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ABSTRACT. In this paper we proposed a new long-term distribution derived from the exponentiated com-
plementary exponential geometric distribution (LECEG). The LECEG distribution is obtained straightfor-
wardly from the exponentiated complementary exponential geometric (ECEG) and accommodates decreas-
ing and unimodal hazard functions in a latent complementary causes scenario, where only the maximum
lifetime among all causes is observed. We derive the density, quantile, survival and failure rate functions for
the proposed distribution, as well as some proprieties such as the characteristic function, mean, variance and
r-th order statistics. The estimation is based on maximum likelihood approach. A simulation study is per-
formed in order to assess the performance of the maximum likelihood estimates. The practical importance
of the new distribution was demonstrated in three real datasets.

Keywords: exponentiated complementary exponential geometric distribution, latent competing risks, long-
term survivals.

1 INTRODUCTION

Survival analysis are usually considered in areas such as public health, actuarial science and
industrial reliability having with initial approach the exponential distribution. The use of the
exponential distribution requires that the failure rate function be constant. However, sometimes
the constant failure rate is not satisfied and so distributions which non-constant failure rate are
necessary. The literature is vast and grows constantly and interested readers can refer to Adamidis
& Loukas (1998), M. Chahkandi & Ganjali (2009), Louzada et al. (2011), Morais & Barreto-
Souza (2010), Cancho et al. (2011), F. Hemmati et al. (2011), Bakouch et al. (2011), Louzada et
al. (2013) amongst others.

Adamidis & Loukas (1998) proposed the exponential geometric (EG) distribution. The EG dis-
tribution is a compound of the geometric with the exponential distribution. The EG distribution
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20 THE LONG-TERM EXPONENTIATED COMPLEMENTARY EXPONENTIAL GEOMETRIC DISTRIBUTION

is characterized in a latent competing risks scenarios (Louzada-Neto, 1999) where the competing
causes are unknown and only the minimum failure lifetime is observed. It also accommodates
decreasing failure rates. Louzada et al. (2011) proposed the complementary exponential geomet-
ric (CEG) distribution. The CEG distribution is characterized in a latent complementary risks
scenarios and accommodate increasing failure rate. The latent complementary scenario is char-
acterized where the competing causes are unknown and only the maximum failure lifetime is ob-
served. Yamachi et al. (2013) proposed the exponentiated complementary exponential geometric
(ECEG) distribution which is a generalization of the CEG distribution. The ECEG distribution
accommodate increasing and decreasing failure rates.

In some cases one part of the population is not susceptible to the event of interest and according
to R. Maller & X. Zhou (1996), it seems adequate to consider the two components mixture
model, where a component represents the survival time of susceptible individuals to a certain
event (in risk – IR), while the other component represents the survival times of the not susceptible
individuals to the event (out of risk – OR), allowing infinite survival times. An individual belongs
to one group or another with certain probability.

The two components mixture model has been used in medicine, especially for data analysis of
cancer clinical trials were we observe the time to occurrence of death, or the time until the out-
break of a disease, but in the presence of a significant proportion of cured or immune patients
(J.W. Boag, 1949; J. Berkson & R.P. Gage, 1952). Farewell (1982) worked with some distribu-
tions with long term survivors, (Maller & S. Zhou, 1995) discuss test for models with presence
of people immune to event, (Chen & Ibrahim, 2001) analyse maximum likelihood method to
estimate models with cure fraction and missing covariates, (Cancho et al., 2009) introduced the
Log-exponentiated-Weibull Regression Models with cure rate, (Perdona & Louzada, 2011) with
a failure rate model in the presence of immune patients.

The long-time model formulation using the components mixture model is described as following.
Let Y be a random variable that represents the time until the occurrence of a event of interest,
and p be the probability of an individual belongs to the group OR. Considering that exist the
possibility of the individual be not susceptible to the event of interest, the improper population
survival function is given by (R. Maller & X. Zhou, 1996), S(y) = pSO R(y) + (1 − p)SI R(y),
where SO R(y) and SI R(y) are the survival functions of the individuals OR and IR, respectively.
The individual in OR not present the time of the event of interest, so SO R(y) = 1. Then, S(y)
can be rewritten as,

S(y) = p + (1 − p)SI R(y). (1.1)

From (1.1), limy→∞ S(y) = p, and therefore the survival function is improper and the limit
correspond to the OR proportion.

Considering that the event of interest may be caused by unknown number of competing/comple-
mentary causes (Louzada-Neto, 1999), we have a scenario with latent competing/complementary
failure causes in presence of long-term survivals. We can use for SI R(y) the EG or CEG distri-
butions, amongst others. For example, (Roman et al., 2012) presented the LEG distribution, that
uses the EG distribution in SI R(y).
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Assuming that the SI R(y) is given by the ECEG distribution, we have

SI R(y) = 1 −
(

θ(1 − e−λy)

e−λy(1 − θ)+ θ

)α
. (1.2)

Using (1.2) in (1.1) we have the survival function of the long-term exponentiated complementary
exponential geometric (LECEG) distribution.

The paper is organized as follows. Section 2 presents the density, quantile, survival and failure
rate functions for the proposed distribution and some proprieties such the characteristic function,
mean, variance and k-th order statistics. Section 3 presents the inference based on maximum like-
lihood approach. Section 4 presents the results of a simulation study to assess the performance
of the maximum likelihood estimates. Section 5 presents the LECEG distribution in presence of
covariates. Section 6 illustrates the application of the proposed distribution in three real datasets.
Section 7 provides some concluding remarks.

2 MODEL FORMULATION

Let Y be a nonnegative random variable denoting the lifetime of a component. The random
variable Y is said to have a LECEG distribution with parameters α > 0 λ > 0, 0 < θ < 1 and

0 < p < 1 if its probability density function (pdf) is given by,

f (y) = (1 − p)α

(1 − e−λy)

(
θ(1 − e−λy)

e−λy(1 − θ) + θ

)α (
λe−λy

e−λy(1 − θ)+ θ

)
, (2.1)

where λ is the scale parameter, α and θ are shape parameters and p is the long-term parameter.
Figure 1 shows the LECEG pdf and survival function for p = 0.1, α = 0.1, 0.4, 0.7, 1, 2, 3.5,
θ = 0.2, 0.7, 0.8 and λ = 2, 3.

The improper survival function of the LECEG distribution is given by,

S(y) = 1 − (1 − p)

(
θ(1 − e−λy)

e−λy(1 − θ)+ θ

)α
, (2.2)

where y > 0, θ ∈ (0, 1), α, λ > 0, p ∈ (0, 1).

The quantile function of (2.1) is given by

Q(u) = log

⎛⎜⎜⎜⎝
θ

(
1 −

(
u

1−p

) 1
α

)
(

u
1−p

) 1
α
(1 − θ)+ θ

⎞⎟⎟⎟⎠ 1

λ
, (2.3)

where u ∈ (0, 1 − p).

From (2.1) and (2.2) it is easy verify that the failure rate function for the LECEG distribution is

given by

h(y) = (1 − p)αλe−λyθα(1 − e−λy)α−1

(e−λy(1 − θ)+ θ)α+1 − (1 − p)θα (1 − e−λy)α(e−λy(1 − θ) + θ)
(2.4)

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Figure 1: Upper panels: Probability density function. Lower Panels: Survival function, with
p = 0.1 and λ = 2 and λ = 3 from left to right.

Figure 2 shows the failure rate function for α = 0.1, 0.4, 0.7, 1, 2, 3.5, λ = 2, 3, p = 0.1

and θ = 0.2, 0.7, 0.8. It is noted that the failure rate function (2.4) is decreasing or unimodal.
Assuming some values to the parameters α, λ, θ and p, it is noted that: If 0 < α < 1 we have
decreasing failure function and if α > 1 we have unimodal failure rate function.

From Figure 2 it is noted that the failure function decreases as the proportion of cured patients

increases.

Proposition 2.1. The characteristic function of a random variable Y with LECEG distribution is
given by

�Y (t) = (1 − p)αθα�

(−iy

λ
+ 1

) ∞∑
k=0

(
−α − 1

k

)
(θ − 1)k�(α + k)

�(α + 1 − iy
λ

+ k)
. (2.5)

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Figure 2: Upper panels: Failure rate function with p = 0.1, λ = 2 and λ = 3 from left to right.
Lower panels: Failure rate function with α = 1, λ = 2 (left) and λ = 3 (right) and θ = 0.1 to
different proportions, p.

Proof. Using the known formula�Y (y) = ∫∞
0 eit y f (t)dt,

�Y (t) =
∫ ∞

0
eit y (1 − p)α

(1 − e−λt)

(
θ(1 − e−λt )

e−λt (1 − θ)+ θ

)α (
λe−λt

e−λt (1 − θ)+ θ

)
dt

= (1 − p)αθα
∫ 1

0
uα−1(1 − u)

−iy
λ (1 + u(θ − 1))−α−1du, (2.6)

where u = 1 − e−λt . Using (7.2) for solve the integral in (2.6) the characteristic function is
obtained. �

Proposition 2.2. The mean and variance from a random variable Y with LECEG distribution
are given by

E(Y ) = − iα(1 − p)θα�(α)2F1(0,0,1,0)(α, α + 1, α + 1, 1 − θ)

λ�
(
αλ+λ
λ

) + iγ α(1 − p)�(α)

λ�
(
αλ+λ
λ

)
+ iα(1 − p)�(α)ψ(0)

(
αλ+λ
λ

)
λ�
(
αλ+λ
λ

) , and

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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V (Y ) =

α(p − 1)θα�(α)
(

− 2γ �(α + 1)2F1(0,0,1,0)(α, α + 1, α + 1, 1 − θ)

+�(α + 1)2F1(0,0,2,0)(α, α + 1, α + 1, 1 − θ)

λ2�(α + 1)2

−2�(α + 1)ψ(0)(α + 1)2F1(0,0,1,0)(α, α + 1, α + 1, 1 − θ)

+α(p − 1)θα�(α)
(

2F1(0,0,1,0)(α, α + 1, α + 1, 1 − θ)

λ2�(α + 1)2

+θ−α(−ψ(0)(α + 1)− γ )
)2 + 1

6π
2θ−α�(α + 1)+ γ 2θ−α�(α + 1)

+θ−α�(α + 1)ψ(0)(α + 1)2 + 2γ θ−α�(α + 1)

λ2�(α + 1)2

×
ψ(0)(α + 1)− θ−α�(α + 1)ψ(1)(α + 1)

)
λ2�(α + 1)2

,

respectively, where 2F1(0,0,1,0)(a, b, c; z) = −∑∞
k=0

(a)k(b)kψ(c+k)zk

k!(c)k + ψ(c)2F1(a, b, c; z), γ

is the Euler’s constant γ ∼= 0.5772, ψ(0) is the digamma function, ψ(1) is the first derivative of
the digamma function, (x)k is the pochhammer symbol �(x + k)/�(x), ψ(x) = �′(x)/�(x)

and 2F1(0,0,2,0)(a, b, c; z) = ∑∞
k=0

(a)k (b)k
k!

∂2 1
(c)k
∂c2 zk .

Proof. Considering that E(Y r ) = �Y (0)(r)/ ir , we can obtain the first and second moments,
E(Y ) and E(Y 2), respectively. Using the first and second moments, the variance is obtained by
V (Y ) = E(Y 2)−[E(Y )]2 . The results were founded using the Mathematica Software (2010).�

Order statistics play an important role in quality control testing and reliability, where it is neces-
sary predict the failure of a future item based on the times of a few early failure. These predictors
are often based on moments of order statistics.

Proposition 2.3. Let Y1, Y2, . . . , Yn be iid random variable such that Y j follows a LECEG
distribution for j = 1, 2, . . . , n. The pdf of the k-th order statistic, say Yk:n , is given by (for
y > 0)

fk:n (y) = (1 − p)kαθαkλ(1 − e−λy)αk−1e−λy

B(k, n − k + 1)(e−λy (1 − θ)+ θ)αk+1

(
1 − (1 − p)

(
θ(1 − e−λy)

e−λy(1 − θ)+ θ

)α)n−k

,

where B(k, n − k + 1) = (n − k)!(k − 1)!
n! .

Proof. Considering a random sample of size n from the LECEG distribution. It is well known
that

fk:n (y) = 1

B(k, n − k + 1)
f (y)(F(y))k−1 [S(y)]n−k , (2.7)

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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where B(k, n − k + 1) = (n − k)!(k − 1)!
n! .

Using (2.7), we have,

fk:n (y) = 1

B(k, n − k + 1)
f (y)(F(y))k−1(S(y))n−k

= (1 − p)α

B(k, n − k + 1)(1 − e−λy)

(
θ(1 − e−λy)

e−λy(1 − θ)+ θ

)α (
λe−λy

e−λy(1 − θ)+ θ

)

×
(
(1 − p)

(
θ(1 − e−λy)

e−λy(1 − θ)+ θ

)α)k−1 (
1 − (1 − p)

(
θ(1 − e−λy)

e−λy(1 − θ)+ θ

)α)n−k

= (1 − p)kαθαkλ(1 − e−λy)αk−1e−λy

B(k, n − k + 1)(e−λy(1 − θ) + θ)αk+1

(
1 − (1 − p)

(
θ(1 − e−λy)

e−λy(1 − θ)+ θ

)α)n−k

.

�

Proposition 2.4. The characteristic function of the k-th order statistic from a random variable Y
with LECEG distribution is given by

�Yk:n(t) =
∞∑

r=0

∞∑
s=0

(−n + k)r
r!

(1 − p)r+kθα(k+r)α

B(k, n − k + 1)

×
(

−α(k + r) − 1s
) (θ − 1)s�(α(k + r) + s)

�(α(k + r) + 1 + s −iy
λ
)
�

(−iy

λ
+ 1

)
, (2.8)

where B(k, n − k + 1) = (n − k)!(k − 1)!
n! .

Proof. Using the known formula�Yk:n (t) = ∫∞
0 eit y fk:n (t)dt and (7.1) from Appendix,

�Yk:n (t) = (1 − p)kαθαkλ

B(k, n − k + 1)

∫ ∞
0

eit y−λ ((1 − e−λy)αk−1
)

(e−λy(1 − θ)+ θ)αk+1

(
1 − (1 − p)

(
θ(1 − e−λt)

e−λt (1 − θ) + θ

)α)n−k

dt

= (1 − p)k+rαθαk+αr

B(k, n − k + 1)

∞∑
r=0

(−n + k)r
r !

∫ 1

0
(1 − u)

−iy
λ uαk+αr−1(1 − u(1 − θ))−αk−αr−1du

=
∞∑

r=0

∞∑
s=0

(−n + k)r
r !

(1 − p)r+kθαr+αkα

B(k, n − k + 1)

(
−αk − αr − 1

s

)

× (θ − 1)s�(αk + αr + s)

�(αk + αr + 1 + s −iy
λ )

�

(−iy

λ
+ 1

)
,

where B(k, n − k + 1) = (n − k)!(k − 1)!
n! . �

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Proposition 2.5. The mean of k-th order statistic from a LECEG distribution is given by

Ek:n(Y ) =
∞∑

r=0

∞∑
s=0

1

A
(1 − p)k+r sα(−1 + θ)sθα(k+r)�(1 + n)

×�(−α(k + r))�(1 + s + α(k + r))(k − n)rψ
0(1 + α(k + r)),

where A = λ�(k)�(1 + r)�(1 − k + n)�(1 + s)�(−s − α(k + r))�(1 + α(k + r)).

Proof. Considering that E(Yk:n ) = �Yk:n (0)
′/ ir , we have the first moment. �

In reliability, the ratio of two consecutive moments of reversed residual life characterize the
distribution uniquely. The reversed failure rate function is given by

h(y) = f (y)

F(y)
= α

(1 − e−λy)

(
λe−λy

e−λy(1 − θ)+ θ

)
.

3 INFERENCE

In this section we consider maximum likelihood estimation (MLE). Assuming the lifetimes Yi ,
i = 1, . . . , n from the LECEG distribution independently and identically distributed and inde-
pendent from the censoring mechanism ci , i = 1, . . . , n, the maximum likelihood estimates
(MLEs) of the parameters are obtained by direct maximization of the log-likelihood function
given by,

�(α, λ, θ, p) =
n∑

i=1

ci

[
log

(
(1 − p)α

(1 − e−λyi )

(
θ(1 − e−λyi )

e−λyi (1 − θ)+ θ

)α (
λe−λyi

e−λyi (1 − θ)+ θ

))]

+
n∑

i=1

(1 − ci ) log

(
1 − (1 − p)

(
θ(1 − e−λyi )

e−λyi (1 − θ)+ θ

)α)

=
n∑

i=1

ci log((1 − p)αλθα)− λ

n∑
i=1

ci yi +
n∑

i=1

ci (α − 1) log(1 − e−λyi )

−
n∑

i=1

ci (α + 1) log(e−λyi (1 − θ)+ θ) +
n∑

i=1

(1 − ci )

× log

(
1 − (1 − p)

(
θ(1 − e−λyi )

e−λy(1 − θ)+ θ

)α)
, (3.1)

where ci is a censoring indicator which is equal to 0 or 1, if the data is censured or observed,
respectively.

The advantage of the MLE procedure is that it runs immediately using existing statistical pack-
ages. We have considered the optim routine of the R (Team, 2008). Large-sample inference for

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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the parameters are based on the M L Es and their estimated standard errors in the asymptotic
normality.

The asymptotic normality is also useful for testing goodness of fit of the parameters in the dis-
tribution, also it is useful for comparing the LECEG distribution with some of its special sub-
models, the long-term complementary exponential geometric (LCEG) and the long-term expo-
nential (LE) distributions, via the likelihood ratio (LR) statistic.

4 SIMULATION STUDY

In this section is realized a simulation study to assess the asymptotic performance of MLEs in the
LECEG model. Was generated lifetimes samples from the LECEG distribution with parameters
values α = 1.3, θ = 0.9, λ = 1.1 and a cured fraction p = 0.10 through rejection algorithm
using the weibull distribution with scale parameter 1.2 and shape 1.1 as auxiliary function. Also
the samples was generated with censorship levels of 20%, 30% and 40% for sample sizes of
n = 30, 50, 100, 200 and 500. For each sample size, we conducted 1000 simulations and then
calculated the average bias (AB) and the mean square error (MSE) of the MLEs. Table 1 shows
the bias and MSE of the MLEs for sample sizes n = 30, 50, 100, 200 and 500. From Table 1 was
observed that the AB and MSE are close to zero and the MSEs decrease as sample size increases
and both AB and MSE increases according to censorship level increases in the sample. Similar
results are observed for others combinations of α, λ, θ and p.

5 THE LECEG REGRESSION MODEL

In this section the LECEG is presented when the location parameter is affected by covariates.
Models that the location parameter is affected by covariates are considered when the survival
time is affected by characteristics (covariates) of the individual.

Considering covariates for the location parameter λ in the LECEG model, the survival function
(2.2) for the individual yi , i = 1, . . . , n is given by

S(yi |β, α, θ, p)= 1 − (1 − p)

(
θ(1 − e−λi yi )

e−λi yi (1 − θ)+ θ

)α
, (5.1)

where λi = ex′
iβ , x ′

i = (1, xi1, . . . , xip) is the covariate vector and β ′ = (β0, . . . , βp) is the
respective coefficient vector.

From (3.1), the log-likelihood is given by

�(α, β, θ, p|y, x, c) =
n∑

i=1

ci log
(
(1 − p) αθαλi

)+ (α − 1)
n∑

i=1

ci log(1 − e−λi yi )

−
n∑

i=1

ciλi yi − (1 + α)

n∑
i=1

ci log(e−λi yi (1 − θ)+ θ)

+
n∑

i=1

(1 − ci ) log

(
1 − (1 − p)

(
θ(1 − e−λi yi )

e−λi yi (1 − θ) + θ

)α)
,
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Table 1: Results from simulations.

Scenario

α = 1.3 λ = 1.1 θ = 0.9 p = 0.1

20% 30% 40%

n Parameters AB MSE AB MSE AB MSE

α –0.008 0.252 –0.013 0.297 –0.037 0.458

30 λ –0.091 0.192 –0.061 0.254 –0.100 1.461

θ 0.201 0.162 0.229 0.184 0.256 0.209

p 0.090 0.008 0.076 0.008 0.054 0.146

α 0.023 0.138 0.018 0.165 0.021 0.181

50 λ 0.005 0.099 0.077 0.120 0.128 0.170

θ 0.170 0.127 0.185 0.141 0.210 0.162

p 0.093 0.009 0.086 0.008 0.073 0.123

α 0.039 0.066 0.047 0.071 0.054 0.081

100 λ 0.087 0.045 0.172 0.073 0.238 0.127

θ 0.127 0.087 0.140 0.095 0.164 0.116

p 0.096 0.009 0.091 0.008 0.081 0.096

α 0.037 0.032 0.044 0.035 0.052 0.039

200 λ 0.141 0.037 0.230 0.072 0.317 0.123

θ 0.078 0.051 0.091 0.059 0.106 0.068

p 0.098 0.009 0.095 0.009 0.088 0.065

α 0.025 0.014 0.030 0.015 0.035 0.016

500 λ 0.173 0.036 0.268 0.078 0.359 0.137

θ 0.037 0.024 0.039 0.028 0.049 0.033

p 0.098 0.009 0.099 0.009 0.093 0.039

*AB: Average Bias – *MSE: Mean Square Error

where λi = ex′
iβ , x ′ = (1, xi1, . . . , xip) is the covariate vector and β ′ = (β0, . . . , βp) is the

respective coefficient vector.

In modeling, to determine which potential covariates are influencing the response variable, pro-
cesses of covariate selection such forward and backward stepwise are commonly used. Based on
the covariate selection process described in Collet (1994), we consider the following steps:

Step 1: Fit the model with only the intercept and record the log likelihood, then adjust all possible
models with one covariate and perform the likelihood ratio test to see which were significant
adjustments. If we have more than one model remain significantly with the one that has the
lowest −l(.) and AIC, BIC criteria.

Step 2: Fit the model with two covariates considering the covariate model selected in Step 1, and
noting the one with the lowest −l(.) and AIC, BIC criteria.
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Step 3 and so on: Fit models with the possible addition of another covariate always considering
the covariates selected in the previous step until there remain no further covariate, remembering
to stay with the one with the lowest −�(.) and AIC, BIC criteria.

6 APPLICATIONS

In this section, we compare the LECEG distribution with its particular case (the LCEG distri-
bution and LE distribution), as well as with the long-term exponentiated gumbel (LEGU) and
long-term Lindley (LLI) distribution, on three datasets.

LEGU is the distribution from (Lindley, 1958) added the parameter p of long-term and LLI the
distribution from (Nadarajah & Kotz, 2006) with the p long-term parameter added.

The datasets are related to the medical field, which is related to the genesis and establishment
of the proposed model. The main idea is show the applicability of the new distribution and the
direct possibility of choosing between it or its particular case, as well as its competitiveness in
terms of fitting related to an usual survival distribution.

As our first dataset, we consider 25 lifetimes with approximately 32% of censoring from P.
Allison (1995). The second dataset, consists of 40 lifetimes of patients undergoing treatment
with 7.5% of censoring Prentice (1973).

Firstly, in order to verify the shape of the failure rate function, we follow a standard graphical
methodology for data analysis, the total time on test (TTT) plot, described by R. Maller & X.
Zhou (1983). According to Aarset (1987), in its empirical version the TTT plot is given by
G(r/n) = [(∑r

i=1 Yi:n)− (n − r)Yr :n ]/(∑r
i=1 Yi:n), where r = 1, . . . , n and Yi:n represent the

order statistics of the sample. It has been shown that the failure function is increasing (decreas-
ing) if the TTT plot is concave (convex). Figure 3 show the TTT plot for the considered datasets,
implying in decreasing failure rate functions. Therefore was fitted the five distributions for the
datasets, the LECEG, LCEG, LE, LEGU and LLI. Table 2 shows the MLEs and their variances
in parentheses for the five fitted distributions.
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Figure 3: TTT plots for the datasets P. Allison (1995) (left panel) and Prentice (1973) (right

panel).
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Table 2: MLEs of the fitted distributions for the datasets P. Allison (1995) and Prentice (1973).

Dataset Dist α λ θ

P. Allison (1995) LECEG 0.4776(0.0375) 6.0×10−4(5.9×10−7) 0.6910(0.0010)

LCEG – 0.0010(2.6×10−7) 0.9990(0.0001)

LE – 0.0011(2.5×10−7) –

LEGU 0.0647(0.0002) – –

LLI – 0.0030(4.5×10−7) –

Prentice (1973) LECEG 0.6300(0.0154) 0.0040(1.3×10−6) 0.9990(0.0001)

LCEG – 0.0060(1.1×10−6) 0.9990(1.3×10−5)

LE – 0.0063(1.1×10−6) –

LEGU 0.1720(0.0009) – –

LLI – 0.0120(2.2×10−6) –

Dataset Dist σ μ p

P. Allison (1995) LECEG – – 0.0005(0.0001)

LCEG – – 0.0230(0.0283)

LE – – 0.0240(0.0272)

LEGU 62.470(0.0238) –30.375(930.51) 8.7×10−7(5.1×10−8)

LLI – – 0.1340(0.0093)

Prentice (1973) LECEG – – 1.7×10−5(5.1×10−7)

LCEG – – 1.1×10−5(3.3×10−6)

LE – – 4.5×10−5(1.3×10−6)

LEGU 27.177(0.0051) 2.812(110.58) 1.0×10−4(3.6×10−6)

LLI – – 2.3×10−5(6.7×10−7)

We compare the fitted distribution by the −�(ψ̂ ) (where ψ̂
′ = (α̂, λ̂, θ̂, p̂)), the AIC (Akaike’s

information criterion, −2l(ψ̂ ) + 2k, where k is the number of parameters in the model) and
BIC (Schawartz’s Bayesian information criterion, −2l(ψ̂ ) + 2 log(n), where n is the size sam-
ple). The preferred model is the one with the smaller value on each criterion. Table 3 shows the

values of the −�(ψ̂ ), AIC and BIC, the Kolmogorov-Sminorv (KS) statistic and its p-value,
jointly with the criterion values of the long-term exponentiated gumbel (LEGU) distribution and
the long-term Lindley (LLI) distribution. The LECEG distribution outperforms its concurrent

distributions in all considered criteria for the two datasets. These results are corroborated by the
plots in Figure 4, which shows the fitted survival functions for all fitted distributions and the
empirical Kaplan-Meier survival function.
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Table 3: Criterion values and the K S-Statistics and its p-values to AIC, BIC the datasets from
P. Allison (1995) and from Prentice (1973).

Dataset Dist −�(ψ̂ ) AIC BIC KS-statistic p-value

P. Allison LECEG 128.5016 265.0032 269.8787 0.1482 0.6414

LCEG 132.6698 271.3396 274.9962 0.2584 0.0709

LE 132.6690 269.3380 271.7758 0.2582 0.0712

LEGU 134.7562 277.5123 282.3878 0.2495 0.0887

LLI 148.0361 300.0722 302.51 0.3405 0.0060

Prentice LECEG 220.9193 449.8385 456.5941 0.1116 0.7006

1973 LCEG 223.9223 453.8447 458.9113 0.2088 0.0610

LE 223.9231 451.8461 455.2239 0.2088 0.0609

LEGU 229.5509 467.1018 473.8573 0.1942 0.0976

LLI 244.4418 492.8836 496.2614 0.3164 0.0006
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Figure 4: Kaplan Meier curve with estimated survival functions obtained via LECEG, LCEG and
LE distributions for P. Allison (1995) and Prentice (1973).

As our third dataset, consider the data extracted from Kalbfleisch & Prentice (1980), An acknowl-
edgement goes to the book Kalbfleisch & Prentice (1980). The dataset considered consist of the
following variables: Acceptance years(X1), years (X2), status(alive or dead)(c), transplant(yes
or no)(X3), surgery(if the patient has gone through some kind of surgery before)(X4) and the
lifetime(Y ). Table 4 shows the coefficient and/or interaction term, with their standard deviations
in parenthesis, obtained from the MLE procedure using the variable selection describes in Sec-
tion 5. Also the −l(.), AIC and BIC criterion values are presented. From Table 4 the LECEG
model was considered as the best fitted model.
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Table 4: The MLEs values to the parameters of the LECEG, LCEG and LE and their standard
deviation in parenthesis, and the −l(.), AIC and BIC criterion values.

LECEG Term relation LCEG Term relation LE Term relation

α 0.828

(0.143)
θ 0.697 0.999

(0.231) (1.2×10−10)
p 1.7×10−5 0.080 0.076

(3×10−6) (0.047) (0.054)
β0 8.71 Intercept –5.820 Intercept 13.183 Intercept

(7.385) (0.784) (6.492)
β1 –32.339 X3 –2.283 X3 –25.988 X3

(9.147) (0.298) (9.826)
β2 –1.067 X4 0.046 X2 0.054 X2

(0.359) (0.016) (0.015)

β3 –0.178 X1 –63.942 X4 –0.275 X1

(0.105) (30.293) (0.093)

β4 0.441 X1 X3 0.879 X1 X4 –1.135 X4

(0.130) (0.421) (0.483)

β5 0.336 X1 X3

(0.140)

–�(.) 437.613 474.210 471.892

AIC 891.226 962.421 957.785
BIC 912.304 980.8641 976.228

According Cox & Snell (1968) if the model fits the data well then the true cumulative hazard
function conditional on the covariate vector has an exponential distribution with a hazard rate
of one, i.e, we can verify if the residuals have an exponential distribution with parameter one.
Figure 5 shows the Kaplan Meier curve of the Cox-Snell residuals for the fitted distributions
superimposed by an exponential distribution with a hazard rate of one, indicating a reasonable fit
for the LECEG model over the LCEG and LE models.
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Figure 5: Kaplan Meier curves of the Cox-Snell residuals for the fitted distributions superim-
posed by an exponential distribution with a hazard rate of one.
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Considering the LECEG model with λi = exp(8.71 − 32.33 ∗ X3− 1.06 ∗ X4 − 0.17 ∗ X1 +
0.44 ∗ X1 ∗ X3), the average risk of dying for those patient who did not undergo surgery is 2.89
times of the average risk of dying for those patient already underwent surgery.

7 CONCLUDING REMARKS

In this paper we provided the LECEG distribution that is an extension of the ECEG distribution
with a long term parameter and belong in the latent complementary risks scenarios, i.e., where the
lifetime associated with a particular risk is not observable but the maximum lifetime among all
risks. The properties of the proposed distribution are discussed, including its probability density
function, the quantile, the survival and failure rate functions, the characteristic function and r-th
order statistics. Maximum likelihood inference is implemented straightforwardly. The practical
importance of the LECEG distribution was demonstrated in three applications.
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Appendix A

The following binomial series expansion is used in the present paper

(1 − x)−s =
∞∑

r=0

(s)r
r! xr , (7.1)

where (r)k = r(r + 1)...(r + k − 1) is a Pochhammer symbol, (−r)k = (−1)k (r − k + 1)k and
if |x| < 1 the series converge.

Through the paper we use the following relationship:∫ 1

0
z p−1(1 − z)n−1(1 + bzm)ldz = �(n)

∞∑
k=0

(
l
k

)
bk�(p + km)

�(p + n + km)
. (7.2)

RESUMO. Neste trabalho, uma nova distribuição de longa duração derivada da distribuição
geométrica exponencial complementar exponenciada é apresentada. A distribuição LECEG

acomoda taxa de risco decrescentee unimodal, presente em um cenário de causas complemen-

tar latente, em que apenas o tempo máximo de vida entre todas as causas é observado. Obtive-

mos as funções de densidade, quantis, sobrevivência e taxa de falha para a distribuição pro-
posta, bem como algumas propriedades, tais como a função caracterı́stica, média, variância e

estatı́sticas r-ésima ordem. A estimativa é baseada na abordagem de máxima verossimilhança.

Um estudo de simulação é realizado a fim de avaliar o desempenhodas estimativas de máxima

verossimilhança. A importância prática da nova distribuição foi demonstrada em três conjun-
tos de dados reais.
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Palavras-chave: distribuição geométrica exponencial complementar exponenciada, termo de

longa duração, riscos complementares.
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