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Non-small-cell lung cancer (NSCLC) is the major cause of cancer-related deaths world-
wide, due to its high incidence and mortality [1]. The challenge posed by this disease has
led to an impressive scientific development in terms of knowledge of molecular pathways
associated with tumor progression and innovative therapeutic approaches; hence, the
current therapeutic landscape of NSCLC is notably complex and strictly linked to the
molecular profile of each specific tumor. This concept is extremely relevant, as it implies
that the evolution of NSCLC management has proceeded in parallel with the growth of
molecular biology and the affirmation of approaches based on precision medicine [2,3].
Indeed, the optimal treatment of advanced NSCLC requires the evaluation of multiple
actionable oncogenic alterations in genes involved in cell proliferation. Notably, physicians
involved in thoracic malignancies have become used to the periodic update of therapeutic
algorithms due to the periodic inclusion of novel oncogenic drivers, and nowadays, ap-
proximately 15–20% of newly diagnosed NSCLC patients harbor an actionable oncogenic
driver [4]. While most patients with advanced NSCLC do not harbor actionable drivers (as
far as we know) and are hence eligible for treatment with immune checkpoint inhibitors,
either alone or in combination with chemotherapy, appropriate molecular characterization
still plays a role in this patient subgroup. Indeed, on the one hand, it is acknowledged that
most major oncogenic drivers (such as EGFR and ALK) are associated with poor response
to immunotherapy, and failing to identify such patients results in poor outcomes [5,6]; on
the other hand, the emerging mutations not considered drivers but with potential impact
on the efficacy of immune checkpoint inhibitors, such as KEAP1 or STK11, as well as
other molecules involved in tumor microenvironment, are becoming a subject of interest in
immunotherapy research, and might eventually reach relevance for introduction in clinical
practice [7,8]. Previously, the relevance of molecular characterization for NSCLC has been
limited to the advanced stage; however, the role of targeted therapies in localized NSCLC
are being explored in clinical trials, some of which are currently ongoing [9,10]. The most
prominent example of this evolution is the ADAURA study, which demonstrated outcome
improvements with adjuvant osimertinib [11].

The first consideration based on the current context is that the technology for the
detection of molecular alterations is rapidly and constantly improving, with increasing
sensitivity in terms of gene detection, including both acknowledged and novel, uncommon
mutations; the second consideration takes into account the increasing availability of tar-
geted therapies, with a non-negligible degree of variation among the different regulatory
agencies. These improvements pose further challenges: on the one hand, pathologists and
molecular biologists must continuously make efforts in terms of training and upgrades of
laboratory tools; on the other hand, medical oncologists are required to make clinical deci-
sions for patients with uncommon molecular alterations (including uncommon mutations
in both acknowledged targets and uncommon novel targets), for which limited research is
available so far, and targeted agents may exist while not being readily available through
national healthcare services. An emerging approach to address these potential issues is
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represented by the institution of molecular tumor boards, which are expected to include
personnel with the skills and resources needed for the optimal management of patients
whose tumor harbors a complex molecular profile [12].

Another concept, strictly linked with the development of molecular biology and tar-
geted therapy, is represented by the study of resistance mechanisms developed during
treatment with targeted agents, which result in clinical disease progression. Notably, the
identification of said mechanisms is expected to result in the development of novel thera-
peutic strategies designed to either manage and counteract resistance-based progression, or
to prevent the occurrence of acquired resistance in first place [13]. While the latter approach
seems reasonable to prevent the most common acknowledged mechanisms of resistance,
such as the development of MET alterations during treatment with EGFR inhibitors, the
former approach appears more suitable when various, singularly uncommon, acquired
mutations occur. One major limit to this approach is the necessity to re-characterize the
tumor at progression, with potential discomfort for the patient and perception of time loss,
especially when new actionable drivers are not identified. One possible answer to this
issue is represented by the employment of liquid biopsy to detect novel mutations from
peripheral blood. This emerging approach is rapidly evolving in terms of accuracy, and its
potential applications are currently being explored in the translational and clinical setting.
In particular, by making the molecular characterization more accessible compared with
conventional biopsy, blood-based liquid biopsy allows for repeated sample collection from
each patient, thus providing an unprecedented opportunity for longitudinal monitoring.
Furthermore, the nature of liquid biopsy should make its molecular profile representative
of the whole neoplasm, hence overcoming the limits of conventional biopsy due to tumor
heterogeneity. Notably, while liquid biopsy is extremely promising, histology-based as-
sessments, such as histotype diagnosis and the identification of morphologic shift during
targeted therapy (including transformation to small-cell lung cancer) are still beyond the
possibilities of liquid biopsy [14–16].

Similar to other fields of medicine, molecular oncology is expected to benefit from the
increasing applications of artificial intelligence (AI). In this context, predictive algorithms
can provide a large amount of information able to aid in histomolecular diagnosis; two
major examples of these applications are represented by digital pathology and radiomics.
In digital pathology, AI-based algorithms are applied to scanned tumor slides in order to
detect features invisible to the human eye and predictive of specific molecular profiles [17].
In radiomics, a similar concept is applied to radiologic imaging, such as computed to-
mography scans, in order to detect features associated with an increased probability of
harboring particular molecular profiles, such as activating mutations of EGFR [18]. The
development of such technologies might eventually lead to wide use in common practice,
with subsequent improvements in personalized medicine.

In conclusion, molecular oncology and precision medicine have made a huge leap in
the last few years, resulting in significant survival advantages in different malignancies,
and particularly in NSCLC. However, in spite of the impressive achievements, there is still
huge room for improvement. The continuous study of emerging molecular alterations and
the development of novel treatments capable of exploiting oncogenic drivers remain major
objective in thoracic oncology.
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