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Cortical development is a complex amalgamation of proliferation, migration, differentiation,

and circuit formation. These processes follow defined timescales and are controlled by a

combination of intrinsic and extrinsic factors. It is currently unclear how robust and flexible

these processes are and whether the developing brain has the capacity to recover from

disruptions.What is clear is that there are a number of cognitive disorders or conditions that

are elicited as a result of disrupted cortical development, although it may take a long time

for the full pathophysiology of the conditions to be realized clinically.The critical window for

the manifestation of a neurodevelopmental disorder is prolonged, and there is the potential

for a complex interplay between genes and environment. While there have been extended

investigations into the genetic basis of a number of neurological and mental disorders, lim-

ited definitive associations have been discovered. Many environmental factors, including

inflammation and stress, have been linked to neurodevelopmental disorders, and it may

be that a better understanding of the interplay between genes and environment will speed

progress in this field. In particular, the development of the brain needs to be considered

in the context of the whole materno-fetal unit as the degree of the metabolic, endocrine,

or inflammatory responses, for example, will greatly influence the environment in which

the brain develops. This review will emphasize the importance of extending neurodevel-

opmental studies to the contribution of the placenta, vasculature, cerebrospinal fluid, and

to maternal and fetal immune response. These combined investigations are more likely

to reveal genetic and environmental factors that influence the different stages of neuronal

development and potentially lead to the better understanding of the etiology of neurological

and mental disorders such as autism, epilepsy, cerebral palsy, and schizophrenia.

Keywords: neurogenesis, neuronal migration, blood brain barrier, glia, maternal inflammation

INTRODUCTION

The development of the brain is determined by a complex inter-

play of intrinsic genetic programs and environmental interactions

and in utero depends additionally on numerous materno-fetal

interactions. Circulation, oxygenation, metabolic interactions, and

immune responses are all orchestrated between the fetus and

the mother and largely work in harmony. However, when these

interactions malfunction, they could contribute to developmental

abnormalities. The unfolding genetic program of cortical devel-

opment is influenced by these environmental factors in a highly

complex fashion. While the developing brain is kept separate from

the systemic circulatory system by the brain barriers, and the

maternal circulation is separated from the fetal circulation in the

placenta, it is clear that changes in the maternal/intrauterine and

systemic fetal environments may result in modifications of normal

fetal brain development. Therefore, neurological and mental dis-

orders have an array of pathophysiological hallmarks that reflect a

complex etiology. These disorders are typically diagnosed by clin-

ical features, as the genetics and molecular basis of the diseases

are still largely opaque. There is an emerging field that studies

these interactions in the context of barrier biology, immunology,

endocrinology, teratology, and developmental neurobiology. The

challenge is to relate the genetic and molecular program of neu-

rodevelopment to the various insults (including fetal alcohol and

drug exposure, inflammation and hypoxic-ischemia) for the bet-

ter understanding of the pathophysiological-mechanisms of these

developmental disorders. The aim of this review is to discuss the

normal cortical developmental program within the context of the

developing fetal and maternal environments and give insights to

some potential environmental-genetic interactions that contribute

to neurodevelopmental disorders. Of particular interest is the pos-

sibility that one environmental insult could contribute to multiple

diseases, depending on the stage of brain development affected.

For example, maternal alcohol consumption or infection can have

a specific time window when the consequences are more severe.

For the purpose of this review we divide development into four

stages. The first three correspond to key periods in neurogenic

development: (i) proliferation, (ii) migration, and (iii) initial dif-

ferentiation. In humans this corresponds to (i) 1–7 weeks, (ii)

8–15 weeks and, weeks 16–26, although the true boundaries of
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these processes are not this absolute. We shall also discuss a fourth

stage, which in humans is from the 26th week into the postna-

tal period. This stage largely represents the influence of other cell

systems on neuronal functions, such as myelination and activ-

ity dependent circuit formation. Boxes 1 and 2 give summary of

the fundamentals of early cortical development for the general

reader. The concomitant development of different components

of the CNS will be discussed as well as the known pathological

consequences of environmental insults during these periods.

MATERNAL/FETAL ENVIRONMENT

MATERNAL SIGNALING

Fetal development is greatly dependent on the maternal envi-

ronment and it is clear that a spectrum of insults can produce

changes in the fetus that include mild fetal growth restriction,

through to severe birth defects or still birth. A number of mater-

nal complications have been specifically related to negative fetal

outcomes, including pre-eclampsia, depression, diabetes, infec-

tion/inflammation, and extremes in body weight (Barker, 2007;

Hoerder-Suabedissen et al., 2008; Zammit et al., 2009).

Congenital abnormalities, including cardiovascular and neural

tube defects, are more common in offspring of overweight or

diabetic mothers, potentially due to the teratogenic effects of

hyperglycemia and relaxin (Hawdon, 2011). These maternal con-

ditions can also alter both the systemic and central control of

metabolism in the offspring (Meaney et al., 2007; Sirimi and

Goulis, 2010; Gluckman et al., 2011; Hawdon, 2011) and may

even lead to epigenetic modulation of neural genes regulating

Box 1 Fundamentals of cerebral cortical development.

PROLIFERATION

The telencephalon, which later develops into the cortex and basal ganglia, starts to generate neurons in the mouse from approximately
E10.5, with neurogenic divisions occurring from E11–E17 (Rakic and Sidman, 1968). Proliferative cell division occurs first at the ventricular
surface (in the ventricular zone,VZ) and then starts basal to this zone, in the subventricular zone (SVZ; Figure 4). As neurogenesis progresses
cell division switches from a symmetric, proliferative division to an increasingly neurogenic division (Konno et al., 2008). Once neurogenesis
is complete, the same pluripotent progenitors produce glia. During this period there is also vascularization of the telencephalon, invasion of
microglia, and migration of GABAergic neurons from the ventral to the dorsal telencephalon (Earle and Mitrofanis, 1997; Parnavelas, 2000;
Stubbs et al., 2009).
The different rounds of division in the proliferative zones are responsible for the “birth” of different cortical neuronal populations, which
migrate to establish the cortical layers. A combinatorial transcription factor signaling specifies the future phenotype of cerebral cortical
neurons (Guillemot et al., 2006; Hevner et al., 2006).The timing of this is largely based on intrinsic genetic programming, as cell populations
grown in vitro will differentiate into layer populations after the same number of divisions as observed in vivo (Shen et al., 2006).

MIGRATION

The cortex develops in an “inside-first-outside-last” fashion, with deep cortical layers born first, and superficial cortical layers born last (Rakic
and Sidman, 1968). Cells that are born in the VZ or SVZ proliferative zones migrate into the cortical plate (CP) along the basal projections of
the radial glia (Métin et al., 2008). The first cell populations to migrate out of the proliferative zones are the cells of the preplate which are
visible as early as E12, and which split to form the marginal zone and the subplate (Marin-Padilla, 1971). Following this, waves of division
occur and differentiating neurons migrate past the subplate to form subsequent layers of cortical pyramidal projection neurons (Bystron
et al., 2008). The contribution of the VZ and SVZ to the cortical layers is a subject of contention. In general it is thought that VZ progenitors
contribute neurons to the lower cortical layers (V and VI) and to the SVZ, while the SVZ is the primary source of upper cortical layers (IV and
II/III; Tarabykin et al., 2001; Wu et al., 2005), but there is evidence for SVZ neurogenesis for all layers (Kowalczyk et al., 2009).
There is a degree of plasticity in the genetically programmed cell fate, where extrinsic signaling factors such as neurotrophins (including
nerve growth factor, brain-derived neurotrophic factor, neurotropin-3, and neurotrophin-4) can alter the differentiation of late generated
neurons (Fukumitsu et al., 2006). The degree of plasticity appears to decrease, and may be restricted (Desai and McConnell, 2000). There
are a number of examples where late born neurons may take on protein expression of early cortical layer subtypes, but still migrate to their
later cortical layer (Fukumitsu et al., 2006).

DIFFERENTIATION

Recent studies have elucidated a large number of molecules that are associated with specific cortical layers (Guillemot et al., 2006;
Molyneaux et al., 2007; Belgard et al., 2011), in some cases these genes (e.g., Satb2, Ctip2, Fezf2) appear to be involved in fate specification
of neuronal precursors, and are expressed in the proliferative zones at the time of layer birth and then continue in the differentiated neuronal
population (Alcamo et al., 2008; Britanova et al., 2008; Chen et al., 2008).
Full maturation of the cortex requires cellular differentiation, target connection, and strengthening.The majority of this process occurs in the
late embryonic and postnatal period in rodents. In humans it can continue into adolescence. The glutamatergic CP neurons will integrate
with the GABAergic interneurons into functional circuits (Fishell and Rudy, 2011).
The early steps of cerebral cortical circuit formation are orchestrated by subplate (Kostovic and Rakic, 1990). In mouse, subplate neurons are
a largely transient population of neurons that sit at the base of the CP, in layer VIb in the postnatal brain (Hoerder-Suabedissen et al., 2009).
The subplate forms the earliest cortical projections and appears to act as a scaffold for the establishment of connections with subcortical
structures, e.g., the thalamus (Allendoerfer and Shatz, 1994; Molnár and Blakemore, 1995). It has recently been hypothesized that these cells
have different roles in the brain depending on the developmental stage, and that earlier in telencephalic development the subplate is key
in guiding thalamic projections, while at later stages the remaining subplate cells may integrate more into cortical networks to orchestrate
the development of the ultimate cortical circuits (Kanold and Luhmann, 2010).

Frontiers in Psychiatry | Molecular Psychiatry June 2012 | Volume 3 | Article 50 | 2

http://www.frontiersin.org/Psychiatry
http://www.frontiersin.org/Molecular_Psychiatry
http://www.frontiersin.org/Molecular_Psychiatry/archive


Stolp et al. Etiology of neurodevelopmental disorders

Box 2 Progenitors of the developing cortex.

As the telencephalic vesicles expand from the neural tube the ventricular surface is composed of neuroepithelial progenitors. These cells
undergo symmetric proliferative divisions to increase the pool of progenitor cells (Breunig et al., 2011). They are considered to be neural
progenitor cells, as their daughter cells are able to produce a number of different cell types (reviewed in Pinto and Götz, 2007). However,
unlike other stem cell populations, the neuroepithelial cells are heterogeneous and appear to be restricted both in number of potential
divisions and the fate of daughter cells (Williams and Price, 1995; Gal et al., 2006; Lui et al., 2011). As the cortex develops, the proliferative
population in the ventricular zone undergoes changes.These changes include a slight loss of the apical-basal polarity that is so characteristic
of the neuroepithelial cells, and are considered to be required for the switch from proliferative to neurogenic divisions (Aaku-Saraste et al.,
1996; Lui et al., 2011).
A number of factors combine over a very short period of development to allow division to switch from symmetric, proliferative division to
asymmetric, neurogenic division (where one progenitor and one neuron are produced from a mitotic event; Sahara and O’Leary, 2009).The
division of the cell contents, and most particularly the apical polarity and adherence components, appears to be responsible for whether
division will be symmetric or asymmetric (Farkas and Huttner, 2008). Current evidence suggests that even distribution of the cell contents,
characterized by vertical mitotic division in the early developing cortex, is associated with symmetric, proliferative division. In comparison,
uneven distribution, visible by an angled or horizontal mitotic cleavage, is associated with asymmetric, neurogenic divisions (Zhong and
Chia, 2008; Fietz and Huttner, 2011).
Another factor that appears important for the switch from proliferative to neurogenic division is the length of the cell cycle.There is clear evi-
dence that radial glial progenitors undergoing neurogenic division have a longer G1 phase than neuroepithelial cells undergoing symmetric,
proliferative divisions, and that experimentally lengthening the G1 phase in neuroepithelial progenitors will induce neurogenesis (Hartfuss
et al., 2001; Lukaszewicz et al., 2002; Calegari et al., 2005; Wilson et al., 2011).
Once neurogenesis has started in the VZ, basal progenitor cells can also be observed in the SVZ. Basal progenitors have lost their apical
projections and undergo division at the basal margin of the VZ.They typically undergo symmetric, neurogenic proliferation and are regulated
by a different set of transcription factors, including Tbr2 (Noctor et al., 2004; Hevner et al., 2006).

behavior (Keverne, 2010). Maternal psychosocial stress has been

found to result in altered fetal weight, insulin resistance, meta-

bolic, immune and endocrine function, and decreased cognitive

performance (Entringer et al., 2010) which is likely to be mediated

through glucocorticoid exposure and regulation (Meaney et al.,

2007; Harris and Seckl, 2011). Hypoxia, while a normal part of pla-

cental vascularization, can become pathological in pre-eclampsia

(Redman and Sargent, 2005) or inflammatory conditions such as

malarial infection (Rogerson and Boeuf, 2007). Chronic intrauter-

ine hypoxia will result in reduced fetal growth and ischemic brain

damage (Redman and Sargent, 2005; Duncan et al., 2006; Roger-

son and Boeuf, 2007; Gunn and Bennet, 2009). Cytokines are also

a normal part of the regulatory system during pregnancy (Orsi

and Tribe, 2008), and like hypoxia, dysregulation of the cytokine

response locally or systemically has been associated with poor

fetal outcome (Orsi and Tribe, 2008). Chorioamnionitis is a well-

characterized maternal inflammatory condition, which increases

circulating cytokines and has been associated with developmen-

tal brain damage (Impey et al., 2001). There is clear evidence

that changes in fetal, rather than maternal, inflammation corre-

lates more reliably with severity of neurological outcome (e.g.,

Yoon et al., 2000). The contribution of the fetal environment to

neurological damage will be discussed below.

ROLE OF THE PLACENTA

Placental tissue is of trophoblast origin, but has maternal and fetal

compartments, based on the domains of circulating blood. The

umbilical arteries, veins, and the fetal capillaries make up the fetal

circulation, while the maternal blood enters the intervillous spaces

from the spiral arteries and exit via the uterine veins (Schoenwolf

and Larsen, 2009). The cells that border the intervillous space,

including syncytiotrophoblasts and cytotrophoblasts, provide a

barrier between the maternal and fetal circulation (Figure 1) that

change during pregnancy to meet the increased demand of the

growing fetus (Neerhof and Thaete, 2008). The placenta con-

tributes to many aspects of normal fetal development and early

life programming (Murphy et al., 2006), and has been shown

to contribute directly to early brain development by providing

morphogenic serotonin (Bonnin et al., 2011). Monoamine neu-

rotransmitters start to accumulate within the cortex from E17.5

through to P30 in the mouse (Cheng et al., 2010), 5-HT in par-

ticular at the earliest stages of this period. Knockout (KO) of the

monoamine oxidases has been shown to modulate proliferation in

the intermediate progenitor cells within the cortex at E17.5 and in

the progenitor cells within the SVZ at P2 and in the adult (Cheng

et al., 2010). Studies of Bonnin et al. (2011) suggest a new, direct

role for placental metabolic pathways in modulating fetal brain

development. Understanding such maternal-placental-fetal inter-

actions and 5-HT may hold the key to the understanding of the

etiology of some adult mental disorders.

Placental insufficiency has generally been retrospectively diag-

nosed following evidence of intrauterine growth restriction

(IUGR; Huppertz et al., 2006), and may partly explain the high

association between IUGR and brain dysfunction (Rees et al., 2008;

Raikkonen and Pesonen, 2009). Maternal inflammation, which

has also been clearly linked to brain damage in the developing

offspring, has been found to cause reduced placental blood flow

and may cause damage through a hypoxic as well as inflamma-

tory pathway (Girard et al., 2010). However, low-level continuous

inflammation in the fetus can cause brain damage without hypoxia

(Duncan et al., 2006). It is generally considered that the placenta

provides a barrier that prevents direct infection of the fetus (Ash-

down et al., 2006; Hutton et al., 2008). However, Dahlgren et al.

(2006) and Hsiao and Patterson (2011) have shown that maternally

produced IL-6 can be found in the fetal circulation and correlates

with long-term behavioral deficits in the offspring, suggesting that
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FIGURE 1 | Schematic illustration of the fetal environment and placental

structure. The fetus develops in the uterus isolated from the maternal

circulation through the materno-fetal barrier in the placenta. The maternal

blood enters the intervillous spaces from the spiral arteries. There is transfer

from the intervillous space across the placental barrier to the fetal capillary

network that joins the umbilical vessels. The syncytiotrophoblasts,

cytotrophoblasts, and connective tissue that make up the placental

membrane are the key structures of the placental barrier.

inflammation is still able to pass from the mother to the fetus

despite this barrier.

FETAL IMMUNE RESPONSE

There is extensive epidemiological and experimental evidence sug-

gesting that the presence of inflammatory mediators in the fetal

circulation, particularly those produced by the fetus, are the best

predictors of fetal brain damage (Yoon et al., 2000; Badawi et al.,

2006; Elovitz et al., 2011). The maturity of the fetal immune

response may therefore contribute to the outcome of mater-

nal/intrauterine insults. Circulating inflammatory cells, including

T-cells, B-cell, and macrophages, are produced as early as 7 weeks

in humans (approximately E10 in mice; Melchers, 1979; Solvason

and Kearney, 1992; Holt and Jones, 2000). However, T-cell precur-

sors, in particular, are functionally immature at this stage, which

may contribute to abnormally strong innate immune responses

to inflection (Haynes et al., 1988; Michaelsson et al., 2006; Zhao

et al., 2008). Antigen presentation is also impaired during devel-

opment, as major histocompatibility complex (MHC) class II

expression is reduced on antigen presenting cells (Jones et al.,

2002) although some accessory proteins may be expressed at adult

levels.

The liver bud is responsible for the production of acute phase

proteins, which occurs from E16 onward in the rat liver in response

to pro-inflammatory cytokines such as IL-6 (Thomas et al., 1990),

and some acute phase proteins (e.g.,α2-macroglobulin) are known

to be expressed already at E12 in the rat liver (Fletcher et al.,

1988). C-reactive protein (CRP) in humans is expressed, and

developmentally regulated, in preterm neonates with or without

placental inflammation (Leviton et al., 2011). CRP levels are specif-

ically associated with the severity of cortical growth retardation in

preterm children (Kaukola et al., 2009); other acute phase proteins

are associated with white matter damage (Leviton et al., 2011), but

the evidence for direct pathological effects of acute phase proteins

in cortical development is scarce. However, peptides homologous

to CRP and other acute phase proteins are known to play a role

in synaptic refinement in the developing cortex (Bjartmar et al.,

2006).

ENDOCRINE INTERACTIONS BETWEEN FETUS AND MOTHER

CNS glucocorticoid receptors and thyroid hormone receptors are

expressed from very early in development (Kitraki et al., 1996,

1997); although their level of expression is considerably less than

in adults. Cortical effects of both under- and overexposure to

glucocorticoids have been described in animal models, including

changes in CP size and maturity in a model of maternal adrenalec-

tomy on day 1 of pregnancy (Trejo et al., 1995), and stress during

pre- and postnatal life is associated with a wide variety of neu-

rological disorders (Cirulli et al., 2009; Harris and Seckl, 2011).

Glucocorticoids are intertwined with immune system function as

well, inhibiting inflammatory responses and cytokine expression.

Antenatal steroid use has been associated with reduced mortality
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and complications in preterm children (Whitelaw and Thoresen,

2000). However, multiple courses of steroids have also been associ-

ated with reduced brain growth, impaired myelination, and other

abnormalities (Whitelaw and Thoresen, 2000). There is substantial

epidemiological evidence to implicate hypothyroidism in devel-

opmental cognitive/behavioral deficits (Zoeller and Rovet, 2004;

Berbel et al., 2009) including impaired visuomotor skills, low IQ,

ADHD, cerebellar dysfunction, and hearing impairment (Ahmed

et al., 2008; Berbel et al., 2009; Patel et al., 2011). Estrogens have

also been implicated in embryonic neurogenesis, (Brinton, 2009),

with an E2 synthesizing enzyme found in the embryonic cortex

and the estrogen receptor-alpha is present on progenitor cells

during cortical neurogenesis (Martínez-Cerdeño et al., 2006). Fur-

thermore, E2 administration rapidly promotes proliferation, and

in utero blockade of estrogen receptors decreases proliferation

of embryonic cortical progenitor cells (Martínez-Cerdeño et al.,

2006).

VASCULAR DEVELOPMENT AND THE BRAIN BARRIERS

The cardiovascular system is the first to become functional in the

embryo (Brand, 2003). Due to its high metabolic demands, the

cortex receives profuse blood supply, which initiates as two plexi,

which progressively become less discrete and vascular density is

much more uniform in late gestation (Virgintino et al., 1998; Java-

herian and Kriegstein, 2009; Stubbs et al., 2009; Liebner et al., 2011;

Figure 2).

Angiogenesis is controlled by numerous soluble ligands and

their receptors, with some ligands (notably VEGF) playing differ-

ent roles depending on the stage of vessel development (for exten-

sive reviews see Hanahan, 1997; Gaengel et al., 2009; Quaegebeur

et al., 2010). Pericytes are recruited to the vessels via endothelial

platelet-derived growth factor (PDGF). The loss of pericytes leads

to abnormal capillary morphology and microaneurysms (Lindahl

et al., 1997). The developing vasculature is closely associated with

early neurogenic compartments in the telencephalon (Javaherian

FIGURE 2 | Development of vasculature in relation to cortical layering

and cell proliferation in the embryonic cerebral cortex. Left panel show

generalized schematic drawings of the developing cortical blood vessel plexi

at various embryonic (E14, 15, 18, P8) and adult stages. Initially, there are two

dense plexi in the germinal zone (VZ and SVZ) and CP, connected by tangential

blood vessels. By E15, a few blood vessels tangential to the pial surface start

to appear in the intermediate zone (IZ), but this region remains relatively less

vascularized compared with the plexi in the VZ/SVZ and the CP. At E18, toward

the end of the neurogenesis, the ventricular plexus has lost much of its

definition; and by P8 and adulthood, a more homogeneous structure with

many small parenchymal arteries is present. MZ, marginal zone; SP, subplate;

I–VI represent cortical layers in adult. (A) Association of SVZ blood vessels to

mitotic profiles in developing cerebral cortex and ganglionic eminence in an

E14 brain. Blood vessels (revealed with IB4-green) and the mitotic profiles

(revealed with pH3-red immunoreactivity) on a low power image of a sagittal

section through the cortex. Scale bar = 400 µm. CTX = Cerebral cortex.

(B) Higher magnification of the area indicated by the rectangle in A, illustrate

examples of dividing intermediate progenitor cells (pH3+Tbr2+) that are in

close proximity to the cortical vascular plexi (IB4+). Scale bar = 50µm.

Modified from Stubbs et al. (2009) and Nie et al. (2010).
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and Kriegstein, 2009; Stubbs et al., 2009; Nie et al., 2010; Figure 2),

and many signaling molecules are shared between these developing

systems (discussed below).

The CNS vasculature features the added complexity of the

blood-brain barrier (BBB) (Figure 3A), which is required for ionic

and neurotransmitter homeostasis, protection from neurotoxic

agents, and selective provision of nutrients (Neuwelt et al., 2011).

The BBB involves both tight junction formation (the failure of

which critically impairs BBB function; Nitta et al., 2003), as well as

reduced vesicular transport and a specific asymmetric polarity of

endothelial transporter expression, e.g., GLUT-1 (Dobrogowska

and Vorbrodt, 1999). There is evidence that the first penetrating

intraneural capillary (at E10) showed no fenestrations and junc-

tional complexes between endothelial cells (Bauer et al., 1992) and

are impermeable to even very small molecules (Ek et al., 2006).

The brain is also separated from the external environment by the

arachnoid barrier on the surface of the brain and the epithelial bar-

rier at the choroid plexus (Figure 3C), which are also present early

in development (Ek et al., 2001, 2003, 2010; Johansson et al., 2005)

suggesting a functional barrier and protective system. The compo-

sition of the cerebrospinal fluid (CSF) is different in the developing

brain compared to the adult (Dziegielewska et al., 1981), which

appears to be due to a developmentally regulated specific trans-

fer mechanism across the choroid plexus epithelial cells (Habgood

et al., 1992; Liddelow et al., 2009, 2011) that is important for nor-

mal brain development (Johansson et al., 2008, discussed in more

detail below).

Disruption of the BBB has been identified in an age-specific

manner following both systemic and centrally induced inflam-

mation. Interestingly, the window of susceptibility appears to be

different for these, depending on the site of inflammatory stim-

uli. Systemic inflammation caused by LPS injection produces

FIGURE 3 | Schematics of the brain barriers. Barrier interfaces in the brain

are indicated in blue in the schematic diagrams of the blood-brain barrier,

blood-CSF barrier, meningeal barrier, and fetal CSF-brain barrier. The primary

site of the blood-brain barrier (A) is the endothelial cells of the cerebral blood

vessels (E), supported by pericytes (P) and astrocytic endfeet (Ae). In the

choroid plexus (B) the epithelial cells (Ep) are the barrier interface of the

blood-CSF barrier, as the endothelial cells in the stroma are fenestrated. The

meningeal barrier (C) is at the boarder of the arachnoid membrane (Arach) and

the subarachnoid space (SAS). The fetal CSF-brain barrier (D) exists during

early development, at the endfeet of the radial glial progenitors. This forms a

barrier between the CSF and the developing parenchyma. Modified from

Saunders et al. (2008).
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disruption of the BBB in white matter tracts in the first postna-

tal week in rats (Stolp et al., 2005), whereas IL-1β in the striatum

produces a substantial increase in barrier permeability in juvenile

animals, but not neonates or adults (Anthony et al., 1997). Previ-

ous work (Stolp et al., 2005) suggests that the blood-CSF barrier

(Figure 3B) does not have an altered permeability following sys-

temic inflammation, however it has been hypothesized that the

function of the choroid plexus epithelial cells may change, altering

the composition of the CSF (discussed below).

TELENCEPHALIC ENVIRONMENT DURING PROLIFERATION,

MIGRATION, AND DIFFERENTIATION

The environment surrounding the developing brain is, therefore,

complicated and the different developmental timetables for organs

and regulatory systems can interact to cause variation in brain

development. The environment within the developing brain can

be described in a similar manner. Many different cell types are

produced within the brain and need to differentiate, migrate, and

integrate effectively to produce normal brain function.

VASCULAR REGULATION AND NEUROGENIC NICHE

The developmental control of the vasculature goes hand-in-hand

with neurogenesis in the brain. There is clear evidence that angio-

genesis follows morphogenic factors such as Dlx1/2, Nkx2.1, and

Pax6 to produce a ventricular vascular plexus that develops in

a ventral-dorsal gradient (Vasudevan et al., 2008). This plexus

extends in the dorsal telencephalon as the SVZ is established

(Vasudevan et al., 2008), and it appears that progenitors within

the SVZ exist within a neurogenic vascular niche (Javaherian and

Kriegstein, 2009; Stubbs et al., 2009; Nie et al., 2010) that has

also been well established in the adult brain (Shen et al., 2008).

There are many similarities and interconnections between cardio-

vascular and cortical development. For instance, the outgrowth

and alignment of blood vessels relies on molecular signals such

as semaphorins and netrins, cues also used within the develop-

ing nervous system (reviewed by Larrivee et al., 2009). One clear

example is VEGF, which is known to be crucial in vascular devel-

opment (Carmeliet et al., 1996) but some isoforms also regulate

proliferation in the neuroepithelium (Darland et al., 2011).

CEREBROSPINAL FLUID

The CSF in the developing brain plays an important role in cere-

bral expansion (Gato and Desmond, 2009). CSF is secreted by

the choroid plexus, which develop from as early as E12 in the rat

(Dziegielewska et al., 2001). The primary role of the choroid plexus

is to secrete and control the composition the CSF and the cellular

mechanisms for CSF secretion, such as aquaporin expression, are

established from the day of choroid plexus appearance (Johansson

et al., 2005). The choroid plexus regulates the protein composi-

tion in the CSF by either production (e.g., TTR, Igf2; Dickson

et al., 1986; Hynes et al., 1988; Southwell et al., 1993) or specific

transfer from the blood (Habgood et al., 1992; Johansson et al.,

2006; Liddelow et al., 2009), which result in their high concen-

tration within the CSF during early development (Dziegielewska

et al., 2001; Johansson et al., 2008). It has been well established that

the high protein content of developmental CSF is important for

cortical expansion (Gato and Desmond, 2009), but initial exper-

iments only assessed this in terms of providing an osmotic force

for ventricular, and therefore cortical, expansion. However, recent

experiments have confirmed that proteins within the CSF interact

with receptors on the ventricular surface and regulate prolifera-

tion within the VZ (Martin et al., 2006; Lehtinen et al., 2011).

The generally high CSF protein concentration decreases in the

rat at approximately E17 (Johansson et al., 2008), but it is likely

that specific proteins within in the CSF still occur at high concen-

trations during the embryonic period and continue to influence

neurogenesis (e.g., Igf2; Lehtinen et al., 2011).

MICROGLIA

Linage tracing has been used to demonstrate that microglia are

derived from the systemic progenitors and migrate into the brain

around E9.5 in the rodent (Ginhoux et al., 2010). Microglia slowly

increase in number within the brain, with higher distribution

density within the meninges and the VZ/SVZ border followed by

increasing density in the CP as gestation continues (Antony et al.,

2011). Microglia are considered to play a role during these early

stages of development in supporting the proliferation of prog-

enitors within the cortex. While depletion of microglia from the

developing brain in PU.1−/− mice (McKercher et al., 1996) is asso-

ciated with grossly normal cortical development up to E16 (when

animals die due to hematopoietic dysfunction) there is some evi-

dence that there is decreased cortical proliferation in the absence

of microglia, which ultimately leads to a reduction in astrocyte

numbers (Antony et al., 2011). At an equivalent stage of develop-

ment, altered microglia function, by a loss-of-function mutation

in the DAP12 gene, also provides evidence that microglia affect

neuronal maturation and later synaptic formation and function

(Roumier et al., 2008).

In the fourth phase of telencephalic development there is a

massive increase in the number of microglia (up to 20-fold) that

can be specifically observed with an amoeboid phenotype within

white matter tracts (Prinz and Mildner, 2011). Microglia slowly

spread through the entire CNS throughout the postnatal period

and take on a “resting,” ramified phenotype (Hristova et al., 2010).

During this period, when microglia have previously been con-

sidered to be static, there is evidence that they play a role in

synaptic pruning and may be important for aspects of struc-

tural reorganization associated with LTP and LTD (Schlegelmilch

et al., 2011). Recently, microglia have been shown to engulf and

eliminate synapses during development (Paolicelli et al., 2011).

Microglia activation is considered a natural step in elimination of

juvenile connections, e.g., in the corpus callosum or during normal

formation of the barrel cortex (Berbel and Innocenti, 1988; Maki

Hoshiko, Nobuhiko Yamamoto and Etienne Audinat et al., unpub-

lished), and has been demonstrated in pathological neural activity

(Avignone et al., 2008) both are highly suggestive of functional

involvement in cortical circuit remodeling. There is evidence that

the chemokine fractalkine (CX3CR1) is important in mediating

microglial synaptic pruning. In KO mice unable to produce the

fractalkine receptor (Cx3cr1KO) there is a decrease in microglial

densities in developing brain regions and newborns had an excess

of dendritic spines and immature synapses, although these changes

were found to be transient (Paolicelli et al., 2011). Interestingly,

mice lacking functional Hoxb8 (a transcription factor that is

involved in the development of the hematopoietic system) exhibit
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obsessive grooming behavior, which is linked to the loss of the

Hoxb8 microglial population in the brain (Chen et al., 2010). This

provides a novel link between microglia and behavioral evidence

of neuropathology.

ASTROGLIAL DEVELOPMENT

During stage 3 of telencephalic development, there is a switch

from neurogenesis to gliogenesis (Figure 4). Experiments using

fluorescence-activated cell sorting and time-lapse microscopy

show radial glia can generate astrocytes as well as neurons (Malat-

esta et al., 2000; Noctor et al., 2004; Box 2). The neuron to glia

switch is reliant on both cell-intrinsic and extracellular cues. Early

in forebrain development the promoters of GFAP and S100B are

methylated, ensuring astrocyte development is repressed (Juliandi

et al., 2010). Demethylation increases the sensitivity to extracel-

lular cues such as developmental cytokines (Molne et al., 2000;

Juliandi et al., 2010). Neurons are known to secrete cytokines

involved in gliogenesis, particularly members of the IL-6 family:

LIF, CNTF, CT1 (Juliandi et al., 2010). Embryonic cortical neurons

can regulate the onset of cortical gliogenesis via cardiothrophin-1

(Barnabe-Heider et al., 2005). This is a neural feedback mech-

anism whereby newly born neurons can instruct precursors to

generate astrocytes via the secretion of cytokines, ensuring that

gliogenesis does not occur until after neurogenesis. The use of

cytokines in regulating the development of glia leaves the pos-

sibility that gliogenesis can be disrupted by additional cytokine

production following an environmental insult such as perinatal

inflammation.

Following astrocyte specification, precursors migrate to their

final positions where they begin the process of terminal differ-

entiation. Astrocytes initially migrate tangentially along white

matter tracts and then move in a radial direction in the gray

matter (Jacobsen and Miller, 2003). The major waves of rodent

CNS synaptogenesis occur during the first 2–3 weeks of postna-

tal life and astrocytes are known to secrete molecules that induce

synapse formation (Christopherson et al., 2005; Kucukdereli et al.,

2011). Their influence on synaptic function might be stage-specific

and modulate well described periods of developmental plasticity.

The early experiments by Müller and Best (1989) demonstrated

that the transplantation of astrocytes from the visual cortex of

newborn kittens into the visual cortex of adult cats reinstalls

ocular-dominance plasticity in adult animals.

OLIGODENDROCYTES

Oligodendrocyte precursors are produced from three different

waves of division, from different progenitor populations, primar-

ily in the third and fourth phases of telencephalic development.

The majority of oligodendrocyte precursors originate from the

FIGURE 4 | Pattern of telencephalic development. Schematic

indicating the increasing complexity of the brain over time. Initially

proliferation occurs to increase the size of the progenitor pool (phase 1 of

telencephalon development). As neurogenesis starts, vascular plexi,

supported by pericytes, form and microglia infiltrate the brain. A second

proliferative zone in the SVZ forms. Neurons migrate and differentiate

into cortical layers in an inside out manner during phase 2 and 3 of

development. In phase 4 of development, gliogenesis occurs in the

dorsal and ventral telencephalon. GABAergic interneurons increase their

migration into the cortex. There is vascular remodeling and a maturation

and integration of connections between neurons, supported by the

micro and macroglia.
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ventricular zones in the ganglionic eminences of the ventral telen-

cephalon, a brain region that is also responsible for the production

of interneurons (see below). Two prenatal waves of production

occur from this zone in the rodent, with the oligodendrocyte

precursors migrating to the cortex before full maturation and

myelination occurs. A third, postnatal, wave of production occurs

in the dorsal ventricular zone after the completion of neurogenesis

(Kessaris et al., 2006). In both proliferative zones oligodendrocyte

precursors are produced as part of a fate restriction of the neural

stem cells that occurs by a largely epigenetic regulation (Liu and

Casaccia, 2010). The cross-talk that occurs between transcription

factors, which is regulated by DNA methylation or acetylation,

provides an initial support for astroglial genesis, that switches to

support oligodendrogenesis over the developmental period (Liu

and Casaccia, 2010; Rivera et al., 2010). In both the ventral and

dorsal telencephalon,Wnt signaling has been implicated in activat-

ing oligodendrogenesis over the previous astroglial or interneuron

proliferative fates (Langseth et al., 2010; Zhong et al., 2011).

INTERNEURONS

Approximately 25% of cortical neurons are inhibitory GABAergic

interneurons, which arise from precursors in the subpallium and

tangentially migrate into the developing neocortex (Wonders and

Anderson, 2006). The rodent interneurons arise mainly from the

ganglionic eminences (Lavdas et al., 1999; Wichterle et al., 1999;

Anderson et al., 2001; Jimenez et al., 2002; Nery et al., 2002), from

approximately E12.5 until birth (Flames and Marín, 2005). There

is considerable evidence that rodent models do not accurately

reflect the complexity of the primate cortex, which likely receives

interneurons from the ventricular zone, SVZ and subpial granular

layer in addition to the GE (Letinic and Rakic, 2001; Letinic et al.,

2002; Wonders and Anderson, 2006; Jones, 2009; Petanjek et al.,

2009). However, this issue in human is not yet resolved (Clowry

et al., 2010; Hansen et al., 2010). The establishment of interneuron

networks in rodents begins a few days before the glutamatergic net-

work and continues until postnatal life (Cossart, 2011). The origin

of interneurons, both in terms of their birth date and region of ori-

gin, contributes to determining their electrophysiological proper-

ties and neurochemical characteristics (Butt et al., 2005). Birth date

and phenotype also predict the laminar fate of interneurons in the

rat (Rymar and Sadikot, 2007). Interneuron migration is thought

to be induced by motogenic factors such as neurotrophins and

hepatocyte growth factor; the pattern of interneuron migration

is established by a variety of chemoattractive and chemorepulsive

cues, including stromal-derived factor 1, neuregulins, slit proteins,

and ephrins (Hernandez-Miranda et al., 2010). The correct inte-

gration of interneurons during CNS development is essential for

normal coordinated brain function. Epilepsy and schizophrenia

are two neurodevelopmental conditions that occur, at least in part,

as a result of interneuron dysfunction (discussed below).

CAUSES OF TELENCEPHALIC INJURY

It is clear that many elements contribute to a fully functional

central nervous system, and that dysfunction in one can have

widespread consequences, however establishing etiology of neu-

rodevelopmental disorders has been difficult (see Box 3). Genes

that have been associated with these conditions typically have low

penetrance and may confer risk for a number of distinct clini-

cal conditions. Likewise, a wide number of environmental insults,

such as inflammation and hypoxia, have been indicated by epi-

demiological studies to contribute a small but significant risk

to many neurological and mental disorders. Gene-environment

interactions or other forms of confounding insults, along with

the developmental windows of susceptibility are now a focus of

current research aiming to explain these observations.

TWO-HIT HYPOTHESIS AND WINDOW OF VULNERABILITY

A “two-hit” hypothesis has been put forward in a number of dis-

eases where onset of disease cannot clearly be linked to a specific

genetic or environmental insult. In diseases such as schizophrenia

and autism, there is evidence for both genetic contributions and

environmental insults, but neither one accurately predicts disease.

Support for a two, or multiple, hit etiology for these diseases is

particularly strong as limited clear neuropathology has been iden-

tified that can be linked to one specific genetic or environmental

insult. Instead, a wide variety of broadly linked functional systems

are effected, including genes involved in synapse formation, cell–

cell signaling, and trophic pathways, and injury widely affecting

GABA, dopaminergic, and glutamatergic transmission (Maynard

et al., 2001). It has been hypothesized that the first hit in schiz-

ophrenia may affect neurogenic and cell specification pathways,

such as Notch, while the second hit may have a greater effect on

functional integration (Maynard et al., 2001).

The term two-hit hypothesis has also been used to describe the

increased deficit caused by two or more low-level cytotoxic insults,

which combine to produce greater long-term damage. In a basic,

proof of principal study, Genetta et al. (2007) have shown an addi-

tive cytotoxic effect of low dose alcohol and hypoxia exposure in

primary neuron cultures. There have also been many studies show-

ing that inflammation combined with hypoxia can cause increased

neurological injury. Inflammation induced by lipopolysaccharide

injection 4, 6, or 72 h prior to hypoxic-ischemic injury has been

found to significantly increase infarct size in postnatal day 7 rats

(Eklind et al., 2001, 2005). Prenatal LPS exposure has also been

associated with increased sensitivity to later hypoxic insult in the

immature brain (Larouche et al., 2005). However, the mechanism

of this sensitivity is confused, and may be due to the priming of

the immune cells (Williamson et al., 2011; Bilbo et al., 2012). In

comparison, inflammation as a first hit in schizophrenia is pre-

sumed to cause long-term changes in brain structure or function

that occur at a subclinical level and are exposed by a second hit

in later life (Meyer et al., 2005, 2006; Fatemi et al., 2008; Meyer

and Feldon, 2009). Interestingly, there is also some evidence that

insults during early life may contribute to neurodegenerative dis-

ease later in life. For example, inflammation during embryology

(E10.5 in the mouse) results in loss of dopaminergic neurons in the

basal ganglia, and increased sensitivity to the 6-hydroxydopamine

neurotoxin later in life (Ling et al., 2002, 2004). This substantial

decrease in dopaminergic neurons may also increase the suscepti-

bility of affected individuals to “normal” age-induced cell loss, and

may account for cases of extremely early onset Parkinson’s disease.

The mechanism by which environmental insults such as inflam-

mation/hypoxia and genetics combine in neurodevelopmental

disease will be discussed below. It is also important to consider
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Box 3 Diagnosis and experimental tools.

EPIDEMIOLOGY

Epidemiological studies linking prenatal insult with later neurodevelopmental disorders are subject to many difficulties, including the lim-
itations of retrospective assessment of possible exposure to insult, and the years to decades elapsed between gestational insult and
disease diagnosis. Early studies assessing the association between influenza and schizophrenia are an example of these difficulties, as
assessments were made based on potential exposure to influenza during gestation (i.e., occurrence of an influenza epidemic during the
pregnancy), rather than the actual presence of maternal infection (Brown and Derkits, 2010). More recent studies, that have utilized medical
records and analyzed available blood samples, have found a significant risk of schizophrenia following inflammation in the first and second
trimester of pregnancy. With conditions such as cerebral palsy, the successful outcome of epidemiological studies is more attainable. Due to
the relatively early age of clinical diagnosis, as well as multiple neuropathologies that can be identified with imaging technology, it is possible
for studies such as the ELGANS study (O’Shea et al., 2009; Leviton et al., 2011) to determine the links between multiple environmental
insults, extreme prematurity, and risk of developing cerebral palsy or mental retardation in large cohort groups with well-defined assessment
criteria.

IMAGING

Imagining modalities have been utilized to provide a whole brain view of neurodevelopmental disorders. The results from these studies,
while advantageous, highlight the difficulty of determining the etiology of these disorders (Anagnostou and Taylor, 2011). Changes in the
brain are generally subtle, requiring extensive group comparison with carefully controlled age-matched groups, and the origins of changes
in signal are generally difficult to determine. For example, progressive loss of cortical gray matter is observed in cases of child-onset schiz-
ophrenia, but from MRI images it is currently difficult to determine whether these changes are of neuronal origin (e.g., increased synaptic
pruning), or are due to changes in astrocytes, vasculature, or myelination of the affected cortical regions. Histological comparisons from
autopsy may partly aid this analysis, although in the case of schizophrenia samples are generally late-stage disease and confounded by a
variety of treatment and life-style choices (Toga et al., 2006). However, imaging techniques such as MRI, PET, and photo-acoustic ultrasound
are now available with good resolution for small animals.The use of these together with standard histological assessments may allow links
to be made between the structure and function of the brain in animal models and equivalent human clinical conditions.

BEHAVIOR

Deciphering how risk factors act on brain development that result in altered circuits, and subsequently influence the behavioral symptoms,
is the real challenge of psychiatric research. Endophenotype is a psychiatric concept to divide behavioral symptoms into more stable pheno-
types with a clear genetic connection. However, the involvement of distinct genes, which could underlie certain endophenotypic traits, in
neural development is very often not known. Systematically examining the composition, morphology, connectivity of the brain is very rarely
linked up to particular structure or cell types that make up circuits underlying behavioral endophenotypes in animal models. Nevertheless,
animal models of behavior will remain valuable tools for the investigation of altered brain circuits (Amann et al., 2010).

the timing of insult in relation to the stages of brain development.

The term “window of vulnerability” is commonly used when con-

sidering developmental neurological injury. However, it is not yet

clear if this vulnerability is intrinsic to specific periods of develop-

ment (e.g., proliferation or synapse formation), and therefore may

move from region to region along with the normal developmen-

tal gradients of these processes. Alternatively, it has been suggested

that different cells may become selectively vulnerable to damage as

a result of the different intrinsic maturation process. An example

of this are subplate neurons, which are thought to have increased

vulnerability to injury in the prenatal human due to an early birth

date and therefore earlier maturation of glutamate receptor pop-

ulations (Furuta and Martin, 1999; Talos et al., 2006; Nguyen and

McQuillen, 2010). This leads to increased sensitivity to excitotox-

icity at a time of development where there is an increased risk of

hypoxic-ischemic injury.

Cerebral palsy provides an example of the consequence of the

stage of brain maturity at the time of insult on subsequent neu-

ropathology. Injury at term, e.g., umbilical cord asphyxia during

delivery, causes cerebral palsy with a typical pattern of gray mat-

ter loss, as well as damage to the hippocampus and cerebellum.

Whereas preterm injury, leading to cerebral palsy, is generally

associated with white matter and subcortical gray matter dam-

age (Gunn and Bennet, 2009; Volpe, 2009). There are a few

confounding maturation steps that underlie these differences in

regional damage. White matter is beginning to be myelinated in the

preterm period in humans, and specific populations of precursor

oligodendrocytes have been shown to be particularly susceptible

to damage, which corresponds to this period. In contrast, areas

of term damage are typically described as “watershed” damage,

indicating that these brain regions are at the edge of the vascu-

lar zones, therefore increasing susceptibility to hypoxic damage

(Gunn and Bennet, 2009; Volpe, 2009). In preterm white matter,

similar watershed regions have been suggested due to the pat-

tern of vascular development, however, it was determined that

differences in vascular blood flow could not account for the differ-

ent magnitude of damage in the region (McClure et al., 2008).

Therefore, the different patterns of damage have been associ-

ated with selective sensitivities of developing cells at the time

of insult. This is an example whereby different insults, at differ-

ent stages of brain development can cause distinct, but related

neuropathologies which contribute to the one clinical diagnosis.

GENETICS

The genetic regulation of brain development is extremely compli-

cated, with a wide number of genes regulating proliferation and

differentiations states, as well as more subtle aspects of neurolog-

ical function, such as signaling pathways and receptor function.
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Altered neurological development leads to a variety of subtle or

complicated behavioral dysfunctions, from slight mental retarda-

tion to gross motor and cognitive deficits. A number of genetic

variants have been associated with these general disorders, as

well as specific neurodevelopmental diseases. For example, a large

number of gene variants associated with increased risk of autism

spectrum disorders (ASDs) have a wide range of functions in

the central nervous system and are associated with a variety of

other neurological disorders (Aldinger et al., 2011). Congenital

neurological disorders due to genetic variation may have a sub-

tle neuropathology, such as for autism, or may be associated with

gross changes in the brain, such as for microcephaly.

Primary recessive microcephaly affects approximately 1:10,000

people, and is classified based on small brain size and altered

gyrations of the cerebral cortex (either lissencephaly or polymicr-

ogyria) that are present at birth (Abuelo, 2007). The genetic basis

of this condition has been clearly linked to a number of mutations

that all affect neural progenitors (Buchman et al., 2011; Mahmood

et al., 2011; Poulton et al., 2011). The function of the abnormal

spindle microcephaly (APSM) gene may occur directly through

the regulation of the mitotic spindle and indirectly by modulating

the Wnt signaling pathway (Buchman et al., 2011). Tbr2 is another

gene that normally regulates proliferation within the developing

cortex, where gene manipulation has been associated with micro-

cephaly in experimental models (Arnold et al., 2008; Sessa et al.,

2008) and in clinical cases of microcephaly in humans (Baala et al.,

2007).

Inhibitory transmission is crucial for normal cortical func-

tion and its defects are associated with a variety of neurological

and psychiatric disorders, including autism (Levitt, 2005), schiz-

ophrenia (Lewis et al., 2005), and epilepsy (Noebels, 2003). The

pathobiology of schizophrenia remains poorly understood, but

genetic and anatomical studies are beginning to indicate the com-

plicated neuropathology. Recently identified epigenetic changes

in GAD67 and reelin genes support the GABAergic hypothesis

of schizophrenia (O’Connell et al., 2011). Post-mortem studies

have also revealed reductions in inhibitory neurotransmission

markers in schizophrenics (Volk et al., 2000); although this may

not be the case in all subjects and modern hypotheses focus on

abnormal interneuronal connectivity rather than simply insuf-

ficient numbers of cells (Marín, 2012), these observations are

nonetheless suggestive of developmental abnormalities (Harrison

and Weinberger, 2005). For instance, Disrupted in Schizophre-

nia 1 (DISC1) mutations are known to cause familial schizo-

phrenia (Millar et al., 2000). DISC1 appears to function in cell

migration among other pathways, as mouse models with DISC1

inhibition show reduced migration of both developing pyrami-

dal cells (Kamiya et al., 2005) and MGE-derived interneurons

(Steinecke et al., 2012). Neuregulin 1 (NRG1) and its receptor

ErbB4, both schizophrenia risk genes (Stefansson et al., 2002,

2003), are also involved in migration: ErbB4 mutant mouse

cerebellar cultures exhibit reduced granule cell migration along

radial glia (Rio et al., 1997) and electroporations of dominant-

negative ErbB4 into the MGE prevent migration to the cortex,

whereas heterologous expression of NRG1 induces migration

toward the expressing cells in vitro and in vivo (Flames et al., 2004).

There are numerous other examples of development-related

schizophrenia risk gene such as Tcf4 and CNTNAP2 (Blake

et al., 2010). However, as most risk-conferring polymorphisms

are intronic, their functions and relevance to disease mecha-

nisms are not well characterized. Moreover, DISC1 has not been

demonstrated to have significant association with schizophre-

nia in genome-wide association studies (GWAS). It is likely that

there are numerous endophenotypes in schizophrenia with dif-

ferent underlying genetic causes, but these have not yet been well

defined.

One of the GWAS results for schizophrenia has been the

MHC region (Stefansson et al., 2009), suggesting the involve-

ment of immune mechanisms in the pathogenesis. This in con-

junction with the well-documented risk conferred by maternal

infections and behavioral abnormalities in animal models (Patter-

son, 2009) would support an underlying immunopathology, but

the GWAS results implicating MHC genes have been criticized

for using intergenic single-nucleotide polymorphisms (SNPs) in

many cases – although the SNPs are assumed to be in linkage

disequilibrium with the encoded genes, this cannot exclude non-

coding RNA involvement in schizophrenia; moreover, the genic

SNPs that have shown significant associations have not been thor-

oughly characterized in terms of their function (Gejman et al.,

2011). Associations have also been found between schizophre-

nia and the pro-inflammatory cytokines interleukin 1β (Xu and

He, 2010), interleukin 6 (Paul-Samojedny et al., 2010), and the

anti-inflammatory interleukin 10 (Bocchio Chiavetto et al., 2002),

further supporting the involvement of inflammatory pathways,

even if the pathomechanisms through which these alleles influence

disease development are obscure.

Autism spectrum disorders share some of the problems of

schizophrenia: numerous preliminary gene associations have not

been replicated, and the pathobiology is uncertain and likely to

be heterogeneous. In this case, the evidence for a developmen-

tal defect is much clearer, given its early onset. This is reflected

in the functions of implicated genes. For instance, neuroligin

4 was identified in a family with X-linked mental retardation

and autism (Laumonnier et al., 2004). Neuroligins are thought

to function in presynaptic development, and they interact with

neurexins to regulate postsynaptic development (Dean and Dres-

bach, 2006) – neurexin 1 has also been associated with ASDs

(Kim et al., 2008) and schizophrenia (Rujescu et al., 2009),

consistent with hypotheses of abnormal synaptic development

in these disorders. Copy number variations and mutations in

SHANK2 and SHANK3, synaptic scaffolding genes, have been

linked to ASDs (Durand et al., 2007; Berkel et al., 2010), as

have K+ channel regulation associated genes such as DPP6 and

DPP10 (Marshall et al., 2008), all indicative of synaptic dysfunc-

tion in autism. Cell migration pathways have been implicated by

a genome-wide study for copy number variations, which pro-

duced significant results for cell adhesion genes with presumptive

migratory functions including ASTN2 (Glessner et al., 2009).

CNTNAP2, another ASD risk gene (Arking et al., 2008), has

also been characterized as crucial for normal neuronal migra-

tion: CNTNAP2−/− mice show behavioral abnormalities, ectopic

neurons in the corpus callosum (indicative of defective migra-

tion) and reduced numbers of GABAergic interneurons among

other abnormalities (Peñagarikano et al., 2011). MeCP2, the gene
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affected in Rett syndrome featuring autism and other devel-

opmental defects, also impairs GABAergic transmission: mice

exhibit behavioral defects suggestive of ASD in both full KOs

and interneuron-specific KOs of MeCP2 (Chao et al., 2010).

Overall, it can be concluded that both autism and schizophre-

nia share developmental origins and synaptic dysfunction as their

main pathways, but these are not independent of environmental

influences (Harrison and Weinberger, 2005; Bill and Geschwind,

2009).

In autism and schizophrenia, immune regulating gene vari-

ants have also been heighted as disease risk factors. In particular

there are multiple lines of evidence linking variants in DRB1 alle-

les of the human leukocyte antigen (HLA) with both of these

neurodevelopmental conditions (Crespi and Thiselton, 2011). It

is hypothesized that these genetic variants contribute to disease

ontology through modulation of the normal immune signaling in

brain development. Inflammation during pregnancy has also been

linked to both these neurological disorders in epidemiology (see

below), indicating that genetic and environmental variations can

affect normal development, and leading to disease pathology.

INFLAMMATION

A variety of genes with known roles in the immune system have

recently been found in progenitor cells in the developing cortex.

Toll-like receptors are a group of pathogen recognition receptors,

that respond to bacteria (e.g., TLR2 and TLR4) and viral (e.g.,

TLR3) presence (Medzhitov, 2007). These receptors mediate a pro-

inflammatory response through NF-κB, and have also been found

to be activated by tissue damage. Two recent studies have shown

the constitutive expression of TLR2 and TLR3 in progenitor cells

within the ventricular zone in early and intermediate telencephalic

development (Lathia et al., 2008; Okun et al., 2010). In both cases

activation of the receptor causes a decrease in proliferation, but

in the case of TLR2 the absence of the constitutive presence, in

TLR2−/− mice, does not affect proliferation or differentiation of

progenitors (Okun et al., 2010), while in TLR3−/− mice there is an

increase in proliferation in the VZ and SVZ (Lathia et al., 2008).

The presence of these and other inflammatory mediating recep-

tors in the neural progenitor cells provide a potential mechanism

for recent observations of inflammatory induced damage to the

developing brain. Many studies have shown behavioral changes

following maternal immune activation during early gestation. The

pathology underlying these behavioral changes has been unclear;

however, our recent study has shown that maternal inflammation

induced at in the early phases of telencephalic development causes

decreased proliferation in the VZ (Stolp et al., 2011; Figure 5).

Part of the mechanism for this may be the activation of the TLRs,

although this interaction has not yet been described. What has

been reported is a decrease in β-catenin at the ventricular surface

(Stolp et al., 2011), which may also contribute to the decreased pro-

liferation in this model, and suggests that a complex interplay of

many factors that normally regulate proliferation may be affected

by maternal inflammation. Interestingly, the maternal inflamma-

tory response that produces reduced ventricular proliferation at

E13.5 in the mouse does not appear to significantly affect the pro-

liferation of basal progenitors within the SVZ (Stolp et al., 2011;

Figure 5). This suggests that the regulation of proliferation in the

SVZ may be different from the VZ, or that the mechanism of entry

of inflammatory molecules into the brain may selectively affect

one population and not the other. The basal progenitors in the

SVZ are closely associated with the blood vessels that make up

the ventricular vascular plexus in early development, while the VZ

progenitors have close contact with the CSF in the ventricular sys-

tem. In the adult brain, systemic inflammation has been found

to alter transcription of acute phase proteins and adhesion mole-

cules in the choroid plexus and there is an increase in interleukin-6

and the chemokine CCL2 in the CSF (Marques et al., 2009). It is

possible, though currently unstudied, that systemic inflammation

may also cause increased cytokine levels in fetal CSF that directly

regulate proliferation in the VZ.

An alternative mechanism for inflammatory regulation of prog-

enitor proliferation is a modification in the normal function

of microglia. The work of Roumier et al. (2008) suggests that

inflammatory activation has the same effect as microglial loss-

of-function in the DAP12KI mouse. They provide evidence to

suggest that the loss-of-function mutation actually causes minor

activation of the microglia and cytokine production that modu-

lates neuronal function, which can be recapitulated at E15 in the

mouse by induced maternal inflammation. In the developing brain

microglia have a typically amoeboid morphology associated with

their entry from the systemic circulation and subsequent differen-

tiation. It has been hypothesized that this morphology conveys a

reactive phenotype and that inflammation or injury in the devel-

oping brain may be more severe than in the adult brain, where

microglia need to be reactivated from a “resting” state. At later

stages of brain development inflammation has been associated

with interneuron dysfunction. For instance, neonatal exposure

to LPS is associated with reduced parvalbumin immunoreactiv-

ity in the CA1–CA3 region (but not the prefrontal cortex) with

later defects in object recognition (Jenkins et al., 2009), and viral

infection at P4 can cause a gradual loss of hippocampal interneu-

rons (Pearce et al., 2000). Such changes can have an indirect effect

on the cortex: one recent study showed that neonatal intrahip-

pocampal LPS in rat increases cytokine expression in the adult

hippocampus and cortex, impairs dopaminergic modulation of

prefrontal interneurons and causes a deficit in prepulse inhibi-

tion (Feleder et al., 2010). Inflammation during fetal development

has been most strongly linked with brain damage leading to cere-

bral palsy. Many studies have shown that maternal inflammation

in the later part of the second trimester, or equivalent in animal

models, causes an array of white matter injury, including diffuse

demyelination and cystic lesions (Rezaie and Dean, 2002), which

correspond well to the periventricular leukomalacia that is a com-

mon MRI observation in cerebral palsy (Counsell et al., 2003).

It seems that the susceptibility of the white matter to damage is

largely due to the presence of pre-oligodendrocytes that have a low

damage threshold (Back and Rivkees, 2004).

As one of the links between immune and CNS development,

there is a plethora of evidence for various cytokines regulating

CNS development. For instance, CSF-1 is a cytokine involved in

monocyte survival and proliferation, but null mutations also cause

defects in cortical circuitry (Michaelson et al., 1996). The gp130

family cytokines such as LIF and CTNF promote radial glial cell

renewal and ventricular zone proliferation in rodents (Deverman
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FIGURE 5 | Effect of maternal inflammation on the ventricular zone at

E13. Maternal inflammation at E13 has profound effects on cortical

development. There is a decrease in proliferation in the ventricular zone

(A,B). As well as this, there is a disruption of the ventricular surface,

indicated by decreased β-catenin immunoreactivity (C,D) and uptake of

proteins from the CSF (E,F), by acetylated tubulin positive radial glia (G).

Scale bars = 50 µm for (A–F), 10 µm for (G). Modified from Stolp et al.

(2011).

and Patterson, 2009), but also astrogliogenesis in later develop-

ment. However, this is mainly related to local expression within

the developing CNS, rather than the inflammation-associated

endocrine functions of cytokines, which have been associated with

a wide variety of neurodevelopmental disorders including schiz-

ophrenia (Ellman and Susser, 2009), autism and periventricular

leukomalacia (Deverman and Patterson, 2009). Due to the preva-

lence of IL-6/gp130 family cytokines acting in the developing

brain, there has been substantial investigation of the contribution

of IL-6 of brain injury induced by maternal immune activation.

IL-6 has been shown to increase in the fetal brain following many

forms of early life systemic inflammation (Golan et al., 2005; Stolp

et al., 2009), and there is some evidence that IL-6 in the maternal

circulation can cross the placenta from mid-gestation (Dahlgren

et al., 2006). The most compelling evidence for the important

contribution of IL-6 to early life neurodevelopmental disorders

is the work of Patterson and colleagues. In their recent paper

(Smith et al., 2007), substantial evidence was present that IL-6

alone could stimulate long-term changes in neurological behav-

ior and that inhibiting IL-6 when inflammation is induced by a

general immune mediator prevents these behavioral phenotypes.

A further recent study also implicated maternal IL-6 in influenc-

ing placental expression of immune- and endocrine-related genes,

including factors known to influence fetal development such as

growth hormone and insulin-like growth factor I (Hsiao and Pat-

terson, 2011), which poignantly illustrates the interconnectedness

of immune, endocrine, and CNS development.

HYPOXIA-ISCHEMIA

While the brain grows in a hypoxic environment, it is protected

from extremes of hypoxia, as with many other organs, by vascular

auto-regulation (Pearce, 2006). As part of normal brain func-

tion, neurovascular coupling allows distribution of nutrients in

a spatial and temporal fashion to brain areas with the highest

neuronal activity and, therefore, metabolic demand. This form of

auto-regulation is typically due to the function of smooth mus-

cle cells around the pial, penetrating and pre-capillary arterioles

(Lok et al., 2007). However, at the level of the capillaries, per-

icytes and astrocytes have been found to have some contractile

capacity and are able to regulate vessel diameter (Haydon and

Carmignoto, 2006; Peppiatt et al., 2006). It is currently unclear

how much this contributes to the vascular auto-regulation (dis-

cussed by Quaegebeur et al., 2011), and there is also currently

limited data indicating when these auto-regulatory mechanisms

are established. Clinical and experimental research demonstrated

evidence of regulation during late stages of human pregnancy and

pericyte- and astrocyte-induced contraction of capillary beds in

postnatal rat brains (Peppiatt et al., 2006; Degani, 2009), suggest-

ing that auto-regulatory mechanisms occur in the fourth phase of

telencephalic development.

Hypoxic injury is generally considered to be associated with

birth complications and neurodevelopmental injury such as cere-

bral palsy (Gunn and Bennet, 2009; Volpe, 2009). There has been

a recognized difficulty in diagnosing consequences of antena-

tal oxygen deprivation as there is not a clear correlation with

markers of oxygen deficit (e.g., acidosis, lactate levels) and later

neuropathology (Gunn and Bennet, 2009). This is partly due to

the protective mechanism of the brain and cerebrovascular sys-

tem and the regenerative capacity of the still developing CNS (see

below). However, despite the presence of auto-regulatory mecha-

nisms, the clearest link between hypoxia-ischemia and brain injury

is during this stage of brain development (Lou et al., 2004). White

matter damage has been found to occur following inflamma-

tion or hypoxia-ischemia (Hagberg et al., 2002). The precursor

oligodendrocytes are susceptible to damage at this stage of devel-

opment (Back et al., 2001; Back and Rivkees, 2004) and a number

of studies have shown that high density of microglia within the

white matter contributes to this injury, facilitating the immune

activation of the susceptible oligodendrocyte precursors (Verney

et al., 2010). It is likely that the mechanisms of injury in these

two experimental conditions are linked, as hypoxia-ischemia can

cause the production of inflammatory mediators and inflamma-

tion can cause an alteration in auto-regulation and potentially

reduce oxygenation.

Astrocytes have been shown to undergo functional and struc-

tural long term changes following neonatal hypoxia/ischemia

in the pig brain (Sullivan et al., 2010a,b). There are sig-

nificant decreases in the average astrocyte size, number of

processes, and length of processes following hypoxia-ischemia

treatment. Furthermore, d-aspartate uptake studies revealed that
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the hypoxia-ischemia insult resulted in impaired astrocytes func-

tion, with significantly reduced clearance of the glutamate analog,

d-aspartate. Sullivan et al. (2010b) argue that the initial reduction

in astrocytes size and impaired function in the study are detri-

mental to the survival of neurons. Changes in the morphology of

astrocytes have the potential to alter functions reliant on the loca-

tion of astrocytic membrane proteins, for example the glutamate

transporters located in close proximity to synapses play a role

in clearing the excitatory amino acids preventing excitotoxicity

(Sullivan et al., 2010b).

Subplate neurons have been suggested to be selectively sensitive

to hypoxic-ischemic injury in postnatal rodents (McQuillen et al.,

2003) and perinatal humans (Volpe, 2009) that might account

for some behavioral deficits observed following hypoxic-ischemic

injury. However, the majority of thalamic connections have been

made by these stages of brain development, and no damage

to these connections was observed following injury (McQuillen

et al., 2003). It has recently been questioned whether the sub-

plate is actually at increased sensitivity that other neurons in the

cerebral cortex (Nguyen and McQuillen, 2010), with deficits in

layer V also observed in autopsy studies of human periventricular

leukomalacia (Andiman et al., 2010).

DRUGS/TOXINS

Unlike the relatively general actions of inflammation and hypoxia,

a number of drugs and toxins appear to have very specific actions

on the central nervous system, based on binding to channels or

receptors within the brain. Lead is one example of this, where its

presence within the brain appears to interfere with Ca2+ entry

into synaptic terminals, which normally facilitates neurotransmit-

ter release (Suszkiw, 2004). Interestingly, this appears to have an

immediate effect, as well as a long-term, developmental effect.

This may be due to the inhibition of NMDA receptor-dependent

BDNF signaling, that is important for the stabilization of synaptic

regions during presynaptic development (Neal et al., 2010). The

CB1-receptor is differentially regulated during neurogenic com-

mitment, and there is evidence suggesting that cannabis exposure

can affect fate regulation of cells in the developing brain by switch-

ing the balance of normal endocannabinoid signaling (Keimpema

et al., 2011). Cocaine exposure during the prenatal period appears

to have long term consequences on dopamine transporter func-

tion (Harvey, 2004) as well as impairing tangential and radial

migration within the developing telencephalon (Lee et al., 2011;

McCarthy et al., 2011), providing a possible double-hit that results

in long-term behavioral deficits.

Ethanol is another environmental toxin with known effects

on the central nervous system, and is currently considered to

be the major preventable cause of mental retardation world-

wide (Centre of Disease Control). In the cortex, observed changes

include ectopias and microgyri-like structures and a general reduc-

tion in cortical volume (see Fukui and Sakata-Haga, 2009 for

review). These changes, and the critical period identified for

ethanol-induced microcephaly (Guerri, 2002), suggest early stages

of cortical development are disrupted, with the radial progeni-

tors the main target for the effects of ethanol. In support of this

hypothesis, a decrease proliferation of these progenitors has been

observed in a number of models of prenatal ethanol exposure

(Rubert et al., 2006), as well as increased death of this population

(Rubert et al., 2006; Aronne et al., 2008). There is also a reduc-

tion in the ability of the radial progenitors to differentiate into

neurons and glia in an ex vivo assessment of progenitor func-

tion following prenatal ethanol exposure (Rubert et al., 2006).

Interestingly, a recent study suggests that alcohol induces inflam-

mation via activation of TLR4 (Alfonso-Loeches et al., 2010),

which could mean that inflammation and ethanol exposure have

similar underlying mechanisms of damage in the early developing

brain.

GENE-ENVIRONMENT INTERACTIONS

The original evidence supporting gene-environmental interac-

tions in neurodevelopmental disorders were based largely on

observations of disease incidence. For example, siblings of autis-

tic patients have approximately a 3–8% risk of disease incidence.

This risk increases to 10% in non-identical twins and to 60–90%

in identical twins (Parker-Athill and Tan, 2010). The incidence

in siblings suggests a genetic component of the disease, while the

increased incidence in non-identical twins highlights the impor-

tant contribution of a shared maternal environment. The high

concordance in identical twins, where gene and maternal envi-

ronment are shared, has now been recognized not just to indicate

genetic susceptibility, but also to highlight the important of the

gene-environment interaction (van Os et al., 2010).

There are two main mechanisms by which gene-environment

interactions can contribute to disease etiology. The first is a direct

interaction, where a genetic polymorphism or copy number vari-

ant increases damage (or confers protection) after an environ-

mental insult. The second is the ability of an environmental insult

to produce an epigenetic change, potentially causing a long-term

modulation of gene function (Van Winkel et al., 2010). There is

evidence for both of these interaction paradigms in a number of

neurological and mental disorders.

There are, as yet, few experimental studies testing the link

between genes and environment, although those that do, using

a number of outcome measures, have all indicated a synergistic

effect of genetic modification is combined with environmental

challenge, above and beyond what was observed with a single

challenge (Oliver, 2011). One example, relevant for the etiology

of schizophrenia is the combination of early life inflammation

and a DISC1 mutation, which has been recognized in a number

of schizophrenic patients. PolyI:C induced inflammation in both

prenatal and postnatal mice carrying a DISC1 mutation is associ-

ated with a number of behavioral changes that are not observed in

the DISC1 animals or polyI:C animals alone (Abazyan et al., 2010;

Ibi et al., 2010).

The neurodevelopmental injury models of schizophrenia have

also lead to the identification of new candidate genes for increased

disease risk. Considering the increased risk of schizophrenia asso-

ciated with perinatal hypoxia, Schmidt-Kastner et al. (2012) re-

evaluated a number of GWAS and CNV studies to determine if

genes associated with the hypoxic-ischemic response are altered

in the schizophrenic patients. Their findings substantially sup-

ported this hypothesis, identifying a number of additional gene

modifications that may increase the risk of schizophrenia fol-

lowing birth complications, and supporting the earlier work of
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Nicodemus et al. (2008), who showed a significant interaction

between hypoxia-ischemia genes and obstetric complications in

a cohort of schizophrenia patients.

A later life example of gene-environment interaction is that of

the association between cannabis use and psychosis. Caspi et al.

(2005) conducted a longitudinal study on an epidemiological birth

cohort and found that presence of a polymorphism in the COMT

gene in combination with adolescent cannabis use increased the

risk of adult-hood psychosis. The presence of the polymorphism

explains the strong association between cannabis use and psychosis

while also accounting for the small risk of psychosis in cannabis

users in general.

Epigenetic changes in neurological disease are less well defined

in neuropathology, and the potential heritability of the epigenetic

change confounds the gene-environment calculation. However,

altered histone methylations (one of the key forms of epige-

netic regulation) have been described in brains from patients that

had been diagnosed with schizophrenia or depression (Peter and

Akbarian, 2011). Drug exposure (e.g., to methamphetamine) and

stress are examples of environmental challenges that my cause epi-

genetic changes, and have been linked to changes in DNA methy-

lation in the brains of schizophrenic patients and relevant ani-

mal models (Oh and Petronis, 2008). Additionally, transcriptional

repressor MeCP2 has been identified in autism, with gene silencing

produced by this mechanism linked to changes in neuronal struc-

ture (Currenti, 2010). It is likely that epigenetic modification of

gene function will be increasingly recognized as a key contributor

to neurological disorders as our scientific investigations continue

in this area.

CONCLUSIONS

It is clear that there are a number of factors that contribute to

neurodevelopmental disorders. When considering which are the

most important in predicting neuropathology following insult it

is necessary to consider the likelihood that multiple “windows of

vulnerability” exist within the developing brain. These are likely to

be dependent on the type and severity of the environmental insult

and the genetic background of the individual. The task to decipher

the links between genetic susceptibility and environmental insults

is hindered by the fact that barrier functions, inflammatory, and

endocrine factors have to be taken into account along with brain

development. These will have to be considered in different com-

binations, rather than in isolation. Our current approaches are

not broad enough. We are determined to link diseases to a single

genetic or environmental insult. Instead, a wide variety of broadly

linked functional systems have been identified as possibly effected,

and the genes involved in various stages of neuronal development

might be just a small part of the puzzle.
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