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Breast cancer is the most common non-cutaneous cancer of women and a major cause of mortality 

[1]. Genetic factors are the single biggest risk factor and 75% of the risk derives from common but 

low penetrance single nucleotide polymorphisms (SNPs) [2]. These are found using genome-wide 

association studies (GWAS) and the majority localize to non-coding regions of the genome [3]. A 

2009 GWAS identified an estrogen receptor (ERα) positive breast cancer susceptibility locus in the 

11q13 gene desert [4]. Previous fine mapping of this locus by our group revealed three independent 

risk signals containing five candidate causal single nucleotide polymorphisms (SNPs). Four of these 

clustered in an enhancer element (called PRE1) and one in a silencer element (PRE2). Interactions 

were demonstrated between these elements and the nearby cyclin D1 gene (CCND1), one of the 

most commonly amplified genes in breast tumours and a known oncogene [5]. Enhancers 

commonly regulate multiple genes however, suggesting that PRE1 or PRE2 may have other targets 

than CCND1 [6]. Such targets may be nearby protein coding genes or previously unrecognised non-

coding transcripts within the gene desert.  

 

The identification of CCND1 as an interacting partner of PRE1 and PRE2 was done using a 

candidate gene approach with 3C (chromosome conformation capture) targeted confirmation of 

interaction. To detect other potential targets of PRE1 and PRE2 at the 11q13 locus using an 

agnostic approach, the 4Cseq and 5C techniques were used. These revealed a number of local 

interaction regions covering six gene promoters. A novel strategy using knockdown of enhancer 

RNA transcribed from PRE1 then identified the IGHMBP2 and CPT1A genes as likely additional 

targets of PRE1. Genome editing with transcription activator-like effector nucleases (TALENS) was 

also used, creating isogenic cell lines to clarify the effects of the SNPs in their native genomic 

context. Further functional work is required, however the range of techniques employed has 

substantially expanded our understanding of the 11q13 breast cancer risk locus and forms a 

template for future investigations of GWAS risk loci. 

 

To identify noncoding RNAs expressed at the 11q13 locus that may be interacting with PRE1 or 

PRE2 required the use of RNA Capture-seq. RNA Capture-seq involves a targeted enrichment step 

that greatly increases the sequencing depth at regions of interest and can reveal lowly expressed 

transcripts that may have not been found by traditional RNA-seq [7]. This identified one novel long 

non-coding RNA expressed from the (+) strand that was named CUPID1 and a second arising from 

the same locus on the (–) strand named CUPID2. They were located in the nucleus, oestrogen 

induced and both expressed relatively highly in ERα positive breast cancer cell lines but not in ERα 
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negative cell lines or normal breast tissue. 3C revealed that PRE1 exhibits allele specific 

interactions with the lncRNA promoter and functional assays demonstrated that PRE1 markedly 

increased promoter activity. The increased activity was partially abrogated following incorporation 

of the risk SNPs. SiRNA mediated knockdown of both lncRNAs impaired the normal DNA damage 

response of breast cancer cells and the ChIRPseq technique confirmed that CUPID1 was 

preferentially bound to promoters of genes involved in DNA repair. Two oestrogen responsive 

lncRNAs that interact with the 11q13 breast cancer susceptibility locus have thus been identified 

that may mediate the associated risk of oestrogen responsive breast cancer. 

 

The 11q13 locus is amplified in around 20% of breast cancers and is thought to contain a number of 

driver genes including CCND1 [8]. Given that CUPID1 and CUPID2 are widely over-expressed in 

ERα positive breast cancer cell lines, it was hypothesized that they may also have a role in driving 

tumour growth. Publically available RNAseq data showed CUPID2 to be highly expressed in breast 

and renal cancer but not in normal tissue. Stable cell lines over-expressing the lncRNAs were then 

generated and subsequent oncogenic assays revealed that CUPID2 increased cellular proliferation 

and the efficiency of colony formation in breast cancer cells. A murine xenograft model confirmed 

these findings in vivo by demonstrating a marked increase in tumour size for the mice injected with 

cells over-expressing CUPID2. There is thus evidence that CUPID2 behaves as an oncogene and 

may be an additional driver of the 11q13 amplicon in ERα positive breast cancer.  

 

In summary, CPT1A and IGHMBP2 were identified as potential mediators of risk at the 11q13 

breast cancer susceptibility locus. Further investigations of the locus then identified two novel non-

coding transcripts called CUPID1 and CUPID2 that may also mediate the effects of the causal 

SNPs through downregulation of cellular DNA damage repair pathways. Finally, CUPID2 was 

shown to function as a putative oncogene in ERα positive breast cancer. These findings add to our 

knowledge of breast cancer risk and progression and may ultimately lead to more effective 

treatments and prevention programs to better manage this disease. 
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1.1. Breast Cancer 

 

Breast cancer is the most common non-cutaneous cancer in women, with more than 450,000 women 

worldwide dying of the disease each year [1]. The predisposing factors can be divided into 

environmental and genetic influences. Environmental factors include obesity, alcohol intake, 

endogenous hormone exposure and physical activity [2]. The inherited genetic risk possessed by an 

individual is the strongest single risk factor and forms the basis of this thesis [2, 9]. Current 

treatment regimes for breast cancer include surgery (local lumpectomy or more radical 

mastectomy), radiotherapy and anti-oestrogen therapies [10, 11]. Many of the current therapies are 

inadequate however and there is a pressing need to improve the clinical management of the disease.  

 

Initial classifications divided breast cancer into four intrinsic groups based on the 

immunohistochemistry and gene expression patterns derived from microarrays of human breast 

tumours. These are the luminal A (low grade and ERα positive), luminal B (higher grade and ERα 

positive), HER2 positive (high expression of the ERBB2 gene) and triple negative cancers (ERα 

negative, PR negative, HER2 negative) [12]. The advent of high throughput next generation 

sequencing technologies has also allowed new classification systems to be developed with greater 

discrimination between the groups giving improved prognostic value [13]. Prominent amongst these 

is a study by Curtis et al. who profiled gene expression and copy number in ~2000 breast cancers 

and divided them into ten subgroups with distinct molecular drivers and clinical outcomes [14]. 

Identifying these underlying molecular drivers of cancer is a priority in current cancer research and 

has led to the development of targeted therapies that directly inhibit tumour growth [15]. Examples 

in common use include inhibitors of key drivers of breast cancer proliferation such as Herceptin to 

block the human epidermal growth factor receptor 2 (HER2) and Bevacizumab for the vascular 

endothelial growth factor (VEGF) [16-18]. It is hoped that further functional analysis of genetic risk 

loci may improve our understanding of breast cancer and lead to the development of new therapies. 

 

1.1.1. Genetic Susceptibility to Breast Cancer 

Genetic variants can be classified into three broad categories: highly penetrant mutations of genes 

critical for genome stability such as BRCA1, BRCA2 and TP53 which impart a lifetime risk of 

breast cancer of 50-70%; a middle tier of moderately penetrant mutations in genes such as PALB2 

and ATM that increase relative cancer risk by two to five fold; and a final group of common but low 

penetrance variants (Figure 1.1) [19]. All of the genes in the high and moderate penetrance group 
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have a role in DNA damage repair, highlighting the importance of genomic instability in the 

development of breast cancer [2]. Germline mutations of BRCA1 and BRCA2 are estimated to cause 

around 5% of all breast cancers annually in the United States, typically due to post translational 

inactivation or truncation of the protein [20]. Such mutations also increase the risk of ovarian cancer 

before the age of 70 in affected women up to 39% for BRCA1 mutation carriers and 11% for those 

carrying a mutation of BRCA2 [21]. Those women carrying pathogenic BRCA1 or BRCA2 

mutations are frequently offered prophylactic mastectomy and oophorectomy to prevent the 

development of cancer or placed under a more intensive regime of surveillance [22].  

 

The high and moderate penetrance mutations only account for around 25% of genetic risk. The 

remaining 75% is proposed to consist of the common, low penetrance single nucleotide 

polymorphisms (SNPs) which influence risk in a polygenic manner proportional to the number of 

low-risk alleles carried by a woman [2, 22-24]. This can lead to a lifetime breast cancer risk of up to 

50% for those women carrying a high number of such variants [25]. A priority in cancer research is 

to identify the SNPs responsible for this risk, thus providing valuable information on the lifetime 

risk of breast cancer faced by an individual, and also more generally as a basis for uncovering new 

molecular mechanisms underlying disease [26]. Improved risk stratification allows more 

personalised breast cancer screening and may indicate the need for prophylactic therapy as is done 

for BRCA1 and BRCA2 mutation carriers, including surgery or oestrogen receptor antagonists for 

those women found to be at high risk for the development of breast cancer [2]. 

 

Figure 1.1 Genetic loci identified for breast cancer. The relative risk of breast cancer increases in 

a logarithmic manner up the y axis as the risk allele frequency increases along the x axis. Genes are 

clustered into high, moderate or low risk variants [19]. 
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1.2. Genome Wide Association Studies (GWAS) 

 

1.2.1. The Genetic Principles of GWAS 

 

GWAS are a powerful method used to identify genetic variants within the human genome that may 

be associated with a particular disease. They are based on the principle that DNA is inherited in 

blocks called haplotypes, a phenomenon called linkage disequilibrium (LD). Marker SNPs are then 

used as surrogates for the whole haplotype and the association measured between the marker SNP 

and the phenotype of interest. Due to haplotype structure, there will be many SNPs in very high LD 

with the marker SNP and these can then be ‘imputed’ onto the original SNP array as though they 

had actually been genotyped [27].  If one or more marker SNPs are significantly over-represented in 

the case group (as compared to the control group), then it suggests that there are causative SNPs for 

the particular phenotype present within the haplotype containing the marker SNP [28]. It is 

important to note that the marker SNP used for the initial GWAS is merely a proxy for the entire 

haplotype block and is not usually itself responsible for the phenotype of interest. 

 

A strategy combining functional, bioinformatic and statistical methodologies is used to identify the 

potential causative SNPs within a haplotype [29]. The bioinformatics and laboratory based 

functional components will be discussed in Section 1.4. The statistical genetics component is called 

‘fine mapping’. It requires larger patient numbers and more dense SNP arrays including further 

variants present in the haplotype marked by the original GWAS SNP [30]. The likely causal SNPs 

present in a haplotype will be in linkage disequilibrium with other nearby SNPs and those in close 

LD comprise an iCHAV (independent set of correlated, highly trait-associated variants) [26]. 

Sophisticated statistical methods such as conditional logistic regression may be employed to aid in 

the assignation of SNPs into iCHAVs (described in [31]). Typically, SNPs within each iCHAV are 

then removed from further consideration if they have likelihood ratios less than 100x that of the best 

candidate SNP, leaving a group of high probability SNPs that can be examined further to find those 

that are likely to be causal [32]. Finally, programs such as HaploView can be used to compare 

haplotype structure between populations at a particular locus [33]. This comparison of LD blocks 

across different ethnic populations can reduce the number of potential causative SNPs due to 

overlaps in haplotype structure when similar associations are found for a SNP in each group [34].  

 

GWAS studies to date have revealed modest effects of risk SNPs on the phenotype of interest, with 

most odds-ratios being below 1.5, though there is an allele-dosage effect in which the risk for a 
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homozygote is double that for a heterozygote. Such low odds ratios are consistent with the theory 

that cancer risk is largely polygenic and normally involves significant numbers of these low 

penetrance SNPs rather than the better known high penetrance BRCA1 or BRCA2 mutations [19]. 

Given the importance of low penetrance SNPs to disease susceptibility, their identification and 

functional characterisation is a priority to better understand the mechanisms underlying breast 

cancer. 

 

1.2.2. GWAS in Breast Cancer 

 

GWAS have identified more than 90 genetic loci that harbour SNPs predisposing to breast cancer 

and it is estimated that there may be over 1000 more loci that influence risk but with very low odds 

ratios [35, 36]. Easton et al. performed the first large breast cancer GWAS and provided evidence 

for five independent loci conferring an increased risk of developing breast cancer [37]. The 

associated LD block for four of the loci contained several genes that were plausible candidates for 

disease (FGFR2, TNRC9, MAP3K1 and LSP1), whilst the fifth locus lay in an intergenic region 

(8q24). A follow up GWAS by Turnbull et al. identified a further five risk loci and confirmed the 

associations with FGFR2, MAP3K, LSP1 and 8q24 [4]. The loci overlapped genes on 9p21 

(CDKN2A, CDKN2B and the ncRNA, ANRIL), 10q21 (ZNF365), 10p14 (ANKRD16) and 10p22 

(ZMIZ1), whilst the marker SNP rs614367 at 11q13 fell in an intergenic LD block of around 166kb 

in size. Other susceptibility loci for breast cancer that have been identified using by GWAS are 

summarised in Table 1.1. 

 

1.2.3. The Collaborative Oncologic Gene-environment Study (COGS) 

 

Despite the increasing number of GWAS for breast cancer, up until 2013 only a few of the 

identified loci were fine mapped to locate the candidate causal SNPs [4, 37-44]. Thus, only 30% of 

the estimated inherited risk of breast cancer had been identified, most of which comprised moderate 

or high penetrance variants [38]. In an effort to improve this figure, an international collaboration 

termed COGS was formed. COGS aimed to find novel breast cancer susceptibility loci; confirm 

previously discovered GWAS associations or proposed moderate penetrance variants; and to fine 

map existing risk haplotypes [45]. Collectively, COGS identified 64 new breast loci and fine 

mapped 24 known risk loci using a custom designed iCOGS chip which contained 211,155 SNPs to 

genotype 114,255 breast cancer cases and controls sourced by BCAC (Breast Cancer Association 

Consortium) [35].  
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 Locus Marker SNP OR Special Groups Candidate Gene Ref. 

 10q26 rs2981582 1.26 Nil FGFR2 [37] 

 16q12 rs3803662 1.2 
 

TOX3 
 

 5q11 rs889312 1.13 
 

MAP3K1 
 

 8q24 rs13281615 1.08 
 

FAM84B/cMYC 
 

 11p15 rs3817198 1.07 
 

LSP1 
 

 2q35 rs13387042 1.2 nil Intergenic [41] 

 16q12 rs3803662 1.27 
 

TNRC9 
 

 10p14 rs1045485 0.89 nil CASP8 (D302H) [46] 

   rs1982073 1.07 
 

TGFB1 (L10P) 
 

 5p12 rs10941679 1.19 nil MRPS30 [42] 

   rs4415084 1.16 
 

FGFR10 
 

 3p24 rs4973768 1.11 nil NEK10, SLC4A7 [39] 

 17q23.2 rs6504950 0.95 
 

COX11 
 

 1p11.2 rs11249433 1.16 nil NOTCH2, FCGR1B [43] 

 14q24.1 rs999737 0.94 
 

RAD51L1 
 

 6q25.1 rs2046210 1.29 nil ESR1 [44] 

 9p21 rs1011970 1.09 nil CDKN2A, CDKN2B [4] 

 11q13.3 rs614367 1.15 
 

 CCND1 
 

 10q21.2 rs10995190 0.86 
 

ZNF365(intron 4) 
 

 10q22.3 rs704010 1.07 
 

ZMIZ1 
 

 6q25.1 rs3757318 1.3 
 

CCDC170 
 

 8q24.2.1 rs1562430 1.17 
 

CASC21, CASC8 
 

 10p15.1 rs2380205 0.94 
 

ANKRD16, FBX018 
 

 11p15.5 rs909116 1.17 
 

TNNT3 
 

 19p13 rs8170 1.26 BRCA1 mutation MERIT40, ANKLE1, [47] 

   rs2363956 0.84 
 

ABHD8 
 

 5p15 rs10069690 1.18 TNBC, ERα neg TERT [48] 

 9q31.2 rs865686 0.89 nil KLF4 [49] 

 6q25.1 rs9383938 1.18 
 

ESR1 
 

 10q21.2 rs10822013 1.12 nil ZNF365 [50] 

 12p11 rs10771399 0.85 nil PTHLH [38] 

 12q24 rs1292011 0.92 
 

intergenic 
 

 21q21 rs2823093 0.94 
 

NRIP1 
 

 6q14 rs17530068 1.12 ERα neg intergenic [51] 

 20q11 rs2284378 1.08 
 

RALY 
 

 6q25.1 rs9485372 0.9 nil TAB2 [52] 

 2q34 rs13393577 1.53 nil ERBB4 [53] 

 1q32.1 rs2290854 ne ERα neg MDM4 [54] 

 6p24 rs9348512 0.85 BRCA2 mutation TFAP2A [55] 

  

Table continued on next page. 
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1q32.1 rs6678914 ne ERα neg LGR6 [56] 

2p24.1 rs12710696 ne 
 

intergenic 
 

16q12.2 rs11075995 ne 
 

FTO 
 

Multiple 41 SNPs 
 

iCOGS multiple [35] 

1q32.1 rs4951011 1.09 nil ZC3H11A [57] 

5q14.3 rs10474352 1.09 

 

intergenic 
 

15q26.1 rs2290203 1.08 

 

PRC1 
 

3p14.1 rs1053338 1.07 nil ATXN7 [58] 

7q21.2 rs6964587 1.05 

 

AKAP9 
 

1q21.1 rs124505132 0.95 imputed iCOGS NBPF10, RNF115 [36] 

1q21.2 rs12048493 1.07 

 

intergenic   

1q43 rs72755295 1.15   EXO1   

3p21.3 rs6796502 0.92   intergenic   

5p15.1 rs13162653 0.95   intergenic   

5p15.3 rs2012709 1.05   intergenic   

5q14 rs7707921 0.93   ATG10, RPS23   

6p22.1 rs9257408 1.05   intergenic   

7q32.3 rs4593472 0.95   FLJ43663   

8p11.23 rs13365225 0.95   intergenic   

8q23.3 rs13267382 1.05   LINC00536   

14q32.12 rs11627032 0.94   RIN3   

17q11.2 chr17:29230520:D 0.93   ATAD5   

17q25.3 rs745570 0.95   intergenic   

18q12.3 rs6507583 0.91   SETBP1   

 

Table 1.1  Breast cancer risk loci identified by GWAS 

OR = odds ratio of minor allele relative to major allele. Ne = not estimated. The 41 SNPs from the 

initial iCOGS study are: rs616488, rs11552449,rs4849887, rs2016394, rs1550623, rs16857609, 

rs6762644, rs12493607, rs9790517, rs6828523, rs10472076, rs1353747, rs1432679, rs11242675, 

rs204247, rs720475, rs9693444, rs6472903, rs2943559, rs11780156, rs10759243, rs7072776, 

rs11814448, rs7904519, rs11199914, rs3903072, rs11820646, rs12422552, rs17356907, rs11571833, 

rs2236007, rs2588809, rs941764, rs17817449, rs13329835, rs527616, rs1436904, rs4808801, 

rs3760982, rs132390, and rs6001930 [35]. 

 

Analysis of the loci identified by previous GWAS confirmed the association with breast cancer in 

23 out of 27 loci, with only weak association demonstrated for three loci and the remaining locus 

not included on the iCOGS chip. Overall, the SNPs present on iCOGS explained an estimated 28% 

of familial breast cancer risk with the individual SNPs possessing odds ratios ranging from 1.02 up 

to 1.26 [35]. A second study using extensive imputation to expand the pool of iCOGs genotypes 

added another 15 new loci, explaining a further 2% of familial breast cancer risk [36]. A number of 

iCOGS follow up studies have been performed involving fine mapping of the loci to identify the 

target genes mediating the SNP-associated risk (detailed in Section 1.4.2)  [5, 36, 59-62]. One of the 

most interesting findings to come out of GWAS in general and further confirmed by analysis of the 
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COGs data, is that the majority of risk-associated SNPs fall in non-coding regions of the genome 

[34]. This suggests that effects on transcriptional regulation involving distal enhancers or non-

coding RNAs may be contributing to inherited disease. 

 

 

1.3. Long-range transcriptional regulation 

 

1.3.1. Gene Transcription 

Control of gene expression is primarily achieved through regulation of transcription initiation, a 

process dependent on interactions between cis regulatory elements and trans acting transcription 

factors (TFs) [63, 64]. Gene promoters are present at the transcription start site of all eukaryotic 

genes and serve as platforms for binding of the transcription initiation complex (TIC) and its 

associated RNA polymerase (Figure 1.2). Once the TIC is engaged it remains paused at the 

promoter proximal region until the appropriate regulatory input allows release and subsequent 

transcription [65]. It has become apparent that many promoters exhibit a complex pattern of 

transcription, with antisense transcription present at 77% of active genes, though most such 

transcripts are rapidly cleaved after production to maintain appropriate promoter output [66, 67]. 

Recent studies have found that this transcription actually derives from a separate core promoter 

oriented in the antisense direction and that individual promoters themselves have an inherent 

directionality [68]. Short, unstable, divergent bursts of transcription called PROMPTs (promoter 

upstream transcripts) are also present at active transcriptional start sites and may have a role in 

transcriptional regulation or maintaining open chromatin [69].  

 

The chromatin state at eukaryotic promoters as defined by local histone modifications is 

predominantly uniform across various cell types with tissue specificity being provided by distal 

enhancer elements [70]. The promoters of housekeeping genes tend to be regulated by local TF 

binding whilst more dynamic genes require TF binding to distal enhancers which then participate in 

chromatin looping to activate the promoter [71]. Zhang et al. found that 74-87% of promoters 

regulating such dynamic genes have enhancers specific for that promoter, whilst the more 

ubiquitous housekeeping gene promoters can interact with a wide range of enhancer elements [72]. 

Transcription can be repressed by CpG methylation at the promoter, providing a mechanism of 

stable gene silencing [73]. Inappropriate methylation of tumour suppressor gene promoters 

however, is a common mechanism driving cancer initiation and subsequent tumour growth [74]. 

From the risk perspective, studies of genome-wide transcription across 975 human cell types by the 
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FANTOM group has recently revealed overlap of promoter elements with a number of GWAS 

SNPs that had not been previously noted with less comprehensive experiments [75]. It is likely that 

a significant proportion of the SNPs discovered by iCOGS will be fine mapped to gene promoters. 

 

Promoters interact with distal cis-regulatory elements as part of the process of transcriptional 

control [63]. There are four main classes of distal cis-regulatory elements; enhancers, silencers, 

insulators and locus control regions (Figure 1.2). Enhancers and silencers consist of TF binding site 

clusters, with the specific combination of TF binding acting to either repress or activate gene 

transcription [76]. Their regulatory function is dependent on the availability of the appropriate TFs 

and some enhancers are even able to act as silencers depending on the local trans environment [77].  

 

 

 

 

Figure 1.2 Cis-regulatory elements in the human genome. The black right angled arrow indicates 

active transcription which initiates from the core promoter (blue boxes). Transcription is induced by 

enhancers (pink boxes) and repressed by silencers (red boxes). Insulators (green blocks) restrict the 

extent of enhancer or silencer activity. Elements may be grouped into a LCR (locus control region). 

The grey disks represent nucleosomes. CTCF (CCCTC-binding factor) and CBP (cyclic AMP-

responsive element binding protein) are regulatory proteins. The core promoter contains a TATA (5’-

TATAAAA-3’) sequence and TSS (transcription start site). H3.3/H2A.Z are histone variants. 

H3K4me1/2 (histone H3 mono/dimethylation at lysine 4); H3K4me3 (histone H3 trimethylation at lysine 

4); and H3K27me3 (histone H3 trimethylation at lysine 27) are histone modifications associated with 

regulatory elements. Adapted from [78]. 
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1.3.2. Cis Regulatory Elements 

 

Enhancers  

Enhancers contain a concentration of DNA motifs that are recognised by specific TFs and thus 

allow the assembly of a protein complex able to activate transcription of an interacting gene [79]. 

One of the principal differences between promoter and enhancer elements is that they can exert 

their transcriptional activating properties independent of their orientation or location in the genome 

relative to a target promoter [80]. They can be described as genomic hubs integrating the TF milieu 

of a particular cell type to produce the required temporal and tissue specific pattern of gene 

expression [81].  Enhancers are characterised by their histone marks and may be active (H3K4me1 

and H3K27ac), poised (H3K4me1 and H3K27me3) or inactive (H3K27me3), with this state 

correlating with the activity of genes in their vicinity [82]. The acetyl-transferase p300 is present at 

both active and poised enhancers and was the first modification used to map enhancers genome-

wide using ChIP-chip [83]. Enhancers may also be mapped using the presence of DNAse I 

hypersensitivity sites which are more general mark of active chromatin [84].  

 

Studies have estimated that the human genome contains over 50,000 enhancers, more than double 

the number of protein coding genes [70]. Comprehensive approaches to classify enhancers 

according to their activity and strength usually incorporate data relating to the binding of proteins 

such as CTCF in addition to histone modifications including H3K4me3 (promoter associated), 

H3K4me2 (enhancer or promoter associated), H3K4me1 (enhancer associated), H3K9ac and 

H3K27ac (active regulatory regions), H3K36me3 and H4K20me1 (transcription associated); and 

H3K27me3 (repressed regions) [85]. The FANTOM group took a different approach however, and 

assessed levels of transcription from putative enhancers (eRNAs) using CAGE tags in 432 primary 

cells and 241 human cell lines. Their data indicated that the level of transcription from an enhancer 

was the best measure of its activity in a particular tissue, allowing improved differentiation between 

enhancers in an active or poised state [86]. A similar strategy involving global run-on and 

sequencing (GRO-seq) can also detect active enhancers and has been used in breast cancer cells to 

demonstrate the effect of oestrogen on enhancer activity [87]. Notably, regardless of the method 

used, most genome-wide enhancer mapping studies find that GWAS SNPs are enriched in the 

regions predicted to be active enhancer elements [86, 88-90]. 
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Enhancer Dysregulation and Disease 

Regulatory element function relies on the appropriate temporal and spatial binding of TFs. This 

may be disrupted by SNPs which alter recognition motifs and thus increase or decrease affinity for 

the TF, consequently altering the activity of the regulatory element [5, 60]. These effects can be 

screened for using functional assays on a candidate basis or by novel high throughput methods such 

as gene-centred yeast one-hybrid assays which are particularly applicable for screening the copious 

data emerging from GWAS [91]. Pathogenic mutations can be found at enhancer elements leading 

to diseases such as pancreatic agenesis caused by PTF1A enhancer mutations [92], or congenital 

heart disease  from mutations in TBX5 enhancers [93]. Complete deletions of regulatory elements 

have also been reported with the best known being at the β-globin locus where a large deletion 

results in β-thalassemia syndrome [94]. More broadly, mutations in any of the factors involved in 

enhancer function and looping may be associated with disease as they disrupt the normal trans and 

cis regulation of gene expression (reviewed in  [95]).  

 

Enhancer Synergies 

Two enhancers may have differing effects on a gene with both being required to give the correct 

temporal-spatial expression of their target [96]. Additionally, some distal enhancers may not show 

activity when tested in isolation but can be shown to augment the effect of a more proximal 

enhancer when assayed together [97]. This clustering of enhancer elements is mediated by cohesin, 

a complex of proteins that form a ring shaped structure around DNA to link sister chromatids or 

interacting enhancer-promoter segments [98].  Knockout experiments reveal a decrease in 

interactions between enhancer interactions when cohesion is not present [99]. It is suggested that 

synergy between multiple enhancers provides robustness in gene expression throughout evolution 

and may compensate for any inherent failure rate of an individual enhancer [76].  Disease-

associated SNPs often affect a number of clustered enhancers in a locus which then target the same 

gene, giving rise to the ‘multiple enhancer variant’ hypothesis [100]. This is in agreement with the 

work by Hnisz et al. which reveals enrichment of SNPs in highly active enhancers that are grouped 

together in super enhancer elements [101]. Investigating the action of such SNPs in producing a 

phenotype will add to our understanding of how enhancer networks function to regulate gene 

expression. 
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Super Enhancers 

Enhancers conferring tissue specificity are often grouped into COREs (Clusters of Open Regulatory 

Elements) of around 20kb in size which are thought to coordinate together to regulate a nearby gene 

[89]. Recent studies have defined a new class of enhancer called super-enhancers which shows 

overlap with LCRs or COREs depending on the precise definition used [102]. These are usually 

found at key cell identity genes and are characterised by extremely high levels of master TF 

binding, DNAse I hypersensitivity, H3K27ac and Mediator [101, 103]. Studies in multiple 

myeloma and lymphoblastic leukaemia have shown that super-enhancers are located near key 

oncogenes and are likely to be important factors driving cancer progression [104, 105]. GWAS risk 

SNPs are enriched in super enhancers as is seen for the breast cancer risk locus at 6q25 (ESR1) 

[101]. Interestingly, the transcriptional co-activator BRD4 is also highly enriched at super 

enhancers and inhibition of BRD4 leads to a preferential reduction in activity of super enhancer 

controlled genes making such enhancers an attractive therapeutic target [104].  

 

Silencers 

Silencers are regulatory elements that bind repressor TFs to reduce the transcriptional output of 

their target genes and are present at a far lower frequency than enhancer elements. This may be 

because the default state for most genes is inactive and thus enhancer elements are usually required 

to activate transcription [63]. There appears to be a functional overlap with insulator elements as 

shown by Petrykowska et al. who used luciferase assays to characterise regulatory elements in the 

CFTR locus and found CTCF binding and insulator properties associated with 4/15 of the identified 

silencers [106]. A more rigorous test for silencer function is through transgenic reporter assays 

where the putative cis-regulatory element is introduced into an embryo along with a reporter gene 

such as LacZ, allowing precise spatial localisation of regulatory activity [107]. Such assays have 

revealed a network of enhancer and silencer elements controlling limb development in a mouse 

model and highlighted the delicate balancing act required for appropriate temporal and spatial gene 

expression [108]. 

 

Insulators (CTCF) 

Mammalian insulators bind CTCF, the only known insulator protein in mammals [109]. Insulator 

elements act to limit promiscuity of enhancer elements, preventing unwanted gene activation and 

can also create heterochromatin domains that repress local gene transcription [110]. CTCF is often 

found at the boundaries of euchromatic and heterochromatic loci, preventing the spread of 

epigenetic silencing [111]. Loss of CTCF binding upstream of the p16
INK4a

 gene has been observed 

in many cancers and is associated with methylation of the gene promoter leading to transcriptional 
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inhibition [112]. p16
INK4a

 down regulation is frequently observed early in breast cancer [113]. 

Aberrant binding of CTCF is also linked to BRCA1 promoter methylation [114]. Interestingly, the 

CTCF gene at 16q is within a locus often lost in breast cancer, with low CTCF expression being a 

frequent histological finding in surgical specimens [115]. These phenomena may be explained by 

new research showing that intra-chromosomal interactions are limited by megabase sized 

Topologically Active Domains (TADS)  that partition the genome into defined regions [116]. CTCF 

is found at the domain boundaries and deletion of the CTCF binding site leads to ectopic intra-

chromosomal contacts outside the TAD and a decrease in pre-existing interactions within the TAD 

[117]. Disruption of wild type enhancer-promoter interactions in this way has been shown to 

produce a pathological phenotype in murine models of limb growth [118]. Although GWAS SNPs 

have been found in CTCF binding sites [119], they have not yet been demonstrated to function by 

destabilising TAD boundaries and this would represent a novel mechanism of inherited disease.   

 

Locus Control Regions 

Cis-elements may also be arranged into Locus Control Regions (LCR). These are regions 

containing multiple regulatory elements and are binding sites for chromatin re-modellers with 

nuclear matrix attachment points to induce alterations of the local chromatin architecture [120]. 

Although they may contain silencer elements, LCRs usually have a potent enhancing effect on their 

target genes, acting in a position and orientation independent manner (Figure 1.3) [121]. The most 

extensively characterised LCRs are the β-globin and TH2 cytokine loci [122, 123]. As previously 

stated, new research suggests that many LCRs may be better described as super-enhancers, however 

there is not yet consensus as to the definition of such entities and the field awaits further 

clarification [102]. 
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Figure 1.3 Cis-regulatory element function. (a) Enhancers (green box) increase the transcription 

(right angled arrow) of target genes (grey box). (b) Silencers (brown box) reduce the transcription of 

target genes. (c) Insulators (yellow box) block enhancer or silencer function. (d) Insulators, silencers 

and enhancers may be grouped into locus control regions that regulate nearby genes. Adapted from  

[63]. 

 

 

1.3.3. Trans factors in gene regulation 

 

The binding of TFs to regulatory modules such as enhancers is required for transcriptional 

regulation. The composition of TFs available in a cell determines which regulatory elements are 

able to be activated and is a major influence on cell-type identity [124-126]. TF binding may be 

directed to a specific DNA motif or may involve indirect binding to other TFs already bound to the 

target element [127]. Collaborative binding of factors is very important, with one study in mouse 

macrophages finding that more than 70% of enhancers relied on such collaboration to function 

appropriately [128]. Disruption of a TF binding motif by a SNP may have a snowball effect with 

reduced binding by one key TF leading to the exclusion of many other co-binding TFs, thus greatly 

impacting enhancer activity. 
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Oestrogen Receptor Alpha (ERα) 

ERα has been described as ‘the master transcriptional regulator of breast cancer phenotype’ and is 

the major target for clinical therapeutics [129]. ERα, which is encoded by ESR1, is activated by the 

steroid hormone oestrogen to mediate oestrogen regulated transcription in various tissues [130]. It 

interacts with chromatin via direct binding to oestrogen response element (ERE) DNA motifs and 

also via indirect binding to intermediate TFs [131]. The majority of ERα binding genome-wide is 

concentrated at distal enhancers providing temporal and tissue specific expression of oestrogen 

regulated genes [129]. Chromatin looping brings the distal enhancers into contact with their target 

promoter and many of these loops can be abrogated by ERα knockdown or removal of the enhancer 

ERE indicating a role for ERα in mediating loop formation [132]. Interestingly, SNPs at 6q25.1 

(which contains ESR1) are also associated with breast cancer susceptibility and have been identified 

in several GWAS, however the exact causal variants in this region have not been clarified [44]. 

 

FoxA1 

FoxA1 is regarded as a pioneer TF which is able to open up chromatin to allow subsequent binding 

of nuclear receptors such as ERα [133, 134]. It is particularly important in breast cancer biology 

with knockdown of FoxA1 causing repression of the majority of oestrogen responsive genes and 

prevention of oestrogen induced progression through the cell cycle [135, 136]. FoxA1 is able to de-

methylate DNA at repressed enhancers and induce mono-methylation of adjacent histone tails to 

give the poised H3K4me1 epigenetic state indicative of enhancer activity [137]. It is also thought to 

be directly involved in a subset of breast cancers that either exhibit amplification of the FoxA1 

genomic locus or possess somatic mutations in key FoxA1 binding locations [138]. 

 

Additional Factors 

A number of other TFs are required for appropriate functioning of the ERα interactome. These 

include the AP-2 cofactor which interacts with FoxA1 and has a role in chromatin looping and 

transcriptional regulation [139]. AP-2 family members have previously been linked to a variety of 

cancers [140]. Another co-factor is the steroid receptor co-activator SRC3 which directly binds ERα 

and mediates interactions with the epigenetic modifiers p300 and CBP [141]. Retinoic acid receptor 

α and GATA3 are required for full activity of the ERα transcriptional complex and transcription 

from oestrogen regulated genes is inhibited following their silencing [142-144]. Non-coding RNAs 

are also increasingly found to be important in trans interactions, mediating TF binding and 

chromatin looping [145]. GWAS risk-SNPs affecting such non coding RNAs could thus have 

widespread secondary effects on gene transcription across the genome.  
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1.3.4. Chromatin Looping 

 

As cis-regulatory elements may potentially be located over a megabase from their target genes, 

regulation of transcription often involves long range chromatin interactions which occur through the 

formation of chromatin loops (Figure 1.4) [146]. The loops are mediated by a variety of TFs 

depending on the tissue, however the mediator and cohesion proteins have been found to play a 

central role [98, 147]. These two factors and additional tethering proteins allow an enhancer to 

contact its target promoter by ‘looping out’ the intervening DNA, resulting in transcription of the 

target gene (Figure 1.4) [148, 149]. Tissue specific loops often incorporate TFs that define that cell 

type, as is the case with oestrogen receptor mediated looping seen in ERα positive breast cancer 

cells [132, 150].  

                                 

 

 

Figure 1.4 Chromatin looping between regulatory elements. The looped DNA is represented by 

a black line with the promoter of the OCT4 gene in blue. The pink enhancer box loops around to 

contact the promoter, directed by a variety of protein co-factors (orange circles) including mediator 

(pink square) and the loop is stabilised by cohesion (red ring). This allows transcription to proceed 

(black right angled arrow). Adapted from [78] . 

 

There has been debate over whether gene looping is a primary event or merely a consequence of the 

transcriptional process. An elegant study by Deng et al. resolved this issue by demonstrating that 

the forced juxtaposition of enhancer and promoter elements using zinc finger nucleases at the β-

globin locus results in active transcription of the target gene [151]. The β-globin locus has been the 

most extensively studied in regards to looping between enhancer and promoter elements, initially 

using modified FISH methods [152], and then more precisely using chromosome conformation 

capture (3C) [122]. The tissue specific nature of interactions has also been explored at this locus, 
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with reconfiguration of looping contacts demonstrated as erythroblasts differentiate [153]. It is 

important to note however that looping alone will not induce transcription if the appropriate 

transcriptional co-factors are absent. This is exemplified by the large proportion of loops found to 

be pre-existing in fibroblasts by Jin et al. that required addition of the TNF ligand to allow 

transcriptional activation to take place [154].     

 

The functional characterisation of breast cancer GWAS hits has confirmed a number of in cis 

enhancer-promoter interactions relevant to breast cancer. These include looping interactions 

between an enhancer containing risk SNPs and MYC at the 8q24 risk locus [155], and similar 

interactions between two regulatory elements containing risk-SNPs and the CCND1 gene at the 

11q13 risk locus [5]. Previous studies of genes implicated in breast cancer have also revealed 

functional looping between distal enhancers and the CDKN1A promoter mediated by the vitamin D 

receptor [156], and between the BCL2 gene promoter and an enhancer element present in its own 3’ 

UTR (untranslated region) [157].  

 

Looping contacts have also long been reported between enhancers and promoters on different 

chromosomes [158, 159], with Zhang et al. finding that 40% of interactions involving enhancers 

were inter-chromosomal in an embryonic stem cell model [72]. There has however, only recently 

been evidence provided that such contacts in trans can be functional [160]. Multiple interactions in 

trans have been  found in experiments on breast cancer cells, including looping involving GWAS 

loci, however these studies failed to provide experimental confirmation of any biological function 

mediated by the loops [161, 162]. The majority of post–GWAS studies have only considered 

interactions in cis leaving open the possibility that there may be interactions in trans awaiting 

discovery if the appropriate techniques are used to find them. 

 

 

1.3.5. Identifying and Characterising Chromatin Interactions 

 

Determining the target genes that interact with a newly identified regulatory element can be a major 

challenge [163]. The FANTOM consortium found that only 40% of enhancers targeted the nearest 

gene, with 64% linked to a TSS within 500kb [86]. Therefore, a combination of in silico and 

experimental techniques is required to identify potentially functional enhancer-promoter 

interactions [164]. The in silico approaches will be discussed further in Section 1.4.1. 
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Experimental Approaches 

Enhancer-promoter interactions can be directly assessed via chromatin conformation capture (3C) 

techniques (Figure 1.5). 3C, pioneered by Dekker in 2002, is a method based on an initial 

formaldehyde step to crosslink the DNA and proteins, followed by restriction enzyme digestion and 

re-ligation to create a DNA fragment composed of two stretches of DNA that were in close 

proximity at the time of fixation [165]. Identification and quantitation of the novel junctions created 

is then assessed by quantitative PCR (qPCR), chip hybridisation or sequencing. The relative number 

of novel junctions present at a particular genomic location gives information as to the structure of 

local chromatin interactions (reviewed in [166]). Subsequent Sanger sequencing of interacting 

fragments can also be performed to determine whether the detected interaction preferentially 

involves a particular allele (allele specific 3C).   

 

Interactions found by 3C may represent random collisions of nearby loci, functional interactions of 

regulatory elements, or a less specific interaction where two loci share a common sub-nuclear space 

within such structures as transcription factories or nuclear speckles [167]. On a broader scale, the 

3C techniques have revealed a hierarchy of chromatin interactions which range up through 

topologically associated domains to the compartmentalisation of chromatin into territories within 

the nucleus [168]. 3C and its related techniques have revolutionised the study of enhancer-promoter 

interactions but need to be coupled with functional assays to determine whether the observed 

interactions are functionally relevant and actually alter transcriptional activity [169]. The most 

common method to demonstrate a potential in vivo function is through the in vitro use of luciferase 

plasmid constructs, where the candidate promoter is cloned upstream from a luciferase reporter 

gene and transfected into a target cell. An increase in luciferase transcription following inclusion of 

the enhancer in the construct indicates that the enhancer is able to drive promoter activity in that 

cell type [170].  
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Figure 1.5 The family of Chromosome Conformation Capture (3C) techniques.  The top panel 

shows the initial library preparation common to all the techniques. Tethering proteins are represented 

by the shaded shapes and the recognition sites for restriction enzymes (RE) used to digest the DNA 

are indicated by the letters H for the 6bp RE HindIII and D for the 4bp cutter DpnII. Adapted from 

Dekker et al. [166]. 

 

4C (Circular Chromosome Conformation Capture) 

3C requires primers to be designed against all the restriction digest fragments that are to be tested 

for interactions and thus involves an initial prediction as to which interactions are likely to be 

present [166]. To locate interactions involving a nominated bait region (usually an enhancer or 

promoter) in an unbiased manner, requires the use of 4C. As described in Figure 1.5, it involves a 

step where the interacting DNA fragments are circularised. Primers facing away from each other are 

then designed at either end of the bait region, with a subsequent PCR step to amplify any interacting 

DNA forming part of the circle alongside the bait sequence [171]. The power of this technique has 

been greatly enhanced by next-generation sequencing which allows the creation of a genome wide 

map of loci that interact with the genomic element being studied [172]. It is of particular use to 

investigate those GWAS loci where the candidate causal SNPs can be mapped to one or two 
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regulatory elements allowing genome-wide interaction data to be generated from a single 

experiment [173]. It has not yet been employed to investigate breast cancer GWAS loci and should 

prove a powerful tool for post-GWAS analysis. 

 

5C (Chromosome Conformation Capture Carbon Copy) and HiC 

Another related technique called 5C (Figure 1.5) was used extensively by the ENCODE project and 

is able to analyse thousands of chromatin interactions simultaneously, allowing a three dimensional 

map of chromatin to be constructed [6, 174]. HiC extends the 5C technique genome wide by pulling 

down and sequencing all interacting fragments (Figure 1.5), and has revealed that chromatin is 

arranged in a ‘fractal globule’ conformation with active and inactive domains clustering separately 

in the nucleus [175]. HiC may be combined with a capture step to enrich the sequencing library for 

interactions containing specified regions of interest such as GWAS loci. This ‘Capture-HiC’ greatly 

increases the obtained resolution and allows multiple interacting regions to be investigated 

simultaneously [162]. Capture HiC shows great promise for post-GWAS work and has been used to 

follow up risk-SNPs at both breast and colorectal cancer loci [162, 173]. 

 

ChIA-PET  (Chromosome Interaction Analysis with Paired End Tags) 

3C techniques can also be combined with a ChIP step to pull down interacting fragments bound to a 

particular protein, a process called ChIP-loop [176]. Chip-loop can then be scaled up to analyse 

chromatin interactions genome-wide that are bound by that target protein, a process called ChIA-

PET. This was first performed using ERα as the antibody target and uncovered a looping network of 

689 interacting regions mediated through binding of the ER receptor [161]. It confirmed the 

involvement of genes previously known to be important in breast cancer and revealed many more 

requiring further study, providing an invaluable resource for breast cancer research. It is of 

particular interest in post-GWAS work as it has been found that many GWAS SNPs overlap major 

regions of interaction [177]. ChIA-PET can thus be used to prioritise SNPs for further 

characterisation and simultaneously determine which genes are controlled by the regulatory 

elements harbouring the risk SNPs. Interestingly, further ChIA–PET studies using RNAPolII as the 

pull-down target in MCF7 cells have revealed that 90% of the PolII binding sites actually lie 

proximal to known promoters and almost half of these display RNA production indicating the 

presence of ncRNAs or transcribed enhancers [178]. This suggests that there are many 

uncharacterised non coding transcripts that may be interacting with regions containing risk-SNPs 

and hence such transcripts could be mediating some of the observed risk. 

 



 

Chapter 1 Page 20 
 

 

GWAS and Chromatin Conformation Capture 

A weakness of previous post-GWAS studies is that they either rely solely on in silico evidence to 

determine interactions between enhancer containing GWAS SNPs and potential gene targets [36, 

61], or they merely employ 3C to confirm a proposed interaction with a nearby gene [62, 155].  

This may be misleading given the fact that 60% of enhancers do not interact with the closest gene 

and there are thus potential long range interaction partners that may be overlooked [86]. Techniques 

such as 4C-seq, 5C, ChIA-PET and Capture-HiC allow an agnostic approach to determining such 

interactions and should form integral parts of future post-GWAS functional studies. 

 

 

1.4. Mechanisms Underlying SNP Associations and Breast Cancer 

As mentioned previously, 88% of fine mapped GWAS SNPs fall in intronic or intergenic regions 

and 71% overlap a DNAse I hypersensitivity site [3].  This suggests that they  lie in regulatory 

elements and can thus cause transcriptional dysregulation of target genes [163]. Several recent 

papers by my group and others have identified the target gene and explored potential underlying 

mechanisms at GWAS breast cancer risk loci. These include 10q26 (FGFR2) [62], 2q35 (IGFBP5) 

[60], 5q11 (MAP3K1) [59], 2q33 (CASP8) [61], and 11q13 (CCND1) [5]. The 11q13 study will 

shortly be described in more detail as it forms the basis for this thesis. Three other studies followed 

up a number of loci simultaneously; Dryden et al. (2q35, 8q24 and 9q31) [162]; Khan et al. (42 

SNPs involved in miRNA regulation) [179]; and Michailadou et al. (15 loci including 18q12.3 and 

1q21.1) [36]. A variety of technical approaches may be used to characterise risk loci identified 

through GWAS and a recommended workflow for such analysis and interpretation has recently 

been outlined by Edwards et al. (Figure 1.6) [26]. The genetic fine mapping component has been 

previously discussed in section 1.2.1. 
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Figure 1.6      A workflow for characterising GWAS risk loci. Adapted from  [26].  

 

1.4.1. In Silico Annotation  

 

The initial phase of functional characterisation typically includes the use of publically available 

ChIP-seq or DNAse I hypersensitivity data sets to predict the location of regulatory elements and 

allow prioritisation of candidate SNPs (reviewed in [26]). The ENCODE and ROADMAP projects 

are major resources for such work as they cover chromatin structure, histone modifications, 

transcription, chromatin interactions and TF binding giving functional predictions for over 80% of 

the genome [3, 180, 181]. This information can be accessed directly or via the many web-based 

tools integrating such datasets with SNP annotations, allowing the data to be used in predicting the 

effect of SNPs at defined disease loci. These tools include HaploReg [182], RegulomeDB [183], 

GWAS 3D [184], and FunciSNP [185].  

 

The features most commonly used to identify regulatory elements are DNAse I hypersensitivity and 

the binding of TFs such as p300 and CBP. These are general markers of an enhancer or promoter, 

with the more specific histone modifications described in Section 1.3.2 (also Figure 1.7). The 

simultaneous appearance of such marks at a distal enhancer element and nearby promoter can be 

used as evidence that they are likely to be interacting [85, 186, 187]. The PreSTIGE (Predicting 

Specific Tissue Interactions of Genes and Enhancers) method developed by Corradin et al. is a 

variation on this approach and combines H3K4me1 ChIPseq with RNAseq expression data across a 
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wide variety of cell lines. A consistent association observed across cell lines between the gain of a 

H3K4me1 mark at an enhancer with active transcription from its potential target gene provides 

evidence for their interaction [100].  More recently however, the demonstration of correlated 

transcription between an enhancer and nearby genes has been shown to provide even more reliable 

evidence that the two are interacting and that the enhancer is active [86]. Datasets of large scale 

chromosome conformation capture type experiments are also available to search for chromatin 

interactions, including multiple ChIA-PET datasets in MCF7 ERα positive breast cancer cells and a 

hi-resolution HiC datasets in the HMEC non-cancer breast cell line [161, 177, 188]. 

 

 

 

Figure 1.7 Characteristic marks of active enhancers. The identification of enhancer elements can 

be performed by mapping histone marks (H3K4me1 or H3K27ac) on nucleosomes (gray cylinders), 

open chromatin (DNase I hypersensitivity) or TF binding (p300, CBP) to DNA motifs (blue oblongs). 

The coloured purple, green and yellow shapes represent proteins of the pre-initiation complex.  

Adapted from [189]. 

 

The rapid rise in the number of available genome-wide datasets mean that increasingly accurate 

functional predictions can be made for candidate causal SNPs before any confirmatory lab work has 

been performed. Michailadou et al. used an imputation approach to expand the SNP genotypes used 

in the iCOGS chip from 211,155 up to over 11,000,000 and found 15 new breast cancer 

susceptibility loci [36]. They then combined breast cancer cell data from Corradin et al. (H3K4me1) 

[100], and Hnisz et al. (H3K27ac) [101], with  ChIA-PET ERα or RNAPolII interactome datasets to 

prioritise SNPs which fell in an enhancer element and consistently interacted with a gene promoter 

[161, 177]. This process predicted three SNPs at the 1q21.1 locus to lie in enhancers interacting 

with either the RNF115 or PDZK1 genes, and another set of SNPs present in an enhancer at 18q12.3 

that interacted with the SETBP1 gene.  
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The Hnisz et al. (H3K27ac) dataset was also used by Lin et al. to study SNPs at the 2q33 locus and 

provided evidence that several SNPs fell in enhancers of the CASP8 gene [61, 101]. An analysis of 

eQTL (expression quantitative trait locus) data then supported an effect of the SNPs on CASP8 

expression. eQTLs are SNPs that are associated with a change in expression of a nearby gene 

(usually within a megabase) and often represent disruption of an enhancer element in cis, though 

they also may act in trans [26].  An interesting study by Li et al. used eQTL datasets from breast 

tumours to confirm the hypothesis that many breast cancer risk SNPs are also eQTLs, either acting 

in cis on nearby genes in their locus or in trans by affecting the expression of TFs such as MYC or 

ESR1 (oestrogen receptor α-1) [190]. They were unable to confirm effects in trans but found 

significant associations in cis for the 2q35 (IGFBP5), 5q11 (C5orf35) and 16q12 (TOX3) loci. 

Although these in silico analyses can be of great assistance in prioritising SNPs for further study, 

more definitive assignment of a causal SNP requires a direct functional approach to confirm that the 

properties predicted in silico are reflected first in vitro and ultimately in vivo.  

 

1.4.2. Assignation of SNP Function 

 

The information gained from an in silico interrogation of the locus is combined with direct 

experimental approaches to determine the mechanism by which the SNPs may act to alter breast 

cancer risk. The most frequently observed effect is a change in TF binding, usually due to the SNP 

affecting a specific TF recognition motif [191]. Alterations in TF binding can be experimentally 

confirmed using ChIP-seq to compare differential enrichment between the alleles or with EMSAs 

(electrophoretic mobility shift assays) which assess the ability of a DNA sequence to be bound by a 

target protein, thus changing its speed of migration through a gel [192]. Alterations in TF binding 

may lead to the disruption of tissue specific chromatin looping or changes in activity of an affected 

regulatory element [26].  

 

Allele specific looping 

The most robust breast cancer association to date is with FGFR2 at 10q26 (p value 2x10
-76

) [37]. 

Fine mapping of this locus identified three iCHAVs associated with the risk of developing ERα 

positive breast cancer. As part of the functional follow up of risk SNPs, preferential binding of the 

FoxA1 TF to the one risk allele was observed and E2F1 binding to a second risk allele [62]. 

Stronger binding of FoxA1 led to an increased recruitment of ERα to the locus. Notably, altered 

FoxA1 binding appears to be a common mechanism by which SNPs can influence ERα positive 

breast cancer. Cowper-Sallari et al. found an enrichment of breast cancer associated SNPs altering 

the binding affinity of FoxA1 at distal regulatory sites of the ERα cistrome, leading to allele specific 
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changes in gene expression [193]. One of the mechanisms may involve allele specific chromatin 

looping with changes in enhancer-promoter interactions underlying the altered gene expression. 

This was seen by Ghoussaini et al. at the 2q35 locus where a regulatory element containing the 

cancer protective allele preferentially bound FoxA1 and was involved in increased looping 

interactions with the IGFBP5 gene promoter compared to that seen for enhancers containing the 

risk allele [60]. Given that they had previously demonstrated that the regulatory element acted to 

enhance IGFBP5 promoter activity, such an increase in interaction frequency would be expected to 

drive IGFBP5 expression [148].    

 

Dysregulation of regulatory elements 

Changes in TF binding may also affect the ability of distal regulatory elements to enhance or 

repress activity of their target promoter [127]. This was seen at the 5q11.2 locus where the risk 

allele preferentially bound GATA3, which was then associated with an increase in activity of the 

surrounding enhancer. Another risk allele at the locus increased the activity of a different enhancer, 

with both enhancers acting on the MAP3K1 gene to increase promoter activity [59]. A similar 

alteration in enhancer function was found for the risk SNPs at the 11q13 locus leading to reduced 

activity of the CCND1 gene [5].  

 

Direct Disruption of Coding Sequences 

A SNP may directly affect gene function by altering the sequence of transcribed RNA, thus creating 

a non-synonymous change in amino acid codons, disrupted miRNA recognition sites or a structural 

change in the RNA itself. One of the few variants that directly affect gene function by disrupting an 

amino acid codon was found at 1q43. This mapped to an exon of the DNA damage repair gene 

EXO1, causing a substitution of an amino acid that was predicted to be deleterious to normal protein 

functioning [36]. SNPs may also have effects on transcribed RNA that is not mediated by changes 

in protein composition. Wan et al. defined riboSNitches as SNPs that can alter RNA structure and 

thus influence the ability of the RNA to bind micro RNAs, undergo correct splicing or properly 

function as a long non-coding RNA [194]. GWAS risk SNPs were enriched for riboSNitches and it 

seems likely that this will prove another important mechanism by which these SNPs alter normal 

cellular functioning and promote a disease phenotype. A retrospective analysis of iCOGS data was 

performed by Khan et al. to search for SNPs affecting miRNA binding sites and found five SNPs 

significantly associated with the risk of breast cancer [179]. These affected genes including the 

previously discussed CASP8 at 2q33 and also DROSHA which is involved in miRNA processing 

[195]. 
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1.4.3. Genome Editing Techniques 

 

It is of critical importance to keep a clear chain of causation from the initial fine mapping of a risk 

SNP through to a demonstration of its functional effect and not to fall into the trap of prematurely 

declaring SNP functionality and causality [34]. Genome editing techniques are likely to prove 

valuable in this regard and should form a part of any post GWAS functional follow up study [26]. 

These allow the creation of parallel cell lines or model animals that only differ in the presence of 

the SNPs of interest and allow a direct assessment of the SNP effects in their native genomic 

context [196]. Due to their low cost and ease of use, CRISPRs (Clustered Regularly Interspaced 

Short Palindromic Repeats) are likely to be the principle technique used in the future, taking over 

from the previously used Zinc finger nucleases and TALENS (Transcription Activator-Like 

Effector Nucleases) [197]. These tools have been previously utilised in post-GWAS work to 

investigate the effects of a SNP linked to foetal haemoglobin levels and two SNPs linked to 

Parkinson’s disease [198, 199]. 

 

1.4.4. The 11q13 Breast Cancer Susceptibility Locus 

 

The first fine mapping and functional characterisation study of a breast cancer susceptibility locus 

following the iCOGS GWAS release was performed by our group in 2013 [5]. This involved the 

11q13 region originally identified in the 2010 Turnbull et al. GWAS, with the risk SNP (rs614367) 

tagging a susceptibility locus for ERα positive breast cancer within a large gene desert [4]. The 

genetic fine mapping of this locus was performed as part of the iCOGs chip, genotyping 731 SNP 

variants within the tagged haplotype block for 89,050 European subjects in 41 studies and 12,893 

Asian subjects from 9 case-control studies. This revealed three independent signals (iCHAVs) 

associated with ERα positive breast cancer, though the effect size was far smaller for iCHAV3 and 

it was not followed up further. iCHAV1 had four candidate causative, highly correlated SNPs 

(rs661204 = SNP1, rs78540526 = SNP2, rs554219 = SNP3 and rs657686 = SNP4) and iCHAV2 

had only one SNP (rs75915166 = SNP5) remaining after the selection process. The SNPs were 

located in two putative regulatory elements (PRE1 and PRE2) possessing the characteristic 

epigenetic and TF binding profiles of enhancers or silencers as shown in Figure 1.8 [5].  
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Figure 1.8 The 11q13 breast cancer susceptibility locus.  PRE1 contains four candidate causal 

SNPs and PRE2 contains one candidate causal SNP (red arrows). Promoter activity is indicated by 

HeK4me3 enrichment (1
st
 green track). Enhancer activity is indicated by H3K4me1 (2

nd
 green track) 

and H3K4me2 (1
st
 red track) marks (GEO #GSM594606). TFs: ER (GEO #GSM365926), cohesion 

(ArrayExpress; #ETABM-828) and FoxA1 [133] are marked as red rectangles. ChIA-PET data derived 

from [161], is represented as a heat map, with the darker blue representing increased numbers of 

chromatin interactions. Adapted from [5]. 

 

One element (PRE1) was shown to act as an enhancer of transcription and the other (PRE2) as a 

silencer. Chromosome conformation capture experiments revealed interactions between these 

regulatory elements and the nearby cell cycle gene cyclin D1 (CCND1), one of the most commonly 

amplified genes in breast tumours and a known oncogene [200]. ERα mediated ChIA-PET data also 

confirmed the interactions which were consistent with previous studies showing that the action of 

oestrogen on CCND1 is a primary driver for ERα positive breast cancer proliferation [126, 161]. 

Luciferase assays demonstrated that two of the SNPs led to reduced CCND1 promoter activity in 

vitro. This finding that the SNPs reduced CCND1 promoter activity was unexpected given that 

CCND1 is usually over-expressed in ERα positive breast cancer, however two subsequent studies 

demonstrated that cyclin D1 associates with the Rad51 protein and has a critical role in oestrogen 

mediated DNA damage repair [201, 202]. This provides a putative mechanism of disease as 

interference with these pathways would be consistent with the associated increase in breast cancer 

risk.  

 

CCND1 was chosen as the likely target of PRE1 and PRE2 due to evidence of interactions provided 

by the ChIA-PET data and by the fact that it was such a well characterised oncogene. It may not be 

the only gene mediating risk however, as the ENCODE study found that distal regulatory elements 

such as PRE1 and PRE2 may interact with greater than ten transcription start sites [6]. This seems 

particularly likely for PRE1 given that it is such a hot spot for ChIA-PET chromatin interactions 
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(Figure 1.8) [161]. Investigations at 8q24 which is a multiple cancer risk locus much like 11q13, 

have found other targets for the causal risk SNPs apart from the primary candidate MYC oncogene. 

These include several lncRNAs in the 8q24 gene desert which appear to be involved in both cancer 

risk and subsequent tumour proliferation [203, 204]. Further characterisation is similarly required 

for the 11q13 susceptibility locus to uncover additional protein coding genes or non-coding RNAs 

that may be mediating the breast cancer risk conferred by the five risk SNPs. 

 

1.5. Long Non-Coding RNA 

 

It is now generally accepted that the human genome is pervasively transcribed, with the pilot 

ENCODE study demonstrating primary transcription involving 74-93% of all bases [205]. As well 

as representing splice variants of known genes, such transcription encompasses a variety of non-

coding RNAs (ncRNAs) which may be functional in themselves or be the precursors of smaller, 

active RNA molecules [206-208]. NcRNAs can be divided into two broad groups; short, regulatory 

RNAs and long (>200bp), non-coding RNAs (lncRNAs). Short RNAs include short interfering 

RNAs (siRNA), PIWI-acting RNAs (piRNA) and microRNAs (miRNA), with many new subgroups 

added every year [209]. A number of miRNAs have been linked to breast cancer development and 

metastasis, with tumour miRNA profiling  becoming increasingly used as a prognostic indicator and 

also to identify potential therapeutic targets (reviewed in [210]). LncRNA biology however is still 

in its infancy and functions have been difficult to assign given their vast numbers and frequent 

redundancy [211] . 

 

1.5.1. The Function of LncRNAs 

 

Although lncRNAs are estimated to comprise around 80% of genomic transcription, there is debate 

as to the biological relevance and function of such transcripts with some arguing that much is 

merely transcriptional noise [212-214]. Guttman et al. have provided evidence against this 

hypothesis, firstly  by identifying over 1600 large ncRNAs in mice with strong evidence for 

conservation and functionality, and secondly by silencing 147 lncRNAs in embryonic stem cells 

which led to significant effects on gene expression networks in 93% of cases [215, 216]. Similarly, 

Ponjavic et al. analysed 3122 ncRNAs in mice and found evidence of purifying selection consistent 

with functional transcription [217]. Blurring the issue of sequence conservation being a proxy 

measure of transcript function however, is the fact that many transcripts overlap functional 

enhancers which are themselves conserved, making it difficult to determine whether either or both 

elements are under active selection [214, 218].  
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Comprehensive studies by Cabili et al. and Derrien et al. have curated reference catalogues 

comprising 8195 and 9277 lncRNAs respectively [219, 220]. These demonstrate that lncRNAs are 

far more tissue specific than protein coding genes and tend to be found in the nuclear compartment, 

frequently bound to chromatin [220]. Figure 1.9 describes an array of intra-nuclear functions for 

lncRNAs. Their transcription alone has also been shown to directly affect local promoter and 

enhancer function and such transcriptional interference may be a common mode of action (reviewed 

in [221]).  Although most lncRNAs act in the nucleus, some have cytoplasmic function as has been 

described for HOTAIR which appears to have multiple modes of action [222]. 

 

 

 

Figure 1.9 Nuclear functions of lncRNAs. The central sphere represents the nucleus containing 

active (left) and repressed (lower) chromatin with nuclear bodies depicted on the right. Clockwise from 

upper right: ribosomal RNA (rRNA) is found within the nucleolus; NEAT1 arranges paraspeckles and 

MALAT is found in speckles which associate with transcribed genes for splicing; XIST represses the 

inactive X chromosome; chromatin looping is mediated by lncRNAs between chromosomes, genes 

and finally enhancers and promoters.  Adapted from  [223]. 
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The GENCODE v7 catalog of human lncRNA found a correlation between the expression of 

lncRNAs and nearby genes, suggesting that many may act in a similar manner to enhancers and 

regulate local gene expression in cis [220]. This supports earlier work by Orom et al. who described 

a class of ncRNAs called enhancer-like RNAs [224]. Proposed mechanisms include guiding the 

assembly of chromatin modifying complexes to regulatory elements or as an integral component of 

such complexes (reviewed in [145]). Recent research has shown that a large percentage of lncRNAs 

arise from enhancers and are better defined as enhancer RNAs (eRNAs) [219].  

 

 

1.5.2. Enhancer RNA (eRNA) 

 

Transcription from enhancer regions has been documented in the β-globin locus since the early 

1990s but was not confirmed on a genome-wide scale until 2010 [225]. De Santa et al. 

demonstrated by RNAPolII ChIP and RNA-seq that 70% of extragenic transcription in 

macrophages was from enhancers, and this transcription preceded mRNA production from nearby 

genes [225-227]. Globally, 6.8% of the transcripts in oestrogen (Ez) stimulated MCF7 cells derive 

from ERα binding enhancers, with maximal production at 40 minutes post Ez exposure [87]. 

Enhancer RNAs can be divided into two groups; short, non-polyadenylated, bidirectional, ‘eRNA’ 

transcripts and longer, polyadenylated, multiexonic transcripts called meRNAs although there is not 

yet clear consensus on this classification system [228, 229]. Interestingly, intronic enhancers can act 

as promoters and produce sense meRNAs that represent abridged transcripts of the original mRNA, 

often contributing over 50% of the total mRNA for that particular gene [229]. The division of 

regulatory elements into proximal promoters and distal enhancers may therefore be quite artificial 

as the histone modifications and function of putative enhancers and promoters exist on a spectrum, 

with strong enhancers having a weak promoter ability and weak enhancers possessing stronger 

promoter ability when tested using luciferase assays [178]. Antisense meRNAs from intronic 

enhancers may directly interfere with transcription and favour the production of  particular gene 

isoforms [230].  

 

Enhancer RNAs were initially suggested to be incidental transcription either arising from RNAPolII 

coming in contact with the open chromatin found at active enhancers, or as the product of recruited 

RNAPolII as it opens up the chromatin to allow TF binding [218]. Against the former explanation is 

the observation that RNAPolII binding to enhancers still occurs in the absence of eRNA production 

[228]. Natoli et al. have suggested that the purpose of enhancer transcription by RNAPolII may 

bring it into the transcription factory where its target gene is being transcribed (albeit at low levels), 
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thus increasing the chance of the two productively interacting [218]. Regardless of any underlying 

role, the induction of eRNAs at an enhancer has been shown to be ‘the most precise mark of final, 

functional looping between an activated enhancer and its regulated gene promoter’ [231]. 

Confirming the function of eRNAs is complicated by the lack of consensus as to what actually 

constitutes an eRNA as opposed to a lncRNA. Given the overlapping spectrum of transcriptional 

and functional activity exhibited by enhancers and promoters there may however be no clear cut 

division between the two and new classifications are awaited to clarify our understanding of gene 

regulation [86, 229].  

 

In support of a functional role for eRNAs, a number of studies have demonstrated reductions in 

target gene expression following eRNA silencing [232, 233]. Li et al. combined eRNA silencing 

with 5C in oestrogen induced MCF7 cells to show that reduced eRNA expression was associated 

with a dramatic loss of chromatin interactions, supporting the hypothesis that eRNAs are involved 

in chromatin looping between their enhancer of origin and its target promoter [234]. Arner et al. 

proposed that looping and transcriptional initiation are also likely to be regulated by eRNAs with 

their demonstration of a wave of eRNA production preceding subsequent gene expression by 

around 15mins rather than it being concurrent as previously thought [235]. Additionally, an 

intriguing new study by Pefanis et al. has discovered a role for the RNA exosome in titrating levels 

of enhancer RNA and antisense RNAs from interacting genes or secondary enhancers to fine tune 

chromatin interactions and subsequent gene expression [236]. This further supports the involvement 

of eRNAs in regulating genomic organisation however it is likely that many other functions await 

discovery. At the 11q13 locus of interest, probable eRNAs arise from regulatory elements upstream 

of the CCND1 gene in response to DNA damage, allosterically modifying the histone acetylase 

inhibitor TLS to reduce CCND1 expression [237].  

 

From the post-GWAS perspective it follows that any function ascribed to an eRNA may be 

disrupted by causal risk-SNPs, making the identification and consideration of eRNAs an important 

part of future analyses. This is emphasized by the fact that the majority of functionally characterised 

breast cancer GWAS SNPs affect enhancer elements, with a large percentage of these likely to 

produce eRNA [238]. 
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1.5.3. LncRNAs and GWAS 

 

Despite being more numerous than coding genes, lncRNAs in general have been historically under-

represented in post-GWAS studies [239]. They may be affected by GWAS risk SNPs either directly 

by incorporation of the SNP as part of their RNA sequence, or indirectly where the SNP affects an 

interacting transcriptional regulatory element. Studies have shown lncRNAs to be strongly enriched 

with disease associated SNPs, with up to 7% of lncRNAs containing risk-SNPs identified by 

GWAS [240, 241]. Most GWAS–lncRNA studies in cancer have focussed on the 8q24 multiple 

cancer risk locus, with the first described transcript being PRNCR1, an intronless lncRNA that 

contains SNPs linked to prostate cancer risk [203]. Knockdown of PRNCR1 reduced prostate cell 

viability and androgen receptor transactivation but it is unclear whether the transcript may instead 

represent an eRNA and thus knockdown is actually acting to disrupt enhancer activity. Similarly, 

the CCAT1-L lncRNA in the same locus is associated with colorectal cancer and appears to arise 

from a super-enhancer [204]. Another transcript at a locus found in multiple GWAS studies for 

diabetes, intracranial aneurysm, coronary artery disease and breast cancer is the lncRNA ANRIL 

which may be involved in cell proliferation pathways [4, 242, 243]. A link between a breast cancer 

associated risk SNP at 2q35 and the expression of the DIRC3 lncRNA  was found by Dryden et al. 

in their capture-HiC paper [162]. GWAS identified SNPs within non-coding transcripts are called 

snpRNAs and studies by Glinskii et al. have shown many to have allele-specific biological effects 

including the alteration of miRNA levels [244, 245]. Most studies on GWAS risk-SNPs affecting 

lncRNAs have however provided no direct functional evidence that the SNPs produce a biologically 

significant effect on the lncRNA and this remains a major deficit in the post-GWAS literature. 

 

1.5.4. LncRNAs and Breast Cancer 

 

An increasing number of  lncRNAs are implicated in breast cancer (reviewed in [246]), illustrating 

the relevance of non-coding transcripts in breast cancer research, though many other less abundant 

transcripts may await discovery. The first lncRNA to be associated with breast cancer is also the 

best characterised, the X-inactive-specific-transcript (XIST) that inactivates one of the female X 

chromosomes in cis [247]. It was discovered over 20 years ago but has only recently been classified 

as a lncRNA [248]. The absence of appropriate silencing of an X chromosome is frequently seen in 

breast tumours and appears to be related to the duplication of the existing active X with loss of its 

inactivated partner [247]. More recent research in MCF7 breast cancer cells suggests that 

inappropriate and unstable expression of XIST by the active X chromosome may then spread into 
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nearby chromosome territories, potentially causing dysregulation of genes involved in 

tumorigenesis [249].  

 

Other lnRNAs of relevance to breast cancer include H19, MALAT, BC200, GAS5 and HOTAIR, as 

reviewed in Gibb et al.  [246]. H19 was the first lncRNA to be shown to be involved in regulation 

of the cell cycle and is over-expressed in many breast cancers to promote cell proliferation [250]. 

MALAT expression is increased in primary breast cancers [251]. BC200 is a lncRNA normally only 

expressed in neurones however it exhibits high expression in invasive breast carcinomas and shows 

potential as a bio-marker to assist in the diagnosis and staging of tumours [252]. There is also a 

correlation with high-grade ductal carcinoma in situ, raising the possibility that it could be used as a 

early screening tool, much in the same way as the PSA (Prostate Specific Antigen) is used for 

prostate cancer [252]. GAS5 over-expression in breast cancer cells can trigger apoptosis, raising the 

possibility that it may function as a tumour suppressor [253].  

 

Perhaps the most topical of the lncRNA family is HOTAIR (Hox Antisense Intergenic RNA), which 

exhibits greatly increased expression (over 125x normal) in around one third of primary breast 

tumours. This expression can climb more than ten-fold again in metastasis and represents an 

independent risk factor for breast cancer mortality [254]. HOTAIR was discovered by Rinn et al. 

who demonstrated its role in silencing the various HOX genes via recruitment of the polycomb 2 

repressor complex (PRC2) [255]. From a treatment perspective, the inhibition of HOTAIR has been 

demonstrated to reduce the invasive potential of tumours [254]. Expression profiling of lncRNAs 

such as HOTAIR may also be used to classify tumours and provide prognostic information for 

patients [256]. Sorensen et al. were the first group to do the latter in breast cancer and achieved 

more than 90% sensitivity and 64% specificity in their classification of patients into metastatic and 

non-metastatic groups [257]. Though the lncRNA field is very new, the explosion in the number of 

annotated transcripts makes it highly likely that many more will be implicated in breast cancer 

biology [220, 241].  

 

HOTAIR stands out amongst those breast cancer associated lncRNAs in that a distinct pathogenic 

mechanism has been described. The majority of lncRNAs have only been identified due to their 

over-expression in breast cancer and mechanistic detail is lacking. The precise functional role of 

these transcripts requires further research, with the ultimate goal of developing novel biomarkers or 

anti-lncRNA chemotherapeutic agents to improve our management of breast cancer. 
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1.6. Outstanding Issues and Thesis Aims  

This thesis concerned the functional follow up of GWAS risk-SNPs determined to be likely causal 

variants in the initiation of breast cancer. The identification of genes that may mediate this risk has 

been historically been undertaken using a candidate gene approach [5, 60, 62]. This may however 

overlook low probability target genes that had not been previously been implicated in breast cancer. 

Traditional approaches are also biased towards protein coding genes and have thus neglected the 

larger non-coding component of the transcriptome. Given that the majority of GWAS risk-SNPs fall 

in non-coding regions of the genome it is highly likely that a substantial proportion of these SNPs 

will be affecting non-coding RNA [239]. This project therefore aimed to explore strategies for the 

characterisation of GWAS loci that maximises the ability to detect functional transcripts of 

relevance to breast cancer, whether these be coding or non-coding. 

 

The breast cancer associated susceptibility locus at 11q13 was the specific focus, to build on the 

previous study by our group which identified five candidate causal SNPs in two regulatory elements 

(PRE1 and PRE2) that interacted with the CCND1 gene. Chromosome conformation capture 

techniques were first used to find additional protein coding genes that may also be regulated by 

PRE1 or PRE2 and prioritise them for further investigation. This identified CPT1A and IGHMBP2 

as possible novel gene candidates mediating breast cancer risk in the region. RNA Capture-seq was 

then used to reveal the full complexity of transcription in the locus and further functional techniques 

employed to demonstrate that two of the transcripts (CUPID1 and CUPID2) were lncRNAs 

affected by the risk SNPs contained within PRE1. A follow up chapter provided evidence that 

CUPID2 also had many properties consistent with an oncogene and may have a role in driving 

breast cancer proliferation. This finding addressed another unresolved issue regarding the 11q13 

regions which is amplified in around 20% of breast cancer and thought to contain multiple 

oncogenic drivers which have not yet been definitively determined [8]. CUPID2 is thus proposed to 

be a novel driver of the 11q13 amplicon along with the well characterised oncogene CCND1. 

 

The overall hypothesis of this thesis is that common genetic variants act by modulating long-range 

regulatory elements that are found at breast cancer susceptibility loci and that the target genes 

(coding or non-coding) have a role in the pathogenesis of breast cancer. The evidence presented 

here supports that hypothesis and the findings presented from the 11q13 locus suggest that many 

more risk loci will harbor non-coding RNAs that mediate the increased risk of breast cancer 

imparted by identified causal SNPs. 
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2.1. Cell culture 

2.1.1. General conditions 

HS578T (ATCC#HTB-126), MDA MB231 (ATCC#HTB-26), MDA MB415 (ATCC#HTB-128), 

BT474 (ATCC#HTB-20), T47D (ATCC#HTB-133) and MCF7 (ATCC#HTB-22) cells were 

cultured at 37
o
C with 5%CO2, using RPMI 1640 media + L-glutamine (Gibco Invitrogen) with 10% 

FBS (Gibco Invitrogen) and 10ug/ml antibiotic/antimycotic cocktail (Gibco Invitrogen). 10ug/ml 

bovine pancreatic insulin (Sigma Aldrich), 1mM Na pyruvate (TRACE Scientific) and 20mM 

HEPES (TRACE Scientific) was also added when culturing BT474, T47D and MCF7 cells. 

HMECs (Human Mammary Epithelial Cells) were obtained from Life Technologies and grown in 

the supplied media.  

2.1.2. Fulvestrant/Oestrogen Induction 

MCF7 cells were induced with oestrogen (Sigma Aldrich) by seeding them at a confluence of 15% 

then replacing the media with fresh media containing 10nM Fulvestrant (ICI 182780, Sigma 

Aldrich) and culturing for 48 hours. The media was then replaced by media containing either 10nM 

17B-Estradiol (Sigma) dissolved in DMSO (Ajax Finechem) or an equivalent volume of DMSO 

vehicle. The cells were grown for a further 12 or 24 hours prior to RNA harvesting or lysate 

preparation. QPCR was then performed on the synthesized cDNA using intron spanning primers to 

determine gene expression. 

2.2. Luciferase Assays 

Promoter (ORAOV1 or CUPID) and enhancer DNA were amplified from MCF7 gDNA using the 

Kappa HiFi system (Kapa Biosystems) and sub-cloned into the pBLUNT (Thermo Fisher) plasmid 

before a final transfer into the pGL3-Basic (Promega) plasmid. The promoter fragments were 

amplified with primers that added KpnI and HindIII restriction enzyme sites to assist cloning into 

pGL3 Basic. Constructs containing the SNP variants had been already generated by other lab 

members for a previous study [5]. Sequencing of constructs by AGRF (Queensland) confirmed 

them to be correct. Cells were seeded to 80% confluence in 24 well plates together with equimolar 

quantities of luciferase reporter plasmids, 50ng of pRLTK (renilla) and 1µL of Lipofectamine 2000 

(Invitrogen) in a final volume of 600µL per well and incubated at 37
o
C. The empty vector pUC19 

was used to make the final DNA amount (650ng) constant between wells. After 24hrs the media 

was removed and luciferase/renilla activity measured using the Dual-Glo Luciferase system on a 
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Beckman Coulter DTX880 multimode detector. The final values were obtained by dividing the 

luciferase result by the corresponding renilla result to control for variation in cell lysis or 

transfection efficiency. A one-way ANOVA test with Dunnett’s correction for multiple 

comparisons with reference to a defined construct was used to analyse the data. 

2.3. Chromosome Conformation Capture 

2.3.1. 3C Library Preparation 

Lysates were prepared from cells grown to 70% confluence in 10cm plates, washed with PBS, and 

fixed for 10mins using 10ml of 1% formaldehyde. The formaldehyde was inactivated with a 10ml  

0.125M PBS-Glycine wash then the cells scraped off in 10ml of fresh 0.125M PBS-Glycine. After a 

6min centrifuge at 600g at 4
o
C, the cell pellets were washed with 25ml of cold PBS before another 

400g centrifuge for 6 mins at 4
o
C. The pellet was then resuspended in 10ml of ice-cold lysis buffer 

(see Appendix) and incubated on ice for 30mins with intermittent mixing. Cell lysis was completed 

using 10strokes of a Dounce homogenizer and the nuclei spun down with a 6 min centrifuge at 800g 

at 4
o
C. The pellets were then resuspended in 120µL of NEB restriction enzyme buffer, 575µL of 

dH20 and 24µL of 10% SDS (sodium dodecyl sulphate - Sigma)(0.3% final), mixed and incubated 

for 30mins at 37
o
 C with shaking. 200µL of 10% Triton X-100 (Sigma)(2% final) was added, the 

solution mixed and then incubated for another 30mins at 37
o
C with shaking to inactivate the SDS. 

Three aliquots of the desired restriction enzyme (purchased from NEB) were then added over a 6 

hour period (1500U total for HindIII, 1000U for NcoI) and the samples incubated overnight with 

shaking at 37
o
C. Digestion efficiencies were assessed using both qPCR on a 20µL aliquot of 

purified digested DNA and agarose gel electrophoresis. 160µL of 10% SDS was then added to each 

tube and the samples incubated for 30mins at 65
o
C with intermittent shaking to inactivate the 

enzymes. After transferring to a 50ml Falcon tube, 5.4ml of dH20, 750µL 10% Triton, 920µL ligase 

buffer (see appendix), 80µL 10mg/ml BSA (NEB) and 80µL of freshly prepared 100mM ATP was 

added and the tubes incubated in a waterbath at 37
o
C for 45mins followed by 15mins on the bench 

at room temperature. Ligation of the DNA fragments was performed by adding 2µL of 2000U/µL 

T4 DNA ligase (NEB) and incubating for 4 hours in a 16
o
C waterbath, then 30mins on the bench at 

room temperature. De-crosslinking was performed by incubating overnight at 65
o
C after the 

addition of 30µL 10mg/ml proteinase K (Astral Scientific) then 30µL 10mg/ml RNAseA (Sigma 

Aldrich) was added followed by a 45 min incubation at 37
o
C. The samples were cleaned up using 

8ml of phenol chloroform (Invitrogen) then 8ml of chloroform and the DNA precipitated with 5µL 
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glycoblue (Ambion), 1ml 3M Na acetate, 5ml water and 24ml of 100% ethanol in a centrifuge tube. 

After 45min incubation at -80
o
C, the tubes were centrifuged at 20,000g for 45mins followed by 4-6 

washes with 70% ethanol to remove precipitated salts. The pellet was then dissolved in 150µL of 

Tris-HCL (pH 7.5) and left on a roller at 4
o
C overnight. Further DNA purification was achieved by 

the use of Amicon-Ultra spin columns (EMD-Millipore).  After library quantitation using qPCR 

with comparison to diluted gDNA standards, the libraries were aliquoted and stored at -20
o
C, ready 

to be used as a PCR template for 3C. 

2.3.2. 3C QPCR 

300ng of DNA template was used in a qPCR reaction together with 10x MyTaq buffer, 0.05µM bait 

primer, 0.05µM variable primer, 0.1µL of MyTaq (Bioline), 1.25mM SYTO9 (Life Technologies) 

made up to 20µL with dH2O. The reactions were run at 95
o
C for 2mins; 50 cycles of [95

o
C for 

20sec, 66
o
C for 30sec and 72

o
C for 30sec]; 72

o
C for 4mins then held at 16

o
C. The PCR products 

were run out on a 2% agarose and bands corresponding to low Ct results were excised, extracted 

using the Qiagen gel extraction kit and sent for Sanger sequencing (AGRF QLD) to confirm their 

identity. Interaction frequencies were determined by adjusting the qPCR converted Ct values 

according to the relative primer efficiency as measured on serial dilutions of an artificial BAC 

ligation product library. 

2.3.3. Generation of BAC (Bacterial Artificial Chromosomes) 3C Controls 

DNA from BAC clones RP11-614E9, RP11-378E8, RP11-156B3 and RP11-825J6 (Invitrogen) was 

combined to give a total of 10ug, digested by the appropriate 3C enzyme and ligated with T4 DNA 

ligase (NEB) to create an artificial ligation product library.  

2.3.4. Allele Specific 3C 

3C library preparation was performed as described previously in MB415 cells using the HindIII 

restriction enzyme, however the final PCR was performed using primers designed to span a ligation 

junction and a risk SNP of interest, such that the subsequent amplicon contained the SNP as well as 

DNA from the bait and interacting restriction fragments. The products were then run on a 2% 

agarose gel, extracted using the Qiagen gel extraction kit and sent for Sanger sequencing (AGRF 

QLD). The chromatograms were compared to those from PCR products containing the SNP in 
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genomic DNA to determine whether a particular allele was preferentially participating in the 

chromatin interaction. 

2.3.5. Circular Chromosome Conformation Capture 

For the 4C-seq, 2x20ug aliquots of DNA from prepared 3C libraries were taken and digested either 

with 10U/µL DpnII (NEB) or NlaI (NEB) in 2ml snap lock tubes. Each tube contained 20ug DNA, 

50µL of the appropriate NEB buffer, 5µL of enzyme, 5µL of 100xBSA (NEB) for the NlaI samples 

and dH20 up to 500µL. The tubes were incubated overnight at 37
o
C with shaking and then the 

enzymes heat inactivated at 65
o
C for 30mins. DNA was extracted with 600µL phenol-chloroform 

(Invitrogen) followed by a 10min centrifuge at 130000rpm, then a further cycle using 500µL 

chloroform. The supernatants were transferred to fresh tubes along with 2µL glycoblue (Ambion), 

50µL 3M Na acetate and 950µL of 100% ethanol before a 30min incubation at  -80
o
C. After a 

20min centrifuge at 13000rpm at 4
o
C, the pellets were washed using 200µL 70% ethanol then air 

dried and resuspended in 200µL dH20. After 80mins on ice, 3.5µL of each sample was run on a 2% 

gel to confirm adequate digestion and the libraries stored at -20
o
C pending ligation. Once thawed, 

2µL of Quick T4 DNA Ligase was added along with 240µL of 1:2 Quick Ligation buffer (132mM 

TrisHCl, 20mM MgCl2, 2mM DTT, 2mM ATP, 15% PEG, pH 7.60). Samples were ligated 

overnight in a waterbath at 16
o
C and then on the bench for 30mins. The DNA was precipitated 

using 5µL glycoblue, 50µL 3M Na acetate and 1250µL of 100% ethanol and incubated for 45mins 

at -80
o
C followed by a 30min centrifuge at 13000rpm at 4

o
C. The pellets were washed using 500µL 

of 70% ethanol, centrifuged for 15mins at 13000rpm at  4
o
C and air dried for 5mins before 

resuspending  in 100µL of 10mMTris (pH 7.5) and allowing it to dissolve for 30mins at  37
o
C. An 

aliquot of each sample was run on a 2% gel to confirm ligation and the remaining sample combined 

with 800µL of binding buffer and processed using a High Pure PCR Product Purification Kit 

(Roche). 

 

The purified libraries were quantified using qPCR to compare them to diluted DNA standards of a 

known concentration and 12.5/25/50/100/200ng/µL dilutions made for use in a PCR reaction to 

determine the optimal library concentration for the final PCR. Each 25µL reaction contained 

16.75µL of dH20, 2.5µL buffer1, 0.5µL 10mM dNTPs (Bioline), 0.5µL of the 35µM forward and 

reverse primers, 0.25µL of Expand Long Template Taq (Roche) and 4µL of the diluted library. 

Cycling conditions were 2mins at 94
o
C, (30s at 94

o
C, 30s at 60

o
C, 3mins at 68

o
C) x 30 cycles then 

5mins at 68
o
C. The products were run on a 2% gel and the DNA template concentration with the 
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best spread of PCR products used for the final reaction. This comprised 40µL buffer1, 8µL 10mM 

dNTPs, 8µL of the 35µM forward and reverse primers, 5µL of Expand Long Template Taq 

(Roche), 16x the optimal library quantity used in the trial reaction and dH20 to 400µL. The sample 

was split into 8 PCR tubes and cycled as follows: 2mins at  94
o
C, (30s at  94

o
C, 30s at  70

o
C, 3mins 

at  68
o
C) x10 cycles with the annealing temperature reducing by 1

o
C per cycle, then (30s at  94

o
C, 

30s at  60
o
C, 3mins at  68

o
C) x30cycles  and finally 5mins at  68

o
C. The primers were then digested 

off by incubating for 90mins at 37
o
C after adding 40µL of the recommended NEB buffer, 3µL of 

either NlaI or DpnII depending on the sample origin and 3.8µL of BSA for the NlaI derived 

libraries. Finally, the samples were split into 200µL aliquots and processed using the High Pure 

PCR Product Purification Kit (Roche) before being processed by the Ion Torrent fragment kit and 

sent for Ion Torrent sequencing using a 318v2 chip producing 5-6 million usable reads per library. 

2.3.6. 4C Data Processing 

The .bam files generated from sequencing the 4C-seq libraries were used as input for the published 

r3Cseq pipeline to normalize the libraries and determine interactions [258]. The output .bedgraph 

files were uploaded to the Galaxy platform (Garvan), filtered using RPKM>10 and clustered using a 

20kb cutoff. The clustered files were then intersected to give the final regions of interaction in 

common between the 4C-seq libraries. 

 

2.4. RNA Experiments 

2.4.1. RNA Extraction 

Cells were harvested at 50-60% confluency using Trizol (Ambion) and processed according to the 

manufacturer’s instructions. The RNA was then Turbo DNAse treated (Ambion) and further 

purified using the RNeasy MinElute Cleanup Kit (Qiagen) ready for Capture-seq or RNA-seq 

library preparation. Quality control involved running the RNA on a QSep RNA column to assess 

purity and PCR to ensure there was no significant residual DNA contamination. For the latter, a 

200ng aliquot of RNA from each sample was used as a template along with the 3C-GAPDH primers 

and MyTaq polymerase (Bioline). The products were run on a 1% agarose gel with a positive and 

negative control, with no bands expected from the RNA samples. 
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2.4.2. RNA Capture-seq 

The capture step and subsequent sequencing were performed by our collaborators Tim Mercer et 

al., according to their published protocol using capture arrays previously designed by the Dinger lab 

[259]. Approximately 395kb of the intergenic region between MYEOV and CCND1 was captured on 

the chip (69,061,622-69,455,873). The .bam files were then assembled by myself on the Galaxy 

(Garvan) platform using cufflinks and viewed using the UCSC and IGV browsers [260]. 

2.4.3. siRNA Knockdowns 

Dharmacon On-TARGET siRNAs were used to knockdown CCND1, ORAOV1, CUPID1 and 

CUPID2 with a validated non-targeting siRNA (see Appendix Table 8.2 for sequences) as a 

negative control. The siRNAs were designed against CUPID1 and CUPID2 using the Dharmacon 

siDesign tool (http://dharmacon.gelifesciences.com/design-center/) then transfected into the cells 

using Lipofectamine 3000 (Invitrogen) at a final concentration of 50nmol. After 48hours the RNA 

was extracted using Trizol (Ambion) or the cells were processed for luciferase expression 

depending on the experiment. Efficacy of knockdown was assessed by comparing the gene 

expression in the knockdown sample against that obtained with the negative control. Seven different 

siRNAs were trialled against CUPID1 and CUPID2, with the most efficient chosen for subsequent 

experiments.  

2.4.4. QPCR for Gene Expression 

RNA was harvested from cells with Trizol (Ambion) following culture +/- siRNA knockdown and 

cDNA synthesized with random hexamers and the Superscript III kit (Life Technologies). Matching 

negative control samples were also prepared by omitting reverse transcriptase from the reaction. 

Gene expression was measured on a RotorGene6000 (Corbett Research) either using Taqman Gene 

Expression assays (list in Appendix Table 8.1) normalising against B-glucuronidase (MIM611499; 

Cat# 4326320E), or qPCR with MyTaq (Bioline) and SYTO9 normalising against TBP. 

2.4.5. ChIRPseq (chromatin isolation by RNA purification) (Adapted from  [261]). 

16 anti-sense DNA probes with 3’biotin TEG were designed for CUPID1 with an average GC% of 

45 and length 20bp, tested for specificity using NCBI Blast and ordered from Integrated DNA 

Technologies (Singapore). 16 negative control probes targeting LacZ were also ordered as per Chu 

et al. The probes were diluted to 100uM concentration in water, divided into even and odd pools 

http://dharmacon.gelifesciences.com/design-center/
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and stored at -20
o
C. BT474 cells were grown as described previously, trypsinised, washed with PBS 

x2 then resuspended in fresh 1% glutaraldehyde (Sigma Aldrich), with 10ml per 10 million cells in 

50ml Falcon tubes. These were incubated for 10mins in a rotator at room temperature then 

quenched by the addition of glycine to a final concentration of 0.125M for 5mins at room 

temperature (RT). The tubes were then centrifuged for 5mins at 400g and the pellets washed with 

20ml chilled PBS before a repeat centrifuge. The pellets were finally resuspended in 1ml of PBS, 

centrifuged and all the PBS removed before flash freezing in liquid N2 and storage at -80
o
C until 

use. The lysates were thawed, resuspended in 10x volume of Lysis Buffer (Appendix 8.1) and 

sonicated in a Covaris S220 (175W, 200cycles, DF10, 15mins) in 130µL batches which were then 

combined and centrifuged at 16100RCF for 10mins at 4
o
C to pellet cell debris. 3x10µL aliquots 

were taken to for input RNA and input DNA, with the other 10µL undergoing phenol-chloroform 

clean up and the DNA extracted and run on a gel to confirm adequate sonication to 100-500bp.  

 

Hybridisation was performed at 37
o
C with 2ml Hybridisation buffer (Appendix 8.1) and 100pmol of 

probes added per 1ml of sonicate then incubated overnight in a rotating oven. 100µL of streptavidin 

C-1 magnetic beads were then washed, resuspended in Lysis Buffer and added per ml of chromatin. 

The tubes were incubated with shaking for a further 30mins before being placed on a magnet and 

the supernatant discarded. The pellet was washed 5 times in 1ml of Wash Buffer (Appendix 8.1) 

with 5mins of shaking at 37
o
C between washes. 100µL was removed for RNA after the final wash, 

proteinase K (Ambion) treated and the RNA extracted using Trizol (Ambion) to check for 

enrichment compared with the input RNA that was processed similarly. The remaining pellet was 

resuspended in 150µL DNA Elution Buffer and incubated for 30mins before removing the 

supernatant and repeating the process. The 10µL DNA input aliquot was also processed in DNA 

Elution Buffer along with the post-ChIRP samples. 15µL of proteinase K (Ambion) was added and 

the samples incubated for 45mins at 55
o
C with shaking. DNA extraction was achieved using phenol 

chloroform then a sodium acetate precipitation. The samples were further sonicated in the Covaris 

S220 for 100sec (DF10, 200cycles, 175W) and prepared for Ion Torrent Proton Sequencing using 

the Ion Plus Fragment Library Kit (Life Technologies). To compensate for the low starting DNA 

concentration, ligation of adaptors was performed overnight at 16
o
C and the libraries amplified for 

12 cycles before gel size selection.  

 

The even and odd ChiRP-Seq datasets were analysed for peak detection using the MACS (Model-

based Analysis of ChIP-Seq) version 1.4.2 peak-calling algorithm with a p-value cut-off of 0.00001 
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[262]. The LacZ dataset was used as a control to assign each detected peak an FDR (false discovery 

rate) score. The peaks with minimum overlap fractions of 70% between the even and odd datasets 

which also overlapped with the surrounding regions of the transcription start sites (TSS ± 500bp 

and TSS ± 1kb) were identified using BEDTools [263]. The corresponding genes were evaluated 

for pathway and network enrichment using QIAGEN’s Ingenuity Pathway Analysis (IPA®, 

QIAGEN Redwood City, www.qiagen.com/ingenuity). 

2.4.6. Nuclear/Cytoplasmic Fractionation 

MCF7 cells were grown to 65% confluence in a 10cm plate, washed with PBS, scraped off in 10ml 

of PBS then centrifuged for 5mins at 1000g. The pellet was then re-suspended in 1ml of cold cell 

disruption buffer (10mM KCl, 1.5mM MgCl2, 20mM TrisHCl pH7.5, 1mM DTT (Sigma)) plus 

150µL dH20 to enhance lysis and incubated on ice for 10mins. Once the cells had swollen to >3x 

normal size they were subject to 30 strokes of a Dounce homogenizer to give >90% cell lysis. 

Triton-X-100 was added to give a 0.1% solution, the tube inverted 5 times and centrifuged for 

5mins at 1000RCF. The supernatant was then separated from the pellet and 500µL Trizol 

(Invitrogen) added to the nuclear sample for RNA extraction. 1/9 volume of 10x SDS solubilisation 

buffer was added to the cytoplasmic supernatant with 100ug Proteinase K per ml of solution then a 

20min incubation was performed at 42
o
C. 1/10 volume 3M Na acetate plus 1 volume of phenol 

chloroform was then added, the tube shaken, and centrifuged for 5mins at 12000g before a 

chloroform cleanup and isopropranol precipitation. Both RNA samples were Turbo DNAse (Life 

Technologies) treated and cDNA made using random hexamers and SuperscriptIII (Life 

Technologies). Equal proportions of RNA were used from each cellular compartment to make the 

cDNA. QPCR was then performed in parallel using the cDNA template from both samples and the 

nuclear/cytoplasmic RNA ratio calculated by dividing the result for the nuclear sample by that for 

the cytoplasmic sample. 

2.4.7. Sub-nuclear Fractionation 

MCF7 cells were trypsinised, pelleted, PBS washed and counted then 2.5x10
6 

cells were
 

resuspended in Lysis Buffer (Appendix 8.1) before 20mins incubation on ice. The solution was then 

centrifuged for 10mins at 2000g with the supernatant reserved as the cytoplasmic compartment. The 

pellet was resuspended in 50µL of the Nuclei Lysis Buffer (Appendix 8.1) and incubated for 5mins 

on ice. After a 5min centrifuge at 17000RCF at 4
o
C, the supernatant was reserved as the 

nucleoplasm compartment. The pellet was resuspended in 50µL Salt Extraction Buffer (Appendix 

http://www.qiagen.com/ingenuity
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8.1) and incubated for 30mins with rotation at 4
o
C before a final centrifuge at 17,000g for 20mins at 

4
o
C. The supernatant was reserved as the salt extracted fraction and the pellet resuspended in 50µL 

of Salt Extraction Buffer. Trizol (Ambion) was used to extract the RNA from all the fragments and 

cDNA made using random hexamers and SuperscriptIII (Life Technologies). Adapted from [264]. 

2.5. CUPID1 and CUPID2 over-expression 

2.5.1. Determining the sequence of CUPID1 and CUPID2 

The 5’ end of the lncRNAs was determined using publically available RIKEN CAGE data from 

MCF7 cells. 3’RACE was used to find the 3’ end. A series of sequentially nested forward primers 

were designed to be used with a reverse primer complementary to a sequence incorporated in a 

polyT bait primer used to synthesize cDNA from MCF7 RNA. After 2-3 rounds of nested PCR, the 

product was run on a 1% agarose gel, stained with Midori Green (Nippon Genetics) and the bands 

excised, purified using a Qiagen gel extraction kit, cloned into pBLUNT and multiple clones 

sequenced via Sanger sequencing. Exons were delineated by sequencing a PCR product from 

primers designed against regions just within the determined 5’ and 3’ ends. Kappa HiFi was then 

used to amplify the two main isoforms of CUPID2 using primers starting at each end and 

containing EcoRI and XhoI recognition sequences. The products were run on a 1% agarose gel, 

extracted using the Qiagen kit and subcloned into pBLUNT. The two main isoforms of CUPID1 

were ordered as pre-synthesized sequences within a pUC57 vector obtained from Genscript (USA). 

2.5.2. Stable over-expression of CUPID1 and CUPID2 

A dual UbC-driven promoter vector pCDH (SystemBio) containing an EGFP (enhanced green 

fluorescent protein) and puromycin selection cassette was used for lncRNA over-expression. 

HindIII and XhoI enzymes were used to digest the lncRNA amplicons out of pBLUNT or pUC57 

and ligate them into the pCDH vector. For experiments involving transient transfection, the 

plasmids were transfected into MCF7 cells using Lipofectamine 2000 (Life Technologies) as 

previously described, RNA extracted after 6 hours and the expression measured by qPCR. Stable 

cell lines over-expressing the lncRNAs were created using the ERα positive cell line T47D. 

Initially, a second generation lentiviral system utilising the pVSV envelope plasmid and pdeltaR8 

packaging plasmid was used to generate infective viral particles in 90% confluent HEK293 cells 

(ATCC CRL-1573) by transfecting 3µg pVSV, 6µg pdeltaR8 and 3µg of the pCDH plasmids with 

36µL of Lipofectamine 2000 (Life Technologies) in 6500ml of OptiMEM per T75 flask. The media 
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was removed after an overnight incubation at 37
o
C with 5%CO2 and replaced with 8ml DMEM + 

5% FCS and antibiotic/antimycotic (Gibco). The supernatant was removed after 48hours growth, 

centrifuged to pellet any cell debris and snap frozen at 80
o
C in 1ml aliquots. For viral transduction, 

T47D cells were grown till 50% confluent in a 6 well plate then the media was removed. An aliquot 

of viral supernatant was thawed, mixed with 1ml of fresh 5%FCS DMEM media and 7µL of a 

2µg/µL Polybrene (Sigma-Aldrich) stock before filtering through a 0.45µM syringe filter onto a 

well of the T47D cells. The cells were incubated for 24 hours at 32
o
C to improve transduction 

efficiency before a media change and ongoing culture at 37
o
C. After 3 days 2µg of puromycin was 

added per well and the media changed daily until all the cells of a non-transduced T47D well had 

been killed. 400ng of puromycin per 2.5ml media was then used as maintenance. After 5 passages 

the cells were trypsinised and sorted by a FACS-ARIA (BD Biosciences) machine, discarding the 

lower 50% of GFP expressing cells. The remainder were cultured further then frozen down at -80
o
C 

after confirming successful lncRNA overexpression via RNA extraction and qPCR. 

2.5.3. Xenograft mouse model 

30 NOD/SCID mice were obtained from the Animal Resources Centre. One day prior to xenograft 

injection, a17ß-Estradiol 60 Day Release 0.72mg/pellet (Innovative Research) was inserted 

subcutaneously into the inter-scapular region of each mouse to support ERα positive tumour 

growth. Stable lncRNA expressing cells were trypsinised, counted and washed with PBS. Just prior 

to injection, 10x10
6
 cells were resuspended in 1ml of PBS then 100µL injected into the left lower 

mammary fat pad of the SCID mice (5 mice per group). Mammary injection and mouse care were 

performed by Doctor Shu Wen Wen and Doctor Christina Wong. Water and chow was provided ad 

libitum and 5 mice of the same xenograft group were housed per cage. Tumours were palpated 

twice weekly and the mice monitored for signs of metastasis. 

 

Once the tumours reached a size of 1cm, the mice were sacrificed using an overdose of isoflourane. 

The mammary glands were then dissected off the abdominal wall and spread over a glass slide. 

They were fixed overnight in 40ml of Canoy’s fixative (6 parts ethanol/3 parts chloroform/1 part 

acetic acid) then moved from 70% to 50% to 20% solutions of ethanol for 15mins per wash, 

finishing in plain water for 5mins. 40ml of Carmine stain (1g Carmine red (Sigma) + 2.5g 

aluminium potassium sulphate (Sigma) boiled in 500ml dH2O) was used to stain the tissue 

overnight and the slides finally transferred to 70% ethanol for storage and imaging using a Leica 

MZ6 stereo microscope. 
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2.5.4. MTT Assay 

5000 cells per well were seeded into a 96 well plate and grown for 72 hours in a 37
o
C incubator 

with 5%CO2.  The cells were then washed twice with PBS, the media replaced with 100µL phenol 

red free media (Gibco) and 10µL of MTT solution (5mg MTT powder (Life Technologies M6494) 

in 1ml of dH2O) added per well. After 4 hours further incubation the media was replaced with 

100µL of DMSO (Ajax Finechem) and mixed well to dislodge the purple granules. The plates were 

incubated for another 30mins at 37
o
C until all the granules had dissolved, mixed again and the 

absorbance at 540nm read using a Biorad Benchmark Plus microplate spectrophotometer. Results 

from a set of wells containing no cells were subtracted from the obtained values to control for 

variance in plate and MTT absorbance. 

2.5.5. Colony formation assay 

Cells were initially transfected with pCDH plasmids that overexpressed CUPID1, CUPID2 or the 

vector alone. 48 hours after transfection the cells were trypsinised, counted using a Tali Image 

cytometer then seeded in equal numbers into a 6 well plate with 3 replicates per condition. After 24 

hours 2ug of puromycin was added to each well, including a control well containing non-transfected 

cells. The media and puromycin were changed daily until all the cells in the non-transfected well 

were dead and then the puromycin concentration was reduced to a maintenance dose of 400ng per 

well. The cells were cultured for 2-3 weeks until large, distinct colonies had formed and the plates 

were then washed with cold PBSx2 and placed on ice. They were then fixed for 10mins with ice-

cold 100% methanol and removed off the ice. 0.5% crystal violet in 25% methanol was added and 

the cells incubated for a further 10mins before aspiration of the solution. The cells were washed 

repeatedly with tap water until no further purple dye came off. Once dry, the plates were scanned 

with an E BoxVX2 (Vilber Lourmat) and the images processed using the OpenCFU program [265] 

to count the average number of colonies per plate.  

 

2.6. Functional lncRNA Assays 

2.6.1. Cell cycle assay 

MC7 cells were transfected for 48hours with Lipofectamine2000 (Life Technologies) in a 6 well 

plate as previously described. They were then trypsinised, washed with PBS and resuspended in 1 
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ml of PBS. Cell clumps were removed by passing the solution through a 40uM filter and the filtrate 

added to 9ml of 70% ethanol for storage at -20
o
C. For processing, the cells were centrifuged for 

5mins at 1200RPM and the pellet resuspended in 5ml of PBS. After 60seconds the tube was 

centrifuged again for 5mins at 1200RPM and the pellet resuspended in PI buffer (1:100 Triton-X-

100, 1:5000 propidium iodide and 1:50 RNAseA (10mg/ml) all in PBS). The cells were processed 

using a FACSCantoII (BD Biosciences) machine within 30mins. Data analysis was via the Modfit 

LT 3.2 (Verity Software House, Topsham, ME) suite using default settings to determine G0/G1 and 

G2/M phases. 

2.6.2. Immunofluorescence assay for DNA damage 

6.5x10
4
 MCF7 cells were reverse transfected with Lipofectamine3000 (Invitrogen) and 50nM 

siRNA against CUPID1, CUPID2 and CCND1 on coverslips placed in 24well plates. After 

48hours, half the plates were irradiated at 6Gy with the remaining plates grown without irradiation 

as negative controls. After 6 hours of further culture, the cells were fixed by firstly washing with 

cold PBS then incubating on ice for 5mins in Cytoskeleton Buffer (Appendix 8.1). This was then 

replaced with Cytoskeleton Stripping Buffer (Appendix 8.1) for a 5min incubation on ice and the 

cells washed with cold PBSx2. They were then fixed in 4% PFA at RT for 15mins, washed again 

with cold PBSx2 and permeabilised with 0.5% Triton-X-100 at RT for 15mins. After a PBS wash 

x2, the cells were blocked using FBT buffer (Appendix 8.1) for 30mins at RT. Primary antibody 

staining was performed for 1 hour at RT in 1:500 Genetex Rad51 (GTX70230) mouse 1
o
 antibody 

in FBT buffer, the cells washed with cold PBSx2, then a further 1 hour incubation with 1:1000 

Abcam γH2AX (ab11174) rabbit 1o
 antibody in FBT buffer. After cold PBS washing x2, the cells 

were stained for 30mins in 1:500 Alexa Flour 488 (A21202) donkey anti-mouse 2
o
 antibody in FBT 

buffer, the cells washed with cold PBSx2, then a further 30min incubation with 1:500 Alexa Flour 

546 (A11010) goat anti-rabbit 2
o
 antibody in FBT buffer. After a final cold PBS wash x2, the 

coverslips were mounted using Vectashield mounting medium with DAPI (Vectorlabs). Once dry, 

the slips were sealed using nail polish and were viewed with a GE DeltaVision Deconvolution 

microscope. Slides were randomised before viewing and the intranuclear foci for Rad51 and 

γH2AX counted in 5 sets of 3 nuclei per field with 2 coverslips per condition. DAPI was used to 

stain the nuclei and specific antibodies used to mark either γH2AX or Rad51 foci before imaging 

using TRITC or FITC excitation respectively. The number of foci in the non-irradiated group was 

subtracted from the irradiated group to adjust for variation between the groups. The final adjusted 
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figure for the number of Rad51 foci was divided by the total number of adjusted γH2AX foci. Final 

image processing was done using the SoftWorx program.  

2.6.3. Rad51 inhibition assay 

5x10
4
 MCF7 cells were seeded per well of a 24 well plate and reverse transfected with siRNA 

against CUPID1, CUPID2 and CCND1. After 24 hours the Rad51 Inhibitor B02 (SML0364-Sigma) 

was added to the media in increasing concentrations (0.0, 0.1, 0.3, 1.0, 3.0, 10.0uM all in duplicate) 

and the cells grown for another 48 hours. The cells were then washed twice with PBS and the media 

replaced with 100µl of MTS Buffer (10% FBS, 10% cell titre aqueous one solution cell 

proliferation assay buffer (Promega) in PBS). 5µL of 20% SDS was used to stop the reaction after 

15-30min. The absorbance was read at 500nm using a Biorad Benchmark Plus microplate 

spectrophotometer and used as a proxy for cell number. Results from a set of wells containing no 

cells were subtracted from the values to control for variance in plate and MTS absorbance. The final 

result was expressed as a percentage of the value obtained from the B02 free well. 

2.7. TALEN genome editing (Transcription activator like effector nucleases) 

2.7.1. TALEN process 

The initial transfection of T47D cells was performed in a 6 well plate using 15µL of Lipofectamine 

2000 (Life Technologies) per well together with 800ng of each TALEN plasmid, 2400ng of donor 

plasmid and 168ng of EGFP plasmid made up to 500µL with OptiMEM (Life Technologies). 

2500µL of antibiotic free media containing 15x10^5 T47D cells was then added and the wells 

incubated for 48 hours. The media was then changed and the cells allowed to recover for 72 hours 

before being FACS sorted into single cell cultures in 96 well plates, using high GFP expression as a 

positive selection marker. The clones were cultured until they reached 90% confluence then split 

into 3 wells with 1 well used for DNA extraction and the remainder frozen at -80
o
C until the 

identity of the clones containing the donor sequence had been confirmed. DNA extraction was 

performed using a Blood Genomic DNA Extraction kit (Sigma) and the DNA then tested by Dr 

Qing Chen using a Sequenom Mass-Array IPlex system for the presence of the minor alleles of 

SNP1, SNP2 and SNP3. Clones found to be positive were recovered from -80
o
C and grown up in 6 

well plates before a final DNA extraction using the DNeasy Blood and Tissue Kit (Qiagen) and 

RNA extraction using Trizol (Life Technologies). The DNA was used as a template in a TaqMan 

SNP assay with probes specific for the minor allele or major allele of SNP3. 50ng of DNA was also 
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used as a template to amplify a 1615bp product over SNP1. 500ng was then digested with DpnII 

and run on a 2% agarose gel with the digest pattern compared to digested PCR products amplified 

off DNA from a known SNP1 heterozygous cell line (Cal51) and a cell line homozygous for the 

major allele (T47D). The RNA was Turbo DNAse (Ambion) treated and cDNA made using random 

primers before measuring gene expression using specific TaqMan gene expression probes.  

2.7.2. T7 Endonuclease-1 Assay 

To confirm TALEN activity, DNA was extracted from cells following FACS enrichment using the 

DNeasy Blood and Tissue Kit (Qiagen) and 100ng used as a template for a PCR reaction using 

KappaHF (Kapa Biosystems) producing a 740bp amplicon across the predicted TALEN cut site. 

The products were run on an agarose gel and the 740bp band excised and purified using a Qiagen 

gel extraction kit. 200ng was then prepared in 1x NEB2 buffer to a total volume of 19µL and 

annealed in a thermocycler (95
o
C for 10 mins; 95

 o
C to 85

 o
C dropping 2

 o
C/sec; 85

 o
C to 25

 o
C 

dropping 0.3/sec; 25
 o

C hold for 10sec). 1µL of T7 Endonuclease-1 (New England Biolabs) was 

then added and the reaction incubated for 15mins at 37
o
C before terminating the reaction with 2µL 

of 0.25M EDTA. The products were then run on a 1% agarose gel and compared with a control 

sample untreated with T7 Endonuclease-1. 

2.8. Computational analysis 

2.8.1. Statistical analysis 

Data analysis was performed using the GraphPad Prism 6 (GraphPad Software, La Jolla, CA, USA) 

program with the test specified in the appropriate figure legends. Results were considered 

statistically significant when the p value was <0.05. Significance in figures is denoted as follows: * 

p<0.05, **p<0.001, ***p<0.0001, ****p<0.00001, ns = not significant p>0.05. 

2.8.2. Images and Figures 

All graphs were produced using GraphPad Prism 6 (GraphPad Software, La Jolla, CA, USA). 

Genome track images were generated from the UCSC browser [266], and annotated in Microsoft 

Powerpoint (Microsoft, Redmond, WA, U.S.A.). Gel images were processed using the EBox 

program then further annotated in Microsoft Powerpoint. 
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Functional Characterisation of the 11q13 Breast Cancer Susceptibility Locus 

 

 

 

 

 

 

 

 



Introduction 

 

Chapter 3 Page 50 
 

 

The 11q13 breast cancer associated locus was fine mapped and partially characterised in a previous 

study by our group [5]. Four candidate causal SNPs mapped to an enhancer element (called PRE1) 

and one independent SNP mapped to a silencer element (called PRE2) Both PREs were shown to 

physically interact with and regulate CCND1, their likely target gene (Figure 1.8). However, there 

are a number of other genes in the locus which also may be interacting with PRE1 or PRE2 and thus 

contribute to breast cancer risk. These include ORAOV1, a poorly characterised gene that is 

postulated to act via regulating CCND1 levels [267]; MYEOV, a putative transforming gene that is 

over expressed in myeloma [268]; and three fibroblast growth factor (FGF) genes FGF3, FGF4 and 

FGF19. Members of the FGF gene family are involved in cell proliferation and have been 

implicated in a number of cancers [269].  The most promising gene in this list is ORAOV1, the only 

other gene in the locus that has open chromatin at its promoter and is significantly transcribed in 

MCF7 breast cancer cells (Figure 3.1). It is also a potential oncogene, being over-expressed in oral 

squamous carcinoma and cervical carcinoma [270]. 

 

The 11q13 interval also contains risk-associated SNPs for other types of cancers including prostate 

and renal carcinoma which are located centromeric to the breast cancer risk SNPs (Figure 3.1) [271, 

272]. This raises the question of whether PRE1 and PRE2 are tissue specific and whether prostate 

or renal risk at the locus may similarly be mediated through CCND1[5]. In addition to coding genes 

there may also be non-coding RNAs at the locus mediating risk. A subset of ncRNAs are expressed 

from enhancer elements and are called enhancer RNAs (eRNAs). Further examination of the 11q13 

locus revealed prominent transcription consistent with  eRNAs, particularly from PRE1 (Figure 3.1) 

[87]. The knockdown of such eRNAs has been shown to affect chromatin looping and cause a 

reduction in the expression of nearby genes regulated by the enhancer producing the eRNA [232, 

233].  

 

Identifying regulatory elements and their target genes is a complex task. Many studies have used a 

candidate approach, relying on the hypothesis that the nearest gene is the most likely candidate. For 

these studies, standard chromosome conformation capture (3C) assays are used to confirm physical 

interactions between the element and the known gene [5, 60]. A broader approach is to use 

additional 3C-based techniques such as 4Cseq (Circular Chromosome Conformation Capture) and 

5C (Chromosome Conformation Capture Carbon Copy) to find novel interacting targets (Figure 

1.5). 4Cseq relies on using one bait locus to interrogate the entire genome for interactions present at 

the time of fixation [171]. Notably, this approach allows detection of inter-chromosomal contacts 
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which would be otherwise difficult to predict [273]. 4Cseq has already been successfully used in a 

post-GWAS study to identify genes interacting with a cardiac enhancer that contains a risk SNP 

linked to Brugada syndrome [274]. 5C examines interactions within a defined genomic region and 

can identify enhancer-promoter looping or give a broader picture of local chromatin structure [174]. 

5C has not yet been used to characterise risk loci although a related technique (capture Hi-C) has 

recently been employed to find targets of putative enhancers at the 2q35, 8q24 and 9q31 breast 

cancer risk loci and at 14 colorectal carcinoma loci [162, 173].  

 

The aforementioned techniques were all employed as part of a comprehensive functional 

characterisation of the 11q13 breast cancer locus to identify further genes in the region affected by 

the SNPs that may be relevant to breast cancer biology. Investigation of ORAOV1 as a potential 

gene mediating the effect of the SNPs was inconclusive, however the use of additional 3C based 

techniques revealed another four candidate genes including MTL5, CPT1A, IGHMBP2 and 

MRPL21. An eRNA knockdown approach to confirm interactions between PRE1 and the identified 

genes then prioritised CPT1A and IGHMBP2 as likely additional targets of PRE1. Finally, genome 

editing with transcription activator-like effector nucleases (TALENS) was used in an attempt to 

confirm the effect of the SNPs. Further functional work is required, however the range of 

techniques employed has substantially expanded our understanding of the 11q13 breast cancer risk 

locus and forms a template for future investigations of GWAS risk loci. 



 

 

 

 

Figure 3.1 The 11q13 multiple cancer susceptibility locus - PRE1 and PRE2 are part of the breast cancer risk locus and interact (red lines) with the CCND1 

promoter. A renal cancer risk locus lies just centromeric with a prostate risk locus on the other side of the MYEOV (myeloma overexpressed) gene. The other genes 

in the locus include ORAOV1 (oral cancer overexpressed 1 gene), and three fibroblast growth factor genes FGF19, FGF4 and FGF3. Oestrogen receptor  (ER) is 

shown by the blue rectangles whilst the orange track depicts areas of localised DNAse I hypersensitivity [275], usually seen at enhancers or promoters. The blue 

dashes of the lowermost track indicate GROseq reads from nascent transcription [87]. Figure generated using the IGV browser [276]. 
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3.2.1. PRE2 interacts with CCND1 in renal and prostate cell lines. 

 

To determine whether the previously demonstrated interactions between PRE1 and PRE2 and the 

CCND1 promoter at the 11q13 locus were specific to breast tissue [5], 3C was performed in the 

786-0 renal and PC3 prostate carcinoma cell lines. The results showed that PRE2 interacted 

strongly with the CCND1 promoter in both cell types (Figure 3.1B,D). In contrast, PRE1 interacted 

with the CCND1 terminator region but not with the promoter (Figure 3.2A,C). Luciferase reporter 

assays using pGL3 constructs containing the CCND1 promoter were then conducted to assess the 

regulatory activity of PRE1 and PRE2 in a prostate cell line (Figure 3.2E). Similar assays were also 

attempted in renal 786-0 cells but these were unsuccessful as this cell line proved difficult to 

transfect. Luciferase assays showed that PRE1 acted as a silencer of the CCND1 promoter in 

prostate cancer cells and that inclusion of the minor alleles of SNPs 1-4 reduced the magnitude of 

silencing. A similar transfection performed in MCF7 breast cancer cells by French et al. showed 

that PRE1 acted as a strong enhancer on CCND1 promoter activity, emphasizing a marked 

difference in response between breast and prostate tissue [5]. PRE2 also acted as a silencer, 

however inclusion of the minor allele of SNP5 did not alter its activity (Figure 3.2E). Whilst PRE2 

acted as a silencer in MCF7 cells, the absolute values of these results fall at the lowest limit of what 

can be reliably discriminated by the assay. Further 3C assays were also performed in prostate cells 

using a bait fragment containing the top prostate risk SNP to confirm the validity of the PC3 3C 

library and to determine whether the identified prostate cancer risk at the locus is mediated through 

CCND1 in a similar manner to breast cancer risk (Figure 3.2F) [272].  The 3C in prostate cancer 

cells confirmed the predicted interaction between SNP containing enhancers in the prostate risk 

locus and the CCND1 promoter, suggesting that prostate cancer SNPs may mediate risk through 

dysregulation of CCND1 in a similar manner to the breast cancer risk SNPs (Figure 3.2F). 
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Figure 3.2 3C and luciferase assays in renal and prostate cell lines. (A, B) Schematics of the 

11q13 locus interrogated by 3C. (C, D) 3C analysis of interactions between HindIII fragments 

containing PRE1 (C) or PRE2 (D) and the CCND1 gene in renal (786-0) and prostate (PC3) cell lines. 

Grey bars depict the position of the CCND1 promoter (P) and terminator (T), matching them with the 

schematics above each panel. (E) PRE1 and PRE2 were cloned downstream of a CCND1 promoter-

driven luciferase reporter +/- SNPs1-5. Luciferase activity is shown normalised to Renilla and 

expressed relative to the Promoter construct. (F) 3C interactions between the main prostate risk locus 

and CCND1 in PC3 cells. Data shown are the mean ± SEM from three biological replicates. For the 

luciferase assays, significance was determined using a one way ANOVA test with Dunnett’s correction 

for multiple comparisons. ** p<0.01,*** p<0.001. 

 

 

3.2.2. ORAOV1 is induced by oestrogen and is widely expressed in breast cancer cell lines. 

 

To prioritise additional 11q13 genes for further study, the expression of five local genes was 

measured in a panel of breast cancer cell lines by TaqMan assays (Figure 3.3). MYEOV and 

ORAOV1 were expressed at similar levels to the house keeping gene GUS in the majority of ERα 

negative breast cell lines examined, however MYEOV expression was extremely low or 

undetectable in the ERα positive breast cell lines (Figure 3.3A). This is significant as the breast 

cancer risk-SNPs at 11q13 are associated with ERα positive breast cancer [5].  FGF3 and FGF4 

were not detected in any cell line examined, whilst FGF19 was expressed at low levels in only one 

of the four ERα positive breast cell lines (Figure 3.3B). CCND1 was expressed at very high levels 

in all the cells examined, with most lines expressing over 100x more CCND1 than the housekeeping 

gene GUS (Figure 3.3C).  

 

The expression of ORAOV1 was further examined following oestrogen stimulation as 11q13 is a 

risk locus for ERα positive breast cancer, and PRE1 displays extensive ERα binding (Figure 3.1). A 

robust increase in levels of the highly oestrogen responsive gene TFF1 was seen following 

oestrogen exposure confirming a successful induction (Figure 3.4A). CCND1 expression increased 

after 6-12 hours post oestrogen (Figure 3.4B) and ORAOV1 was induced significantly at 12 hours 

(Figure 3.4C). The breast cancer cell expression data and oestrogen expression data support the 

further investigation of ORAOV1 as a possible additional target gene mediating the effects of the 

breast cancer risk SNPs at 11q13. In addition, ChIP-seq and DNase I hypersensitivity data showed 

that the ORAOV1 promoter was the only gene (apart from CCND1) to display open chromatin in 

MCF7 breast cancer cells (Figure 3.1). 
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Figure 3.3 Local gene expression at the 11q13 locus in a panel of breast cancer cell lines. 

Expression is presented normalised to the house keeping gene β–glucuronidase (GUS). The grey 

shading highlights ERα positive cell lines. (A) MYEOV and ORAOV1 expression, (B) FGF3, FGF4 and 

FGF19 expression and (C) CCND1 expression, which is presented with a scale 200x that of the other 

two graphs reflecting its far higher expression levels. Data shown is the mean +/- SD of a single 

biological replicate. 
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Figure 3.4   TFF1, CCND1 and ORAOV1 are induced by oestrogen. Gene expression at each time 

point is expressed as a fold change over vehicle, with vehicle arbitrarily set to one. (A) The highly 

oestrogen responsive gene TFF1 acts as a positive control, (B) CCND1 and (C) ORAOV1 expression 

over a 24 hour oestrogen induction. All mRNA levels were normalised to β-glucuronidase (GUS). Data 

shown is the mean ± SEM from three biological replicates. Significance was determined using a 2 way 

ANOVA test with Dunnett’s correction for multiple comparisons. * p<0.05, ** p<0.001, ***p<0.0001, 

****p<0.00001. 

 

 

3.2.3. PRE1 interacts with the ORAOV1 gene in a non-oestrogen dependent manner. 

 

3C was performed in the ERα positive cell line BT474, to examine interactions between PRE1 or 

PRE2 and the ORAOV1 promoter. Given that ORAOV1 is Ez responsive (Figure 3.4C), the 3C was 

repeated in Ez induced MCF7 cells to investigate whether the chromatin looping interactions were 

regulated by ERα. The results showed that PRE1 interacts strongly with the ORAOV1 promoter 

region in MCF7 and BT474 cells, indicating that it is highly likely to be involved in the regulation 

of ORAOV1 expression (Figure 3.5). In contrast, the absence of an interaction peak over PRE2 

indicates that it does not interact in the cell lines tested and is thus unlikely to be involved in 

regulating ORAOV1. The interactions were not significantly different between libraries induced 
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with oestrogen or vehicle alone, demonstrating that the chromatin looping is pre-existing and not 

oestrogen dependent. 
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Figure 3.5 Chromatin interactions are present between the ORAOV1 gene and PRE1. (A) A 

schematic diagram of the 11q13 genomic region interrogated by 3C. Black vertical lines at the bottom 

indicate HindIII sites, black arrows indicate direction of transcription and black blocks indicate exons. 

(B) 3C interaction profiles between the ORAOV1 promoter and the locus containing PRE1 and PRE2. 

3C libraries were generated with HindIII in MCF7 cells +/- oestrogen (B) or BT474 cells (C). Data 

shown is the mean ± SEM derived from three biological replicates.  

 

 



 

Chapter 3 Page 59 
 

0

1

2

3

4

G e n o m ic  p o s itio n  (h g 1 9 )

In
te

ra
c

ti
o

n
 F

re
q

u
e

n
c

y

6 9 ,3 3 0 ,0 0 0 6 9 ,3 4 0 ,0 0 06 9 ,3 2 0 ,0 0 0

P R E 1

0

1 0 0

2 0 0

3 0 0

G e n o m ic  p o s itio n  (h g 1 9 )
In

te
ra

c
ti

o
n

 F
re

q
u

e
n

c
y

6 9 ,4 9 8 ,0 0 0 6 9 ,5 1 5 ,0 0 06 9 ,4 8 1 ,0 0 0

P ro m

ORAOV1PRE1 PRE2

NcoI

ORAOV1PRE1 PRE2

NcoI

A B

C D

E 69,100,000                                                     69,400,000

 

Figure 3.6 The interaction between PRE1 and ORAOV1 is maximal within the gene body. (A)(B) 

Schematic diagrams of the 11q13 genomic region and NcoI fragments used for 3C analysis. Black 

vertical lines at the bottom indicate NcoI sites, the right angled arrow indicates the promoter and direction 

of transcription, black blocks indicate exons. (A+C) 3C interaction profiles between the ORAOV1 

promoter and NcoI fragments around PRE1 in MCF7 cells. (B+D) 3C interaction profiles between PRE1 

and NcoI fragments around the ORAOV1 gene in MCF7 cells. The grey shaded box indicates the PRE1-

ORAOV1 promoter interaction which has the equivalent value in each graph for ease of comparison. Data 

shown are the mean ± SEM derived from three biological replicates. (E) A screenshot from the UCSC 

browser of RNAPolII mediated ChIA-PET data in MCF7 cells [277]. The horizontal lines represent 

interactions between genomic loci and the black peaks indicate the frequency of interaction. The 11q13 

TAD extends from box1 across to box 3 which corresponds to the 3C interaction peak in (D). Interactions 

are also present between box2 (CCND1 promoter) and box3 (ORAOV1 intron).  
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Further 3C was performed using libraries prepared with the Nco1 enzyme in MCF7 cells, using 

either the ORAOV1 promoter or PRE1 as bait to allow improved localisation of the interaction 

(Figure 3.6). This demonstrated that the maximal chromatin interaction is actually present between 

PRE1 and a region within the 2
nd

 intron of ORAOV1, rather than the promoter region itself (Figure 

3.6D). ChIA-PET data of CTCF mediated interactions in MCF7 cells was used to examine this 

region more thoroughly and revealed that there is a CTCF binding site within the ORAOV1 gene 

that forms the boundary of a topologically associated domain (TAD) encompassing the 11q13 gene 

desert (Figure 3.6E) [277]. The boundary localises to the same restriction enzyme fragment found 

to contain the maximal interaction with PRE1. Given the absence of a direct promoter-enhancer 

interaction, ORAOV1 was not studied further and other potentials targets in the region were sought. 

 

3.2.4. Genome-wide 4C-seq identifies additional target genes of PRE1. 

 

3C is a very useful technique for identifying cis-interactions, however it does have one significant 

limitation. That is, 3C can only detect interactions between pre-specified regions as it relies on user 

defined PCR primers. To overcome this issue, a more high-throughput 3C-based method called 

circular chromosome conformation capture (4C-seq) was performed to detect interactions genome 

wide in an unbiased manner (Figure 1.5) [278]. 4C-seq uses 3C libraries created using a 6bp 

restriction digest enzyme (EcoRI) and digests them further using a more frequent cutter (CviQI). 

The products can then be circularised using DNA ligase and interrogated using sets of nested 

primers (Figure 3.7A). Before sequencing, the PCR amplicons were run on an agarose gel (Figure 

3.7B). The E/EN and C/CN primer pair produced a range of products including the expected bands 

at 3800bp (representing self-ligation of the EcoRI fragment during library production) and 1280bp 

(representing incomplete digestion of the EcoRI fragment during library production). The smears 

indicate a range of products, each corresponding to a restriction digest fragment that was interacting 

with the bait fragment at the time of fixation. A contaminating band at 300bp was noted in the 

control library however it was not seen in the subsequent 4C library and was of a size which would 

be removed at the size selection step prior to sequencing.  
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Figure 3.7   An extended smear of 4C products is produced by nested PCR. (A) A schematic 

showing the position of the EcoRI and CviQi sites used to circularise the products of the initial 3C 

(top). Following CviQi digestion and ligation the interacting DNA may be captured by the E and C 

primers which face their respective restriction enzyme sites. Each primer has a nested primer (EN, 

CN) to increase specificity of the PCR. (B) Primers E and C were used to amplify a range of products 

from the 4C library which was run on an agarose gel. PCR products from a 2
nd

 nested PCR using the 

EC and NC primers were run on the gel in parallel. The primers were digested (D) off using the 

appropriate restriction enzyme to remove concatamers, or left undigested (U). A control library lacking 

digestion and ligation steps was included to identify non-specific amplification.  
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Two MCF7 4C libraries and one BT474 4C library were interrogated using the E and C PRE1 

primers and the subsequent PCR products sequenced using an Ion Torrent 318v2 chip (Life 

Technologies) producing 5-6 million useable reads per library. The sequencing data was then 

processed and normalised using the published R-3Cseq program [258]. The Galaxy platform was 

used to find consistent regions of overlap between the three libraries and rank the most significant 

interaction regions [279]. A clustering analysis identified 27 regions common to the three libraries 

(Table 3.1). Four interaction regions were identified in the vicinity of the 11q13 locus overlapping a 

number of genes including CCND1 and ORAOV1 (Figure 3.8A). The top ranked hits in trans, 

contained HEATR6 (amplified in breast cancer protein 1) and a number of pseudogenes including 

TBC1D3P1-DHX40P1at chromosome 17q23 (Figure 3.8B). A cluster of hits was also seen around 

the NCOA3 gene (nuclear receptor coactivator amplified in breast cancer). At chromosome 20q13 

were the CYP24A1 (1,25-dihydroxyvitamin D3 24-hydroxylase) and BCAS1 (breast cancer 

amplified sequence 1) genes (Figure 3.8C). All of the identified genes are associated with breast 

cancer, however the 17q23 and 20q13 genomic loci are heavily amplified in many breast cancer cell 

lines, including the MCF7 and BT474 cells that were used for this experiment [280, 281], making it 

unclear whether the detected interactions were merely a consequence of local amplifications. 4Cseq 

was also performed in Bre80 cells which are a non-cancer derived breast cell line and thus less 

prone to the massive amplifications seen in cancer cells. This revealed no significant, reproducible 

interactions beyond the local 11q13 region.  

 

The two MCF7 4C libraries and one BT474 4C library were also interrogated using inverse primers 

adjacent to PRE2 and the PCR products sequenced and analysed as for PRE1. This only revealed 17 

interaction regions, 12 of which overlapped centromeres (Table 3.2). Of the remaining regions, 

none localised to any characterised genes at 11q13 apart from regions 3 and 4 which contained 

CCND1 and a number of uncharacterised transcripts (Figure 3.7A). Further investigation of the 

locus therefore focused on PRE1 which also possessed a number of features not seen for PRE2 

making it a better candidate for functional interactions relevant to ERα positive breast cancer. In 

particular, it is a hub for multiple ERα mediated ChIA-PET interactions (Figure 4.9) and exhibits 

extensive binding of the breast associated transcription factors FoxA1 and ERα (Figure 3.1). 
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Figure 3.8 Regions of interaction for PRE1 and PRE2 in the 11q13, 17q23 and 20q13 loci.  

Each locus (A,B,C) contains clustered interaction regions for PRE1 and PRE2 above the isoforms of 

local genes. (A) The 11q13 locus with regions 2-6 for PRE1 and regions 1-4 for PRE2. (B) The 17q23 

locus with region 11 for PRE1. (C) The 20q13.2 locus with regions 14-16 for PRE1. Data visualised 

using the UCSC browser. 
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Interaction 
Region Chromosome Genes within 50kb 

region_0 chrY centromere 

region_1 chrX centromere 

region_2 chr11 CPT1A 

region_3 chr11 
MRPL21, IGHMBP2, MRGPRF, 

TPCN2 

region_4 chr11 MYEOV 

region_5 chr11 CCND1, ORAOV1, FGF19, FGF4 

region_6 chr11 FGF3 

region_7 chr10 centromere 

region_8 chr10 centromere 

region_9 chr10 centromere 

region_10 chr17 centromere 

region_11 chr17 HEATR6 

region_12 chr19 centromere 

region_13 chr20 ZMYND8, NCOA3 

region_14 chr20 ZNF217, BCAS1 

region_15 chr20 no genes 

region_16 chr20 CYP24A1 

region_17 chr20 DOK5  

region_18 chr7 centromere 

region_19 chr7 centromere 

region_20 chr6 centromere 

region_21 chr4 centromere 

region_22 chr4 CNEPC1, STAP1 

region_23 chr2 centromere 

region_24 chr1 centromere 

region_25 chr1 PP1A4F, LOC645166 

region_26 chr8 REXO1L2P 

 

Table 3.1  Genome-wide interaction regions detected by 4C-seq for PRE1. 

Genes with promoters within 50kb of the interacting region are listed in the right 

hand column. Regions containing genes potentially associated with breast cancer 

are highlighted grey. 
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Interaction 
Region Chromosome Genes within 50kb 

region_0 chrY centromere 

region_1 chr11 no genes 

region_2 chr11 MYEOV 

region_3 chr11 no genes 

region_4 chr11 CCND1 

region_5 chr10 centromere 

region_6 chr10 centromere 

region_7 chr10 centromere 

region_8 chr17 centromere 

region_9 chr16 no genes 

region_10 chr19 centromere 

region_11 chr7 centromere 

region_12 chr6 centromere 

region_13 chr4 centromere 

region_14 chr4 no genes 

region_15 chr2 centromere 

region_16 chr 1 centromere 

 

Table 3.2  Genome-wide interaction regions detected by 4C-seq for PRE2. 

Genes with promoters within 50kb of the interacting region are listed in the right 

hand column. Regions containing genes potentially associated with breast cancer 

are highlighted grey. 

 

3.2.5. 5C reveals five main loci interacting with PRE1 

 

The 4C technique provided information genome-wide for interactions with the chosen bait. Figure 

3.8 however illustrates the wide regions of interactions identified, preventing identification of 

individual promoters. 5C (Figure 1.5) was therefore employed to further interrogate the proximal 

11q13 region and identify genes that may be regulated by PRE1. I acknowledge that Dr Haran 

Sivakumaran prepared, sequenced and analysed the 5C experiments shown in Figure 3.9.  The most 

consistent interaction is shown in box (B), with four black bars lined up over a bidirectional 

promoter of MRP21 and IGHMBP2. This encompassed region 3 from the 4C-seq (Figure 3.8A). 

Box (A) is another interaction hotspot containing the CPT1A gene and overlapped region 2 from the 

4C-seq.  MTL5 is a potential interacting partner of PRE1 on the edge of region 2 in the 4Cseq but 

has only two red bars over the promoter in the 5C, indicating low-moderate interactions. The final 

box (C) shows that CCND1 is marked by four red bars indicating a moderate interaction, whilst 

ORAOV1 only has three yellow and one red indicating low-moderate interaction frequency. Both of 

these genes are covered by the 4C-seq region 5 (Figure 3.8A). 
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Figure 3.9 5C identifies interactions between PRE1 and multiple genes at 11q13. A snapshot from 

the UCSC browser showing four biological replicates of a 5C library with PRE1 as the bait. Interaction 

data is presented as a heatmap with yellow = few interactions; red = moderate interactions and black = 

high interactions. The top track contains the interaction regions detected by 4C-seq. The location of PRE1 

and PRE2 are provided for reference in the middle track. USCS genes are displayed in the lower track. 

The green boxes highlight genes of interest: (A) CPT1A, (B) MRP21 and IGHMBP2, and (C) CCND1 and 

ORAOV1.  

 

 

3.2.6. An oestrogen responsive eRNA is transcribed from PRE1. 

 

To prioritise the genes which lay in the interaction regions identified by 4Cseq and 5C (Figures 3.8, 

3.9), an enhancer RNA (eRNA) knockdown strategy was employed. Knockdown of the RNA 

transcribed from an enhancer has been shown to reduce the transcription of genes regulated by that 

enhancer [232]. The expression of the interacting genes was predicted to decrease following 

knockdown of eRNAs associated with PRE1 if the genes were indeed regulated by PRE1. First, it 

was necessary to determine whether an eRNA was transcribed from PRE1. RNA Capture-seq data 

(discussed in chapter 4) was examined for evidence of enhancer transcription arising from the 
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11q13 locus in a panel of 20 human tissues [282]. A cluster of reads was seen at PRE1 in the breast 

cancer cell datasets but not in other tissues. This suggested that PRE1 expresses a breast tissue 

specific eRNA. Examination of the assembled reads and CAGE tag data revealed the PRE1 eRNA 

to be bidirectional, with the sense transcript containing SNP1 (Figure 3.10). No transcription was 

found at PRE2 to support production of an eRNA at that locus. 

                       

 

 

Figure 3.10 A bidirectional transcript is produced from PRE1 consistent with an eRNA. A 

screenshot from the UCSC browser with the Capture-seq reads for the (-) and (+) strands assembled 

into bidirectional single exon transcripts. The blue track shows a DNase I hypersensitivity peak 

overlaying PRE1 and the CAGE tags below this show the predicted transcription start sites for each 

of the eRNA transcripts. The position of SNP1 within the (+) transcript is indicated by a vertical line.  

 

Further experiments focussed on the sense eRNA transcript, given that it was more highly 

expressed as indicated by the CAGE data and also contained one of the risk SNPs (Figure 3.10). 

The expression of an eRNA at PRE1 was supported by GROseq data which also revealed extensive 

nascent transcription at PRE1 in response to oestrogen stimulation (Figure 3.1) [87]. To confirm the 

presence of an oestrogen regulated eRNA at PRE1, qPCR was performed on RNA extracted from 

oestrogen induced MCF7 cells (Figure 3.11). This demonstrated significant eRNA transcription 

peaking at 6 hours and then falling back to baseline by 24 hours post oestrogen stimulation, 

confirming the eRNA to be an oestrogen regulated transcript. 

 

SNP 1 
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Figure 3.11 The PRE1 derived eRNA is oestrogen responsive. eRNA expression was measured 

using qPCR in oestrogen stimulated or vehicle control groups. Expression relative to the vehicle is 

shown for each time point. Data shown is the mean ± SEM from three biological replicates. 

Significance was determined with a two-way ANOVA test with Dunnett’s test for multiple comparisons. 

* p<0.05, ns = not significant. 

 

 

3.2.7.  The PRE1 enhancer has promoter activity which is altered by the risk SNPs. 

 

To investigate whether the SNPs may affect any intrinsic promoter activity of PRE1 that is required 

to drive transcription of the enhancer RNAs, pGL3 luciferase constructs containing PRE1 as a 

promoter were transfected into the ERα positive cell line MCF7 and the ERα negative cell line 

Bre80 (Figure 3.12). PRE1 exhibited marked promoter activity over the empty pGL3 Basic plasmid 

in MCF7 cells to a level one tenth that of the highly active pGL3 Control plasmid. The 

incorporation of SNP1 reduced this effect whilst SNP2 increased promoter activity. In the Bre80 

cells the promoter activity was minimal (one thousandth that of the control plasmid) except in the 

presence of SNP3 however such low absolute luciferase levels are at the boundary of reliable 

discrimination for the assay. This suggests that PRE1 activity is oestrogen dependent, as supported 

by the eRNA oestrogen induction (Figure 3.11). 
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Figure 3.12 PRE1 exhibits promoter activity which is altered by the risk SNPs. The schematic 

to the left depicts components of the pGL3Basic plasmid with the first box containing PRE1 

positioned as a promoter for the luciferase gene (yellow) and each construct containing one of the 

four SNPs (numbered red boxes). The basic construct lacks a promoter and enhancer, whilst the 

control plasmid has a strong CMV promoter to drive luciferase expression in the absence of an 

enhancer. The luciferase activity of the control construct is set as 2 for all experiments and the other 

results normalised to this to allow comparison between the MCF7 (top) and Bre80 (bottom) cell lines. 

Data shown is the mean ± SEM from 3 biological replicates. Significance was determined using a 

one way ANOVA incorporating Dunnett’s test for multiple comparisons. * p<0.05, ** p<0.001, 

***p<0.0001. 

 

3.2.8. Silencing of the PRE1 eRNA reduces expression of CPT1A and IGHBPM2. 

 

To confirm the role of PRE1 in regulating the 11q13 target genes identified by the 4C-seq and 5C 

experiments, the PRE1 eRNA was silenced using siRNA and gene expression measured using a 

TaqMan assay (Figure 3.13). The concentrations of two siRNA were first optimised and compared 

with the silencing obtained using two modified antisense oligonucleotides (M-ASO) which have a 

phospho-thiorate backbone for extra stability [283]. Following optimisation, the relative silencing 

efficacy was assessed using eRNA specific primers in a qPCR assay. The siRNA-2 consistently 

produced a 20-25% reduction in eRNA expression however siRNA-1 did not produce an effect 

when compared to the scrambled control siRNA (Figure 3.13A). The M-ASO mediated silencing 
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achieved a 15-20% reduction in eRNA levels. RNA obtained from the best three eRNA silencing 

experiments using siRNA-2 was used for subsequent TaqMan gene expression analysis of CCND1, 

CPT1A, IGHBPM2, MRP12, MTL5 and ORAOV1 (Figure 3.13B). Notably, CPT1A and IGHBPM2 

expression were significantly reduced following silencing of the PRE1 eRNA using siRNA-2. 

CCND1 expression was also reduced as predicted by previous luciferase experiments [5], however 

this did not reach statistical significance. No significant effects were seen in the other genes 

assessed. 
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Figure 3.13 Silencing of the PRE1 eRNA reduces CPT1A and IGHBPM2 expression.  (A) eRNA 

expression following knockdown with the modified oligonucleotides D-M and E-M relative to the 

scrambled control scr-M; and siRNA-1 and siRNA-2 in comparison with a scrambled siRNA (scr). 

Results are mean +/- SD expressed relative to the respective scrambled controls. (B) Expression of 

the target genes following eRNA knockdown with the dotted line indicating the level of a scrambled 

control. Results are mean +/- SEM of three biological replicates expressed relative to the scrambled 

control. Significance calculated using a one sample t test, comparing values to a hypothetical mean of 

1. *p<0.05, **p<0.001. 
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3.2.9. Paired heterozygous cell lines were created using TALENs (Transcription activator like 

effector nucleases).  

 

To assess the effect of the risk alleles on PRE1 function in their native genomic context, the SNP1, 

SNP2 and SNP3 risk alleles were genome edited into the T47D breast cancer cell line. This cell line 

was chosen as it is an ERα positive cell line without the high frequency of amplification found at 

the PRE1 locus in other ERα positive cell lines such as MCF7 and BT474 [284]. A pair of TALENs 

was designed to create a double stranded break (DSB) between SNP1 and SNP2 which could then 

be repaired using homologous recombination (HR). The HR process used a donor plasmid 

containing a PRE1 sequence with the risk alleles of SNPs 1-3 as a template to repair the DSB, in the 

process replacing the common alleles with the minor (risk) alleles (Figure 3.14A). SNP4 and SNP5 

were too far from the DSB to be altered and were not explored further using this approach. To 

optimise the assay, the TALENs were transfected along with a donor plasmid and EGFP into T47D 

cells and then sorted by FACS to produce an enriched transfected population that could then be 

assessed using the T7 endonuclease assay (Figure 3.14B). This assay involved cutting the DNA at 

the site of mutagenesis to determine the frequency of successful TALEN activity in the cell 

population (Figure 3.14C). The presence of bands at 480bp and 260bp in the TALEN column was 

consistent with active cutting of the PCR template at the predicted location and validated the 

TALEN pair used for genome editing.  
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Figure 3.14 The TALENs cut PRE1 between SNP1 and SNP2. (A) A schematic of the TALEN 

process with a DSB (blue lightning bolt) induced at PRE1 in the T47D cells repaired using the donor 

template containing the minor (risk) alleles. (B) A scatter plot of individual cells during FACS sorting 

with the gate used to select GFP expressing cells in blue. (C) T7 endonuclease assay demonstrating 

the generated PRE1 amplicon at 745bp and the predicted products following digestion of the TALEN 

edited cells compared to a non-edited control. 

 

A combination of approaches was required to identify individual clones which had successfully 

incorporated the risk alleles as all methods were found to yield false positive results when checked 

using Sanger sequencing. The Sequenom iPLEX Mass ARRAY was used initially to screen a large 

number of transfected and FACS sorted clones simultaneously. This assay uses a mass spectrometry 

approach to determine the identity of a selected base [285]. After DNA extraction and preparation, 

the samples were given to Dr Qing Chen to perform the assay. Heterozygosity was identified in 12 

clones for SNP1, 7 clones for SNP2 and 8 clones for SNP3 (Figure 3.15). Four homozygous clones 

were also identified but were later found to be invalid results caused by a low DNA input. Clones 

that were high confidence for the heterozygous genotype were screened further using a TaqMan 

SNP assay to confirm the presence of the SNP3 risk allele (Figure 3.16A). Finally, a restriction 

fragment length polymorphism (RFLP) method was employed, as the common allele for SNP1 
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formed part of a DpnII recognition site which was lost with conversion to the risk allele. Digested 

amplicons spanning SNP1 were run on an agarose gel and compared with known heterozygotes and 

homozygotes. Clones 11 and D11 thus appeared to have incorporated the minor allele of SNP1 and 

had a digest pattern similar to the heterozygous cell line Cal51 (Figure 3.16B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 3.15  Screening of the TALEN clones by Sequenom iPlex Mass Array. The Sequenom 

assay separated the clones by mass of the SNP allele into homozygotes (blue or green), 

heterozygotes (yellow) or uncertain (red). Panels depict SNP1 (rs554219), SNP2 (rs661204) and 

SNP3 (rs78540526). 

 

The final selection of clones for Sanger sequencing included only those clones with concordance 

between their Sequenom, RLFP and SNP TaqMan results. Clones D11 and 11 were confirmed to be 

heterozygous for SNPs 1,2 and 3 whilst G3 and G9 were heterozygous for SNPs 2 and 3 but 

retained the common allele of SNP1 (Figure 3.17A). The frozen culture of clone D11 failed to grow 

after thawing and was unable to be used. The ratio between the peaks seen for the common allele vs 

the introduced risk allele on Sanger sequencing was markedly biased towards the existing common 

allele in all clones. This suggested that the T47D cells may be polyploid for the PRE1 locus and that 

only a small proportion of the SNP1 common alleles had been converted to the risk allele. DNA-

FISH was performed to assess the number of copies of the 11q13 locus per cell (Figure 3.17B). The 

FISH hybridisation process was performed by Mrs Kristine Hillman. The results revealed that at 

least 3 copies of 11q13 are present in the T47D cells that can be distinguished using the resolution 

of the FISH probes.  
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Figure 3.16 Screening of the TALEN clones detects heterozygotes for the risk SNPs. (A) The 

TaqMan SNP assay separated the clones according to the allelic status of SNP3. The ratio of signal 

from probes designed against the common allele (yellow) or risk allele (green) clustered according into 

three groups. Heterozygotes are found in the top right and include the heterozygous Cal51 control. 

There are no homozygotes (top left) for the risk allele amongst the clones. Wild type (homozygous for 

common allele) cluster in the bottom right and include the homozygous T47D control. The two 

negative (no DNA) controls are in the bottom left quadrant. (C) An agarose gel image of the products 

from each clone following digestion of a 1500bp amplicon with DpnII. The red arrow indicates the 

location of a 600bp band which remains undigested in the presence of the risk allele of SNP1. DNA 

from homozygous T47D cells and heterozygous Cal51 cells is included for comparison. 

 

 

 

A 
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Figure 3.17  Sanger sequencing and DNA FISH confirms multiple copies of the PRE1 

locus. (A) Representative chromatograms are shown for the unedited T47D cell (1
st
 row) and the 

three positive clones. The SNP alleles are positioned at the central peak, with two adjacent peaks 

on either side. The colours of the peaks vary depending on the identity of the base and the 

orientation of the primer used for sequencing. The presence of two overlapping coloured peaks is 

indicative of heterozygosity for the allele at that location. SNP1 = rs661204, SNP2 = rs78540526, 

SNP3 = rs554219. (B) Images from the GE Deltavision deconvolution microscope following DNA-

FISH of T47D cells. The frames are split into DAPI (left) to demarcate the nucleus; FITC (middle) 

to recognise the labelled BAC probe; and a merged view on the right panel.  
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3.2.10. No significant change in gene expression was found in PRE1 heterozygous clones. 

 

To determine the effect of the risk SNPs in their native genomic context, expression levels of the 

target genes identified by 4Cseq and 5C were measured in three heterozygous clones using a 

TaqMan assay. Gene expression was compared to the average obtained for the three control cell 

cultures (clones 6, 9 and 10) that had gone through the TALEN process but remained homozygous 

for the major allele (Figure 3.18). None of the changes in gene expression reached statistical 

significance although there was a trend for reduced CCND1 levels in clones G3 and G9 in the 

presence of SNP2 and SNP3 as predicted by previous luciferase assays [5].  
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Figure 3.18 Relative gene expression in heterozygous clones compared to the homozygous 

wild type. The average expression of three combined control clones is shown by the red bar and 

normalised to a value of 1. Target gene expression is shown in blue for each clone relative to the 

control value. Note that clone11 is a heterozygote for all three SNPs whilst clones G3 and G9 are 

heterozygous for SNP2 and SNP3. Data obtained is mean +/- SEM of three independent RNA 

extractions per clone. Significance was assessed using a one way ANOVA with Dunnett’s correction 

for multiple comparisons. ns = not significant. 



Discussion 
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The 11q13 breast cancer susceptibility locus was fine mapped and characterised by our group in 

2013. That study identified five candidate causal SNPs driving the association and their likely target 

gene, CCND1 [5]. There remain however, additional genes in the region with known roles in cancer 

that needed to be included or excluded as contributors to breast cancer risk using a more agnostic 

approach. In this chapter, the PRE1 and PRE2 risk-associated regulatory elements were further 

characterised using a combination of chromosome conformation capture variants with other 

molecular techniques. This demonstrated that PRE1 was breast specific and produced a novel 

eRNA containing one of the risk SNPs. It also revealed interactions between PRE1 and the CPT1A 

and IGHMBP2 genes. These findings represent novel mechanisms by which the breast cancer 

associated SNPs may be mediating disease at this locus. 

 

The 11q13 interval contains risk-associated SNPs for multiple cancer types including breast, renal 

and prostate cancer [4, 271, 272]. The breast SNPs were previously shown to lie in two regulatory 

elements called PRE1 and PRE2 and regulate CCND1 [5]. The 3C results indicated that the 

PRE1/CCND1 interaction is breast specific, consistent with the extensive binding of the breast 

specific TFs ERα, SRC3 and FoxA1 at PRE1 [135, 286]. The tissue specificity was also reflected in 

the luciferase results with PRE1 inducing a minimal change in CCND1 promoter activity when 

assayed in prostate cells (Figure 3.2E), whereas it exhibited high activity in breast cancer cell lines 

[5]. In contrast, PRE2 can interact with CCND1 in several different tissue types consistent with the 

lack of breast specific TF binding (Figure 3.2B,D, Figure 3.1). It also retained its ability to act as a 

silencer in prostate cancer cells (Figure 3.2E). This may indicate that a conserved chromatin loop 

between PRE2 and CCND1 is important to regulate cell proliferation by the repression of CCND1 

expression. The repression would then be overcome by the activation of tissue specific enhancers 

such as PRE1 in breast tissue following oestrogen stimulation. Similarly, androgen stimulation in 

prostate tissue may activate prostate specific enhancers in the locus to allow activation of CCND1. 

A genome editing approach in breast and prostate cells where CCND1 expression is assessed 

following the inactivation of PRE2 would assist in confirming this hypothesis.  

 

Interestingly, the 11q13 renal SNPs are also located in enhancers, affect the binding of HIF 

(hypoxia induced factor) and are involved in looping interactions to CCND1. These loops were 

renal specific and not present in MCF7 breast cancer cells [271]. The prostate cancer locus has not 

yet been fully characterised, however  3C using a bait containing enhancers affected by prostate risk 

associated SNPs demonstrated interactions with the CCND1 promoter in prostate cancer cells 

(Figure 3.2F). This suggests that the risk of different cancers at the locus is likely mediated though 
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a common target gene (CCND1). A similar situation is present at the 8q24 locus which contains risk 

SNPs for multiple epithelial cancers in the same manner as the 11q13 locus [287]. Studies at 8q24  

have shown that colon, breast and prostate cancer risk at that locus are likely to be due to 

independent SNPs in distal enhancer elements that regulate the MYC oncogene [155, 271, 288, 

289]. The enhancers in the region also largely tissue specific when assessed using in vivo assays and 

the risk loci do not overlap apart from a single haplotype block associated with both prostate and 

colorectal cancer [287, 289]. The finding of risk SNPs for multiple cancers in the same locus is 

likely to be a recurrent theme in cancer GWAS as more studies become available given the common 

genetic mechanisms underlying the development of cancer in different cell types [290]. 

 

We have previously demonstrated that CCND1 is a target gene at the 11q13 locus, however recent 

analyses by the ENCODE and FANTOM consortia indicate that regulatory elements can engage in 

multiple long-range interactions [3, 86].  A candidate approach was first used to identify additional 

target genes at the 11q13 locus. In silico and expression analysis of five local genes indicated that 

ORAOV1 was the next most active gene in the region after CCND1 (Figure 3.3) [87, 275]. 

ORAOV1 also plays an important role in cell proliferation and angiogenesis in other tumours, in 

particular oral squamous cell carcinoma [270]. The initial 3C using the ORAOV1 promoter as bait 

revealed a strong interaction peak over PRE1 that was not altered by the presence of oestrogen 

despite ORAOV1 expression being oestrogen responsive (Figure 3.5C). This is frequently seen with 

chromatin looping, where the loops are often pre-existing but then require recruitment of regulatory 

TFs for transcription to occur [154, 161]. Further 3C experiments using PRE1 as the bait however, 

demonstrated that the interaction between PRE1 and ORAOV1 actually localised to the second 

intron rather than the promoter (Figure 3.6C). This suggested that ORAOV1 was not a direct target 

of PRE1 but it did not exclude the possibility that PRE1 may still have some regulatory effect on 

ORAOV1 by their proximity in nuclear space, such as within a transcription factory [291]. ChIA-

PET data indicated that ORAOV1 is on the boundary of the TAD containing the 11q13 gene desert 

and further looping interactions connected this boundary with CCND1 (Figure 3.6E). Given that 

PRE1 interacts strongly with CCND1, this provides a mechanism by which PRE1 and ORAOV1 

may be indirectly brought into contact [5, 277].  

 

PRE1 was considered particularly likely to have additional gene targets. In contrast to PRE2, it is a 

chromatin interaction hub as revealed by the ERα mediated CHIA-PET data (Figure 4.9), and has 

very high levels of DNase I hypersensitivity indicating open, active chromatin (Figure 3.1)[161, 

275]. This is consistent with a subgroup of enhancers identified by  the FANTOM CAGE study that 
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bound high levels of p300 and cohesion, had higher H3K4me3 levels than expected for an enhancer 

and produced longer eRNAs (530bp median vs 346bp) [86]. These were associated with a high 

frequency of ChIA-PET interactions with other enhancers and gene promoters. PRE1 shares all 

these features, making it highly likely that other interactions will be present. These may be local 

interactions in cis or distal interactions in trans, potentially on other chromosomes. Local 

interactions at 11q13 may be explored using 5C, whilst interaction in trans can be best explored 

using an agnostic 4C-seq approach [174, 292].  

 

The 4Cseq was initially performed in the ERα positive breast cancer cell lines MCF7 and BT474 to 

detect interactions that may be relevant to ERα positive breast cancer. The trans interactions all 

involved genomic loci that were amplified in breast cancer and contained genes previously known 

to be important in breast cancer biology (Figure 3.8). These interactions may be a true 

representation of the chromatin interactome or may potentially be an artefact produced by the 

fixation of random interactions between the highly abundant DNA of the amplified regions [284]. 

Interestingly, the interactions on chromosomes 17q23 and 20q13 were not found for the PRE2 bait, 

suggesting that they are a valid representation of the PRE1 interactome. This is supported by Hsu et 

al. who describe the occurrence of amplified clusters of oestrogen receptor elements (EREs) in 

MCF7 cells at 17q23 and 20q13 which were hotspots for inter-chromosomal interactions [280]. 

They speculate that these elements may associate in transcription factories with other similarly 

amplified ERα binding regions which would explain the observed result for PRE1 as it lies in a 

heavily amplified region and is highly bound by ERα [8, 129]. Such associations may be functional, 

leading to the deregulation of tumour suppressor genes interacting with the amplified EREs and 

hence drive tumour growth [280]. Hsu et al. note that MCF7 and BT474 cells in particular have 

high levels of ERE copy number gain at 20q13 and that this amplification is driven by oestrogen 

exposure which is an unavoidable part of culturing such cells  in the laboratory [280]. 

 

The use of a control library in future experiments may provide some clarification on whether the 

results were due to captured proximal interactions or an artefact due to high levels of amplified 

DNA being available to interact in the ligation assay. 4C-seq protocols typically do not include the 

use of control libraries that have not been formaldehyde fixed to enrich for interacting regions [172, 

293], however this may be required when dealing with cancer cell lines containing high levels of 

copy number variation. Interactions present in the control libraries could thus be subtracted from 

any analysis in the actual fixed libraries. Instructively, the vast majority of published studies using 

4C-seq do not use cancer cell lines [274, 294-296]. One exception is a study by Zeitz et al. that also 
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used MCF7 cells to find genome-wide interactions for an enhancer of IGFBP3 on chromosome 7 

and detected a high number of interactions with the regions adjacent to those detected by the PRE1 

4C-seq (17q22 and 20q12) [297]. No control library was used, however the interactions were also 

present in the non-cancer breast cell line HMEC and confirmed using DNA-FISH.  

 

The interactions may also be a result of translocations as all the detected regions are frequently 

translocated in breast cancer cells [298]. The 11q13 region in particular is often a translocation 

partner with the 17q23 region where HEATR6 is located [299], and both 17q23 and 20q13 are 

among the four most translocated regions in MCF7 cells [298]. Indeed, 23.6% of all fusion events 

mapped throughout the MCF7 genome involve 17q23 and 20q13, with amplified EREs enriched at 

the breakpoints [280]. The translocations between 11q13, 17q23 and 20q13 may be a direct result of 

their in trans interactions as co-localisation of active genomic loci is a key driver in the formation 

of translocations [300, 301]. Importantly however, the interactions seen in trans for PRE1 and 

PRE2 were not found when a non-cancer breast cell line (Bre80) was used for the 4C-seq. This 

indicates that although the PRE1 interactome described for MCF7 and BT474 cells may be 

functional and important in cancer progression, it is unlikely to be relevant to the SNP-associated 

risk of developing breast cancer which is the focus of this chapter.  

 

The obtained interactions patterns in cis and in trans did not enable accurate identification of any 

potentially interacting promoters but instead demonstrated larger scale interactions between 

genomic regions as is obtained using the HiC technique [302]. The lack of resolution may be related 

to inadequate digestion or ligation steps in the preparation of the 4C libraries, although the standard 

quality control checks of such measures appeared adequate when assessed [303]. Similar results 

have also been obtained by other groups, for example Apostolou et al. used 4C-seq to identify 

interactions involving the NANOG promoter in embryonic stem cells and found ‘broad domains’ of 

contact rather than detailed, discrete interactions [296]. More recent 4C-seq protocols advise that 

resolution can be improved with the use of two 4bp cutter restriction enzyme digests rather than the 

initially recommended 6bp cutter restriction enzyme digest followed by a 4bp cutter restriction 

enzyme final digest [304]. Adoption of this revised method may have improved discrimination for 

the assay, allowing better identification of the interacting targets of PRE1 and PRE2.  

 

One prominent feature of the 4C interaction data was the high frequency of interactions near 

centromeres seen for both PRE1 and PRE2 which were interpreted as artefactual (Tables 3.1, 3.2). 

This has not been commented on in previous studies using the 4C technique [294-296], however the 
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majority of such studies were performed in embryonic or pluripotent stem cells which have fewer 

centromeres positioned peripherally compared to cells which have undergone differentiation [305, 

306]. This may affect the frequency of pericentromeric interactions involving PRE1 and PRE2 as 

these elements are located on chromosome 11 which in turn localises to the nuclear periphery [307]. 

Centromeres also tend to cluster and thus any interactions may be expected to involve multiple 

centromeres as was indeed observed [307]. Alternatively, the interactions may represent functional 

contacts with significance in cellular metabolism or cancer. Despite pericentromeric regions being 

enriched for inactive heterochromatin, an increasing number of genomic regions have been found to 

reside there as condition for their normal functioning and it is possible that CCND1 and the 11q13 

gene desert fall into that category [308]. A third possibility is informed by the fact that 4C data 

represents an average of contacts within a cell population and there thus may be a proportion of 

cells in which the 11q13 region is moved into a pericentromeric region for silencing when the cells 

are not dividing and another population of cells in which 11q13 has relocated to a more active 

region of the nucleus to drive the high levels of CCND1 expression required for progression 

through the cell cycle [306, 309]. Experiments involving single cell transcriptomics and 

chromosome conformation capture may help to clarify this further [310, 311]. 

PRE1 was found to express relatively high levels of eRNAs which are indicative of significant 

enhancer activity [87]. This eRNA production at PRE1 was confirmed using Capture-seq data 

(Figure 3.10) and also direct qPCR, which demonstrated that the eRNA was oestrogen responsive 

(Figure 3.11).  Furthermore, publically available GROseq data showed nascent transcription at 

PRE1 increasing rapidly over the first hour post oestrogen stimulation and then falling by the 3 hour 

mark [87]. These early changes were not explored in the oestrogen induction described in Figure 

3.11 as the data time points were assigned to six hour intervals, but may have been observed using 

more frequent measurements taking into account the fact that mature expression of a transcript will 

obviously lag behind nascent transcription. 

Transcriptional enhancers such as PRE1 can also display promoter activity which drives their 

eRNA production [229]. The breast cancer risk SNPs within PRE1 have previously been shown to 

markedly alter the ability of PRE1 to enhance transcription, raising the possibility that they may act 

by reducing production of a functional eRNA [5]. PRE1 was shown to drive luciferase production 

when cloned into a pGL3 construct as a promoter, confirming that it had promoter activity. This 

activity was altered by inclusion of the SNPs, with SNP1 causing a 50% reduction in promoter 

activity. Lam et al. demonstrated that a 50% reduction in eRNA expression reduces the expression 

of target genes by a similar magnitude so the disruption of eRNA production may represent a novel 
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mechanism by which risk SNPs act to alter local gene expression [232]. It is also interesting to note 

that SNP1 is contained within the sequence of the (+) strand eRNA raising the question whether it 

may represent a riboSNitch inducing a conformational change in RNA structure and hence alter the 

function of the eRNA [312]. 

Given that eRNA transcription from an enhancer precedes transcription from its target gene it has 

been proposed that there may be a causal relationship and knocking down the eRNA will therefore 

abrogate expression of the target gene [232, 235]. This has been confirmed by several groups and 

appeared to be a specific effect as eRNA silencing reduced expression of only those genes regulated 

by the enhancer producing the eRNA [232, 234]. The effect of eRNA silencing was assessed on the 

genes identified through 4Cseq and 5C to confirm that they are regulated by PRE1 and prioritise 

them for further functional assessment. Optimisation of the eRNA knockdown included a 

comparison between standard siRNA and modified antisense oligonucleotides (M-ASO) possessing 

a phosphoro-thioate backbone, which makes them far more resistant to nucleases than standard 

RNA molecules [283]. They are able to activate the RNaseH pathway in the nucleus which 

efficiently hydrolyzes the bound target RNA [313]. Both the siRNA and M-ASO were designed 

against the (+) strand eRNA as this contained the risk SNP and was more highly expressed 

according to CAGE data (Figure 3.10). The (+) and (–) eRNA transcripts may have different 

activities however and the experiments are currently being repeated by another lab member 

including (–) strand eRNA knockdown to ensure no strand specific effects are missed [232]. A 

comparison between the different M-ASOs and siRNAs found that one of the siRNAs (2) produced 

the most reliable knockdown and this was then used to assess gene expression changes (Figure 

3.13). Significant reductions of CPT1A and IGHMBP2 were observed along with the predicted 

reduction in CCND1 levels, though this did not reach significance. CPT1A encodes a protein 

(carnitine palmitoyltransferase 1A) required for transporting fatty acids into mitochondria and has 

recently been identified as being a driver of proliferation in luminal breast cancer [314, 315]. 

IGHMBP2 is an immunoglobulin mu binding protein that is predicted to have a role in DNA 

damage repair [316-318]. Both genes are promising candidates as breast cancer associated genes, 

however further functional characterisation is still required before they can be confirmed as 

mediating risk at the 11q13 locus. 

Functional characterisation of GWAS identified SNPs has been historically limited by the need to 

work with tumour derived cell lines and artificial plasmid based assays such as luciferase 

expression constructs. These approaches are unable to fully address the actual effect of a SNP in its 

proper genomic context and this needs to be kept in mind when interpreting such data [26]. We now 
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however have a suite of tools, including TALENS, Zinc Finger Nucleases and CRISPRs, to alter 

SNPs in situ and create isogenic cell lines which only differ in the particular SNP(s) of interest 

[196]. TALENs were used to create heterozygous cell T47D cells containing SNPs1, 2 and 3, with 

SNP4 being too far from the TALEN recognition site to be changed without employing multiple 

TALEN pairs. The efficiency of homologous recombination mediated editing rapidly falls off with 

increasing distance from an induced double stranded break (DSB) with 3% of clones converting at 

400bp from the DSB, compared to 40% converting at 46bp [319]. Sanger sequencing of the clones 

suggested that there were likely to be multiple copies of PRE1 and this was confirmed using DNA-

FISH (Figure 3.17). Subsequent assessment of target gene expression in the heterozygous clones 

did not demonstrate a significant effect, however any changes would have been greatly diluted by 

the presence of multiple copies of the common allele, making the results inconclusive (Figure 

3.18).  

It proved difficult to find an ERα positive breast cancer cell line that was not amplified at 11q13. 

This may be related to the fact that oestrogen induced proliferation of such cells is mediated by 

CCND1 which is present at 11q13 and drives a positive clonal selection of cells amplified in this 

region [200].  T47D cells were selected as they were the least amplified of the available cell lines 

[284], but the efficiency of genome editing was not sufficient to produce homozygotes for the minor 

allele or even heterozygotes containing an even proportion of minor and major alleles. CRISPRs 

may provide improved efficiency of genome editing for future work as studies report conversion 

rates approaching 50% in optimized conditions  [320]. Ideally genome editing should be performed 

in a non-cancer cell line to avoid 11q13 amplification, however it needs to be a cell line that 

expresses ERα to be an appropriate model of ERα disease and such cell lines are not currently 

available.  

This chapter aimed to find additional genes interacting with PRE1 or PRE2 that may mediate the 

effect of the risk SNPs at the 11q13 breast cancer risk locus. ORAOV1 was initially examined 

however its role was not validated by the 5C or eRNA knockdown experiments and there was 

insufficient evidence to pursue it further as a candidate. The 4C-seq and 5C in combination with the 

eRNA knockdown did suggest a role for the CPT1A and IGHMBP2 genes. The latter was of 

particular interest given its possible involvement in DNA damage repair which is a common feature 

of genes conferring an increase in breast cancer susceptibility [2]. The genome editing strategy was 

not successful in demonstrating an effect of the SNPs in their native genomic context, however the 

remainder of the functional approaches used to characterize the region provide an experimental 

framework for further investigations of breast cancer associated risk loci. 
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The majority of breast cancer GWAS SNPs fall in regions of the genome that do not contain known 

protein-coding genes and are predicted to affect regulatory elements such as transcriptional 

enhancers [163]. Recent evidence has shown that these gene poor areas are also extensively 

transcribed and contain multiple non-coding transcripts such as long non-coding RNAs (lncRNAs) 

[7, 212, 220]. These lncRNAs may be directly affected by the incorporation of risk-SNPs into the 

transcript itself or indirectly if regulated by an enhancer that contains functional risk-SNPs [162, 

321]. The 11q13 breast cancer risk locus contains four candidate causal SNPs located in an 

enhancer element (called PRE1) and a fifth SNP falling in a silencer (called PRE2), with both 

elements regulating the nearby CCND1 gene [5]. Interactions between PRE1 or PRE2 and 

additional protein coding genes have already been explored (Chapter 3), however non-coding 

transcripts may also be contributing to risk at this locus. Such transcripts can be missed by a 

traditional RNA-seq process as they are frequently tissue specific and expressed at low levels [322]. 

 

To address the limitations of RNA-seq, Mercer et al. developed a technique called RNA Capture-

seq which incorporates an enrichment step to amplify transcriptional products from a defined 

portion of the genome, followed by deep-sequencing and mapping to identify the transcripts (Figure 

4.1) [7]. Enrichment is achieved by the use of hybridisation tiling arrays with the bound transcripts 

then eluted for sequencing [323]. As an example of the improved detection power, 204 novel 

isoforms were found for proteins in the regions tiled by Mercer et al. and only 31.3% of the 

intergenic transcripts found were also seen in the corresponding RNA-seq dataset. Notably, they 

achieved an estimated 380-fold enrichment over the tiled region which would require around 10 

billion standard RNA-seq reads to give comparable coverage [7].  

 

Several noncoding RNAs have already been identified at cancer GWAS loci, particularly from the 

8q24 region which like 11q13 is a susceptibility locus for multiple cancers [324].  These include the 

lncRNA CARLo-5 which shares an enhancer containing a colon risk SNP with the MYC oncogene 

and exhibits increased expression in the colon tissue of people possessing the risk allele [325]. 

CCAT1-L is another lncRNA implicated in colorectal cancer that is found at the locus, with 

overexpression increasing tumour size in xenograft experiments [204].  
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Figure 4.1 RNA Capture-seq (a) Probes are designed against exons in the regions of interest (or 

intergenic regions if novel transcript discovery is intended); (b) The transcripts are captured through 

hybridisation and pulled down; (c) The retained reads are assembled and analysed. Captured exons 

are shown in orange and unwanted sequences in dark gray. Adapted from [259]. 
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This chapter investigated the hypothesis that novel lncRNAs are expressed at the 11q13 breast 

cancer risk locus and can contribute to breast cancer biology. The locus was interrogated by RNA 

Capture-seq which identified two oestrogen induced lncRNAs that were regulated by PRE1. The 

risk SNPs reduced chromatin looping between PRE1 and the lncRNA promoter which is predicted 

to reduce their transcription. The lncRNAs were named CUPID1 and CUPID2 and functional 

analysis revealed that they had a probable role in DNA damage repair. A reduction in their 

expression as mediated by the risk SNPs is predicted to increase breast cancer susceptibility due to 

the vital role of DNA damage repair genes in the maintenance of genome stability [2]. 
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4.2.1. RNA Capture-seq reveals novel transcripts CUPID1 and CUPID2 are transcribed from the 

11q13 gene desert. 

 

RNA Capture-seq was performed on six breast cancer cell lines and one normal human breast tissue 

sample to identify lowly expressed transcripts that may have been missed by previous RNA-seq 

studies. Assembly of the reads revealed a number of single exon transcripts and two complex 

divergent transcripts arising from the 11q13 intergenic region (Figure 4.2). The H3K4me3 histone 

modification and DNase I hypersensitivity was present at the origin of the divergent transcripts 

suggesting promoter activity (Figure 4.2). A corresponding large DNase I hypersensitivity peak was 

present over PRE1 indicating highly active chromatin (blue box). The two transcripts were 

prioritised for closer examination and their raw mapped read densities are displayed in Figure 4.3. 

Transcription was largely confined to ERα positive cell lines for the transcript on the (+) strand 

whilst the (-) transcript was expressed in all the cell lines examined. A marked increase in read 

depth was seen for the MCF7 cells following their induction by oestrogen (Figure 4.3).  

 

These two transcripts were prioritised for further study based on their complexity, oestrogen 

responsiveness and evidence of enrichment in breast tissue as shown by the CAGE (Cap Analysis 

of Gene Expression) and ChIPseq data (Figure 4.2) [3, 326, 327]. Their coding potential was then 

assessed using an online tool, the Coding Potential Calculator (Peking University - 

http://cpc.cbi.pku.edu.cn/). The (+) transcript returned a score of -1.03427 indicating very low 

coding potential. The (-) transcript returned a score of -0.975903 which also suggested a low coding 

potential, however there was a 373bp long fragment which corresponded to an unreliable ORF 

(open reading frame) with the potential to produce a peptide. As putative lncRNAs, the transcripts 

were named according to lncRNA nomenclature as CUPID1 and CUPID2 (CCND1 Upstream 

Intergenic DNA Damage associated RNA 1 and 2) [328]. The evidence for their association with 

DNA damage repair will be presented in Sections 4.2.14-16.   

 

 

http://cpc.cbi.pku.edu.cn/
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Figure 4.2 Transcripts detected by RNA-Capture-seq at the 11q13 intergenic region. The top 

track displays partially annotated transcripts from ENCODE (green ideograms) [277]. A Cufflinks 

assembly of the RNA Capture-seq data separated into (+) and (–) strands reveals multiple transcripts 

across the locus. The prioritised transcripts are marked by a red box with two isoforms shown for the 

(+) strand transcript. H3K4me3 enrichment peaks indicate promoter activity in MCF7 breast cancer 

cells [327]. DNase I hypersensitivity peaks indicate open chromatin in MCF7 cells [3]. CAGE tags in 

MCF7 cells indicate transcription start sites (TSS) [326]. The blue box encloses PRE1. Data visualised 

using the UCSC browser. 
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Figure 4.3 RNA Capture-seq reads over the divergent transcripts. Mapped reads for the breast 

cancer cell lines and normal breast sample examined by RNA Capture-seq. Each cell line has a top 

track for transcription of the (+) strand and bottom track for (-) transcription. The oestrogen receptor 

status of the cell lines is indicated on the right; oestrogen receptor positive (ERα+ve) or oestrogen 

receptor negative (ERα-ve). The MCF7 cells data is divided into oestrogen induced (+Ez) or non-

induced (-Ez). The assembled reads are shown on the lowermost track. Data visualised using the 

UCSC browser. 

 

 

Interrogation of publically available ChIP-seq datasets suggested that the putative lncRNAs arose 

from a bidirectional promoter that bound a number of transcription factors (TFs) relevant to breast 

cancer biology  including the oestrogen receptor (ERα)[129], the pioneer factor FoxA1 [133], and 

the steroid receptor co-activator SRC3 [286] (Figure 4.4). H3K4me3 enrichment indicative of an 

active promoter is seen in MCF7 cells (Figure 4.4). CUPID1 corresponded to a recently discovered 

isoform in hepatocellular carcinoma that had not been described prior to the commencement of the 

RNA Capture-seq experiment [329]. CUPID2 overlapped a recently annotated, but uncharacterised, 

predicted lncRNA (Gene ID ENSG00000255774) [330]. 

 

 

 

 

Figure 4.4 Breast associated TFs bind at the putative lncRNA promoter. The assembled RNA 

Capture-seq reads for MCF7 cells are shown in blue. The putative promoter region is indicated by the 

red box, showing enrichment for the binding of RNAPolII, ERα [129], FoxA1 [133], and SRC3 [286]. 

The uppermost green track is H3K4me3 ChIP data from MCF7 cells, with a small peak of enrichment 

seen overlapping the TF binding sites [331]. The black track depicts isoforms of the hepatocellular 

lncRNA. Data visualised using the IGV browser. 
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4.2.2. Determining the transcripts for CUPID1 and CUPID2  

Confirmation of the transcript sequences as indicated by the Cufflinks assembly required 

determination of their 5’ origin, 3’ terminus and mapping of alternative splicing. Publically 

available CAGE data was used to obtain a consensus 5’ TSS for each transcript (Figure 4.5A2) 

[332]. The CAGE tags for CUPID2 indicated two similarly utilised TSSs, with the more proximal 

used to define the 5’ end for subsequent cloning (Figure 4.5A1). The CAGE tags for CUPID1 also 

showed two main TSSs, with the distal, more prevalent site taken as the consensus 5’ start (Figure 

4.5A2). 3’RACE (Rapid Amplification of cDNA Ends) was used to determine the 3’ terminus of 

each transcript with the PCR products run on an agarose gel prior to excision and Sanger 

sequencing (Figure 4.5B,C). The position of the primers used for the 3’RACE PCR are indicated by 

blue arrows on the isoform schematic (Figure 4.5D,E). Two bands were seen in each of the 

CUPID1 and CUPID2 3’RACE PCRs indicating two main isoforms for each lncRNA. Further PCR 

was performed to delineate the structure of the isoforms using one primer located adjacent to the 

predicted 5’ end of each transcript and a second primer located adjacent to the 3’ end as indicated 

by the red arrows (Figure 4.5D,E) . A number of minor variations were present within each major 

isoform band and the most abundant chosen as the consensus sequence. A typical poly-A 

recognition sequence (AAUAAA) was found for each transcript. 
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Figure 4.5 Determining the full sequence of the CUPID1 and CUPID2 Isoforms. (A) The 5’ 

consensus TSS was determined using CAGE tags. The cufflinks assembly for CUPID1 and CUPID2 

are shown by the upper and lower blue/black lines respectively. (1) CAGE tags for CUPID2. (2) CAGE 

tags for CUPID1. Data from 2012 RIKEN CAGE release visualized using the UCSC browser [332]. (B) 

CUPID1 3’RACE. Two bands are present on the agarose gel between 1kb and 1.5kb indicating the 

major isoforms. (C) CUPID2 3’ RACE. Two cycles of nested PCR were required to isolate the two 

major isoforms of CUPID2, each cycle using progressively more proximal primers against the fixed 

bait primer. (D) Schematic of the two main isoforms of CUPID1 (black ideograms) with the lower 

isoform having an additional exon. (E)  CUPID2 has two main isoforms (black ideograms) with the 

lower isoform having lost the two terminal introns present in the upper isoform. The blue arrows 

indicate primer positioning for the 3’RACE. The red arrows indicate primer positioning for PCR across 

the whole transcript. 

 

 

4.2.3. CUPID 1 and CUPID 2 are oestrogen regulated. 

 

To determine the distribution of the lncRNAs, a panel of breast cell lines was screened for CUPID1 

and CUPID2 expression using qPCR (Figure 4.6). The transcripts were predominantly expressed in 

ERα positive cell lines, particularly in those cell lines containing high level amplifications of the 

11q13 region such as BT474 and MCF7 cells [284]. CUPID2 expression in BT474 cells approaches 

that of the common housekeeping gene TBP (TATA-box binding protein). The expression data was 

supported by the RNA Capture-seq results, with high raw read counts seen in BT474 cells and the 

oestrogen stimulated MCF7 cells (Figure 4.3). The other ERα positive cell line T47D had low 

levels of CUPID1 and CUPID2 transcription, possibly due to its low level of expressed oestrogen 

receptor (unpublished data from Michael Milevskiy). The ERα positive cell lines and normal human 

RNA all had minimal evidence of transcription detected by qPCR which is consistent with the RNA 

Capture-seq data. 
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Figure 4.6  CUPID1 and CUPID2 are preferentially expressed in ERα positive breast cell lines. 
RNA expression levels were determined using qPCR with the results normalised to TATA box binding 

protein (TBP). Data shown is mean +/- SD from a single biological replicate. The grey shading 

indicates ERα negative cell lines. Note the split scale on the y axis. 

 

Additional RNA Capture-seq data was then analysed to determine whether the two novel transcripts 

were breast specific. Data from other cell lines was provided by our collaborator A/Prof Marcel 

Dinger [282]. CUPID1 reads overlapped those from hepatocellular (liver) cell lines though with a 

breast specific first exon (Figure 4.7). There was no expression noted for the colon and prostate cell 

lines (Figure 4.7). Analysis of all 24 cell lines and human tissues included in the capture panel 

revealed that CUPID1 was expressed to a significant degree in 2/24 samples and CUPID2 in 8/24 

following RNA Capture-seq. This suggests that CUPID1 is more tissue specific than CUPID2. 
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Figure 4.7 – CUPID1 is expressed in breast and liver cells. Raw reads mapped over the CUPID1 

locus following RNA Capture-seq of colon, breast, prostate and hepatocellular carcinoma cells are 

shown in purple. The top track is an ideogram of the hepatocellular transcript KC136303 from the 

UCSC browser. 

 

To determine whether CUPID1 and CUPID2 were oestrogen regulated as predicted by their 

preferential expression in ERα positive breast cancer cell lines, qPCR was performed on MCF7 

breast cell lines induced with oestrogen. This revealed a robust increase in expression following 6-

12 hours of oestrogen exposure for each transcript (Figure 4.8). The finding was supported by the 

RNA Capture-seq data which included RNA from paired MCF7 cell lines grown for 24 hours +/- 

oestrogen and demonstrated a marked increase in raw read count following oestrogen induction 

(Figure 4.3).  
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Figure 4.8 CUPID1 and CUPID2 are induced by oestrogen in MCF7 breast cancer cells. Gene 

expression at each time point is expressed as a fold change over vehicle, with vehicle arbitrarily set at 

one. CUPID1 (A) and CUPID2 (B) expression over a 24 hour oestrogen induction. RNA levels are 

normalised to TATA box binding protein (TBP). Data shown is the mean ± SEM from three biological 

replicates. Significance determined with a 2 way ANOVA test with Dunnett’s correction for multiple 

comparisons. * p<0.05, ** p<0.001, ***p<0.0001, ****p<0.00001. 
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4.2.4. PRE1 interacts with the putative promoter of CUPID1 and CUPID2. 

 

To determine whether the CUPID bidirectional promoter was regulated by PRE1 or PRE2, 

publically available ChIA-PET data was accessed that defined chromatin interactions mediated by 

the oestrogen receptor in MCF7 cells [161]. A clear interaction was detected between the CUPID 

promoter and PRE1 but not with PRE2 (Figure 4.9). 3C was used to confirm the ChIA-PET 

findings in the ERα positive breast cell lines BT474 and T47D. This revealed an increased 

frequency of chromatin contacts between a bait fragment containing PRE1 and distal fragments 

overlapping the putative lncRNA bidirectional promoter (Figure 4.10A,B).  

 

The additional two peaks identified by 3C downstream of the CUPID promoter were most likely 

due to interactions between PRE1 and other distal regulatory elements (Figure 4.10A,B). To 

investigate whether PRE2 participates in chromatin looping in a similar manner to PRE1, 3C was 

performed in BT474 cells using PRE2 as the bait (Figure 4.10C). This showed a far more irregular 

interaction pattern and peak proximal to the location of the CUPID promoter. A significant 

interaction is not excluded by the 3C data but the absence of a clear interaction peak and the lack of 

ChIA-PET interactions meant further analysis was confined to PRE1. 
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Figure 4.9 Interactions between PRE1 and the CUPID promoter in the ERα mediated ChIA-PET 

dataset. Box (1) marks the position of the putative bidirectional promoter of CUPID1 and CUPID2. Box 

(2) denotes PRE1. The horizontal lines indicate chromatin interactions between loci on chromosome 

11 [161]. The increasing darkness of the line or box is proportional to the number of interactions. Box 

(3) encloses a line indicating interactions between PRE1 and the CUPID promoter. The RNA Capture-

seq transcript assembly is shown in the top tracks (black ideograms). The lower track shows DNase I 

hypersensitivity peaks indicative of active, open chromatin [275]. Data visualised using the UCSC 

browser. 

 

 

 

3C was then performed in the ERα negative cell line Bre80 and the non-breast ovarian cell line 

A2780 using libraries made with the NcoI enzyme to better localise the interactions and determine 

whether they were specific to ERα positive cell lines (Figure 4.11). This confirmed the interaction 

between PRE1 and the CUPID promoter region. Similar interaction profiles were seen in all cell 

lines tested, indicating that the interactions were not breast tissue specific and not dependent on the 

oestrogen receptor.  
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Figure 4.10 3C interactions between PRE1 or PRE2 and the putative lncRNA promoter. 3C 

interaction profiles between PRE1 and the 11q13 locus in BT474 cells (A) and T47D cells (B); and 

PRE2 and the 11q13 locus in BT474 cells (C) using libraries made with the restriction enzyme EcoRI. 

The position of the CUPID promoter is indicated by the grey box. Data shown is mean +/- SEM for 

three biological replicates with the results normalised to the most proximal fragment. 
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Figure 4.11 3C interactions between PRE1 and the CUPID promoter are present in other cell 

lines. 3C interaction profiles between PRE1 and the CUPID1 and CUPID2 locus in MCF7 (A), Bre80 

(B), and A2780 cell lines (C), using libraries made with the restriction enzyme NcoI. The position of the 

CUPID promoter is indicated by the grey box. Data shown is mean +/- SEM for three biological 

replicates with the results normalised to the most proximal fragment. 

 

 

4.2.5. Chromatin looping between PRE1 and the CUPID promoter is allele specific. 

 

To determine whether the risk SNPs affected looping between PRE1 and the CUPID promoter it 

was first necessary to determine which part of PRE1 participated in the chromatin interactions. This 

was done by performing 3C using the putative lncRNA promoter region as a bait and analysing 

interactions across the PRE1 region (Figure 4.12). The chromatin interaction was shown to be 
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maximal over a restriction fragment containing the SNP1 risk allele. This is consistent with ChIA-

PET data that also exhibited maximal interaction tags over the same segment of PRE1 (Figure 4.12) 

[161]. 
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Figure 4.12 The maximal interaction between the CUPID promoter and PRE1 contain SNP1. 3C 

interaction profiles between the CUPID promoter and PRE1 in MCF7 cells using libraries made with 

the restriction enzyme NcoI. The peak interaction is indicated by the blue box and corresponds to a 

DNase I hypersensitivity peak (aqua) [275], a ChIA-PET interaction hub (grey and black lines) [161], 

and SNP1 (red line). Data shown is mean +/- SEM for three biological replicates with the results 

normalised to the most proximal fragment. 

 

To evaluate allele specific looping between PRE1 and the CUPID promoter, 3C was performed in 

the ERα positive MDA-MB-415 cell line which is heterozygous for SNP1. The resulting PCR 

product was Sanger sequenced and the chromatograms compared with the genomic DNA input 

(Figure 4.13). The relative chromatogram peak heights over SNP1 were biased towards the 

common allele in the 3C product when compared to the input DNA. This indicated preferential 

chromatin looping between PRE1 and the putative lncRNA promoter in the presence of the major 
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(protective) allele and suggested that the minor (risk) allele may reduce chromatin looping and the 

subsequent transcription of CUPID1 and CUPID2.   

 

 

 

Figure 4.13 The protective allele preferentially participates in chromatin looping. The left 

chromatogram is derived from Sanger sequencing of 3C products generated from interactions 

between a PRE1 bait fragment and the lncRNA promoter. The right chromatogram is derived from a 

corresponding region of input genomic (gDNA). The black boxes highlight the position of SNP1. The 

common allele is G (black) and the minor (risk) allele is green. Representative chromatograms from 

three independent biological replicates are presented. 

 

 

 

4.2.6. The risk-SNPs reduce activation of the CUPID1 promoter by PRE1. 

 

To determine whether the risk SNPs affected PRE1 activity in addition to chromatin looping, 

luciferase assays were performed in ERα positive MCF7 and T47D cell. Constructs containing the 

CUPID promoter region (Promoter) in the sense orientation showed it to have a weak activity in 

both cell lines (Figure 4.14). This activity was increased 200-fold in the presence of PRE1 in MCF7 

cells and 70-fold in T47D cells. A 25% reduction in enhancer activity was observed when PRE1 

contained the minor (risk) alleles of SNP1 and SNP2 in both MCF7 and T47D cells (Figure 4.14). 

Constructs containing the CUPID promoter region (Promoter) in the antisense orientation also 

showed weak activity in both cell lines (Figure 4.15). This activity increased 25-100 fold in the 

presence of PRE1, however the activity of PRE1 was not altered by the presence of minor (risk) 

alleles of the SNPs.   

3C Products                                                                  MB415 gDNA 
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Figure 4.14 SNP1 and SNP2 reduce the ability of PRE1 to activate the CUPID1 promoter. PRE1 

(grey boxes) was cloned downstream of a CUPID1 promoter driven luciferase reporter with and 

without SNPs1-4. Luciferase activity following a 24 hour transfection in (A) MCF7 cells (ERα positive 

breast cancer cell line) and (B) T47D cells (ERα positive breast cancer cell line). The luciferase activity 

of the promoter construct was arbitrarily set as one for each experiment. Data shown is the mean ± 

SEM from 3 biological replicates. Significance determined using a one way ANOVA incorporating 

Dunnett’s test for multiple comparisons ** p<0.001. 
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Figure 4.15 The risk SNPs do not affect the ability of PRE1 to activate the CUPID2 promoter. 

PRE1 (grey boxes) was cloned downstream of a CUPID2 promoter driven luciferase reporter with and 

without SNPs1-4. Luciferase activity following a 24 hour transfection in (A) MCF7 cells (ERα positive 

breast cancer cell line) and (B) T47D cells (ERα positive breast cancer cell line). Luciferase activity of 

the promoter construct was arbitrarily set as one for each experiment. Data shown is the mean ± SEM 

from 3 biological replicates. Significance determined using a one way ANOVA incorporating Dunnett’s 

test for multiple comparisons. ns = not significant. 

 

 

4.2.7. The oestrogen induced activation of CUPID1 and CUPID2 is dependent on PRE1. 

 

To assess whether the SNPs could modulate the response of PRE1 to oestrogen stimulation the 

luciferase experiments were repeated following a 24 hour oestrogen induction in MCF7 cells.  A 

comparison of relative luciferase activity between the oestrogen induced and non-induced cells 

showed that neither the CUPID1 nor the CUPID2 promoter is directly regulated by oestrogen 

(Figure 4.16). In the presence of PRE1 however, luciferase activity increased 7-9 fold for CUPID1 

and 4-5 fold for CUPID2 following the oestrogen induction, indicating marked oestrogen 

responsiveness (Figure 4.16). There was no significant change in this fold enhancement in the 
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presence of the risk SNPs for either promoter indicating that the SNPs do not affect the ability of 

PRE1 to increase CUPID1 or CUPID2 promoter activity following oestrogen stimulation.  
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Figure 4.16 The risk SNPs do not alter the response of PRE1 to oestrogen stimulation. PRE1 

(grey boxes) was cloned downstream of the CUPID1 or CUPID2 promoter driven luciferase reporter 

with and without SNPs1-4 and transfected into MCF7 cells following an oestrogen induction. For each 

reporter construct the luciferase value in the oestrogen induced cells was divided by the luciferase 

activity in the non-induced cells. The results were then normalised to the promoter only construct 

which was arbitrarily given a value of one. Data shown is the mean ± SEM from 3 biological replicates. 

Significance determined using a one way ANOVA incorporating Dunnett’s test for multiple 

comparisons. ns = not significant. 
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4.2.8. CUPID1 associates with chromatin whilst CUPID2 is found in both nuclear and 

cytoplasmic compartments 

 

To investigate the potential functions of CUPID1 and CUPID2, it was first necessary to determine 

their subcellular location. MCF7 cells were fractionated into nuclear and cytoplasmic components 

then the expression of CUPID1, CUPID2 and four control RNAs was compared between the 

compartments (Figure 4.17A). CUPID1was distributed principally in the nucleus whilst the 

distribution of CUPID2 was biased towards the cytoplasm. By way of comparison, B-ACTIN and 

GAPDH RNA were predominantly found in the cytoplasm as expected for typical mRNAs (Figure 

4.17A). Further sub-nuclear fractionation showed that CUPID1 RNA is enriched in the chromatin 

fractions, either loosely associated (salt fraction), or more tightly bound (isolated chromatin 

fraction) (Figure 4.17B). The chromatin enrichment was greater than that observed for the nuclear 

lncRNA MALAT which is known to associate with chromatin in its role as a splicing cofactor 

(Figure 4.17D). In contrast, CUPID2 was distributed between the nucleoplasm and chromatin, with 

a substantial fraction also found in the cytoplasm (Figure 4.17C). The mRNA GAPDH was 

distributed across all the compartments examined (Figure 4.17E). These results suggest that 

CUPID1 interacts directly with chromatin whilst CUPID2 is likely to have broader functions in 

both the cytoplasm and nucleus.  
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Figure 4.17   CUPID1 binds to chromatin whilst CUPID2 is distributed throughout the cell. (A) The 

relative abundance of RNA in the nucleus relative to the cytoplasm is shown for CUPID1, CUPID2, MALAT, 

HOTAIR, GAPDH and B-ACTIN. Expression is shown as a ratio of nuclear RNA abundance/cytoplasmic 

RNA abundance for each replicate with a value of 1 indicating equal distribution across the compartments. 

The black line indicates the mean of the 4 biological replicates. (B-E) A biochemical chromatin extraction of 

MCF7 cells compares the sub-nuclear localisation of CUPID1, CUPID2, MALAT and GAPDH. Values are 

expressed relative to the cytoplasmic abundance.  RT = reverse transcriptase. Data shown is the mean ± 

SEM from 3 biological replicates. Significance was determined using a two way ANOVA test. * p<0.05, ** 

p<0.001, ns = not significant. 
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4.2.9. Silencing of CUPID1 and CUPID2 reduces the expression of CCND1. 

 

To determine whether CUPID1 and CUPID2 affect the expression of local genes in cis, they were 

silenced using siRNA and gene expression measured using TaqMan assays. The efficiencies of four 

siRNAs targeting CUPID1 and three siRNA targeting CUPID2 were assessed and the best two 

siRNAs for each used in subsequent experiments (Figure 4.18A). Gene expression was assessed 

using siRNA C1-2 and siRNA C1-3 to silence CUPID1, and siRNA C2-3 and siRNA C2-4 to 

silence CUPID2. In addition to the nearby genes CCND1, MYEOV and ORAOV1, more distal genes 

(PPF1A, PPP6R3, CPT1A and RNF21) located >1Mb away were also examined to see whether 

lncRNA silencing also induced more global changes. CUPID1 silencing using siRNA C1-2 

significantly reduced the expression of CCND1 and the nearby ORAOV1 gene suggesting that it 

may act in cis to regulate local gene expression. The CCND1 silencing achieved using siRNA C1-3 

did not reach statistical significance (Figure 4.18B). There was a trend, although this was not 

statistically significant, for reduced CCND1, CPT1A, MYEOV and ORAOV1 expression following 

silencing of CUPID2 with both siRNAs (Figure 4.18C). Only the silencing of MYEOV using 

siRNA C2-4 reached statistical significance however. Interestingly, all these genes are oestrogen 

regulated, suggesting that CUPID2 may play a role in the oestrogen response.  
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Figure 4.18 Gene expression following siRNA-mediated knockdown of CUPID1 and CUPID2. (A) 

Silencing efficiencies of the siRNAs targeting CUPID1 (C1-1, C1-2 and C1-3) and CUPID2 (C2-1, C2-

2 and C2-3). Data shown is mean +/- SD from a single biological replicate. (B) 11q13 gene expression 

following siRNA C1-2 and C1-3 knockdown of CUPID1. (C) 11q13 gene expression following siRNA 

C2-3 and C2-4 knockdown of CUPID2. Data shown is mean +/- SEM relative to a non-targeting control 

siRNA for three biological replicates. Significance was assessed using a one sample t-test, comparing 

values to a hypothetical mean of 1.0. * p<0.05, ns = not significant.   
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4.2.10. CUPID1 or CUPID2 silencing does not significantly alter the magnitude of the oestrogen 

response. 

 

To investigate whether CUPID1 or CUPID2 affect the oestrogen response as suggested by the 

changes in gene expression, an oestrogen induction was performed in the presence of CUPID1 or 

CUPID2 siRNA silencing. The degree of oestrogen induction was assessed using expression of the 

known oestrogen responsive gene TFF1 [333] (Figure 4.19). Target RNA knockdown of >50% per 

siRNA was confirmed for each replicate. No significant changes in TFF1 induction was observed in 

the presence of CUPID1 or CUPID2 silencing when compared to a non-targeting control, though 

both siRNAs targeting CUPID2 showed a consistent trend for suppressed TFF1 induction.  
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Figure 4.19 CUPID1 or CUPID2 silencing does not alter the oestrogen response. TaqMan assays 

were used to assess TFF1 expression before and after a 24 hour oestrogen induction in MCF7 cells. 

The change in TFF1 expression is expressed relative to the change observed in the non-targeting 

control. Blue bars indicate the CUPID1 knockdowns (siRNA C1-2 and C1-3). Green bars indicate 

CUPID2 silencing (siRNA C2-3 and C2-4). Data shown is mean +/- SEM for three biological replicates. 

Significance calculated using a one sample t test, comparing values to a hypothetical mean of 1.0.     

ns = not significant. 

 

 

4.2.11. CUPID1 or CUPID2 silencing does not alter transactivation of the CCND1 promoter. 

  

To investigate whether CUPID1 or CUPID2 may be involved in mediating TF interactions at 

regulatory elements such as the CCND1 promoter or PRE1, a transactivation assay was performed. 

Constructs containing multiple oestrogen response elements (EREs) were also included to further 
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assess the effects of the lncRNAs on the oestrogen response (Figure 4.20). Target RNA knockdown 

of >50% per siRNA was confirmed for each replicate. No significant difference was seen for 

transactivation following silencing of either CUPID1 or CUPID2 when combined with transfection 

of the CCND1 promoter +/- PRE1 constructs. This makes it unlikely for CUPID1 or CUPID2 to be 

involved in the assembly of TF complexes at either CCND1 or PRE1. The ERE transactivation was 

also not significant due to the marked variation between replicates and thus failed to provide further 

evidence that CUPID2 acts on the oestrogen response pathway. 
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Figure 4.20 Silencing of CUPID1 and CUPID2 does not alter transactivation of the CCND1 

promoter. Luciferase activity relative to the non-targeting control is shown for each group following 

transfection into MCF7 cells. (A) Schematic showing the different pGL3 plasmids used in the 

transfection. (B) CCND1 promoter alone. (C) CCND1 promoter + PRE1. (D) ERE construct with three 

oestrogen response elements linked to a CMV promoter. Data shown is the mean +/- SEM for three 

biological replicates. Significance assessed using a one way ANOVA with Dunnett’s correction for 

multiple comparisons. ns = not significant. 
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4.2.12. CUPID1 or CUPID2 silencing does not affect chromatin looping between PRE1 and the 

CCND1 promoter. 

 

To determine whether the lncRNAs may have a role in mediating looping between PRE1 and 

CCND1, 3C assays were performed on cells that had been treated with siRNAs targeting CUPID1 

or CUPID2 (Figure 4.21). Target RNA knockdown of >50% per siRNA was confirmed for each 

replicate. A strong interaction between PRE1 and the CCND1 promoter was seen for all groups as 

demonstrated previously [5]. No significant difference was found between the libraries made from 

the CUPID1 or CUPID2 silenced cells compared to a non-targeting control. These results suggest 

the lncRNAs are not involved in chromatin looping between PRE1 and CCND1, however variation 

between replicates reduced the ability to discriminate subtle differences between the three libraries.  
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Figure 4.21 CUPID1 or CUPID2 silencing does not alter local chromatin interactions. 3C 

interaction profiles between PRE1 and the CCND1 promoter (P) and terminator (T) in MCF7cells using 

libraries generated with the restriction enzyme HindIII. Relative interactions are shown for the non-

targeting control group (red) and in libraries with siRNA targeting CUPID1 (blue) or CUPID2 (green). 

Data shown is mean +/- SEM for three biological replicates. 
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4.2.13. CUPID1 or CUPID2 silencing does not significantly alter progression through the cell 

cycle. 

 

To determine whether CUPID1 or CUPID2 may regulate the cell cycle, they both were silenced 

using siRNA C1-2 or C2-3 and the proportion of cells in each stage of the cell cycle measured 

relative to a non-targeting siRNA control. A FACS CANTOII was used to assess the cells with 

subsequent analysis by the Modfit suite (Figure 4.22A,B). Adequate silencing of >50% per siRNA 

was confirmed for each replicate. CCND1 levels were measured for all samples using a TaqMan 

assay and confirmation of cyclinD1 protein knockdown was checked by Western blotting (Figure 

23). The Western blot was performed by Dr Haran Sivakumaran. A reduction in the proportion of 

cells found in S and G2 phase was observed for the CCND1 silenced group with a corresponding 

increase in the proportion remaining in G1 phase (Figure 4.22A,B). This was expected given that 

cyclinD1 is crucial for cell cycle progression from G1 to S phase [334]. In contrast, no difference 

was observed in cell cycle following CUPID1 or CUPID2 silencing (Figure 4.22A,B). Despite 

differences in the cell cycle, the CCND1 mRNA levels following siRNA silencing of CUPID1, 

CUPID2 or CCND1 were comparable between the groups (Figure 4.22C). However, Western blot 

analysis showed there was no significant change in the cyclinD1 protein levels within the cell 

(Figure 4.23). This contrasts with the marked reduction in band intensity seen for the silencing of 

CCND1.  
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Figure 4.22 CUPID1 and CUPID2 silencing does not alter cell cycle progression. (A) Cell cycle 

distribution following siRNA silencing of CCND1, CUPID1, CUPID2 or a non-targeting control. (B) The 

percentage of cells remaining in G1 phase was assessed for the four groups. (C) The degree of 

CCND1 silencing following siRNA knockdown is expressed relative to the non-targeting control. 

Experiments were performed in MCF7 cells using siRNA-C1-2 for CUPID1 and siRNA-C2-3 for 

CUPID2. Data shown is the mean ± SEM for three biological replicates. Significance assessed using a 

one way ANOVA incorporating Dunnett’s test for multiple comparisons. ** p<0.01. 
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Figure 4.23 CyclinD1 levels are not altered by CUPID1 or CUPID2 silencing. A Western blot of 

cyclinD1 protein abundance performed in parallel with the siRNA silencing. The cyclinD1 band 

intensity is compared to the non-targeting (Scr) for each set of four samples. CUPID1 silenced 

samples are shown on the left and CUPID2 samples on the right. Experiments were performed in 

MCF7 cells using siRNA C1-2 for CUPID1 and siRNA C2-3 for CUPID2. 

 

4.2.14. ChIRP-seq (Chromatin Isolation by RNA Purification) for CUPID1. 

 

CUPID1 was predicted to bind chromatin as shown by the nuclear fractionation assay (Figure 

4.17). To determine the chromatin binding sites for CUPID1 genome-wide, the ChIRP-seq 

technique was performed. ChIRP-seq involves the use of biotin labelled oligonucleotides to pull 

down a target RNA from a sample of sonicated cross-linked chromatin. Interacting  DNA can then 

be isolated and sequenced to determine where the RNA was located at the time of fixation (Figure 

4.24A) [261]. A primer pool targeting CUPID1 RNA was designed and split into even and odd 

probe sets, with detected interactions only accepted if found in both sets. A pool of LacZ primers 

was used as a negative control. RNA and DNA enrichment compared to an input control that did 

not undergo the ChIRP process was first confirmed prior to sequencing. DNA enrichment of the 

CUPID1 locus was achieved following ChIRP compared with the input sample and negative LacZ 

control (Figure 4.24B). The overall RNA yield of CUPID1 was low (Figure 4.24C), reflecting 

extensive loss of sample through the ChIRP process which involves a number of rigorous wash 

steps to remove non-hybridised RNA. The Even probe set appears more efficient at pulling down 

RNA and any associated DNA. Although the total RNA yield is low, the overall DNA and RNA 

enrichment is acceptable, indicating adequate specificity of the probes and validation of the ChIRP 

process. The enrichment of CUPID1 RNA was compared to control mRNAs TBP and GAPDH and 

the lncRNA HOTAIR via PCR using cDNA made from RNA extracted from the pre and post 

ChIRP samples (Figure 4.24D). Relatively high levels of CUPID1 RNA were found in both the 

even and odd probe sets whilst the control RNAs were only found in the pre-ChIRP input sample, 

indicating a successful pulldown and a specific enrichment for CUPID1. A faint band was seen for 

CUPID1 in the LacZ negative control, however all other reactions were negative as expected. 
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Figure 4.24 DNA and RNA enrichment is confirmed in the ChIRP libraries. (A) A description of the 

ChIRP-seq process demonstrating a lncRNA (red) binding to DNA with its associated histones (grey 

spheres) and an RNA binding protein (RBP). The blue oligos bind the lncRNA and are pulled down using 

streptavidin beads. Following clean up and RNase treatment the purified protein or DNA may then be 

analysed. Figure taken from [261]. (B) DNA enrichment following ChIRP in the different probe sets. (C) 

Final RNA yield following the ChIRP process expressed relative to the input sample. (D) RT-PCR 

products showing specific enrichment of CUPID1 RNA from two independent probe libraries (Odd and 

Even). Specific primers were used for CUPID1, HOTAIR, GAPDH and TBP. Results are mean +/- SD 

from the biological replicates that were sent for sequencing. Significance assessed using a one way 

ANOVA with Dunnett’s correction for multiple comparisons. **p<0.01, ****p<0.0001.   
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The purified post-ChIRP DNA was processed using the Ion Torrent Fragment Library kit. 

Sequencing was performed using the Ion Torrent Proton platform by Dr Darren Korbie and 11 

million reads were generated for the even sample, 19 million for the odd, and 27 million for the 

LacZ –ve control. The ChIRP-seq data was then processed by Dr Mahdi Moradi and the highest 

confidence genes with a false discovery rate (FDR) > 0.5% are shown below (Table 4.1). A larger 

pool of 60 genes was selected as the input for an Ingenuity Pathway Analysis, using a p value < 

0.00001 as a cut off for inclusion. The network analysis revealed a highly significant enrichment for 

genes involved in DNA replication and repair, cellular assembly, tissue development, cancer and 

endocrine functioning (Table 4.2).  

 

 

Chromosome Fold Enrichment FDR(%) Gene 

chr2 129.77 0.07 CALM2 

chr20 88.45 0.07 NRSN2 

chr19 20.18 0.29 SNAR A3-A14 

chr1 47.28 0.35 TMEM69 

chr2 64.88 0.35 PGAP1 

chr2 27.14 0.36 DUSP28 

chr8 43.59 0.37 EXOSC4 

chr17 8.67 0.39 STARD3 

chr1 44.24 0.43 EPS15 

chr1 26.54 0.45 LOC100129534 

chr7 47.19 0.45 CLDN15 

chr7 47.19 0.45 CLDN15 

chr8 24.39 0.45 ADRB3 

chr17 35.39 0.45 CHRNE 

chr17 14.1 0.45 MED24 

chr7 41.28 0.47 UPK3B 

chr1 23.59 0.48 LOC100129924 

chr17 35.39 0.48 MAP2K3 

chr11 31.97 0.49 FTH1 

chr6 41.29 0.5 GNL1 

chr17 28.36 0.5 LINC00482 

 

Table 4.1 Gene promoters binding CUPID1. Fold enrichment is a ratio of the read count to a 

calculated local background. FDR (false discovery rate) indicates the likelihood of the peaks 

representing a false positive. A FDR of 0.5% has been used for the cut off to remove low 

probability peaks. 

 

 

 



 

Chapter 4 Page 119 
 

Score Associated Network Functions  

48 DNA Replication, Recombination, and Repair,  

  Energy Production, Nucleic Acid Metabolism 

34 Cellular Assembly and Organization,  

 
Tissue Development, Cell Morphology  

25 Cancer, Developmental Disorder,  

  Endocrine System Disorders 

22 Endocrine System Development and Function,  

 
Small Molecule Biochemistry, Cell-To-Cell Signaling and Interaction 

15 Cellular Development,  Metabolic Disease 

  Skeletal and Muscular System Development and Function, 

 

Table 4.2 Gene networks enriched in CUPID1 binding. The score is the –log10(p value) with 

the initial p value calculated using Fisher’s exact test to determine whether the identified ChIRP-

seq peaks fall in the associated network by chance. 

 

4.2.15.  CUPID1 and CUPID2 silencing impairs Rad51 foci formation in MCF7 cells following 

irradiation. 

 

Dysregulation of DNA repair is a common feature of genes mediating breast cancer risk [2]. To 

determine whether CUPID1 is also involved in the DNA damage repair process as predicted by the 

ChIRP-seq analysis (Table 4.2), immunofluorescence assays for γH2AX and Rad51 foci were 

performed following silencing of CUPID1, CUPID2 and CCND1 in irradiated MCF7 cells (Figure 

4.25). γH2AX localises to, and is a marker of, double stranded breaks (DSBs) in DNA, whilst 

Rad51 is a DNA damage repair protein recruited to help repair the DSB [335]. Target RNA 

knockdown of >50% per siRNA was confirmed for each replicate. The non-targeting siRNA control 

group displayed a relatively even distribution of γH2AX and Rad51 foci as expected with numerous 

overlapping foci on the merged window indicating co-localisation of the signal (Figure 4.25). 

Silencing of CUPID1 (using siRNA C1-2 and C1-3) resulted in widespread γH2AX foci however a 

number of nuclei lacked associated Rad51 foci, indicating an impairment of the Rad51 recruitment 

to the DSB. A similar result was also observed following silencing of CUPID2 (siRNA C2-3 and 

C2-4). The data from all replicates was collated and the Rad51: γH2AX ratio expressed for each 

experimental group as shown in Figure 4.26. A significant reduction in the ratio of foci was seen 

following silencing of CCND1, CUPID1or CUPID2 compared to the non-targeting siRNA control. 
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Figure 4.25 Rad51 foci are reduced following siRNA silencing of CUPID1 or CUPID2. 

Representative images are shown post irradiation and silencing of CUPID1 (C1-2 or C1-3), CUPID2 

(C2-3 or C2-4), or a non-targeting control in MCF7 cells. The nuclei are stained with DAPI (blue) in the 

first column; anti-γH2AX (red) in the second column; anti-Rad51 antibody in the third column; and the 

images are merged in the fourth column (overlapping foci yellow). 
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Figure 4.26 The Rad51/γH2AX ratio is reduced following silencing of CUPID1 and CUPID2. 

(A) The ratio of Rad51: γH2AX foci number post irradiation in MCF7 cells transfected with siRNA 

against CUPID1 (C1-2 and C1-3), CUPID2 (C2-3 and C2-4), CCND1 or a scrambled control. (B) The 

raw, uncorrected data indicating total Rad51 foci (horizontal hatching) and γH2AX foci (solid colour) 

counted post irradiation for each siRNA. Data shown is the mean +/- SEM of two biological replicate 

experiments. Each experiment was performed in duplicate with data taken from 5 randomly chosen 

groups of 3 nuclei per group. Significance assessed for (A) using a one way ANOVA incorporating 

Dunnett’s test for multiple comparisons and using a two way ANOVA test incorporating Sidak’s test for 

multiple comparisons for (B). * p<0.05, ** p<0.001, ***p<0.0001, ns = not significant. 
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4.2.16. CUPID1 and CUPID2 silencing augments the effect of Rad51 inhibition to reduce cell 

survival 

 

To determine whether the effect of CUPID1 and CUPID2 in reducing Rad51 foci formation was 

due to a direct interaction with Rad51 or an effect upstream in the DNA damage pathway, they were 

silenced in the presence of increasing concentrations of a Rad51 inhibitor. The previously published 

Rad51 inhibitor BO2 was used and cell proliferation measured using an MTS assay [336]. Cell 

culture and siRNA knockdowns were performed as previously and the final MTS assay component 

completed by Dr Adrian Wiegmans. Target RNA knockdown of >50% per siRNA was confirmed 

for each replicate. All samples exhibited a gradual reduction in cell viability as the Rad51 inhibitor 

concentration increased (Figure 4.27A). Silencing of CCND1 reduced cell viability slightly 

compared to the non-targeting control however this did not reach statistical significance. Silencing 

of CUPID1 and CUPID2 knockdowns induced a rapid reduction in cell viability, which was highly 

significant for siRNA C1-2 and C2-3 (Figure 4.27B). This suggests that CUPID1 and CUPID2 

affect components of the DNA damage pathway upstream from Rad51 and provides further 

evidence that they do not act through an effect on CCND1.  
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Figure 4.27 Knockdown of CUPID1 and CUPID2 enhances the effect of Rad51 inhibition to 

reduce cell viability. Survival of MCF7 cells following silencing of CCND1, CUPID1 or CUPID2 with 

increasing concentrations of the Rad51 inhibitor (BO2). (A) The x axis indicates the log of BO2 

concentration and the y axis indicates the percentage of cells surviving compared to a BO2 free 

control group. The samples are compared to a non-targeting siRNA control (red circles and lines). A 

line of best fit has been drawn for each group. (B) The concentration of BO2 which reduces the cell 

number by 50% (IC50) is shown for the each siRNA group. The dotted line allows comparison with the 

scrambled control. Data shown is mean +/- SEM from three biological replicates. Significance 

determined using a one way ANOVA incorporating Dunnett’s test for multiple comparisons. * p<0.05, 

***p<0.0001, ns = not significant. 
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Despite the pervasive transcription of lncRNAs throughout the genome, they have been poorly 

represented in post-GWAS studies. This relates to their low abundance and tissue specificity which 

has historically made them more challenging to identify [219, 220]. In this chapter, RNA Capture-

seq was used at the 11q13 breast cancer risk locus to identify novel non coding transcripts for 

further characterisation. Two lncRNAs were prioritised for functional studies based on their 

complexity, tissue specificity and oestrogen responsiveness and named CUPID1 and CUPID2 due 

to their demonstrated effect on DNA damage repair. They represent the first lncRNAs to be 

characterised as potentially mediating risk at a fine-mapped GWAS-identified breast cancer 

susceptibility locus.  

RNA Capture-seq was first proposed as a new approach to post-GWAS follow up studies in 2012 

however its use has not yet been described in a published study [7]. In this chapter, RNA Capture-

seq was used to identify CUPID1 and CUPID2 from the 11q13 gene desert. Prior to the 

commencement of this work, an uncharacterized lncRNA corresponding to CUPID2 was present in 

the GENCODE database (ENST00000542064.1), however there is no published literature regarding 

its function. CUPID1 was initially thought to be a novel transcript, however identification of a 

corresponding lncRNA associated with hepatocellular carcinoma was published by another group in 

2014 [329]. The overlap of exons seen between CUPID1 and the hepatic transcript suggests that 

they are isoforms of same lncRNA (KC136297). The hepatocellular transcript has not been 

characterized beyond the identification of a putative promoter which is not shared by the breast 

transcript (Figure 4.7). Notably, the CUPID promoter is enriched for TFs typical of breast tissue 

(SRC3, ERα and FoxA1) which is a feature characteristic of cell specific promoters [75, 129, 135, 

141]. This tissue specificity was supported by expression studies in various cell lines (Figure 4.6) 

and examination of the additional RNA Capture-seq data [282].  

Further evidence for the role of CUPID1 in breast cancer has come from a GWAS study by Ahsan 

et al. which found a SNP (rs537626) in linkage (r
2
 = 0.41) with the original 11q13 marking SNP 

rs614367 defined by Turnbull et al. that increased early onset breast cancer risk (odds ratio of 1.29) 

[4, 337]. It was independently associated with early onset breast cancer as opposed to the late onset 

breast cancer cohort used for the Turnbull et al. GWAS [4]. Rs537626 falls in the terminal exon of 

CUPID1 suggesting it may affect post-transcriptional regulation, though no follow up experimental 

work has been published to date [312]. Such a mechanism of action has precedence in the breast 

cancer literature with Li et al. describing a SNP associated with breast cancer risk in Chinese 
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women that disrupted the binding site of miRNA-370. This altered the activity of a lncRNA 

(ENST00000515084) and led to significant changes in tumour growth [321]. 

CUPID1 and CUPID2 were initially identified following an assembly of the RNA Capture-seq 

reads using the Cufflinks program, however such assemblies may not accurately reflect the 

underlying transcript structure and should ideally be confirmed using alternate methods [260]. Cap 

analysis of gene expression (CAGE) allows quantification of the most commonly used 5’ 

transcription start sites of a transcript and an extensive database of such information has been 

compiled by the RIKEN consortium [75]. This resource uses the HeliScopeCAGE sequencing 

platform which reduces systematic bias in determining the TSS at single nucleotide resolution when 

compared to other CAGE approaches [338]. RNAseq and RNA Capture-seq are similarly poor at 

delineating the 3’ ends of transcripts, due to the transcript end depletion bias induced by RNA 

fragmentation [339]. 3’RACE was therefore used on the assumption that the lncRNAs were 

polyadenylated, which is a common finding for lncRNAs [224, 241]. A typical polyA consensus 

sequence was found for each transcript, with previous studies finding such sequences present in 

about 41% of lncRNAs studied [224]. PCR was then performed to delineate the structure of internal 

exons and introns and found two main isoforms per lncRNA (Figure 4.5). More than 25% of 

lncRNAs have multiple isoforms with an average of 2.3 per locus. The average number of exons is 

2.9, with 42% of lncRNAs possessing only two exons [219, 220]. CUPID1 and CUPID2 thus have 

slightly more exons than the average (4-5 for CUPID1 and 2-4 for CUPID2).  

The expression data and promoter TF binding suggest that CUPID1 and CUPID2 are oestrogen 

regulated, consistent with their expression at a risk locus specific for ERα positive breast cancer [4]. 

Oestrogen has long been known to drive the proliferation of ERα positive breast cancer and 

oestrogen antagonists such as tamoxifen are the main medications used to manage such cancers 

[340]. This was confirmed following an oestrogen induction in MCF7 cells which revealed a 20-

fold increase in expression of both lncRNAs following 24hour of oestrogen exposure (Figure 4.8). 

The induction appears to require the presence of PRE1 however, as oestrogen stimulation of a 

luciferase construct containing the promoter alone does not increase its activity (Figure 4.16). This 

differs from the lncRNA HOTAIR which is also induced by oestrogen in breast tissue, however 

contains multiple oestrogen response elements (EREs) in its promoter which allow a direct response 

to oestrogen stimulation [341].   

For PRE1 or PRE2 to be activating the CUPID promoter in cis requires chromatin interactions to be 

present between them and the target promoter [147]. PRE1 was found to interact with the CUPID 
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promoter in the ERα mediated ChIA-PET data, however the spatial resolution of such methods is 

not completely reliable and it is important to confirm significant findings using traditional 

chromosome conformation capture (3C) [161, 342]. 3C assays in the ERα positive cell lines BT474, 

T47D and MCF7 using PRE1 as the bait showed a consistent, prominent peak at the promoter of 

CUPID1 and CUPID2 (Figures 4.10, 4.11). PRE2 appeared to interact with a region just proximal 

to the CUPID promoter with distal interactions decreasing across the promoter region (Figure 4.10 

C).  Previous 3C has shown that PRE1 and PRE2 themselves interact so it is possible that they are 

all part of an interaction hub together with any genes that they may regulate [86, 161]. 

Current models of chromatin looping propose that looping contacts are mediated via TFs which 

recognize specific DNA binding motifs [343]. These motifs may be disrupted by SNPs leading to 

an reduction in the frequency of enhancer-promoter interactions [344]. Allele specific looping was 

demonstrated between PRE1 and the CUPID promoter with a clear bias for preferential looping 

involving the common allele (Figure 4.13). A reduction of looping contacts in cells containing the 

risk allele would thus reduce promoter activity and the subsequent transcription of CUPID1 and 

CUPID2 [151]. Such an affect has previously been described at the 2q35 breast cancer locus where 

a risk allele was associated with decreased looping interactions between an enhancer and the 

IGFBP5 gene [60]. 

SNPs in cis-regulatory elements such as PRE1 and PRE2 that disrupt TF binding motifs can also 

alter the binding of factors required for transcriptional activation of a target promoter [91, 345]. 

This was assessed using luciferase assays which examined the effect of the SNPs on the ability of 

PRE1 to activate the bidirectional lncRNA promoter and revealed a 25% reduction in PRE1 

activation in the presence of SNP1 and SNP2. The magnitude of this effect is consistent with 

studies showing that 22% of enhancer SNPs cause more than a 1.2x alteration in enhancer activity, 

with only 3% altering it by more than 2 fold [346]. The CUPID1 and CUPID2 promoters were 

minimally active by themselves, which is consistent with the low observed expression of the 

transcripts in ERα negative and non-breast cell lines (Figure 4.6). Robust expression is likely to 

require oestrogen and the presence of the PRE1 enhancer. This is supported by the marked 

difference in luciferase activity  seen following the addition of PRE1 to the CUPID1 and CUPID2 

promoter constructs in the ERα positive cell lines MCF7 and T47D (Figure 4.14). PRE1 mediated 

oestrogen regulation of promoter activity represents another mechanism by which the SNPs could 

potentially affect the expression of CUPID1 and CUPID2. Breast cancer associated risk SNPs in an 

enhancer of MAP3K1 at 5q11.2 have been previously shown to affect the oestrogen response in 

luciferase assays [59]. Similar assays incorporating the CUPID promoters in the presence of an 
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oestrogen induction did not demonstrate any effect of the SNPs in this instance, however it did 

confirm that PRE1 itself was strongly oestrogen responsive (Figure 4.16). This is consistent with 

the high enrichment for ERα seen with ChIP-seq data and suggests that the genes it controls will 

also be regulated by oestrogen as was demonstrated for CUPID1 and CUPID2 [129].  

 

The data thus far supported the hypothesis that CUPID1 and CUPID2 have a role in mediating the 

increase in breast cancer risk however the mechanism behind such an increase still required further 

exploration. The subcellular location of CUPID1 and CUPID2 was first determined by a 

biochemical fractionation of the cellular and nuclear compartments (Figure 4.17). Enrichment of a 

transcript in a particular compartment provides information as to the function of that transcript and 

whether it may be classified as an mRNA or lncRNA, with the latter being largely localised to the 

nucleus  [347]. CUPID1 was bound to chromatin in the nucleus along with the nuclear paraspeckle 

associated lncRNA MALAT [348], whilst CUPID2 was distributed similarly to HOTAIR, a lncRNA 

known to have both cytoplasmic and nuclear functions [222]. It is not unusual for lncRNAs 

originating from a divergent promoter to be found in different locations or even to be expressed at 

different levels, with Cabili et al. finding that 7/8 lncRNAs studied using RNA-FISH that arose 

from such divergent promoters were expressed and localised independently to their associated 

transcript [347]. The tissue specific expression, nuclear localisation and bioinformatic predictions 

all support the identification of CUPID1 and CUPID2 as non-coding transcripts [220, 347]. 

 

It is important to note that determining the subcellular location of a transcript by chromatin 

fractionation or RNA-FISH does not provide definitive evidence for the function of a particular 

transcript, however it does give an indication as to what experiments should be prioritised for its 

further characterisation [347]. These may include ChIRP to define lncRNA-chromatin interactions 

if the transcript is enriched in the chromatin fraction [261], or ribosome profiling to confirm 

productive translation if the transcript is enriched in the cytoplasm [349]. Another technique with 

great promise in exploring lncRNA function is ChIRP-MS, combining ChIRP and mass 

spectrometry to determine the protein binding partners of an RNA in an agnostic manner [350]. 

LncRNAs can of course have multiple functions which may or may not include the production of 

active peptides and activities both inside and outside the nucleus [351, 352]. Transcript copy 

number can provide additional  information in this regard, with a very low transcript abundance 

consistent with an activity in cis, either at the site of transcription or at a target location brought into 

proximity by chromatin looping [145]. The latter phenomenon is seen for the lncRNA HOTTIP, 

which is estimated to be functional when present at an average of 0.3 copies per cell [353]. RNA 

function may also vary between cellular compartments and in response to changing conditions 
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within the cell such as nutrient deprivation or DNA damage [351]. A full characterisation of 

CUPID1 and CUPID2 is beyond the scope of this thesis and will need to be addressed in 

subsequent studies as has been done for the lncRNA HOTAIR [254, 341, 354]. 

 

The luciferase and allele specific 3C assays indicated that the risk-associated SNPs may reduce the 

expression of CUPID1 and CUPID2 in vivo. To recapitulate this effect in vitro, siRNAs were 

designed against the two lncRNAs using the Dharmacon siDesign tool 

(http://dharmacon.gelifesciences.com/design-center/). SiRNAs have previously been used to reduce 

the expression of nuclear lncRNAs and it is now known that the factors required for RNAi are 

indeed present in the nuclear compartment [254, 355-357]. SiRNA C1-2 and siRNA C1-3 were 

chosen for further experiments to silence CUPID1, with siRNA C1-3 being less efficient but still 

producing a consistent 50-70% reduction in CUPID1 levels (Figure 4.18A). siRNA C2-3 and 

siRNA C2-4 were chosen for CUPID2 silencing. Interestingly, silencing efficiencies were 

consistently better for siRNA targeting CUPID2 compared to those that targeted CUPID1, 

presumably due to the more cytoplasmic distribution of CUPID2 allowing better access to the 

silencing machinery (Figure 4.18A) [358]. Note that target RNA knockdown of >50% was 

confirmed for all subsequent experiments involving siRNA. 

The effect of siRNA knockdown on local gene expression was first assessed as lncRNAs frequently 

act in cis to modify the expression of genes in the vicinity of their own transcriptional origin [359, 

360]. Acting in proximity of their transcriptional locus requires far lower levels of the transcript per 

cell which is consistent with the extremely low levels of CUPID1 and CUPID2 seen in normal 

breast tissue (Figure 4.3) [223]. A reduction in CCND1 and ORAOV1 expression was seen 

following CUPID1 silencing with siRNA C1-2 but no change was seen in the more distal genes 

(Figure 4.18B). This is consistent with CUPID1 acting locally on chromatin in cis. The failure of 

siRNA C1-3 silencing to reach statistical significance may relate to the consistently poorer silencing 

achieved using siRNA C1-3 compared to siRNA C1-2 (Figure 4.18A). A broader pattern of reduced 

gene expression was seen following CUPID2 silencing with reductions in CCND1, ORAOV1, 

MYEOV and CPT1A though none reached statistical significance (Figure 4.18C). Interestingly, 

these four genes are oestrogen responsive, suggesting that CUPID2 may have a wider effect on ERα 

regulatory pathways, in keeping with its more even distribution through the cytoplasm and nucleus 

(Figure 4.17). In a similar fashion, HOTAIR affects gene transcription genome-wide by recruiting 

the polycomb repressive complex to gene regulatory elements and also possesses extra-nuclear 

activities [222, 261]. Further clarification of the effects of CUPID1 and CUPID2 silencing is 

required, and RNA-seq comparing gene expression in MCF7 cells that have been exposed to siRNA 

http://dharmacon.gelifesciences.com/design-center/
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silencing of CUPID1, CUPID2 or a negative control is underway. This aims to confirm the 

observed local trends in gene expression and also determine broader effects on biological pathways. 

The data will not be available before the submission date of this thesis. 

LncRNAs have previously been shown to globally regulate androgen receptor target genes by the 

recruitment of TFs to androgen-response element containing enhancers [361]. The effects of 

CUPID1 and CUPID2 knockdown on the oestrogen response were assessed to see whether they 

may play a similar role (Figure 4.19). The results were inconclusive, however a trend was seen for 

reduced oestrogen induction with the CUPID2 siRNA silencing, consistent with the reduced 

expression of oestrogen regulated genes seen in the TaqMan expression assays (Figure 4.18). Many 

lncRNAs function as molecular scaffolds, enabling protein-protein or protein-DNA interactions and 

may mediate TF binding to regulatory elements [362]. Disruption of this process may therefore 

affect enhancer activity as seen with the E2f2 enhancer following silencing of the lncRNA PAUPER 

[264]. Further experiments directly assessing the effect of lncRNA knockdown on transactivation of 

the oestrogen responsive enhancer PRE1 or a construct containing multiple oestrogen response 

elements did not reveal a significant effect (Figure 4.20). There was also no effect on the activation 

of the CCND1 promoter suggesting that CUPID1 and CUPID2 are unlikely to directly affect 

assembly of the pre-initiation complex.  

Another mechanism by which the lncRNAs could affect CCND1 expression is by altering 

chromatin looping between PRE1 and the CCND1 promoter, as certain lncRNAs bind the mediator 

complex and direct it via chromatin looping to the promoter of their target genes [363]. PRE1 has 

been shown to significantly increase the activity of the CCND1 promoter so disruption of looping 

interactions that facilitate this activation would be expected to have a marked effect on CCND1 

expression [5]. 3C confirmed the interaction between PRE1 and the CCND1 promoter but did not 

show a significant effect on this looping following CUPID1 or CUPID2 silencing (Figure 4.21). 

Cell cycle assays were then performed to determine whether knockdown of the lncRNAs would 

affect the cell cycle, either directly or via a reduction in CCND1 levels. CCND1 itself is an 

important regulator of the cell cycle, governing progression from G1 to S phase to drive the 

proliferation of ERα positive breast cancer [200]. It has been previously shown to be regulated by 

an RNA binding protein (TLS) which is directed to the promoter region by low copy number non 

coding RNAs then released in response to DNA damage [237]. CUPID1 and CUPID2 knockdown 

did not however affect progression of the MCF7 cells from G1 through to G2 phase in contrast to 

the predicted effect seen following CCND1 silencing (Figure 4.22B).  
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Despite reducing CCND1 mRNA levels to a similar level to that achieved with direct CCND1 

knockdown, a corresponding reduction in cyclin D1 protein was not seen (Figures 4.22C and 4.23). 

This is not likely to be related to excessive stability of the cyclin D1 protein which has a very short 

half-life (<1 hour) so a 48 hour knockdown should be more than enough time to see a response 

[364]. The relationship between CCND1 mRNA and cyclin D1 protein has been shown to be 

complex, with experiments involving over-expression of CCND1 mRNA not giving rise to a 

corresponding protein increase and post-transcriptional processes appear critical [365]. Off target 

effects of the CUPID1 and CUPID2 siRNAs are possible as such effects may reduce mRNA levels 

detectable by PCR in the absence of protein changes, however it would be unlikely for both siRNA 

to be causing the same off target effects [366]. Regardless of the underlying cause, the effects of 

CUPID1 and CUPID2 do not appear to be mediated through an effect on cyclinD1.  

CUPID1 was found to primarily interact with chromatin, suggesting that it may influence gene 

expression by binding regulatory elements or interacting with TFs and chromatin modifying 

complexes [145]. The targets of a particular transcript may be mapped genome-wide with a variety 

of novel techniques, which include ChIRPseq (chromatin isolation by RNA purification) [261], 

CHARTseq (capture hybridization of RNA targets) [367], and RAP (RNA antisense purification) 

[368]. All three techniques rely on labelled antisense oligonucleotides to pull down a lncRNA of 

interest which has been chemically linked to adjacent DNA. The DNA can then be purified and next 

generation sequenced or interrogated using qPCR to find the binding sites of the original lncRNA. 

These methods have been used to map interactions of the lncRNAs XIST [368], HOTAIR [261], and 

MALAT [369]. ChIRPseq was used to determine interactions with CUPID1 in BT474 cells which 

have the highest expression levels of both lncRNAs. More lowly expressed lncRNAs may require 

induced overexpression prior to ChIRP to ensure enough RNA is present however care needs to be 

taken with ectopic over-expression as it may alter the native binding patterns of the transcript [204, 

261]. A key feature of ChIRP involves splitting the tiling oligos into two pools, with the final 

sequencing peaks only considered valid if they are replicated in both pools [261]. Good enrichment 

was achieved in both even and odd pools compared to the LacZ negative control and sequencing 

identified a number of genes possessing CUPID1 binding within 1kb of the promoter (Table 4.1). 

The top ranked genes were CALM2 and NRSN2, both with a FDR of 0.07% and fold enrichments of 

129.77 and 88.45 respectively. CALM2 is a calcium binding protein involved in cell cycle 

progression, cell motility and proliferation [370]. It is highly expressed in breast cancer cells though 

its exact role in tumorigenesis is uncertain [371]. NRSN2 is a neuronal protein of uncertain function 

that may have roles in hepatocellular and non-small cell lung cancer [372, 373]. The top 60 genes 
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were analyzed using the Ingenuity program, revealing enrichment of genes involved in the DNA 

damage response, cellular organization, cancer, endocrine functioning and cellular development 

(Table 4.2). To confirm that the observed binding peaks were functional, CUPID1 was silenced 

using siRNA in MCF7 breast cancer cells and RNA extracted for RNA-seq analysis as stated 

previously. A comparison of the differential expression between control cells and those exposed to 

CUPID1 silencing will be made with particular reference to the genes identified by ChIRP-seq. The 

Ingenuity program will then again be used to analyse broader changes in biological pathways, 

looking for overlap with the networks enriched following ChIRP-seq. The results will not however 

be available prior to the submission date of this thesis. 

The most significant gene network identified by the ChIRPseq analysis involved DNA damage 

repair (Table 4.2). Interestingly, CCND1 has recently been shown to be involved in this pathway 

and genes sharing a regulatory mechanism (PRE1) tend have similar functions [201, 202, 374]. A 

possible role for CUPID1 and CUPID2 in DNA damage repair was investigated firstly using an 

immunofluorescence assay to assess appropriate Rad51 accumulation at the site of DSBs and then 

with a survival assay in association with Rad51 inhibition. The immunofluorescence assay revealed 

a reduction in Rad51 accumulation at the radiation induced DSBs following silencing of CUPID1, 

CUPID2 and CCND1 compared to a non-targeting control (Figure 4.25). Previous studies have 

shown that cyclin D1 is also recruited to DSBs and induces Rad51 expression [202]. As expected, 

CCND1 knockdown reduced Rad51 recruitment (Figure 4.26). The effects seen with CUPID1 and 

CUPID2 knockdown are likely to be due to different pathways however, given that no effect on 

cyclin D1 protein levels was demonstrated by the previous Western blot (Figure 4.24). Ingenuity 

Pathway Analysis (Ingenuity) of the RNAseq data obtained from CUPID1 silenced breast cancer 

cells may provide further clarification as to the underlying mechanism behind the observed effect 

by identifying genes or pathways indirectly regulated by CUPID1.  

A survival assay demonstrated a significant reduction in breast cancer cell survival when CUPID1 

and CUPID2 silencing was combined with a potent Rad51 inhibitor, suggesting that both lncRNAs 

influence additional upstream components of the DNA repair pathway (Figure 4.27). Only a 

minimal effect of CCND1 silencing was seen, despite the previously demonstrated reduction in 

Rad51 recruitment, suggesting that there may be compensatory mechanisms involved to buffer the 

observed phenotype (Figure 4.26, Figure 4.27). The role of CUPID1 and CUPID2 in DNA damage 

repair requires further clarification and relevant assays are currently being conducted by our 

collaborators. These include a GFP reporter assay to assess the efficiency of homologous 

recombination following CUPID1 and CUPID2 silencing [375], and combination knockdowns with 
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PARP inhibition which would be expected to lead to a markedly increased cytotoxicity were the 

lncRNAs to indeed have a role in the HR pathway of DNA damage repair [376].  

This chapter used RNA Capture-seq and a variety of functional assays to uncover two novel 

transcripts at the 11q13 breast cancer locus that are affected by the risk SNPs. The transcripts were 

found to be oestrogen regulated lncRNAs that were preferentially expressed in ERα positive breast 

cancer cells and named CUPID1 and CUPID2 due to their effects on DNA damage repair. SNPs 

increasing the risk of breast cancer frequently affect genes involved in DNA damage repair 

pathways [2]. The findings presented here would fit a mechanism in which the risk SNPs reduce the 

expression levels of CUPID1 and CUPID2 leading to an impairment of the DNA damage response 

and hence an increased risk of breast cancer. Given the pervasive nature of transcription and the 

proportion of GWAS hits in gene deserts, CUPID1 and CUPID2 are likely to represent just the tip 

of the iceberg for lncRNAs at GWAS-identified loci [219, 243]. The broader application of 

techniques such as RNA Capture-seq will undoubtedly discover many more such lncRNAs that may 

then be added to the growing list of genes underlying the genetic causes of breast cancer. 
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In addition to the SNPs at 11q13 conferring an increased risk of developing breast cancer, the locus 

in which the SNPs lie is heavily amplified in approximately 20% of breast cancers (Figure 5.1) [8]. 

This amplicon contains the cell cycle gene CCND1 which is one of the best characterised 

oncogenes in breast cancer and thought to be the major driver promoting focal 11q13 amplification 

[8]. Tumour amplicons may have more than one driver oncogene however, that function 

independently or cooperatively within a locus to favour clonal selection [377, 378]. The high 

number of individual genes that are amplified within the 11q13 amplicon suggests that there may be 

multiple driver genes present in addition to CCND1 [14]. These additional drivers may be protein 

coding genes or non-coding RNA transcripts. The identification of the lncRNAs CUPID1 and 

CUPID2 as novel genes at the 11q13 locus raises the question whether they may also function as 

oncogenes driving focal amplification and subsequent tumour growth. 

 

 

LncRNAs have only recently been characterised as a class and are under-represented in studies on 

cancer despite being present in numbers more than twice that of protein coding genes [241]. With 

the more comprehensive data now available from recent cancer sequencing projects it seems 

inevitable that a substantial proportion of the vast numbers of lncRNAs awaiting characterisation 

will be found to have central roles in cancer biology  [379, 380].  Thus far, studies examining the 

role of non-coding transcripts in human cancer have found an enrichment of lncRNAs at sites 

exhibiting copy number variation and identified more than 80 lncRNA genes as potential drivers of 

tumour progression [355, 380]. Functional work on lncRNAs has confirmed their role in key 

oncogenic processes such as cell migration [254, 381], differentiation [215, 216], cell proliferation 

[348, 382], and apoptosis [383]. 
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Figure 5.1 Genome wide copy number variations and associated gene expression changes in 

2000 human breast cancers. The chromosomal locations are on the x axis with the observed 

frequency of gene expression at those locations on the y axis. Red indicates high level amplification 

and blue indicates homozygous deletion. The green box highlights the 11q13 locus where CUPID1 

and 2 are located, along with CCND1. The location of significant oncogenes (ZNF703, MYC, ERBB2) 

and the tumour suppressor PTEN are indicated. Figure adapted from [14]. 

 

The hypothesis of this chapter is that CUPID1 or CUPID2 have a role in driving the proliferation of 

cancer cells and represent novel oncogenes. They may thus be potential therapeutic targets or have a 

role as biomarkers [241]. Over-expression of CUPID2 was shown to increase cell proliferation in 

vitro and accelerated tumour growth in a murine xenograft model of human breast cancer. CUPID2 

therefore represents a potential novel oncogene and driver of the 11q13 amplicon.  
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5.2.1. CUPID2 is overexpressed in human breast cancer. 

To determine whether CUPID1 and CUPID2 were highly expressed in human breast cancers as 

expected by their presence in the highly amplified 11q13 region, the mitranscriptome cancer 

database was searched for equivalent transcripts [241]. This comprehensive database features 

7256 curated RNA-seq data sets of human tumours, cell lines and normal tissues principally 

collated from the TCGA (The Cancer Genome Atlas) [241, 379]. CUPID2 was shown to be 

highly expressed in breast cancer (pink) and renal cancer (yellow), with minimal expression in 

normal tissues (Figure 5.2). No transcripts corresponding to CUPID1 were present in the 

database.  

 

Figure 5.2 CUPID2 is highly expressed in breast and renal cancers. The expression of a 

transcript overlapping CUPID2 is shown for multiple tissue types. Breast cancer samples (pink) 

are found in the first column, adjacent to normal breast tissue for comparison. Each dot 

represents an individual tumour sample. Expression is measured using fragments per kilobase of 

exon per million reads (FPKM). Figure generated from the mitranscriptome database [241]. 
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5.2.2. Ectopic expression of CUPID1 and CUPID2. 

Given that CUPID1 and CUPID2 are over-expressed in breast cancer cell lines (Figure 4.6) 

and CUPID2 is highly expressed in breast tumours (Figure 5.2), an equivalent cell culture 

model was required to investigate these effects in vitro. The dual promoter pCDH plasmid 

(System Bio) was used to generate over-expression constructs of the identified CUPID1 and 

CUPID2 isoforms (Figure 5.3A,B) and these were assessed by a trial transient transfection in 

MCF7 cells (Figure 5.3C,D). CUPID1 RNA levels were elevated 200x in the construct 

expressing the first isoform (CUPID1 (1)), however there was minimal change after 

transfection of the second construct (CUPID1 (2)). Both CUPID2 constructs led to increased 

expression of the lncRNA to 200x vector alone for either isoform. Further cloning and plasmid 

preparation did not alter the activity of the second CUPID1 construct and thus the first 

construct was used for over-expression experiments. The second CUPID2 construct was chosen 

for further use as it encoded the more prevalent isoform as indicated by examination of the 

RNA Capture-seq data. 

To determine the optimal time for measuring the effects of CUPID1 and CUPID2 over-

expression on the 11q13 genes it was necessary to perform a time course of RNA expression 

following the initial transfection. Expression of CUPID1 rises rapidly to 100,000X that of the 

vector after 24 hours whilst the increase for CUPID2 is more gradual up to a level 3000X that 

of the vector (Figure 5.3E,F). A 6 hour transfection was chosen to measure subsequent gene 

expression changes with 1000X and 100X expression over baseline for CUPID1 and CUPID2 

respectively.  The selected time point produces a similar magnitude of expression change to 

that achieved in equivalent experiments on the HOTAIR lncRNA [254].    
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Figure 5.3 CUPID1 and CUPID2 are highly expressed following transient transfections in 

MCF7 breast cancer cells. (A) A schematic of the CUPID1 isoforms depicted 5’ to 3’. (B) A 

schematic of the CUPID2 isoforms depicted 3’ to 5’. (C) CUPID1 isoforms are shown in blue for 

the trial transfection. (E) CUPID1 (1) isoform expression over 24 hours. (D) CUPID2 isoforms are 

shown in green for the trial transfection. (F)  CUPID2 (2) isoform expression over 24 hours. RNA 

levels were normalized to TBP and then expressed relative to the value obtained from 

transfection of the vector alone. Results are mean +/- SD from a single experiment.  
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5.2.3. Stable over-expression of CUPID1 and CUPID2 is maintained in a breast cancer cell 

line. 

To assess the oncogenic potential of the lncRNAs in later murine xenograft studies, a more 

stable over-expression of CUPID1 and CUPID2 was required. T47D cells were used as they 

are an ERα positive cell line with relatively low expression of the two lncRNAs (Figure 4.6), 

thus providing a greater contrast between the wild type cells and those cells engineered to over-

express CUPID1 and CUPID2. They have also been previously utilised to create xenograft 

models of human breast cancer [384-386]. A second generation lentiviral system was employed 

to transduce T47D cells with infective viral particles and the cells selected through growth in 

puromycin containing media. The cells were then FACS sorted to select the top 50% of GFP 

expressing cells (Figure 5.4C). 

Introduced transgenes are often silenced by epigenetic mechanisms following incorporation 

into the genome and thus it is important to confirm that transgene expression is sustained 

before they are used in vivo [387]. The transduced cells were therefore cultured under 

puromycin selection for 3 weeks, FACS sorted and then cultured for a further 3 weeks before 

assessment of gene expression (Figure 5.4). LncRNA expression is depicted relative to TBP to 

illustrate that they are now being expressed at a level similar to that for a common 

housekeeping gene. CUPID1 and CUPID2 RNA levels were elevated to a level 30% and 25% 

higher respectively than that for TBP after 6 weeks, compared to a previously demonstrated 

baseline expression 1/1000
th

 that of TBP (Figure 4.6). This confirmed that transgene expression 

was elevated to high levels for a sufficient length of time to perform xenograft experiments. 
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Figure 5.4 CUPID1 and CUPID2 expression is sustained in transduced T47D cells The 

lncRNA expression is shown relative to TBP. (A) CUPID1 RNA expression compared to the empty 

vector control. (B) CUPID2 RNA expression compared to the empty vector control. (C) FACS plot 

of the cell sorting procedure. GFP (Green Fluorescent Protein) activity along the x axis was used 

as a proxy for the lncRNA expression and the cells gated such that only the top 50% of GFP 

expressing cells were retained as indicated by the red box. SSC (side scatter) is on the y axis. 

5.2.4. CUPID1 and CUPID2 over-expression does not alter the expression of local genes 

LncRNAs frequently act in cis to regulate the expression of genes in the vicinity of their own 

transcriptional loci [360, 388]. To determine whether CUPID1 and CUPID2 may act by 

increasing the expression of nearby genes, TaqMan assays were used to measure 11q13 gene 

expression following the over-expression of CUPID1 and CUPID2. This was done both 

transiently and stably using a lentiviral expression system in the ERα positive cell line T47D. 

The expression of six genes was assessed, with both proximal genes (CCND1 and ORAOV1), 

and more distal 11q13 genes (CPT1A, PPF1A, PPP6R3 and RNF21), included to determine 

whether the lncRNAs may be affecting gene expression locally or outside the immediate cis 
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environment. Cells with differing ERα status were used for the transient transfection (ERα 

positive MCF7 cells or ERα negative MDA MB231 cells) to see whether the hormonal context 

may influence the effect of over-expression. No significant changes in gene expression were 

seen for either transient or stable over-expression of CUPID1 and CUPID2 in any of the cell 

lines examined (Figure 5.5). 
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Figure 5.5 11q13 gene expression is not significantly altered following CUPID1 and 

CUPID2 over-expression. Gene expression was measured using Taqman assays. (A) 

Expression of 11q13 genes in MCF7 cells following CUPID1 (blue) and CUPID2 (green) transient 

overexpression. (B) Expression of 11q13 genes in MDAMB-231 cells following CUPID1 and 

CUPID2 transient overexpression. (C) Expression of 11q13 gene in T47D cells that stably over-

express CUPID1 and CUPID2. Expression data for each gene is the average of 3 biological 

replicates. Results are the mean expression +/- SEM presented relative to the empty pCDH 

vector.  Significance calculated using a one sample t test, comparing values to a hypothetical 

mean of 1.0 as represented by the dotted black line. ns =  p>0.05. 
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5.2.5. CUPID2 over-expression increases breast cancer cell proliferation and survival in 

vitro. 

To determine whether CUPID1 and CUPID2 possessed the characteristics of oncogenes they 

were assessed in vitro using a colony assay and MTT assay. The colony assay provides a 

measure of cell survival and the ability to sustain clonal replication [389]. For the colony assay, 

MCF7 cells were transiently transfected with CUPID1 and CUPID2 expression constructs and 

seeded into 6 well plates as single colonies. The plates were cultured for 3 weeks, stained with 

crystal violet then imaged (Figure 5.6A,B). Significantly more colonies were found following 

CUPID2 but not CUPID1 over-expression compared to the vector only control suggesting that 

CUPID2 supports breast cancer cell survival and clonal replication.  

The effect of CUPID1 and CUPID2 over-expression on the proliferation of breast cancer cells 

was then assessed using the MTT assay which provides a proxy measure for the number of 

living cells in a culture [390]. T47D cells either stably expressing the lncRNAs or a selection 

vector only control were cultured for 4 days then processed according to the MTT protocol. 

Over-expression of CUPID2 produced a significant increase in cell number whilst CUPID1 

overexpression did not alter cellular proliferation (Figure 5.6C).  
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Figure 5.6 CUPID2 enhances breast cancer cell growth in vitro. (A) Scans of a 

representative biological replicate of the colony formation assay in MCF7 cells with the vector 

only transfection group (top), CUPID1 over-expression (middle), and CUPID2 over-expression 

(lower). (B) Mean colony numbers expressed relative to that for the vector +/- SEM. Three 

biological replicates of the experiment were performed with 3 technical replicates per condition. 

(C) Relative absorbance for CUPID1 and CUPID2 over-expressing cells in the MTT assay. Data 

shown is mean +/- SEM relative to the pCDH vector only control group for three biological 

replicates. Significance for both assays calculated using a one sample t test, comparing values to 

a hypothetical mean of 1.0. * p<0.05, ns = not significant. 
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5.2.6. CUPID 2 promotes tumour growth in a mouse xenograft model. 

To determine whether CUPID1 and CUPID2 over-expression affected tumour formation in 

vivo, a murine xenograft tumour was used [391]. One million T47D cells stably over-

expressing either the lncRNAs or vector alone were injected into the left lower mammary fat 

pad of SCID (severe combined immune-deficient) mice, with five mice per group. An estradiol 

pellet was also inserted to support tumour growth as T47D cells are oestrogen dependent [392]. 

After 7 weeks there were no palpable tumours in the vector only and CUPID1 over-expressing 

mice so the mammary glands were removed for a better assessment of tumour growth (Figure 

5.7). Mammary fat pad injection and animal care was performed by Dr Shu Shu Wen and Dr 

Christina Wong and animals then returned after culling for processing of the tumours.  

 

Small tumours were visible in specimen 1 and 3 of the vector only expressing group, with a 

larger tumour in specimen 5. Only specimen 2 exhibited tumour formation in the CUPID1 

over-expression group and two mice in this cohort died of unknown causes prior to the final 

cull. Large tumours are visible in all specimens of the CUPID2 over-expression group, with the 

tumours from specimens 2-4 being 2-3 times larger than the largest tumour found in the vector 

group. The lungs and liver were removed from the mice during the dissection process and 

examined macroscopically, however no signs of hepatic or pulmonary metastasis were found. 

There were also no neurological symptoms indicative of cerebral metastases seen in any of the 

mice during the experiment. Statistical analysis revealed a significant difference in tumour size 

seen between the control group and CUPID2 over-expressing group when all data was collated 

(Figure 5.8).  
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Figure 5.7 Large mammary tumours are produced by xenografts over-expressing CUPID2. A 

Leica MZ6 stereo microscope was used to capture images of the tumours. Specimens from each 

group are labelled 1-5, with vector only controls in the left column, CUPID1 over-expressing cells in 

the middle column; and CUPID2 over-expressing cells in the right column. The mammary glands 

were whole mounted onto coverslips and stained with carmine red. Specimens are displayed for all 

mice except the two from the CUPID1 group that died prematurely. Scale bar = 2mm. 
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Figure 5.8 An interleaved scatter plot of relative tumour size from the xenograft mouse 

model. Each data point represents a tumour from an individual mouse with the solid black line 

indicating the mean size for each group. Significance was calculated using a one way ANOVA 

with Dunnett’s correction for multiple comparisons. *p<0.05. 
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This chapter explored whether CUPID1 and CUPID2 amplification may act as a driver of breast 

tumorigenesis. Expression data in breast cancer cell lines (Figure 4.6) and tumour specimens 

(Figure 5.2) supported this hypothesis and their effect on measures of oncogenic potential was 

assessed both in vitro and in vivo. The MTT and colony formation assays demonstrated an increase 

in cell proliferation and survival associated with CUPID2 (Figure 5.6). A murine xenograft model 

of breast tumour growth then showed a significant in vivo effect with an increase in tumour size 

seen for CUPID2 over-expression (Figure 5.7). These findings support a role for CUPID2 as a 

putative oncogene and highlight the potential for lncRNAs such as CUPID2 to be used as disease 

biomarkers or future therapeutic targets [380].  

 

Genomic regions subject to copy number changes such as amplification frequently contain key 

oncogenes [393]. Evidence that a particular gene may drive expansion of an amplicon requires that 

the expression of the gene is linked to its amplification and secondly that over-expression of the 

gene enhances a malignant phenotype, thus identifying it as a potential oncogene [8]. Oncogenic 

drivers tend to be found at the middle of amplicon cores as is the case with CCND1, CUPID1 and 

CUPID2 [14, 394]. Studies indicate that 11q13 is amplified in 9-24% of tumours and that CCND1 

expression is strongly linked to amplification [8]. This is also the case with other putative 

oncogenes at the 11q13 locus including PAK1 and EMSY [8, 14, 395]. The determination of a 

relationship between amplification and expression similarly needs to be demonstrated for CUPID1 

and CUPID2 and it is also of interest whether their expression may be correlated with that of 

CCND1. A bioinformatics analysis on TCGA breast cancer expression and copy number data is 

currently being conducted by another member of our group to resolve these issues. Analysis of the 

cell line expression data however (Figure 3.3, Figure 4.6) showed that high levels of CCND1 

expression are often seen in the absence of CUPID1 and CUPID2 expression, presumably due to 

the many mechanisms by which CCND1 can be over-expressed in breast cancer cells [396].  

Over-expression of genes known to be amplified in breast cancer such as CCND1 or HER2, can be 

used to create an in vitro model of disease to investigate mechanisms by which potential oncogenes 

may act in vivo [397]. Due to experimental limitations, only the most prevalent isoforms of 

CUPID1 and CUPID2 were chosen for further study however it is important to note that gene 

isoforms can have different functions as has been shown for CCND1 [398]. It is therefore possible 

that other isoforms of the lncRNAs may have performed differently in subsequent assays. High 

levels of CUPID1 and CUPID2 expression were seen following both transient transfection and 

stable transduction of the target cell lines however this did not result in a significant change in 
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expression of the assayed genes. This may be an accurate reflection of the biology involved or it 

may be cell type dependent as secondary phenotypes produced by forced gene over-expression can 

alter depending on the cell line utilized [397]. A non-significant trend was observed for an increase 

in CCND1 expression levels following CUPID1 and CUPID2 over-expression which was in 

keeping with previous data showing that knockdown of the lncRNAs decreased the levels of 

CCND1 (Figure 4.19, Figure 5.5).  Confirmation of a local regulatory effect on genes in cis raises 

the possibility that CUPID1 and CUPID2 may belong to the enhancer-like lncRNA subset 

described by Orom et al. [224].   

Another consideration is that ectopic expression of chromatin acting lncRNAs may not recapitulate 

normal function, which requires a local action in cis for appropriate biological effect [399, 400]. 

This was seen by Xiang et al. at the 8q24 multiple cancer risk locus where ectopic over-expression 

in trans of the CCAT1-L lncRNA had no effect on the expression of the nearby MYC oncogene 

whilst expression in cis using genome editing techniques increased MYC levels 1.3-1.8 fold [204]. 

Despite not showing an effect on oncogenic assays CUPID1 may therefore still be found to have a 

role as an oncogene if its overexpression is re-examined in cis. This may be less of an issue for 

CUPID2, which unlike the heavily chromatin bound CUPID1, is spread across nuclear and 

cytoplasmic compartments and thus more likely to act distal to its transcriptional origin (Figure 

4.17). Effects from over-expression of an oncogene may also be complex and mechanisms of action 

better seen by examining perturbations in oncogenic pathways rather than individual genes [401]. 

RNAseq has therefore been employed to explore such global changes following stable over-

expression of CUPID2 in the T47D cell model. Extracted RNA from three biological replicates of 

T47D cell populations independently transduced to either over-express CUPID2 or the pCDH 

vector alone control has been sent for sequencing and will be analysed by the Ingenuity program 

(Qiagen) to assess changes in cellular gene networks. 

The effect of lncRNA over-expression was assessed using two slightly different in vitro measures of 

cell proliferation. The colony formation or clonogenic cell survival assay measures the ability of an 

individual cell to form colonies and demonstrates that an individual cell retains the ability to 

replicate over many generations [389]. The MTT assay however is a more broad assessment of 

proliferation in a mixed group of cells [390].  Increased cell survival and proliferation are both 

hallmarks of cancer and characteristics of oncogenes [402]. CUPID2 over-expression caused a 

significant increase in both measures indicating enhancement of the oncogenic potential of the cells 

(Figure 5.6). In vitro assays can be misleading however, with Aapro et al. demonstrating that cells 

taken from breast cancer specimens showed no relationship between the ability to form colonies and 



 

Chapter 5 Page 149 

subsequent survival [403]. It was therefore important to investigate the lncRNAs in vivo using a 

xenograft model to mimic the over-expression of CUPID2 observed in breast cancer.  

Xenograft model have been previously used to assess putative drivers of the 11q13 amplicon such 

as EMSY and allow a more biologically relevant assessment of breast cancer cell growth in three 

dimensions [404, 405]. An orthotopic injection of breast cancer cells was utilized as this provides a 

better mimic of the native mammary stromal environment [404]. A significant increase in tumour 

growth was observed for those xenografts containing CUPID2 over-expressing cells. This was 

consistent with the increases in cell survival and proliferation obtained from the in vitro 

experiments, providing further evidence that CUPID2 may be a novel oncogene (Figure 5.7). 

Unfortunately, many of the mice in all groups exhibited diarrhoea, abdominal distension and blood 

in the perineal region 5-6 weeks following injection, with the death of two mice in the CUPID1 

over-expression group. This may have been due to bladder calculus formation which is a known 

side effect of estradiol supplementation and a common cause of mortality in xenograft experiments 

using ERα positive tumours [406]. 

 

To confirm these findings, the xenograft experiments will be repeated using a higher initial number 

of cells in the orthotopic injection and with the addition of matrigel to enhance tumour generation, 

growth and metastatic potential [407]. The aim would be to accelerate the development of tumours 

and enable the mice to be culled prior to the development of symptomatic bladder calculi. Another 

option would be to use NSG (NOD SCID gamma) mice which have impaired cytokine production 

in addition to a lack of competent T, B and NK cell activity [408]. NSG mice are claimed to be 

more resistant to the effects of estradiol supplementation according to their supplier (The Jackson 

Laboratory http://jaxmice.jax.org/nod-scid-gamma/) and may thus be less likely to succumb to 

bladder calculi, however direct evidence for this was not found in the literature. They are also more 

susceptible to metastasis than SCID mice, presumably due to the absence of natural killer cells 

[409]. 

 

This chapter has provided evidence that CUPID2 may represent a novel oncogene in breast cancer 

and a potential co-driver of the 11q13 amplicon. Further confirmation of the oncogenic stratus of 

CUPID2 may be obtained by demonstrating that mechanisms other than amplification are involved 

in its over-expression or increased activity. Given that CUPID2 is oestrogen regulated (Figure 4.8), 

an obvious candidate mechanism would be over-expression of ERα. This is a common finding in 

ERα positive breast cancer and often seen in relation to CCND1 expression in the absence of 

amplification [8, 410]. Xenograft experiments combining over-expression of CUPID2 with 
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selective knockdown would also support the hypothesis that CUPID2 has a direct role in tumour 

growth [411]. Should that be the case, CUPID2 may have utility as a biomarker for ERα positive 

breast cancer and represent a promising target for therapeutics against this challenging disease. 
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My group has previously fine-mapped the 11q13 breast cancer risk locus and identified CCND1 as 

one of the target genes mediating risk [5]. In an effort to investigate the 11q13 locus in a more 

comprehensive and agnostic manner, several different 3C-based techniques were used in this thesis 

to identify chromatin interactions between PRE1 or PRE2 and candidate target genes. 4C-seq was 

used to detect distal interactions with PRE1 in trans and 5C to detect proximal interactions in cis. 

4C-seq was a reasonable approach for the 11q13 risk locus as the five candidate causal SNPs could 

be genetically fine mapped to two discrete regulatory elements that were then used as bait for the 

4C-seq experiment. Whilst the 4C-seq did not provide sufficient resolution to map proximal 

interactions, it did identify clusters of interactions between PRE1 and other regions commonly 

amplified in breast cancer that may be of relevance to disease progression (Figure 3.8). These 

regions included 17q23 and 20q13 which have been previously shown to form extensive inter-

chromosomal interactions that dysregulate genes critical to breast cancer proliferation [280]. The 

interactions were only seen in the highly amplified breast cancer cell lines MCF7 and BT474, whilst 

no distal interactions in trans were seen in the karyotypically normal Bre80 breast cell line. This is 

consistent with the capture HiC study performed on the 2q35, 8q24 and 9q31 breast cancer risk loci 

which found no interactions in trans for the normal GM06990 cells but 11 and 20 interactions 

respectively for the amplified BT483 and SUM44 cancer cell lines [162]. Such findings emphasize 

the need for caution in interpreting genome-wide 4C data obtained from cancer cell lines. It is less 

of an issue for the 3C and 5C techniques which usually characterise interactions over shorter 

genomic distances that may be entirely contained within a region of focal amplification. 

 

5C was then used to determine proximal interacting partners of PRE1 and demonstrated interactions 

with several target genes including CPT1A, MRP21, IGHMBP2, CCND1 and ORAOV1(Figure 3.9). 

Of these, the two genes prioritised for follow up are plausible candidates for mediating an increase 

in breast cancer risk. CPT1A (carnitine palmitoyltransferase 1A) encodes a mitochondrial protein 

involved in fatty acid metabolism and has been shown to regulate cell motility and tumour growth 

in alveolar rhabodomyosarcoma and a transgenic mouse model of Burkitt’s lymphoma  [412, 413]. 

Upregulation of fatty acid synthesis and oxidation is crucial to provide the energy and molecular 

substrates required to sustain increased cancer cell proliferation  and CPT1 inhibitors are promising 

adjuvant treatments for breast cancer [413-416]. Related genes involved in fatty acid metabolism 

have previously been implicated in mediating the risk of breast cancer at the 6q22.33 locus and 

colorectal cancer at the 11q12.2 locus [417, 418]. IGHMBP2 (immunoglobulin μ-binding protein 2) 

encodes a helicase associated with ribosomes and is suggested to have additional roles in DNA 

damage repair [317, 318, 419, 420]. Such a role would be consistent with the functions of high and 
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moderate penetrance genes previously associated with breast cancer risk, the majority of which are 

components of the DNA damage repair pathways [2]. Further functional work is still required to 

confirm that CPT1A and IGHMBP2 are involved in breast cancer risk at 11q13, including 3C to 

confirm the interaction between PRE1 and the gene promoters and luciferase expression assays to 

assess the effects of the SNPs on promoter transactivation. 

 

An alternative approach to validating the identified interactions was also trialled, involving 

silencing of the eRNA transcribed from PRE1 (Figure 3.10). Several studies have shown that 

silencing of the eRNA produced by an enhancer can reduce the expression of target genes and 

dramatically reconfigure chromatin interactions connecting enhancers and promoters in a locus 

[234]. Silencing of an eRNA can be achieved using siRNA, modified antisense oligonucleotides 

(M-ASO), or by direct demethylation of the enhancer to inactivate it [232, 234, 421]. A comparison 

between siRNAs and M-ASOs determined that the most consistent PRE1 eRNA reduction was 

obtained using siRNA and subsequent gene expression analysis showed a reduction in expression of 

CPT1A and IGHMBP2 (Figure 3.13B). Targeting eRNAs as a therapeutic strategy has already been 

demonstrated at the MYC locus where silencing of the CCAT1 and CCAT2 eRNAs reduced colon 

cancer cell proliferation, presumably through down-regulation of the MYC oncogene [204, 381]. 

The silencing of eRNA or direct enhancer decommissioning as therapeutic options have the 

advantage of being very tissue specific and would avoid the problems of inhibiting important genes 

such as MYC or CCND1 in normal tissues  [233, 422]. A suite of eRNAs regulating key oncogenes 

could theoretically be silenced to down-regulate drivers of tumour growth. The experiments in 

chapter three demonstrated that it can however be challenging to obtain sufficient reduction in 

eRNA levels at amplified regions, many of which would contain the relevant target oncogenes 

(Figure 3.13A) [14]. 

 

Our initial fine mapping study of the 11q13 risk locus focussed on CCND1, a well characterised 

oncogene in breast cancer [5, 200]. However, the emerging role of non-coding transcripts in breast 

cancer prompted a search for nearby lncRNAs that may be influenced by the risk SNPs and hence 

potentially involved in breast cancer biology [254, 423]. RNA Capture-seq was used to 

comprehensively probe the LD block containing the original marker SNP at 11q13, and uncovered 

two multi-exonic transcripts called CUPID1 and CUPID2 (Figure 4.2), that were oestrogen 

regulated (Figure 4.8), and enriched in ERα breast cancer cells (Figure 4.7). Chromatin interactions 

were demonstrated between PRE1 and the CUPID promoter (Figure 4.10) and the PRE1 enhancer 

was shown to cause a robust increase in promoter activity (Figures 4.14, 4.15).  
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The findings at the 11q13 breast cancer risk locus have many parallels with the 8q24 breast cancer 

risk locus. The risk haplotypes both fall in gene desert regions with nearby risk loci for multiple 

cancer subtypes and the candidate causal SNPs were both proposed to affect enhancers regulating 

nearby oncogenes;  MYC at 8q24 or CCND1 at 11q13 [5, 155, 271, 272, 287]. Multiple lncRNAs 

have also been identified in the 8q24 region which are affected by SNPs associated with prostate 

cancer risk (PRNCR1), colorectal cancer risk (CCAT1 and CCAT2), or both (CARLo-5) [203, 204, 

357, 381]. Interestingly, the CCAT1 and CCAT2 lncRNAs both arise from enhancers of MYC and 

are thus better classified as eRNAs [204, 381]. Only CCAT2 contains a disease SNP variant, with 

the risk allele increasing expression of the CCAT2 eRNA [381]. The expression of the 11q13 PRE1 

eRNA has not been confirmed to vary with the risk SNPs in this manner, however it seems likely 

given the changes in PRE1 promotor activity observed with SNP1 and SNP2 (Figure 3.12). Further 

characterisation of the PRE1 eRNA is still required as described for CCAT1 and CCAT2, including 

3C following eRNA knockdown to assess the role of the eRNA in mediating chromatin looping 

between PRE1 and CCND1 or the CUPID promoters [204]. Given that the eRNA contains SNP1, it 

would also be interesting to explore the effects of structural differences between eRNAs containing 

the major (protective) allele of SNP1 or the minor (risk) allele as such ‘riboSNitches’ have been 

shown to have an important role in lncRNA function [194, 312]. This would require in silico and in 

vitro approaches to predict the effect of SNP1 on the eRNA structure [424, 425], its ability to bind 

miRNA [179, 424], and its potential effect as an eQTL [239, 425]. LncRNAs in general have a 

lower density of SNPs than comparative protein coding genes, possibly due to extra constraints 

imposed by the tight relationship between their structure and function [426, 427].  

 

The minor (risk) alleles of SNP1 and SNP2 were also shown to reduce the ability of PRE1 to 

enhance CUPID1 promoter activity when incorporated into a luciferase construct (Figure 4.14). 

Such transactivation effects of risk-SNPs on regulatory elements are frequently observed in post 

GWAS studies of breast cancer including at the 2q35 and 5q11.2 loci, and appear to be a common 

mechanism by which SNPs may promote a disease phenotype [5, 59, 60]. The 25% reduction of 

enhancer activation seen is consistent with previous high throughput studies of SNPs that 

dysregulate transcription, with a 1.3-2 fold change in activity being typical [189, 346]. As part of 

the risk haplotype, the minor allele of SNP1 was also shown to reduce chromatin looping between 

PRE1 and the CUPID promoter compared to the major (protective) allele (Figure 4.13). PRE1 

increases CUPID promoter activity 25-200 fold over baseline so even a small reduction in 

interaction frequencies should cause a marked reduction in both CUPID1 and CUPID2 expression 
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(Figure 4.14). Allele specific looping is another mechanism previously observed both at the 2q35 

breast cancer locus and also in a GWAS locus associated with skin pigmentation where multiple 

allele specific loops were found to connect two enhancers and the IRF4 gene to alter transcription 

[60, 428]. The changes in transactivation and chromatin looping associated with the risk-SNPs are 

predicted to reduce the expression of CUPID1 and CUPID2. A subsequent siRNA mediated 

reduction in CUPID1 and CUPID2 levels was in turn shown to impair the DNA damage response 

(Figures 4.26 and 4.27). Interestingly, genetic variants reducing the activity of other components of 

the DNA damage repair pathway such as BRCA1, BRCA2, CHEK and ATM are well characterised 

causes of breast cancer [2, 429, 430]. Unfortunately it proved technically challenging to create 

isogenic cell lines for the 11q13 risk-SNPs which would have allowed confirmation of a reduction 

in CUPID1 and CUPID2 expression as predicted by the in vitro assays (Figure 3.17). Another 

means of validation would be to demonstrate that the risk-SNPs represented eQTLs that reduced 

CUPID1 and CUPID2 expression however available datasets are currently inadequate for this 

purpose as they neither contain sufficient samples from breast tissue nor coverage of lowly 

expressed lncRNAs [431, 432].  

 

CUPID1 was shown to associate with chromatin on a nuclear fractionation assay however it was 

unclear whether it may act in cis or in trans (Figure 4.17). An action in cis may include recruiting 

regulatory proteins to the CUPID locus or acting as a scaffold to mediate looping between the 

CUPID locus and interacting DNA [223, 433]. These functions have been demonstrated at the 8q24 

risk locus for CCAT1 [204], the lncRNA LUNAR at the IGF1R locus [434], and more globally for 

eRNAs regulating the oestrogen response [234]. An action in trans is also possible, as seen for the 

lncRNA HOTAIR which recruits the polycomb complex genome-wide to silence target genes and is 

an important oncogene in breast cancer [254, 433]. ChIRP-seq was performed to identify the 

binding sites of CUPID1 (Figure 4.18), and identified 21 gene promoters with high confidence 

CUPID1 binding peaks (FDR<0.5%) within 1kb (Table 4.1) [261]. A functional network analysis 

of the binding peaks revealed enrichment for genes associated with DNA replication and repair as 

the most significant result, with additional changes in networks associated with cellular 

organisation, cancer and endocrine functioning (Table 4.2). RNA-seq data from CUPID1 silenced 

breast cancer cells is awaited to confirm that CUPID1 binding to the identified gene promoters is 

indeed associated with a change in gene expression.  

 

All the experiments incorporating silencing to assess the function of CUPID1 and CUPID2 used 

siRNA and obtained a knockdown efficiency of 50-60% for CUPID1 and 70-80% for CUPID2 
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(Figure 4.19A). The efficiency for CUPID2 is similar to that demonstrated in other studies 

involving siRNA silencing of lncRNAs implicated in cancer such as CARLo5 and MALAT [357, 

435]. The CUPID1 silencing efficiency was lower however, which may be a function of its marked 

localisation to chromatin, making it less accessible to the siRNA [197, 435]. Though a trend was 

seen for reduced expression of CCND1, CPT1A, MYEOV and ORAOV1 with CUPID2 silencing, the 

levels did not reach statistical significance except MYEOV with siRNAC2-4 (Figures 4.19B and C). 

There were also no consistent changes in gene expression shared between the different siRNAs used 

to silence CUPID1. This may be due to an absence of a functional effect or it may reflect difficulty 

in achieving sufficient silencing of the lncRNAs which are already highly over-expressed in MCF7 

cells compared to ERα negative breast cell lines [197, 435]. Studies on the highly expressed 

lncRNA MALAT have returned differing phenotypes depending on the silencing method employed 

[435-438], and one recent guideline recommends at least two methods of silencing be employed to 

achieve confidence in any obtained results [358]. The options for lncRNA silencing include deletion 

of the promoter or entire locus; insertion of a premature transcriptional terminator; knockdown 

using siRNA, shRNA or M-ASO; and epigenetic modification at the promoter to repress 

transcription [358]. Many of these are however impractical to use for CUPID1 and CUPID2 

silencing in available ERα positive cell lines due to local amplification. The inconsistent results 

seen for gene expression (Figure 4.19) and negative results for chromatin looping (Figure 4.22) and 

involvement of the lncRNAs in the oestrogen response (Figure 4.20) will need to be revisited in 

later studies once an improved system of CUPID1 and CUPID2 silencing has been developed.  

 

A robust phenotype was seen for the DNA damage assays in support of the ChIRP-seq results, with 

reduced Rad51 foci formation at induced DSBs (Figure 4.26) and a highly significant reduction in 

MCF7 cell proliferation (Figure 4.27) following silencing of CUPID1 and CUPID2. Further assays 

are awaited to confirm an involvement of CUPID1 and CUPID2 in DNA damage repair, however 

the magnitude of the observed response so far suggests that MCF7 cells may be ‘addicted’ to high 

levels of CUPID1 and CUPID2 for their ongoing proliferation. Breast cancer cells often have high 

rates of replication in combination with an impairment of various components of the DNA damage 

pathways such as the recombination co-mediators BRCA1 and BRCA2 [439-441]. To prevent 

excessive genome instability and subsequent apoptosis they often compensate by having increased 

levels of other critical factors of the DNA repair pathways such as the homologous recombination 

(HR) mediator Rad51 [440, 442]. Inhibition of Rad51 thus holds great promise as a breast cancer 

therapeutic (reviewed in [443]). In the same way, therapies targeting CUPID1 and CUPID2 may be 

a complementary strategy for breast cancer treatment alongside the current efforts to inhibit critical 
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DNA repair proteins such as Rad51 or PARP [443, 444]. It would therefore be interesting to 

combine CUPID1 and CUPID2 silencing with PARP inhibition to assess whether this has an 

additive effect on toxicity as is seen with inhibition of PARP in cells deficient in other components 

of HR repair such as BRCA1 [376, 444]. 

 

Proposing CUPID1 and CUPID2 inhibition as a potential therapy for breast cancer seems counter-

intuitive when a reduction in their expression caused by the SNPs is predicted to increase breast 

cancer risk (Figures 4.13 and 4.14). The same dichotomy occurs with CCND1 which is a highly 

over-expressed driver of ERα positive breast cancer progression, however the GWAS risk-SNPs at 

11q13 cause a reduction in its expression [5, 200]. The mechanism described above for Rad51may 

also be applicable to cyclinD1as it is known to be a crucial component of oestrogen mediated DNA 

repair and could theoretically be over-expressed to compensate for other defects in the DNA 

damage pathway [201, 202]. Genes identified through breast cancer GWAS are often found to have 

a role in breast cancer progression, although the SNPs usually alter the expression of the target gene 

in the same direction as is seen in breast tumours. This is the case with the FGFR2 locus where the 

minor (risk) allele increased FoxA1 binding to a nearby enhancer and was thus predicted to increase 

FGFR2 expression [62]. Over-expression of FGFR2 or the presence of activating mutations in 

FGFR2 kinase are able to drive breast cancer progression and clonal amplification [445]. 

Conversely, MAP3K1 expression is increased by the germline risk alleles at 5q11.1, whilst somatic 

mutations of MAP3K1 in breast cancer are predicted to be inactivating [59].  

 

An interesting contrast to the breast cancer associated risk locus at 11q13 is the nearby renal cancer 

risk locus where the risk allele has been shown to increase the activity of a distal enhancer element 

regulating CCND1 instead of reducing it as seen for the breast associated risk-SNPs [5, 271]. A 

feature shared between renal and breast cancer however is that they both exhibit over-expression of 

CUPID2 (Figure 5.2) [241]. Further characterisation of the renal locus and adjacent prostate cancer 

locus is required to determine whether they may also mediate risk through an effect on CUPID1 and 

CUPID2 and whether the risk alleles alter lncRNA expression in the same direction as is seen in 

tumours. Although the underlying mechanisms may be complex and even seem contradictory at 

times, these examples all highlight the potential for breast cancer GWAS to find important and 

novel breast cancer genes, with the ultimate aim of developing new therapeutics or biomarkers of 

disease [26]. From a clinical perspective however, even without extensive fine mapping and any 

mechanistic understanding of the causal SNP effects, GWAS data can be used to guide the 

repositioning of existing drugs which target genes within the identified risk locus [446, 447]. 
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An intriguing finding from 11q13 copy number variation studies is that CCND1 amplification is 

strongly associated with an adverse effect of tamoxifen in premenopausal breast cancer, however 

this effect is independent of cyclinD1 protein levels [448]. This suggests that other genes co-

amplified with CCND1 (such as CUPID1 and CUPID2) may be affecting the tamoxifen response 

[394].  Tamoxifen is an ERα antagonist and the most commonly used drug in breast cancer 

treatment, whilst the CCND1 locus is one of the most heavily amplified in ERα positive breast 

cancer so an explanation for this effect is of major importance to a large percentage of breast cancer 

patients [8, 394, 449]. In chapter four, a trend for a reduced response to oestrogen was observed 

following CUPID2 knockdown, though this did not reach statistical significance (Figure 4.20). It 

would be interesting to investigate this further using a more comprehensive silencing approach and 

also to combine over-expression of CUPID1 and CUPID2 in breast cancer cells with tamoxifen 

treatment to see whether tamoxifen resistance could be induced through over-expression of the 

lncRNAs in a previously sensitive cell line. Consistent with this, the ERα positive cell lines with the 

highest levels of CUPID1 and CUPID2 expression (MCF7 and BT474) are both resistant to 

tamoxifen and are amplified at the 11q13 locus (Figure 4.6) [450].  

 

CUPID2 was shown to increase cell proliferation in the MTT and colony formation in vitro assays 

(Figure 5.6). It also produced a marked increase in tumour size when over-expressed in a xenograft 

murine model of breast cancer (Figure 5.7). Although CUPID1 was not shown to affect cell 

proliferation in vitro or tumour growth in vivo (Figures 5.6, 5.7, 5.8), it may require over-

expression in cis for an effect to be seen and this should be attempted before discounting a role as a 

potential driver of ERα positive breast cancer [204]. An action in cis would also explain why it is 

not seen in the TCGA lncRNA data set as it would only require low level overexpression to have a 

biological effect and this may not have been detected using standard RNA-seq testing [241]. The 

presence of CUPID2 within an amplified region and its demonstrated biological effects are 

consistent with a role as a putative oncogene [355]. Santarius et al. provide a set of criteria for 

defining oncogenes which synthesizes clinical information, molecular changes such as 

amplification, biological evidence from over-expression and silencing experiments and finally data 

from animal models [411]. Taking these guidelines into account, more information is required 

before CUPID2 can be considered an oncogene, including expression data from further cancer cell 

lines and mouse models using xenografts with CUPID2 knockdown to complement the 

overexpression model. The alternative possibility is that CUPID2 is merely one of the many 

passenger genes over-expressed as part of the 11q13 amplicon due to another driver gene such as 

CCND1 [8].  
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Cancer cells often become dependent on high levels of particular oncogenes for maintenance of a 

tumour phenotype as is the case with CCND1 in oesophageal cancer [388]. This ‘oncogene 

addiction’ provides the opportunity to design therapies which specifically target a tumour but have 

minimal effect on normal cells which do not depend on the overexpressed oncogene [451, 452]. 

Interestingly, in a mouse model using sarcomas overexpressing MYC, even temporary inhibition of 

MYC was enough to cause the tumours to regress and subsequently undergo apoptosis when the 

inhibition was lifted [453]. A feature of such ‘addictive’ oncogenes is that their overexpression 

consistently follows their amplification due to a survival advantage conferred on the clones where it 

occurs [454-456]. Further work is required to determine the relationship between expression and 

amplification with CUPID2 and TCGA data is currently being analyzed by another group member 

in this regard. This information could be combined with xenograft models incorporating a brief or 

sustained knockdown of CUPID2 with an inducible shRNA system to confirm whether CUPID2 is 

required for the maintenance of tumour growth [457].  Such experiments have been performed in 

vitro for a number of other oncogenic lncRNAs including HOTAIR [254, 341], HNF1A-AS1 [458], 

CARLo-5  [357], and FAL1 [355]  with a resultant reduction in the malignant phenotype. These 

examples are just the beginning however, as there are over 60,000 lncRNA genes identified to date 

compared to less than 30,000 protein coding genes making it is highly likely that many of these 

non-coding transcripts will have a role in cancer biology [241]. 

 

 

 

 

 



Model of Risk 
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The data obtained through this study can be used to propose a model explaining how the risk-SNPs 

lead to an increased risk of breast cancer at the 11q13 locus (Figure 6.1). Under the influence of 

oestrogen, the regulatory element PRE1 makes chromatin interactions with the CUPID, CCND1, 

CPT1A and IGHMBP2 promoters. Subsequent activation of the CUPID promoter by PRE1 induces 

the expression of CUPID1 and CUPID2 which are required for the DNA damage response and 

additional functions which are yet to be confirmed. The presence of the risk-SNPs reduces both the 

activity of PRE1 and chromatin looping between PRE1 and the CUPID promoter. This is predicted 

to reduce the expression of CUPID1 and CUPID2 and impair the DNA damage response, leading to 

genomic instability and an increased risk of breast cancer.  

 

 

Figure 6.1 A model of risk at the 11q13 breast cancer susceptibility locus. The blue boxes 

denote genes. PRE1 (orange box) binds oestrogen (Ez) and participates in chromatin interactions 

(thick red arrows) with target gene promoters. Activation of the CUPID promoter (green box) by PRE1 

induces expression of CUPID1 and CUPID2. The risk SNP effects are depicted by red lightning bolts 

and indicate reduced transactivation of PRE1 and reduced chromatin looping between PRE1 and the 

CUPID promoter.  

 



Future Directions 
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The ultimate goal of post-GWAS analysis is to fully understand how identified risk-SNPs increase 

disease risk and to apply this knowledge through prevention or treatment strategies in a clinical 

practice environment [34]. In regards to breast cancer, the prevention  component aims to use the 

number of causal SNPs present in an individual to estimate their breast cancer risk and tailor 

screening recommendations accordingly [459]. Early attempts at using this data with the limited 

number of GWAS SNPs available at the time did not provide enough information to be of clinical 

use individually or at a population level [460, 461]. Post iCOGS however, a follow up study using a 

risk score derived from the status of 72 risk SNPs including fine mapped SNPs from the 11q13 

locus, found that the breast cancer risk for women in the bottom quintile was 5.2% compared to 

16.6% for those in the top quintile [462]. Combining this data with family history and lifestyle 

factors would thus provide sufficient power to guide screening at a population level and also allow 

better management of individual prevention strategies such as prophylactic medication or an 

increased frequency of mammography [459, 462]. An increasing number of private providers now 

offer gene panels containing a variety of different high, moderate and low penetrance variants, 

however many have not been appropriately validated and more work is needed to determine how 

best to proceed with preventative genetic counselling (reviewed in [463]). The second component of 

post-GWAS studies is to uncover biological mechanisms and novel pathways underlying disease 

which may be potentially targeted for therapies [34]. This requires distinguishing the functional 

SNPs from other tightly correlated SNPs that may be inherited together as a risk haplotype. That 

has been the focus of this thesis with the prioritization of the CPT1A and IGHMBP2 genes for 

further investigation in Chapter 3 and the identification of CUPID1 and CUPID2 in Chapter 4. 

 

When this project was being planned, 4C-seq and 5C were considered novel and powerful 

techniques with great potential for application in areas such as GWAS loci [172, 464]. A more 

recent trend however has been the use of a hybridisation capture step to enrich for interactions in 

the loci of interest which may have provided higher quality data if used at the 11q13 locus. This 

involves DNA capture following a modified 3C protocol including a sequencing step (Capture-C) 

[465], or capture combined with the standard HiC process (Capture HiC) [162]. Either approach 

then allows interactions to be mapped genome-wide for multiple loci simultaneously. Capture HiC 

has been used to characterise both breast cancer and colon cancer risk loci, with the breast cancer 

study confirming previously demonstrated interactions with MYC and IGFBP5 at the 8q24 and 

2q35 loci respectively [60, 155, 162, 173]. Capture-C has not yet been applied to GWAS loci in a 

published study, however a modification of the technique which incorporates a biotin pull down 
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step to improve the signal to noise ratio has been used at the 8q24 prostate cancer associated locus 

[466]. Further optimisation of such techniques is likely to see them widely adopted in future post-

GWAS functional characterisation studies. Chapter Four demonstrates that these methods should 

ideally be performed in parallel with RNA Capture-seq to ensure all potentially relevant genes in 

the loci are identified otherwise potentially significant interactions may be ignored when they do 

not map to a previously known gene promoter [7]. 

 

All the approaches discussed so far, and indeed all the post-GWAS studies of breast cancer risk loci 

that have been performed to date rely on indirect evidence to demonstrate the functional effect of a 

risk SNP [5, 59, 60, 62]. The gold standard for such confirmation requires the creation of isogenic 

normal cell lines that differ only in the SNPs of interest [26]. This may be done using such tools as 

Zinc Finger Nucleases, TALENs and CRISPRs and should be part of any post-GWAS functional 

characterisation now that the cost and technical proficiency required is within the reach of most labs 

[196, 197]. These techniques enable a more biologically relevant assessment of SNP function in 

their native genomic context and can be extended further to mouse models, though inter-species 

differences limit how much information can be obtained from such comparisons [467]. Such 

techniques were technically challenging in this study due to the high levels of 11q13 amplification 

found in ERα positive breast cancer cell lines and the lack of availability of ERα positive normal 

breast cell lines. The experiments thus failed to yield useful information as to the in vivo effects of 

the SNPs in PRE1 (Figure 3.17) [8, 26]. Multiple cycles of editing may be required to create a 

sufficient number of risk alleles for a significant effect on gene expression to be seen and though 

possible, it is extremely labour and time intensive with the current available methods [197].  

 

The 11q13 project described here provides proof of principle that low abundant transcripts 

expressed from noncoding regions should be sought using RNA Capture-seq at other GWAS loci as 

initially proposed by Mercer et al. [7]. Such an approach is validated by a recent RNA-Capture-seq 

study which discovered over 1000 novel transcripts within LD blocks containing GWAS risk SNPs, 

with many predicted to represent lncRNAs [468]. This demonstrates the way forward in uncovering 

lncRNAs associated with disease risk as previous studies have merely used existing databases of 

known transcripts and intersected these with GWAS SNPs or risk loci of interest [469, 470]. Many 

lncRNA transcripts that are tissue specific and lowly expressed are likely to be missed by this 

approach, even by those studies accessing extremely comprehensive RNA-seq datasets [240, 241]. 

The next step for the post-GWAS breast cancer community is to extend the pilot RNA Capture-seq 
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experiment described in Chapter 4 to cover all known breast cancer loci, providing a valuable 

resource for future follow up studies. 

 

Chapter 5 examined the role of the lncRNAs as potential oncogenes influencing breast cancer 

progression. If CUPID2 is confirmed as an independent driver of breast cancer then it may have a 

role as a biomarker for ERα positive disease. The use of lncRNAs as tumour biomarkers in bodily 

fluids or tissue is an area of active research and shows great promise for future management of 

cancer [241, 471, 472]. As a therapeutic target, the tissue specificity of lncRNAs such as CUPID2 

would allow drugs to have a more selective effect and hence reduce the effects on non-breast cancer 

cells which has proved an issue with previous attempts to target genes such as CCND1 and MYC 

[233, 396, 473]. A case in point is the lncRNA PVT1 which is required for the functional 

upregulation of MYC and is highly specific to MYC amplified cancer cells. Drugs specifically 

targeting PVT1 would therefore bypass the toxicity seen with direct MYC inhibition [422]. It would 

be interesting to determine whether CUPID2 overexpression is similarly required to co-exist with 

CCND1 overexpression or whether the two are merely co-expressed due their co-regulation by 

PRE1. 

Targeting interactions between lncRNAs such as CUPID2 and their protein binding partners is of 

particular interest as this represents a promising therapeutic approach which would theoretically 

reduce the off target effects seen with targeting the protein or lncRNA in isolation [473, 474]. The 

field is in its infancy however and a substantial amount of work is required to provide the necessary 

structural  information on the lncRNA-protein interaction and also the initial identification of the 

proteins involved for a specific lncRNA of interest (reviewed in [473]). Another approach under 

investigation is the injection of antisense oligonucleotides (ASO) as has been explored in a mouse 

model of Angelman syndrome where silencing of the lncRNA UBE3A-ATS led to an improvement 

in cognitive functioning [475]. Overexpression of MALAT in lung cancer has also been reduced by 

subcutaneous ASO injection leading to reduced proliferation of tumour cells [436]. One of the few 

methods to target a lncRNA trialed in the clinical setting thus far, used the injection of a plasmid 

expressing diphtheria toxin under control of the lncRNA H19 promoter directly into ovarian, 

bladder and pancreatic tumours [476]. This caused localized production of the toxin only in the cells 

which pathologically overexpressed H19. SiRNA may also be used to directly target an lncRNA as 

was demonstrated in chapter 4 for CUPID1 and CUPID2 and work is ongoing to optimize delivery 

systems for this method in vivo [423, 473, 477].  



 

Chapter 6 Page 164 
 

Another treatment possibility is based on the observation that PRE1 has many properties consistent 

with a super enhancer including high levels of p300 and master TFs such as ERα and FoxA1 [135]; 

DNase I hypersensitivity levels a magnitude higher than the average enhancer [275]; and it is part of 

a DNA region containing multiple enhancer elements with epigenetic marks consistent with activity 

in breast tissue [103, 277]. Super enhancers are predicted to emerge near genes that contribute to the 

Hanahan and Weinberg ‘hallmarks of cancer’ which would include the cell cycle regulator CCND1 

[101, 290]. This is the case in colorectal cancer where such an enhancer is created at the 11q13 

locus to drive the over expression of CCND1 and subsequent cell proliferation [101]. This is of 

more than just academic interest as super enhancers are also characterized by their exquisite 

sensitivity to inhibition of the transcriptional co-activator BRD4 which induces a dramatic reduction 

in expression levels of key super-enhancer driven oncogenes such as MYC [104]. Super enhancers 

have also been targeted by genome editing strategies which caused collapse of the super enhancer 

cluster and up to 85% reduction in expression of the target oncogene [105, 478]. Further studies are 

required to demonstrate whether this will translate to a significant effect on tumour growth in the 

clinical setting, however initial work on BRD4 inhibitors has shown promise in reducing cancer cell 

growth in vitro [479, 480]. Given that the presence of PRE1 is required for significant expression of 

CUPID1 and CUPID2 (Figures 4.14 and 4.15), the effect of such BRD4 inhibitors on PRE1 

activity and subsequent CUPID1, CUPID2 and CCND1 expression would be interesting to explore.  



Conclusion 
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This thesis proposed that common genetic variants at 11q13 increase breast cancer risk by 

disrupting long-range regulatory elements and that the target genes (coding or non-coding) have a 

role in the pathogenesis of breast cancer. With the release of COGS data and the many functional 

post-GWAS studies which have been carried out on breast cancer it has become clear that the 

majority of risk at GWAS loci is mediated through the effects of SNPs on regulatory elements 

(reviewed in [45, 481]). Chapter Three explored different approaches to finding genes that may 

interact with the risk-SNP containing regulatory elements PRE1 and PRE2. As a result, two genes 

(CPT1A and IGHMBP2) potentially mediating risk at the locus were prioritized for further follow 

up. Chapter Four used RNA Capture-seq to identify non-coding transcripts in the 11q13 region on 

the basis that such transcripts may have important contributions to human disease but are often 

lowly expressed and missed by standard RNA-seq [7]. Two novel lncRNAs, CUPID1 and CUPID2 

were characterized and evidence provided that their expression could be reduced by the risk-SNPs. 

They were also shown to have a role in DNA damage repair which is a common feature of genes 

previously shown to mediate the genetic risk of breast cancer [2]. Chapter Five explored the 

biological significance of CUPID1 and CUPID2 in relation to breast cancer progression as the 

importance of lncRNAs is being increasingly recognized in this regard [241, 355, 423]. CUPID2 

was found to drive cell proliferation in vitro and promote tumour growth in a murine xenograft 

model raising the possibility that it represents a novel oncogene. 

The results obtained thus support the original hypothesis by demonstrating that the SNPs at PRE1 

alter the regulation of target protein coding (CPT1A and IGHMBP2) and non-coding (CUPID1 and 

CUPID2) genes. Evidence is also provided that the novel non-coding genes (CUPID1 and 

CUPID2) have a role in breast cancer, though further work is required in this regard. Overall, this 

thesis highlights the need for breast cancer researchers to look more broadly at the potential genes 

mediating risk in GWAS loci and not be tempted to focus on the nearest or most obvious gene 

target. The approaches described here can be expanded upon for future post-GWAS studies, with a 

broader application of techniques such as RNA Capture-seq and variants of the chromosome 

conformation capture method. The goal of such work is to further our understanding of the 

underlying mechanisms behind breast cancer initiation and progression [26, 34]. This will lead to 

superior targeted therapies to reduce mortality and an improved ability to personalise screening and 

prevention programs based on individual genetic risk. Such a dual pronged approach to reduce the 

development of breast cancer and optimize the treatment of existing tumours will ultimately lead to 

better outcomes for breast cancer patients. 
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8.1 Buffers 

3C lysis buffer  

10mM Tris pH 7.5 

10mM NaCl 

48.9ml of water 

IGEPAL (Sigma Aldrich) to final 0.0004% concentration 

1 tablet of ‘Complete’ protease inhibitor (Roche) 
 

3C ligation buffer  

660mM Tris pH 7.5  

50mM DTT (dithiothreitol) 

50mM MgCl2 

10mM ATP (freshly made from 100mM stock) 

made up to 10ml total volume with dH2O  

 

ChIRP-seq lysis buffer 

50mM Tris-Cl pH 7.0 

10mM EDTA 

1% SDS 

additives only added fresh, just before use 

 

ChIRP-seq proteinase K buffer (for DNA) 

100mM NaCl 

1mM EDTA 

10mM TrisCl pH 8.0 (Use pH 7.0 for RNA) 

add 5% by volume of Proteinase K (Ambion) 20mg/ml fresh before use 

 

ChIRP-seq hybridization buffer 

750mM NacCl 

1% SDS 

50mM TrisCl pH 7.0 

1mM EDTA 

15% formamide  

additives fresh just before use 

 

ChIRP-seq wash buffer 

2x NaCl and Sodium citrate (SSC) diluted from 20x Invitrogen stock 

0.5% SDS 

fresh PMSF just before use 

 

ChIRP-seq DNA elution buffer 

50mM NaHCO3 

1% SDS 
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1:100 RNAseA 10mg/ml (Sigma) 

1:50 RNAseH 5mg/ml (NEB) 

 

ChIRP-seq additives for hybridisation and lysis buffers  

1 pellet of Complete Protease Inhibitor (Roche) dissolved in 1ml water (50x stock) 

100mM PMSF (Sigma) in isopropranol (100x stock) 

Superase-in (Ambion) as 200x stock 

 

Cell Fractionation Lysis Buffer 

15mM HEPES pH7.5 

10mM KCl 

5mM MgCl2 

0.1mM EDTA 

0.5mM EGTA 

250mM Sucrose 

0.4% Igepal 

1mM DTT 

40U/ml RNaseOUT (Invitrogen) 

Protease inhibitor cocktail (Roche) 

 

Cell Fractionation Nuclei Lysis Buffer 

10mM HEPES pH7.5 

0.1mM EDTA 

0.1mM EGTA 

1mM DTT  

40U/ml RNaseOUT (Invitrogen) 

Protease inhibitor cocktail (Roche) 

 

Cell fractionation salt extraction buffer 

25mM HEPES pH7.5 

10% glycerol 

420 mM NaCL 

5mM MgCl2 

0.1mM EDTA 

1mM DTT 

40U/ml RNaseOUT (Invitrogen)  

Protease inhibitor cocktail (Roche) 

 

Immunofluorescence cytoskeleton buffer 

10mM PIPES pH6.8 

100mM NaCl 

30mM Sucrose 

3mM MgCl2 

1mM EGTA 
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Immunofluorescence cytoskeleton stripping buffer 

10mM Tris HCl pH7.4 

1mM NaCl 

3mM MgCl2 

1% Tween-20 

0.5% Sodium Deoxycholate 

 

Immunofluorescence FBT buffer 

10mM Tris HCl pH7.4 

5% foetal bovine serum 

1% bovine serum albumin 

0.05% Tween-20 

100mM MgCl2 

All resuspended in PBS and prepared fresh. 

 

 

 

8.2 Plasmids 

 

1. pGL3-Basic (Promega) for luciferase assays 

             

 

2. pCDH (SystemBio) for lncRNA overexpression 
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3. pCR-Blunt (Life Technologies) subcloning vector 

            

 

 

 

8.3 Taqman Gene Expression Assays 

 

TaqMan Probes   

CCND1 Hs00765553_m1  

ORAOV1 Hs00411598_m1  

MYEOV Hs00993153_g1  

TFF1 Hs00907239_m1  

GUS Hs00939627_m1  

FGF3 Hs00173742_m1  

FGF4 Hs00999691_m1  

FGF19 Hs00192780_m1  

PPP6R3 Hs00217759_m1  

PPFIA1 Hs01548999_m1  

MTL5 Hs01127481_m1  

MRPL21 Hs00698959_m1  

CPT1A Hs00912671_m1  

IGHMBP2 Hs00158054_m1  

 

Table 8.1     TaqMan probes. Used with TaqMan 

gene expression master mix. 
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8.4  siRNA Sequences 

 

siRNA   

C1-1 GGAGAUCCCUACAGAGGAAUU 

C1-2 GGAUGUGAAAUGAGGGAAAUU 

C1-3 GCUUAUAAGUGGAGGAGGAUU 

C2-1 UGUAAAGUGUGGUGAGCAUUU 

C2-2 GGAUGUGAAAUGAGGGAAAUU 

C2-3 GAGCAAUGUUACACGAUAAUU 

C2-4 GCAGUGAGUCCCACGGUGAUU 

C2-5 GGUCCUGAGGGAAGCGGAAUU 

CCND1 GUUCGUGGCCUCUAAGAUG 

eRNA-1 GCGAAAUGUUUAAAGGAAAUU 

eRNA-2 CAUUCUUAAGGCUGCGAAAUU 

Scrambled UGGUUUACAUGUCGACUAA 

Modified Oligos   

M-ASO-D GUCUCCACCCCAGGAGUGAUCCUCU 

M-ASO-E CCUCCGAAACUCGUGUUGAAAUGUA 

M-ASO scrambled CCUCUUACCUCAGUUACAAUUUAUA 

 

Table 8.2     siRNA and M-ASO sequences 

 

 

8.5 ChIRP-seq probes 

 

Chirp-seq Probes   

 LACZ_1 CCAGTGAATCCGTAATCATG 

 LACZ_2 TCACGACGTTGTAAAACGAC 

 LACZ_3 ATTAAGTTGGGTAACGCCAG 

 LACZ_4 AGGTTACGTTGGTGTAGATG 

 LACZ_5 AATGTGAGCGAGTAACAACC 

 LACZ_6 GTAGCCAGCTTTCATCAACA 

 LACZ_7 AATAATTCGCGTCTGGCCTT 

 LACZ_8 AGATGAAACGCCGAGTTAAC 

 LACZ_9 AATTCAGACGGCAAACGACT 

 LACZ_10 TTTCTCCGGCGCGTAAAAAT 

 LACZ_11 ATCTTCCAGATAACTGCCGT 

 LACZ_12 AACGAGACGTCACGGAAAAT 

 LACZ_13 GCTGATTTGTGTAGTCGGTT 

 LACZ_14 TTAAAGCGAGTGGCAACATG 

 LACZ_15 AACTGTTACCCGTAGGTAGT 

 LACZ_16 ATAATTTCACCGCCGAAAGG 
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LNCRNA_1 TTGTATTTGCTGGATGGAGC 

LNCRNA_2 CTTCGATGTCTTCATGTCTC 

LNCRNA_3 ATCACAGGGTGTGTTTTGCA 

LNCRNA_4 ATCTACTCCTTCATGCTGTG 

LNCRNA_5 TCCAGAAGGTCCAAGTTCAT 

LNCRNA_6 CTAAGCAAATGTTGACCAGG 

LNCRNA_7 TCTCTCCAGTCTCTTCTCAT 

LNCRNA_8 CACATCCACTCAGTTCAGAA 

LNCRNA_9 AACCTTCATGCCTGCAAAGT 

LNCRNA_10 TTCTATCCTCACATCTGCTC 

LNCRNA_11 GCTTAAAACAGCACACGTGT 

LNCRNA_12 ATGCGTCTTTCATCTCCATG 

LNCRNA_13 CCCAGCCACTTTCTCTTTTT 

LNCRNA_14 TTGGGTGCCATTTCTTTGAC 

LNCRNA_15 ACCCAAACCAAGCTGACAAA 

LNCRNA_16 GTGCTTTGGAAATAGTGCAG 

Table 8.3     ChIRP-seq probes. The lncRNA probes 

were split into even and odd pools for the experiment. 

 

8.6 Primer sequences (all primers presented 5’ to 3’) 

 

Primer Name Primer Sequence 

CUPID promoter cloning primers 
 CUPID1cloningKpnF1 GGTACCGAGAGAAAAGAAAAAACAAGTGGGTGG 

CUPID1cloningXhoR1 CTCGAGGCTTACGATCTCAAAGCTGTTAGAGACC 

CUPID2cloningXhoF1 CTCGAGGAGAGAAAAGAAAAAACAAGTGGGTGG 

CUPID2cloningKpnR1 GGTACCGCTTACGATCTCAAAGCTGTTAGAGACC 

  CUPID expression primers 
 CUPID2expressionF1 AGGCTAGGAAGATGTGCACCTGC 

CUPID2expressionR1 CCTCTGCCTCTTCTCATCTGACG 

CUPID1expressionF1 AGACCTGGTCAACATTTGCTTAGAACC 

CUPID1expressionR1 TCACATCCACTCAGTTCAGAACCCTGC 

  CUPID2 Cloning Primers 
 CUPID2NheIF1 GCTAGCAGACTTTGCCCTCACAGGCAAG 

CUPID2NotIR1 GCGGCCGCGCGGTTTAAATCGCAAACATTTATTTC 

  Gene expression primers 
 HOTAIR expressionF1 GCAGTGGGGAACTCTGACTCG 

HOTAIR expressionR1 TCAGTGCCTGGTGCTCTCTTACC 
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MALAT expressionF1 GAATTGCGTCATTTAAAGCCTAGTTAAC 

MALAT expressionR1 GTTTCATCCTACCACTCCCAATTAATC 

GAPDH expressionF1 GAAGGTGAAGGTCGGAGTCAACG 

GAPDH expressionR1 GCCATGGGTGGAATCATATTGG 

TBP expressionF1 CATGGATCAGAACAACAGCCTGC 

TBP expressionR1 TTGTGAGAGTCTGTGAGTGGAAGAGC 

BACTIN expressionF1 GGAAATCGTGCGTGACATTAAGG 

BACTIN expressionR1 AGTACTTGCGCTCAGGAGGAGC 

  3C NCO PRIMERS FOR CUPID PROMOTER 

11q13Ncofrag9up4F1 ATTTGTGCAGAGGAGACCCAGAAAGCAGG 

11q13Ncofrag9up3R1 GAAGTGCCTCCTTGTCTGCCTTCCTGG 

11q13Ncofrag9up2R1 GAGACAGCATCTGATTTGGGAAGCGACC 

11q13Ncofrag9up1R1 GTCCTCGGTGCACAGGCTGTAATCAGC 

11q13Ncofrag9int1R1 CTCCTGGAATAGAGATGACACCGTGCTGC 

11q13Ncofrag9int1F1 CTGATGCAGCTCACTGTGGCAAAAGACC 

11q13Ncofrag9dn1F1 AGTCCCAGCAATGCTACCCAGAGCAGG 

11q13Ncofrag9dn2R1 CAAAAGGGACAATTGCAGACCATCACGC 

11q13Ncofrag9dn3F1 TCCATTGAAGCCTCTGCCAGCCTCC 

11q13Ncofrag9dn3R1 CTTGCTGTGTCTCCCTCTTACCCTGGTCC 

11q13Ncofrag9dn4R1 TAATCCCTGTCCACTGTGCTCCAAATGTCC 

NcoDpnDigEffREV GTGCTGTTCTGGGACAATCTGG 

NcoDpnDigEffFOR CAGCATGCCCTCAGTTCTCG 

3CGAPDHConFor TGATGACATCAAGAAGGTGGTGAAGCAGG 

3CGAPDHConRev GAAATGAGCTTGACAAAGTGGTCGTTGAGG 

  TALEN 
 TalenbreakF1 TCTTGCACTGCCTTGAGACTTGG 

TalenbreakR1 GGTGACTCACACAAGTGGTCTTCC 

  Sequenom probes  

rs78540526_F ACGTTGGATGCCTCTAAACTGCAGCAGTTG 

rs554219_F ACGTTGGATGAGGTGCTGGGTTGACTGTG 

rs661204_F ACGTTGGATGTGTCCTCTCCAAATCTCAC 

rs78540526_R ACGTTGGATGATGTTCCCATGGACCTGAGC 

rs554219_R ACGTTGGATGTGTTGTGTGATTCCACTCCC 

rs661204_R ACGTTGGATGAGCCATTCATGAGGAGTCCA 

rs78540526_E AGCTCTTCCCAGCAC 

rs554219_E GCAGGGAAATCCTCAC 

rs661204_E TGGTGGAAAGAGTTTTGAT 

  CUPID EcoRI 3C primers 
 11q13EcoRIPRE1intF1 TTAGCCCAAGCATCTCTTCCCTGGATGG 

11q13EcoRIup4R1 AGGAGCTCTCTATTCAGCAGGTCACCTCAGC 

11q13EcoRIup5R1 CCAACCACTGTGTGGGTTACAGCAAAGAGG 

11q13EcoRIup6R1 CCATCCCACCACAGAGCCTGATATCTGG 

11q13EcoRIup7R1 TATGACTCCAACCCTGTGACATACGGAAAAGG 
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11q13EcoRIup8R1 CCTGGGGTCTTCGATGTCTTCATGTCTCC 

11q13EcoRIup9R1 CTTGCTAGGGGTCAGCACTGTTCCAATATCC 

11q13EcoRIup10R1 GGTGACGTGTGCATGCGATGTATCTGG 

11q13EcoRIup11R1 CTCCTGAGTCCCAAAACCTGTCCTCACC 

11q13EcoRIup12R1 ACTCCGTGACCACCCTGTCACCTTGTACC 

11q13EcoRIup13R1 CTCCCACCACTCTGACTACCTGCTTCTGTCC 

11q13EcoRIup14R1 GAATGGGACCCAGGATACCTGCTTCCTATACC 

11q13EcoRIup15R1 TCAAGTGGGTGGCTGCACTAGAGGTCC 

11q13EcoRIup16R1 CTCGAGGAAGTGAAAGCCAGATGGTGC 

11q13EcoRIup17R1 GATGAAGTGATTGTGTGGCTGACAGAATGG 

11q13EcoRIup18F1 TGTGGGACCCTTTGCAGATTACTCTGAACC 

11q13EcoRIup19R1 TAGGGAGTGCTGTGAAGGGTGCATTTGG 

11q13EcoRIup21R1 AGGTGTTAGGACCTTGAAGTCAGGACAGTTGG 

11q13EcoRIup22R1 AAGGAGGAAAACGTAGCTCTCAGACCAAGTCC 

11q13EcoRIup23R1 GCATTGTGCACCTACTGCACACCAGG 

11q13EcoRIup24R1 GGGACATTTTAGACGTGGGAAGGAGAGTGG 

11q13EcoRIup25F1 CAAAGACCCCTCCTCACATAACCCTGAGC 

11q13EcoRIup26F1 CGTGAGAGTAACGCTGACCTCATGGAACG 

11q13EcoRIup28R1 TTCTCCTACTTCCCCAAGTCAGTCTCCCTGC 

11q13EcoRIup29F1 GGTGCGATGACTGGAAAGGATGCTGG 

11q13EcoRIup31F1 AATGCCTGCTATTTAGGCACTCGTGTGTGG 

11q13EcoRIup34F1 AAGGCACTTCCACTGTGGGAGAGAGAGG 

11q13EcoRIup35F1 CTTTAAGTCTTGGGTGGGAACTCAAACTGTGG 

11q13EcoRIup36F1 GGAAATCCCTCCTGCATCCCTCTTCC 

11q13EcoRIup38F1 GTCCACAGCAACTGACGCACAGAGAAACC 

11q13EcoRIup41F1 GGATGGTGTTCACCCACCCTGAGAAGG 

11q13EcoRIup42R1 CACACCACACCACGGATGAATTTCAAAGC 

11q13EcoRIup43R1 AGCAGTTTTATCAACCTGTGAGCAGCCTCTCC 

11q13EcoRIup44F1 CTGCTGGTATGCTCTGTGCCTTCCTTGG 

11q13EcoRIup45F1 ACAGATGGTGCCAAAGAGAAGCCCAGG 

11q13EcoRIPRE2F1 GGAAATGGCTTTGAACACCATCCACAGG 

11q13EcoRIPRE2R1 AATGATGGCAGAGTTCTTATGGGCACTTTGG 

  PRE1 eRNA 
 PRE1eRNAR1 AGAGTTTTGATCATGGGGTGGACTCC 

PRE1eRNAF1 TTGCTCTTCCTGGACACTTGGTGC 

  ORAOV1 cloning primers 
 ORAOV1PromoterkpnF1 GGTACCGAACCAAGCTTTTCCCAAACAACC 

ORAOV1PromoterxhoIR1 CTCGAGCAGCTTCAGGCACAAATGCTCC 

  ORAOV1/CCND1 HindIII 3C 
primers 

 11q13ORAOV1HindInt1F1 TCACATTCACAGATCGGGTGCTACCAAGG 

11q13HindFrag6R CCTGCACCCTGGAGTGTCTGACAATTCTT 

11q13HindFrag9R CGTGGTCTGTGCTTAGGAGAAGACGTGG 

11q13HindFrag10R2 (PRE1) CCAGAGAGTCCCGTTATGGGATTCCCC 

11q13HindFrag12R CCAGAGATCCAGAGACCTACAGTACAGCATGAG 
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11q13HindFrag13R GAGAGTGGGAGTTGCCACATACTTTGAAATGAC 

11q13HindFrag14R CCACCTGAGACTTTGGCAGCCTAGACTTCA 

11q13HindFrag15F2 GGACGACCTGGGATTCGTAGATGACTCC 

11q13HindFrag16F GGAGACCAAAGCAGCGAGAGCTGG 

11q13HindFrag17R GCTCCGTTTCCTCTGGTGCGAGAATAAGAT 

11q13HindFrag18F CCCTCCCTTCACTTGTTTAGAAATGCACTGG 

11q13HindFrag19F1 TTGGGTGGCCGCCTAAGTCAAGAGG 

11q13HindFrag20F CCATCCTCTGGAAGACAGGCACAGTGC 

11q13HindFrag21F AGACTGTGCAACTGAGAGAACGGTGCTGC 

11q13HindFrag22R GGAGCAACGAAAGTAGATGCCACTTCAAACC 

11q13HindFrag23F GTATGAAAAGCAGCTACAGCAGGGCTTAGAGG 

11q13HindFrag25F CCACTTCTTGGACCCTAGAGCCTCGAAATCC 

11q13HindFrag27R CCAAGAGGGAGAGCGAAGTCACAACAATAC 

11q13HindFrag28R CCAGGCACGCTTGGATGCGTTAGTCTGAGA 

11q13HindFrag29R2 GCGGAGGTTGTACATGAGGTTAAGGAAAGAAGC 

11q13HindFrag30F2 GGTCATCGGGATCCACAGGTTCATGG 

11q13HindFrag31R2 GCAGAAGCCTTTGGCCCAACTTTGC 

11q13HindFrag32R1 CTTTACTCTTTCCAAGCGCGGCAGAGC 

11q13HindFrag33R1 ATTGCCCAGGCTTGCCGAATACACC 

11q13HindFrag34F GCTGTGCTGGTTGACTCCTGGTATTCAAAGG 

11q13HindFrag35R CAACAGGAACCTTGGTCTTGGACGTCTGG 

11q13HindFrag37R2 CCTAGAAGTCCGAGGAGCCTGGCTGTACATAT 

CCND1hindfragUp3F2 TTAAAACCAAAAGCCACCAGGCACAGTGG 

CCND1HindFragUp2F1 TGACTTGGGTGAAGAGGGTCTTGGAACG 

CCND1HindFragUpF1 CCCGTGACTCCCCTACATTGCATCTCC 

CCND1HindFragIntF1 CAGCAGATGCTATCTAGGGTCCACCTGCC 

CCND1HindFragDnR1 GCTCTCTCAGGAAAATGGCTCAGAAACACC 

CCND1HindFragDn2F1 CAGGGATTGGCAGGTTTTCTGGAAAGG 

CCND1hindfragDn4F2 GGCTTGGACAACTCACTGAACCCTTGAGG 

  ORAOV1 NcoI 3C primers 
 ORAOV1Nco1up1F1 ACAGGCTCCCAAACCCAAGCACACC 

ORAOV1Nco1up4F1 CCAAGTCTTGTCAATAACTTGCTGTGT 

ORAOV1Nco1up5F1 CTGTCATGGATGCTGTCCTGAGAATAA 

ORAOV1Nco1up6F1 GGACAGTCTGTAGCACAAACGTCCAT 

ORAOV1Nco1up7F1 GGTTGGGTCACCTGAAATCCCTCTGTG 

ORAOV1Nco1up7R1 CGTGGTAAATGCGTGATAAATGCTCTT 

ORAOV1Nco1up8F1 AGACGCAGCACAGCCTGGATTTACGA 

ORAOV1Nco1up11F1 GTGACTCTGGGCAAGGAGCAGTTTCT 

ORAOV1Nco1up12R1 GTAGTTCTTGCAGCAGCGGCTCTGATG 

ORAOV1Nco1dn2F1 GCTTGCCAAGTGGAAAGTGCGTGG 

ORAOV1Nco1dn3F1 GTTGCATGAACGATTCGCTTCCTGAGG 

ORAOV1Nco1dn4F1 TGACCGCAAGGCTCACTCTCCAAGAG 

ORAOV1Nco1dn5R1 GAATTTCAACATGCCTGTCTTGCTTAG 

    

 

Table 8.4    Primers used for thesis. The sequences are given 5’ to 3’. 
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8.7 CUPID1 and CUPID2 Sequences 

 

CUPID1Isoform(1) 

 

tgtggggcagagggcagcctgagcatctgcaaacagagtggctcacagagaggacacctgccctgaggacacctgcaggagatccctacag

aggaagggctagaccaggctccatccagcaaatacaaactcatctggaagcattaaaacaatggaagcagggcctgctgtgcgccagctgct

ggagacatgaagacatcgaagaccccaggccttgacctccaagagcccccagtttggtggaagaaacaaacaaggagactgcaaaacacac

cctgtgatggggagggttgaggtggccagtgggagaggcgagctggcagggctcagtggtgaggtgaaggtgtgggagcagggacacag

catgaaggagtagatggccaggttgagctttgcaggctccagggggaggataaagagctgacacctggaacgtgcttggaacagcaggtgct

cggtcagtgcagccacgaccatcccgtcctgcatccccaccatgaacttggaccttctggaaggaccttgcttatcccagcatccacacatccttg

accagacctggtcaacatttgcttagaaccgcctggctgctgggatgagaagagactggagagagaccacgatggaagccaggaggccaac

gaggagttggggtagtcctccagggagacatgatgtggcttcagccccagtggtgatggcggggtagagccagcagggttctgaactgagtg

gatgtgaaatgagggaaagagggatgctgcggtcggcagaatcgtgcctcccgcaaagatgccccatcctaacccgtcacccttgacagtga

gacctccaccacaaaggggactttgcaggcatgaaggttaaggaccctgagaggaggagatggccctggactgtctggcgggcccagcatc

atcacaagggtgcttataagtggaggaggaggcagggggagccgagcagatgtgaggatagaagcagaggtcggagggacgtgctgttgg

cttgagatggaggaggacctatgagccaaggagcatgggcggcctctggaagccagaaagggcaaggcctcttcccggagcctccagcag

aacccagccccgctgccacctcgactgcagaacggtgacaccgtgtccgattcccgacctccagaaccgtgagataacacgtgtgctgttttaa

gccactgcaattgtggtatttgtcacagcagccataggaaactgtacgggggttaaagaggacctgctgacctctgagctcacactgaagcctcc

tggaatgctgtgggttgtgagctgggatgagaacgcagcatggagatgaaagacgcatccacccaggaaggcccactggcatcgcaatctca

gggaagattcccaggctgaaaaaagagaaagtggctggggtggcactgaatgccccacgtcaaagaaatggcacccaagccgtccgtcagt

ccctcacctgccacacagacagcaccttggacccagcaagatgtcactcaccacattgatgctgtccacaggcatcgccttgcttttgcagctctg

tgtgagatttgtcagcttggtttgggtctggggctgtattagagctgtcagcctaggagcctaccctagttttgtgtctgcactatttccaaagcactg

gaataaaaggcattttaaccaac 

 

 

CUPID1 Isoform (2) 

 

tgtggggcagagggcagcctgagcatctgcaaacagagtggctcacagagaggacacctgccctgaggacacctgcaggagatccctacag

aggaagggctagaccaggctccatccagcaaatacaaactcatctggaagcattaaaacaatggaagcagggcctgctgtgcgccagctgct

ggagacatgaagacatcgaagaccccaggccttgacctccaagagcccccagtttggtggaagaaacaaacaaggagactgcaaaacacac

cctgtgatggggagggttgaggtggccagtgggagaggcgagctggcagggctcagtggtgaggtgaaggtgtgggagcagggacacag

catgaaggagtagatggccaggttgagctttgcaggctccagggggaggataaagagctgacacctggaacgtgcttggaacagcaggtgct

cggtcagtgcagccacgaccatcccgtcctgcatccccaccatgaacttggaccttctggaaggaccttgcttatcccagcatccacacatccttg

accagacctggtcaacatttgcttagcctctgccagcctcctctcacccattcctgcatgtgccgcaccaatctgtgtggagcgcccactccagcc

aggccctgctctatcagcaaactcagcaggcagaacccctgccccatggcgctgcttcagcgtggtgagacaggaaccgcctggctgctggg

atgagaagagactggagagagaccacgatggaagccaggaggccaacgaggagttggggtagtcctccagggagacatgatgtggcttca

gccccagtggtgatggcggggtagagccagcagggttctgaactgagtggatgtgaaatgagggaaagagggatgctgcggtcggcagaat

cgtgcctcccgcaaagatgccccatcctaacccgtcacccttgacagtgagacctccaccacaaaggggactttgcaggcatgaaggttaagg

accctgagaggaggagatggccctggactgtctggcgggcccagcatcatcacaagggtgcttataagtggaggaggaggcagggggagc

cgagcagatgtgaggatagaagcagaggtcggagggacgtgctgttggcttgagatggaggaggacctatgagccaaggagcatgggcgg

cctctggaagccagaaagggcaaggcctcttcccggagcctccagcagaacccagccccgctgccacctcgactgcagaacggtgacaccg

tgtccgattcccgacctccagaaccgtgagataacacgtgtgctgttttaagccactgcaattgtggtatttgtcacagcagccataggaaactgta

cgggggttaaagaggacctgctgacctctgagctcacactgaagcctcctggaatgctgtgggttgtgagctgggatgagaacgcagcatgga

gatgaaagacgcatccacccaggaaggcccactggcatcgcaatctcagggaagattcccaggctgaaaaaagagaaagtggctggggtgg

cactgaatgccccacgtcaaagaaatggcacccaagccgtccgtcagtccctcacctgccacacagacagcaccttggacccagcaagatgtc

actcaccacattgatgctgtccacaggcatcgccttgcttttgcagctctgtgtgagatttgtcagcttggtttgggtctggggctgtattagagctgt

cagcctaggagcctaccctagttttgtgtctgcactatttccaaagcactggaataaaaggcattttaaccaac  
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CUPID2 Isoform (1) 

Gcaagacagccacaccttgaactctgactcaaggaagagagtgggcagctcaccagagaggccagaggaggcggcaggaaggtggggtc

tctccagccaggggcttcctgaaagagctgccttctgagcaggccccccaggctaggaagatgtgcacctgccgagctgggcaggagagggt

ggcccagtggaggacccagcatgggcagaggtttggaggtggcaggtcctgagggaagcggaaggcagccaggttgtgacagcctgtgag

gacctcttggctcccggagccttctctctcctggaatagagatgacaccgtgctgccattgaactcaacccgaaaaaatgatctgttgcaaagctc

acaggaaataatggagcaatgttacacgataaactgtaaagtgtggtgagcatgtgaacaagcgtccaggacccagcgaagccccaggctact

gggctaggcgtcagatgagaagaggcagagggcaacctcctgtaggatctgaggccttcatgtgctcagcccatggctgtcgtcacggtgacg

tgtgcatgcgatgtatctgggccatccttgttcttgaacgcgggcagtgagtcccacggtgatgtggcatgtcacgagctgaaggaggggcacc

tgcattcaggcttgcgaaccagcgagacagcctttggacctttcggagcctcactttcccacactaagaattggagtggaattcccaaggtgctg

gaggttgaaaggcattgagaatctaaaacgctttgcagacagcaagaccctctgtgtaagttaagaatgctcactcagtcccagcaggtactcag

agggatccttttatttctccagaacattctgcaggtgagctggggaagcccactggctccagggactgccaggagggccccagggaagggga

gccgggaagcgttttggctgcctccggcgtgaagtcgtgcaaacagccattgaatctgccagtgacttggtcgtggagttccagcctccagaact

gtgagaaataaatgtttgcgatttaaaccgca 

 

CUPID2 Isoform (2) 

 

cagactttgccctcacaggcaagacagccacaccttgaactctgactcaaggaagagagtgggcagctcaccagagaggccagaggaggcg

gcaggaaggtggggtctctccagccaggggcttcctgaaagagctgccttctgagcaggccccccaggctaggaagatgtgcacctgccgag

ctgggcaggagagggtggcccagtggaggacccagcatgggcagaggtttggaggtggcaggtcctgagggaagcggaaggcagccag

gttgtgacagcctgtgaggacctcttggctcccggagccttctctctcctggaatagagatgacaccgtgctgccattgaactcaacccgaaaaa

atgatctgttgcaaagctcacaggaaataatggagcaatgttacacgataaactgtaaagtgtggtgagcatgtgaacaagcgtccaggaccca

gcgaagccccaggctactgggctaggcgtcagatgagaagaggcagagggcaacctcctgtaggatctgaggccttcatgtgctcagcccat

ggctgtcgtcacggtgacgtgtgcatgcgatgtatctgggccatccttgttcttgaacgcgggcagtgagtcccacggtgatgtggcatgtcacg

agctgaaggaggggcacctgcattcaggcttgcgaaccagcgagacagcctttggacctttcggagcctcactttcccacactaagaattggag

tggaattcccaaggtgctggaggttgaaaggcattgagaatctaaaacgctttgcagacagcaagaccctctgtgtaagttaagaatgctcactca

gtcccagcaggtactcagagggatccttttatttctccagaacattctgcaggtgagctggggaagcccactggccctggcctcacccccgagc

ccgagccttcagcctgggaatggtctggcctcttccttgctggctctccagcctggcctcgcaggaccctgggcgggaccccaggaaccctca

cccgctatgtgcttccccaagaagcgctccctgtggcctaatttgagaaaacaatgggcctcaatccatattaatgaccctagagggaccctttgt

cctcggtgcacaggctgtaatcagcggggctccgggggctctggcctaatttggagggacaggttttatcatcacccttgattcgggtgacccaa

tctgacaggcccacgaccccctgtatgcggggtccacgtcagagatgggcttcctcccagcggcccaccccagcgggctggggagagggaa

gggggaggtggtggccatgggggaagttcggggtgaagaaggggtcacagccagacccccacttggatgggcctgtgatcgggttctcggg

aggagcaggatattgattagatcagtgaatggtgtggaggcagctctccccaggcacgtgctcccgaccacccaccagcaagcgtctgttgcct

gccggtgccagggctgggtggggactctgggacaggccggctgcctaggaggggccaggcaggagccaaggggctggctccagggact

gccaggagggccccagggaaggggagccgggaagcgttttggctgcctccggcgtgaagtcgtggaaacgtgtttgcaggttagggccgtg

gcatcctcgttgcaccatttgagcgcctatggggtgccagatacatgacaaagggccacctcatttaatgcttccctcaaccttcccaggccccga

tccccatgttctgggtcaggaggcccattcgaggtcaaggggtgggcgaaggctgacgagacaaacccagggactagctcctgagtcccaaa

acctgtcctcacccacccaggggtcccctgcacgctctccagggtgtgcggtgcgtggctgctgggtttgggtgcattagagcctgaggcaag

ggcttgagtctgaattctcgctacggaccaaatgtgtgcgtcctccctaaatacatatgttgaagccttaactcccaatgtgatggcattaggagag

gggacctgtggaatgtagttgagtcctgagggtgcggccccgtgatgaaattagtggcctgataagaagaggcccagagaaccggctctgtct

ctgctctctgtcgcacgaggaccccacaagaagacggccacctgcaaacagccattgaatctgccagtgacttggtcgtggagttccagcctcc

agaactgtgagaaataaatgtttgcgatttaaaccgca 

 

 




