then
a polynomial 𝑓 ∈ ℂ[𝑧1, . . . , 𝑧𝑛] is called weighted homogeneous of type (𝑤1, . . . , 𝑤𝑛)
if 𝑓 may be written as a sum of monomials 𝑧𝛼1

1 . . . 𝑧𝛼𝑛
𝑛 with

𝛼1
𝑤1

+ . . .+
𝛼𝑛

𝑤𝑛
= 1.

For another definition of weighted homogeneous polynomials see the Appendix.
The set of weights {𝑤1, . . . , 𝑤𝑛} of a weighted homogeneous polynomial 𝑓 defin-

ing an isolated singularity is an analytic invariant of the germ {𝑓 = 0} [S]. Many
topological invariants of weighted homogeneous isolated singularities are expressed
in terms of weights: for instance, the Milnor number 𝜇0(𝑓) of 𝑓 and the character-
istic monodromy polynomial Δ𝑓 (𝑡) [MO], and in the case of weighted homogeneous
isolated surface singularities, the multiplicity of 𝑓 [Y], the fundamental group 𝜋(𝐾𝑓 )
of the link of 𝑓 and the minimal resolution of 𝑓 [OW].

In this note we will give a formula for the L̷ojasiewicz exponent of weighted
homogeneous isolated surface singularities in terms of its weights. Precisely, the
L̷ojasiewicz exponent is equal to the maximum of its weights minus one. As a
corollary we obtain that in this class of singularities ℒ0(𝑓) is a topological invariant.

Estimations of the L̷ojasiewicz exponent for quasi-homogeneous isolated singu-
larities in the real and complex cases are in a recent preprint by Haraux and Pham
[HP]. Estimations in the general case can be found in [Lt], [F], [P1], [A].

2. Results

The main result of this paper is the following:

Theorem 1. Let 𝑓 = 𝑓(𝑧1, 𝑧2, 𝑧3) be a weighted homogeneous polynomial of type
(𝑤1, 𝑤2, 𝑤3) defining an isolated singularity at the origin 0 ∈ ℂ3. Then

(2.1) ℒ0(𝑓) = 3
max
𝑖=1

(𝑤𝑖 − 1).

An analogous formula also holds in the case 𝑛 = 2 (Corollary 4). In the general
case we have only the inequality “≤”in (2.1); the equality holds under additional
assumptions (Propositions 1 and 2 in Section 3).

The proof of the above theorem is given in Section 5.

Corollary 1. Suff0(𝑓) =
[
max3𝑖=1(𝑤𝑖)

]
.

Since weights are a topological invariant of weighted homogeneous surface sin-
gularities [Y], Theorem B, we obtain

Corollary 2. The L̷ojasiewicz exponent ℒ0(𝑓) of weighted homogeneous isolated
surface singularities 𝑓 is a topological invariant.

It means that if 𝑓 , 𝑓 ′ are weighted homogeneous isolated surface singularities
and (ℂ3, 𝑉 (𝑓),0) is homeomorphic to (ℂ3, 𝑉 (𝑓 ′),0), then ℒ0(𝑓) = ℒ0(𝑓 ′).

From Corollary 1 we easily get

Corollary 3. deg 𝑓 ≤ Suff0(𝑓).

The above inequality may be strict.
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Example 1. Let 𝑎, 𝑏 be integers such that 𝑏 ≥ 2 and 𝑎
2 > 𝑏 − 1. The polynomial

𝑓 = 𝑧𝑎1𝑧2+𝑧𝑏2+𝑧23 is of type (
𝑎𝑏
𝑏−1 , 𝑏, 2) and defines an isolated singularity at 0 ∈ ℂ3.

Then deg 𝑓 = 𝑎+ 1 and Suff0(𝑓) =
[

𝑎𝑏
𝑏−1
]
> deg 𝑓.

The crucial role in the proof of the main theorem is played by the following result
concerning arbitrary isolated surface singularities.

Theorem 2. Let 𝑓 = 𝑓(𝑧1, 𝑧2, 𝑧3) be an isolated surface singularity and

𝑉

(
∂𝑓

∂𝑧2
,

∂𝑓

∂𝑧3

)
⊂ 𝑉 (𝑧1).

Then

𝑧1 ∈
(

∂𝑓

∂𝑧2
,
∂𝑓

∂𝑧3

)
in ℂ{𝑧1, 𝑧2, 𝑧3}.

The proof of the above theorem is given in Section 4.
To generalize Theorem 1 to the 𝑛-dimensional case it is enough to prove the last

theorem in the 𝑛-dimensional case in the following formulation.

Problem 1. Let 𝑓 = 𝑓(𝑧1, . . . , 𝑧𝑛) be an isolated singularity and

𝑉

(
∂𝑓

∂𝑧2
, . . . ,

∂𝑓

∂𝑧𝑛

)
⊂ 𝑉 (𝑧1).

Then

𝑧1 ∈
(

∂𝑓

∂𝑧2
, . . . ,

∂𝑓

∂𝑧𝑛

)
in ℂ{𝑧1, . . . , 𝑧𝑛}.

Remark 1. Theorem 1 implies that the maximal polar invariant of a weighted
homogeneous isolated surface singularity is equal to its maximal weight.

3. Upper bound for the L̷ojasiewicz exponent
of weighted homogeneous isolated singularities

In this section we will prove

Proposition 1. Let 𝑓 ∈ ℂ{𝑧1, . . . , 𝑧𝑛} be a weighted homogeneous isolated singu-
larity of type (𝑤1, . . . , 𝑤𝑛) at 0 ∈ ℂ𝑛. Then

ℒ0(𝑓) ≤ 𝑛
max
𝑖=1

(𝑤𝑖 − 1).

Remark 2. If 𝑓 is a homogeneous isolated singularity of degree 𝑑 > 1, then ℒ0(𝑓) =
𝑑− 1 ([P2], Lemma 2.4). In this case we have 𝑤𝑖 = 𝑑 for 𝑖 = 1, . . . , 𝑛.

We will get Proposition 1 from an estimation of the L̷ojasiewicz exponent for
semi-weighted homogeneous mappings given in [P2] (see also [F], Theorem 3.2).
First we recall the notion of the L̷ojasiewicz exponent for holomorphic mappings
with an isolated zero.

Let 𝒇 = (𝑓1, . . . , 𝑓𝑛) ∈ ℂ{𝑧1, . . . , 𝑧𝑛}𝑛 define a germ of the holomorphic mapping
𝒇 : (ℂ𝑛,0) → (ℂ𝑛,0) with an isolated zero at 0 ∈ ℂ𝑛. The L̷ojasiewicz exponent
𝑙0(𝒇) of 𝒇 is by definition the smallest 𝜃 > 0 such that there exist a neighbourhood
𝑈 of 0 ∈ ℂ𝑛 and a constant 𝑐 > 0 such that

∣𝒇(z)∣ ⩾ 𝑐 ∣z∣𝜃 for all z ∈ 𝑈.

Clearly ℒ0(𝑓) = 𝑙0(∇𝑓).
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Lemma 1. Let 𝑓𝑖 for 𝑖 = 1, . . . , 𝑛 be a polynomial whose support supp 𝑓𝑖 lies in the
hyperplane 𝑞1𝛼1 + . . . + 𝑞𝑛𝛼𝑛 = 𝑑𝑖, where 𝑞1, . . . , 𝑞𝑛, 𝑑𝑖 > 0 are integers. Suppose
that 𝒇 = (𝑓1, . . . , 𝑓𝑛) has an isolated zero at 0 ∈ ℂ

𝑛. Then

𝑙0(𝒇) ≤ max𝑛𝑖=1(𝑑𝑖)

min𝑛𝑖=1(𝑞𝑖)
.

Proof. See [P2], Proposition 2.2. □

Now we can give

Proof of Proposition 1. Let 𝑞1, . . . , 𝑞𝑛 and 𝑑 be positive integers such that 𝑞𝑖𝑤𝑖 = 𝑑
for 𝑖 = 1, . . . , 𝑛. Since 𝑓 is an isolated singularity we have ∂𝑓

∂𝑧𝑖
∕= 0 for 𝑖 = 1, . . . , 𝑛.

Obviously supp
(

∂𝑓
∂𝑧𝑖

)
lies on the hyperplane 𝑞1𝛼1 + . . . + 𝑞𝑛𝛼𝑛 = 𝑑 − 𝑞𝑖. Using

Lemma 1 we get

ℒ0(𝑓) = 𝑙0(∇𝑓) ≤ max𝑛𝑖=1(𝑑− 𝑞𝑖)

min𝑛𝑖=1(𝑞𝑖)
=

𝑛
max
𝑖=1

(
𝑑

𝑞𝑖
− 1

)
=

𝑛
max
𝑖=1

(𝑤𝑖 − 1) .

□

Let 𝑓 ∈ ℂ{𝑧1, . . . , 𝑧𝑛} be an isolated singularity and let 𝑙 =
∑𝑛

𝑖=1 𝑎𝑖𝑧𝑖 be a
linear nonzero form. A (local) polar curve of 𝑓 related to 𝑙 is the germ Γ𝑙(𝑓) of the
analytic set given by the equations

∂(𝑓, 𝑙)

∂(𝑧𝑖, 𝑧𝑗)
= 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,

near the origin. It is easy to check that dimΓ𝑙(𝑓) = 1. In particular Γ𝑧𝑘(𝑓) is given
by the equations

(3.1)
∂𝑓

∂𝑧1
= ⋅ ⋅ ⋅ = ∂𝑓

∂𝑧𝑘−1
=

∂𝑓

∂𝑧𝑘+1
= ⋅ ⋅ ⋅ = ∂𝑓

∂𝑧𝑛
= 0.

Proposition 2. Let 𝑓 ∈ ℂ{𝑧1, . . . , 𝑧𝑛} be a weighted homogeneous isolated singu-
larity of type (𝑤1, . . . , 𝑤𝑛). Suppose that 𝑤𝑘 = max𝑛𝑖=1(𝑤𝑖) and Γ𝑧𝑘(𝑓) ∕⊂ 𝑉 (𝑧𝑘).
Then

ℒ0(𝑓) = 𝑛
max
𝑖=1

(𝑤𝑖 − 1).

Proof. By Proposition 1 we have

ℒ0(𝑓) ≤ 𝑤𝑘 − 1.

To check that

ℒ0(𝑓) ≥ 𝑤𝑘 − 1

we choose an open neighbourhood 𝑈 of 0 ∈ ℂ
𝑛 such that if ∇𝑓(𝒛) = 0, 𝒛 ∈ 𝑈, then

𝒛 = 0. From the assumption Γ𝑧𝑘(𝑓) ∕⊂ 𝑉 (𝑧𝑘) it follows that the system of equations
(3.1) has in 𝑈 a solution 𝒂 = (𝑎1, . . . , 𝑎𝑛) such that 𝑎𝑘 ∕= 0. Let 𝑞1, . . . , 𝑞𝑛 and 𝑑
be integers such that 𝑞𝑖𝑤𝑖 = 𝑑 for 𝑖 = 1, . . . , 𝑛. Set

𝝋(𝑡) = (𝑎1𝑡
𝑞1 , . . . , 𝑎𝑛𝑡

𝑞𝑛).
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Since supp
(

∂𝑓
∂𝑧𝑖

)
lies on the hyperplane 𝑞1𝛼1 + . . .+ 𝑞𝑛𝛼𝑛 = 𝑑− 𝑞𝑖 we get

∂𝑓

∂𝑧𝑖
(𝝋(𝑡)) = 𝑡𝑑−𝑞𝑖

∂𝑓

∂𝑧𝑖
(𝒂) = 0 for 𝑖 ∕= 𝑘,

∂𝑓

∂𝑧𝑘
(𝝋(𝑡)) = 𝑡𝑑−𝑞𝑘

∂𝑓

∂𝑧𝑘
(𝒂) ∕= 0.

Therefore we get

ℒ0(𝑓) ≥ ord((∇𝑓) ∘𝝋(𝑡))
ord𝝋(𝑡)

=
ord( ∂𝑓

∂𝑧𝑘
(𝝋(𝑡)))

ord𝝋(𝑡)
=

𝑑− 𝑞𝑘
𝑞𝑘

= 𝑤𝑘 − 1.

□

The above propositions give the formula for the L̷ojasiewicz exponent in a simpler
two-dimensional case.

Corollary 4. Let 𝑓 ∈ ℂ{𝑧1, 𝑧2} be a weighted homogeneous isolated singularity of
type (𝑤1, 𝑤2) at 0 ∈ ℂ2. Then

ℒ0(𝑓) = 2
max
𝑖=1

(𝑤𝑖 − 1).

Proof. Assume that 𝑤1 ≤ 𝑤2. If 𝑉
(

∂𝑓
∂𝑧1

)
∕⊂ 𝑉 (𝑧2), then the corollary follows from

Proposition 2. If 𝑉
(

∂𝑓
∂𝑧1

)
⊂ 𝑉 (𝑧2), then 𝑧2 = 𝐴 ∂𝑓

∂𝑧1
in ℂ{𝑧1, 𝑧2}. In fact, by the

local Hilbert Nullstellensatz 𝑧𝑝2 = 𝐴 ∂𝑓
∂𝑧1

in ℂ{𝑧1, 𝑧2} for some positive integer 𝑝.

Assume that 𝑝 is the smallest possible. Then 𝑧2 does not divide 𝐴. Since ℂ{𝑧1, 𝑧2}
is a unique factorization domain we get ∂𝑓

∂𝑧1
= 𝑧𝑝2𝐵, 𝐵(0, 0) ∕= 0. Hence there exist

𝐶 ∈ ℂ{𝑧1, 𝑧2} and 𝑔 ∈ ℂ{𝑧2}, 𝑔(0) = 0, such that

𝑓 (𝑧1, 𝑧2) = 𝑧𝑝2𝐶 (𝑧1, 𝑧2) + 𝑔 (𝑧2) in ℂ{𝑧1, 𝑧2}.
If we had 𝑝 > 1, then by condition ∂𝑓

∂𝑧2
(0, 0) = 0 we would obtain 𝑔′(0) = 0. This

would imply
∂𝑓

∂𝑧1
(𝑧1, 0) = 0 and

∂𝑓

∂𝑧2
(𝑧1, 0) = 0,

which contradicts the assumption that 𝑓 is an isolated singularity. So 𝑝 = 1, i.e.

𝑧2 = 𝐴 ∂𝑓
∂𝑧1

in ℂ{𝑧1, 𝑧2}. Hence ∂2𝑓
∂𝑧1∂𝑧2

(0, 0) ∕= 0. This implies that the monomial
𝑐𝑧1𝑧2 appears with a nonzero coefficient 𝑐 ∕= 0 in the Taylor expansion of 𝑓. We
then get 1

𝑤1
+ 1

𝑤2
= 1, which implies 𝑤1 = 𝑤2 = 2 (by definition of weighted

homogeneous polynomials 𝑤1, 𝑤2 ≥ 2). Thus 𝑓 is a homogeneous form of degree 2
and ℒ0(𝑓) = 1 = max2𝑖=1(𝑤𝑖 − 1) by Remark 2. □

Remark 3. It is well known that if 𝑓 = 𝑓(𝑧1, 𝑧2) defines an isolated curve singularity,
then the Milnor number 𝜇0(𝑓) and the L̷ojasiewicz exponent ℒ0(𝑓) are topologi-
cal invariants of the germ {𝑓 = 0} ([T]). Moreover, if additionally 𝑓 is weighted
homogeneous of type (𝑤1, 𝑤2), then by [MO]

𝜇0(𝑓) = (𝑤1 − 1)(𝑤2 − 1),

and by Corollary 4

ℒ0(𝑓) = max ((𝑤1 − 1), (𝑤2 − 1)) .
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Hence the set of weights

{𝑤1, 𝑤2} =
{
𝜇0(𝑓)

ℒ0(𝑓) + 1,ℒ0(𝑓) + 1

}
is also a topological invariant of the germ {𝑓 = 0}.

4. Proof of Theorem 2

Proof. In the sequel we will use the following notation for any 𝑃 ∈ ℂ{𝑧1, 𝑧2, 𝑧3}.
Let 𝑃 = 𝑃0+𝑃1𝑧1+𝑃2𝑧

2
1 + . . . with 𝑃𝑖 ∈ ℂ{𝑧2, 𝑧3} for 𝑖 = 0, 1, 2, . . . . Then we put

𝑃 = 𝑃1 + 𝑃2𝑧1 + . . . . Thus 𝑃0 = 𝑃 (0, 𝑧2, 𝑧3) and 𝑃 = 𝑃0 + 𝑧1𝑃 in ℂ{𝑧1, 𝑧2, 𝑧3}.
Note that (

∂𝑃

∂𝑧2

)
0

=
∂𝑃0
∂𝑧2

and

(
∂𝑃

∂𝑧3

)
0

=
∂𝑃0
∂𝑧3

.

Let us pass to the proof of the theorem. We have to show that there exists a
power series 𝐴,𝐵 ∈ ℂ{𝑧1, 𝑧2, 𝑧3} such that

𝑧1 = 𝐴
∂𝑓

∂𝑧2
+𝐵

∂𝑓

∂𝑧3
in ℂ{𝑧1, 𝑧2, 𝑧3}.

It is easy to check the following three properties:

(1) The system of equations

∂𝑓0
∂𝑧2

=
∂𝑓0
∂𝑧3

= 𝑓1 = 0

has an isolated solution 𝑧2 = 𝑧3 = 0 near the origin 0 ∈ ℂ2 (otherwise, 𝑓
does not define an isolated singularity).

(2) The analytic set defined by equations

∂𝑓0
∂𝑧2

=
∂𝑓0
∂𝑧3

= 0

near the origin 0 ∈ ℂ
2 is of pure dimension one (since Γ𝑧1(𝑓) is of pure

dimension one and lies in {𝑧1 = 0}).
(3) For some integer 𝑝 > 0

𝑧𝑝1 = 𝐴
∂𝑓

∂𝑧2
+𝐵

∂𝑓

∂𝑧3
in ℂ{𝑧1, 𝑧2, 𝑧3}

(by the local Hilbert Nullstellensatz).

Assume that 𝑝 > 0 in (3) is the smallest possible. Hence 𝐴0 ∕= 0 or 𝐵0 ∕= 0.
Then we have the following fact.

Property 1. 𝐴0 ∕≡ 0 (mod ∂𝑓0
∂𝑧3

) or 𝐵0 ∕≡ 0 (mod ∂𝑓0
∂𝑧2

) in ℂ{𝑧2, 𝑧3}.

Proof of Property 1. Suppose that 𝐴0 ≡ 0 (mod ∂𝑓0
∂𝑧3

); that is, 𝐴0 = 𝐴0
∂𝑓0
∂𝑧3

in

ℂ{𝑧2, 𝑧3}. Then

𝐴 = 𝐴0 + 𝑧1𝐴 = 𝐴0
∂𝑓0
∂𝑧3

+ 𝑧1𝐴 = 𝐴0

(
∂𝑓

∂𝑧3
− 𝑧1

∂𝑓

∂𝑧3

)
+ 𝑧1𝐴

= 𝐴0
∂𝑓

∂𝑧3
+ 𝑧1𝐶 in ℂ{𝑧1, 𝑧2, 𝑧3}.
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From (3) we get

𝑧𝑝1 =

(
𝐴0

∂𝑓

∂𝑧3
+ 𝑧1𝐶

)
∂𝑓

∂𝑧2
+𝐵

∂𝑓

∂𝑧3

=

(
𝐴0

∂𝑓

∂𝑧2
+𝐵

)
∂𝑓

∂𝑧3
+ 𝑧1𝐶

∂𝑓

∂𝑧2
.

By minimality of 𝑝 we get 𝐴0
∂𝑓
∂𝑧2

+ 𝐵 ∕≡ 0 (mod 𝑧1), and consequently ∂𝑓
∂𝑧3

≡ 0

(mod 𝑧1), which implies ∂𝑓0
∂𝑧3

= 0 in ℂ{𝑧2, 𝑧3}. Similarly the condition 𝐵0 ≡ 0

(mod ∂𝑓0
∂𝑧2

) implies ∂𝑓0
∂𝑧2

= 0 in ℂ{𝑧2, 𝑧3}. This proves Property 1. □

From (3) we get

(4.1) 𝐴0
∂𝑓0
∂𝑧2

+𝐵0
∂𝑓0
∂𝑧3

= 0 in ℂ{𝑧2, 𝑧3}.

Suppose to the contrary that 𝑝 > 1. Then differentiating the equality in (3) and
putting 𝑧1 = 0 we get

(4.2) 𝐴0
∂𝑓1
∂𝑧2

+𝐵0
∂𝑓1
∂𝑧3

+𝐴1
∂𝑓0
∂𝑧2

+𝐵1
∂𝑓0
∂𝑧3

= 0 in ℂ{𝑧2, 𝑧3}.

From (2) it follows that we may write

𝑓0 = 𝑔0𝑔
𝑘1
1 . . . 𝑔𝑘𝑟

𝑟 in ℂ{𝑧2, 𝑧3},
where 𝑘𝑖 ≥ 2 for 𝑖 = 1, . . . , 𝑟, 𝑟 ≥ 1, 𝑔𝑖 are irreducible and 𝑔𝑖 does not divide 𝑔𝑗 in
ℂ{𝑧2, 𝑧3} for 𝑖 ∕= 𝑗. Note that

(4.3) GCD

(
∂𝑓0
∂𝑧2

,
∂𝑓0
∂𝑧3

)
= 𝑔𝑘1−1

1 . . . 𝑔𝑘𝑟−1
𝑟 .

Property 2. There exists an 𝑖 ∈ {1, . . . , 𝑟} such that

∂ (𝑔𝑖, 𝑓1)

∂ (𝑧2, 𝑧3)
≡ 0 (mod 𝑔𝑖).

Proof of Property 2. Using Properties (4.1), (4.3) and Property 1 we check that

𝐴0 ∕≡ 0

(
modGCD

(
∂𝑓0
∂𝑧2

,
∂𝑓0
∂𝑧3

))
or

𝐵0 ∕≡ 0

(
modGCD

(
∂𝑓0
∂𝑧2

,
∂𝑓0
∂𝑧3

))
.

Therefore there is an 𝑖 ∈ {1, . . . , 𝑟} such that

𝐴0 ∕≡ 0
(
mod 𝑔𝑘𝑖−1

𝑖

)
or 𝐵0 ∕≡ 0

(
mod 𝑔𝑘𝑖−1

𝑖

)
.

We may suppose 𝑖 = 1. Write 𝑓0 = 𝑔𝑘1
1 𝑔1 in ℂ{𝑧2, 𝑧3}. Obviously 𝑔1 ∕≡ 0 (mod 𝑔1) .

Using (4.1) after a simple calculation we get

(4.4) 𝐴0

(
𝑘1

∂𝑔1
∂𝑧2

𝑔1 + 𝑔1
∂𝑔1
∂𝑧2

)
+𝐵0

(
𝑘1

∂𝑔1
∂𝑧3

𝑔1 + 𝑔1
∂𝑔1
∂𝑧3

)
= 0 in ℂ{𝑧2, 𝑧3}.

Hence for each integer 𝑚 ≥ 0

𝐴0 ≡ 0 (mod 𝑔𝑚1 ) if and only if 𝐵0 ≡ 0 (mod 𝑔𝑚1 ) .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Therefore we can write 𝐴0 = 𝐴′
0𝑔

𝑚1
1 and 𝐵0 = 𝐵′

0𝑔
𝑚1
1 , where 0 ≤ 𝑚1 < 𝑘1 − 1 and

𝐴′
0 ∕≡ 0 (mod 𝑔1) , 𝐵

′
0 ∕≡ 0 (mod 𝑔1) . From (4.1) and (4.2) we get

(4.5) 𝐴′
0

∂𝑔1
∂𝑧2

+𝐵′
0

∂𝑔1
∂𝑧3

≡ 0 (mod 𝑔1)

and

(4.6) 𝐴′
0

∂𝑓1
∂𝑧2

+𝐵′
0

∂𝑓1
∂𝑧3

≡ 0 (mod 𝑔1) .

Using Cramer’s rule to (4.5) and (4.6) we get

𝐴′
0

∂ (𝑔1, 𝑓1)

∂ (𝑧2, 𝑧3)
≡ 0 (mod 𝑔1),

and Property 2 follows since 𝐴′
0 ∕≡ 0 (mod 𝑔1) and 𝑔1 is irreducible. □

We omit the simple proof of the next property.

Property 3. Let 𝑃,𝑄 ∈ ℂ{𝑥, 𝑦} be power series in two variables 𝑥, 𝑦 without

constant term. Let 𝑃 be irreducible and let ∂(𝑃,𝑄)
∂(𝑥,𝑦) ≡ 0 (mod𝑃 ). Then 𝑄 ≡ 0

(mod𝑃 ).

Now we can finish the proof of Theorem 2. The assumption 𝑝 > 1 implies by

Properties 2 and 3 that 𝑓1 vanishes on a branch 𝑉 (𝑔𝑖) of the curve 𝑉
(

∂𝑓0
∂𝑧2

, ∂𝑓0∂𝑧3

)
.

This contradicts property (1). Therefore 𝑝 = 1, which ends the proof. □

5. Proof of Theorem 1

Let 𝑓 = 𝑓(𝑧1, 𝑧2, 𝑧3) be a weighted homogeneous polynomial of type (𝑤1, 𝑤2, 𝑤3)
defining an isolated singularity at the origin 0 ∈ ℂ

3. We may assume that 𝑤1 =
max(𝑤1, 𝑤2, 𝑤3). If Γ𝑧1(𝑓) ∕⊂ 𝑉 (𝑧1), then ℒ0(𝑓) = 𝑤1 − 1 by Proposition 2. Sup-
pose then that Γ𝑧1(𝑓) ⊂ 𝑉 (𝑧1). By Theorem 2 there exists a power series 𝐴,𝐵 ∈
ℂ {𝑧1, 𝑧2, 𝑧3} such that 𝑧1 = 𝐴 ∂𝑓

∂𝑧2
+ 𝐵 ∂𝑓

∂𝑧3
. Differentiating and putting 𝑧1 = 𝑧2 =

𝑧3 = 0 we obtain
∂2𝑓

∂𝑧1∂𝑧2
(0) ∕= 0 or

∂2𝑓

∂𝑧1∂𝑧3
(0) ∕= 0.

Thus the support supp 𝑓 contains point (1, 1, 0) or (1, 0, 1). Hence 𝑤1 = 𝑤2 = 2
or 𝑤1 = 𝑤3 = 2. Since 𝑤1 = max(𝑤1, 𝑤2, 𝑤3), then 𝑤1 = 𝑤2 = 𝑤3 = 2 and 𝑓 is
homogeneous of degree 2. Consequently ℒ0(𝑓) = 1 = 𝑤1− 1 by Remark 2, and the
theorem is proved.

Remark 4. Let 𝑓 = 𝑓0 + 𝑓1𝑧1 + 𝑓2𝑧
2
1 + . . . with 𝑓𝑖 ∈ ℂ {𝑧2, 𝑧3} for 𝑖 = 0, 1, . . .

be an isolated surface singularity such that Γ𝑧1(𝑓) ⊂ 𝑉 (𝑧1). From the proofs of
Theorems 1 and 2 it follows that 𝑓0 has a multiple factor and ord 𝑓1 = 1. In
particular ord 𝑓 = 2.

6. Appendix

There is another (weaker) definition of a weighted homogeneous polynomial. A
polynomial 𝑓 ∈ ℂ[𝑧1, . . . , 𝑧𝑛] is called a weak weighted homogeneous polynomial if
there exist 𝑛 rational positive numbers (weights) (𝑤1, . . . , 𝑤𝑛) such that 𝑓 may be
written as a sum of monomials 𝑧𝛼1

1 . . . 𝑧𝛼𝑛
𝑛 with

𝛼1
𝑤1

+ . . .+
𝛼𝑛

𝑤𝑛
= 1.
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Observe that we don’t assume here that 𝑤𝑖 ≥ 2 for 𝑖 = 1, . . . , 𝑛. The weights
are not uniquely determined by the weak weighted homogeneous polynomial. If a
weak weighted homogeneous polynomial 𝑓 of type (𝑤1, , . . . , 𝑤𝑛) defines an isolated
singularity at the origin, then 𝑤𝑖 > 1 for all 𝑖 = 1, . . . , 𝑛 and

𝜇0(𝑓) =

𝑛∏
𝑖=1

(𝑤𝑖 − 1)

([MO], Theorem 1). The class of weak weighted homogeneous polynomials is
broader than the class of weighted homogeneous polynomials. However, we can
extend our main theorem to this class.

Theorem 3. Let 𝑓 = 𝑓(𝑧1, 𝑧2, 𝑧3) be a weak weighted homogeneous polynomial of
type (𝑤1, 𝑤2, 𝑤3) defining an isolated singularity at the origin. Then

ℒ0(𝑓) = min

(
3

max
𝑖=1

(𝑤𝑖 − 1),
3∏

𝑖=1

(𝑤𝑖 − 1)

)
.

Note that if 𝑤𝑖 ≥ 2 for all 𝑖 = 1, 2, 3, then max3𝑖=1(𝑤𝑖 − 1) ≤
3∏

𝑖=1

(𝑤𝑖 − 1) and we

recover Theorem 1.
In the proof we need the following useful lemma:

Lemma 2. Let 𝑓 ∈ ℂ{𝑧1, . . . , 𝑧𝑛} define an isolated singularity at the origin. Then

ℒ0(𝑓) ≤ 𝜇0(𝑓)

with equality if

(6.1) rk

(
∂2𝑓

∂𝑧𝑖∂𝑧𝑗
(0)

)
≥ 𝑛− 1.

Proof. It is well known that the monomials 𝑧𝜇1 , . . . , 𝑧
𝜇
𝑛 , 𝜇 = 𝜇0(𝑓), belong to the

ideal
(

∂𝑓
∂𝑧1

, . . . , ∂𝑓
∂𝑧𝑛

)
. Whence the inequality ℒ0(𝑓) ≤ 𝜇0(𝑓) follows. If (6.1) holds,

then we may assume, by the splitting lemma, that 𝑓 = 𝑧21 + . . .+ 𝑧2𝑛−1 + 𝑧𝜇𝑛 . This
obviously implies ℒ0(𝑓) = 𝜇0(𝑓). □

Remark 5. One can prove that the equality ℒ0(𝑓) = 𝜇0(𝑓) implies the inequality
(6.1)

Proof of Theorem 3. We get ℒ0(𝑓) ≤ 𝜇0(𝑓) =
3∏

𝑖=1

(𝑤𝑖 − 1) by the Milnor-Orlik

formula. On the other hand our proof of Proposition 1 is valid in the case of
weak weighted homogeneous isolated singularities, and consequently ℒ0(𝑓) ≤
max3𝑖=1(𝑤𝑖 − 1). Summing up we obtain the bound

(6.2) ℒ0(𝑓) ≤ min

(
3

max
𝑖=1

(𝑤𝑖 − 1),

3∏
𝑖=1

(𝑤𝑖 − 1)

)
.
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To prove the opposite inequality we suppose, to the contrary, that we have strict
“<” inequality in (6.2). Then

ℒ0(𝑓) < 3
max
𝑖=1

(𝑤𝑖 − 1),(6.3)

ℒ0(𝑓) <
3∏

𝑖=1

(𝑤𝑖 − 1).(6.4)

We may assume that max3𝑖=1(𝑤𝑖) = 𝑤1. Inequality (6.3) implies 𝑉
(

∂𝑓
∂𝑧2

, ∂𝑓
∂𝑧3

)
⊂

𝑉 (𝑧1) (cf. the proof of Theorem 1). Using Remark 4 we check that, up to a
permutation of variables 𝑧2, 𝑧3,

𝑓(𝑧1, 𝑧2, 𝑧3) = 𝑎𝑧𝑘3 + 𝑏𝑧1𝑧2 + 𝑧21𝑔(𝑧1, 𝑧3),

where 𝑔(𝑧1, 𝑧3) is a polynomial, 𝑎𝑏 ∕= 0, and 𝑘 ≥ 2. Using Lemma 2 we check that

ℒ0(𝑓) = 𝜇0(𝑓). Since 𝜇0(𝑓) =
3∏

𝑖=1

(𝑤𝑖−1) by the Milnor-Orlik formula, then ℒ0(𝑓) =
3∏

𝑖=1

(𝑤𝑖 − 1), which contradicts (6.4). □
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[CK1] Chadzyński, J. and Krasiński, T.: The L̷ojasiewicz exponent of an analytic mapping of two
complex variables at an isolated zero. In: Singularities, Banach Center Publ. 20, PWN,
Warszawa, 1988, 139–146. MR1101835 (92e:32018)
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