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THE LONGEST EDGE OF THE RANDOM
MINIMAL SPANNING TREE
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For n points placed uniformly at random on the unit square, suppose
Mn (respectively,M′n) denotes the longest edge-length of the nearest neigh-
bor graph (respectively, the minimal spanning tree) on these points. It is
known that the distribution of nπM2

n−log n converges weakly to the double
exponential; we give a new proof of this. We show that P�M′n =Mn� → 1,
so that the same weak convergence holds for M′n.

1. Introduction. Suppose n bushes are randomly scattered in the unit
square, and a disease (or fire) then appears at one of them. Once sick, a bush
never recovers, and passes on the disease to every other bush within a distance
r. Eventually, all the bushes become sick, except for those which are insulated
by a zone of radius r containing no bushes that ever become sick. After a long
period of time (relative to the time scale of the spread of the disease), all the
sick bushes die, leaving behind any insulated bushes. If a sufficient number
of such bushes remain, there will be a chance for the forest to regrow. We are
here interested in the question: for which values of r is there likely to be one
or more such insulated bushes?

The geometry of this question can be reformulated in terms of the minimal
spanning tree (MST), an object much studied in combinatorial optimization.
The Euclidean MST on a set of n points (denoted η1; : : : ; ηn) in Rν is the
connected graph with these points as vertices and with minimum total edge-
length. In the present paper, we take the ηi to be random, independently
uniformly distributed on the unit cube B = �−1/2;1/2�ν, and write Xn for the
point process �η1; : : : ; ηn�. Various authors have studied this random MST,
starting with Beardwood, Halton and Hammersley [7]. For a survey, see [28]
or [19].

We shall derive the asymptotic distribution of the maximum of these edge-
lengths, denotedMn. By known properties of the MST [see (12) below],Mn < r
if and only if for every pair of points ηi; ηj there is a sequence of points of Xn,
starting with ηi and ending with ηj, with each pair of successive points in the
sequence separated by a distance less than r. In terms of the ecological model
of the opening paragraph, the statement Mn ≥ r is equivalent to the existence
of an insulated bush. Note that if the objective function is the maximum rather
than the sum of the edge-lengths, the MST remains optimal, although it may
not be the unique optimum.
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Two useful simplifications to the model are the Poisson and toroidal as-
sumptions. In the toroidal model, instead of the Euclidean metric d�i; j� =
�ηi − ηj�, we use the metric d�i; j� = minz∈Zν �ηi − ηj − z�, which eliminates
boundary effects. In the Poisson model, instead of Xn we consider the point
process Pn x= �η1; : : : ; ηNn

�, where Nn is a Poisson variable with mean n,
independent of �ηi�. So Pn is simply a homogeneous Poisson process on the
cube of rate n. The independence properties of Pn simplify the analysis; also,
as argued in [14], the Poisson model is sometimes more realistic.

Set πν = πν/2/0��ν/2� + 1�, the volume of the unit ball in ν dimensions. In
its simplest form, the basic result of this paper is that for the toroidal model
with ν ≥ 2 or the Euclidean model with ν = 2, if Mn is the maximum edge
length in the MST on either Pn or Xn, then the distribution of nπνMν

n− log n
converges weakly to the double exponential distribution:

lim
n→∞

P�nπνMν
n − log n ≤ α� = exp�−e−α�; α ∈ R:(1)

Our first step will be to look at the k-nearest neighbor graph (k-NNG),
which is important in its own right. For k a fixed integer, the k-NNG on
Xn is the graph in which each point of Xn is connected by an edge to its kth
nearest neighbor out of the other points of Xn, and the k-NNG on Pn is defined
likewise. We write simply NNG for 1-NNG. Note that the NNG is a subgraph
of the MST, as can be seen directly or from (12) below.

It is known (see below) that if Mn denotes the maximum edge-length in the
NNG (rather than the MST) on Xn, then (1) holds. Thus, to prove (1) for the
MST, it suffices to prove that with the obvious notation,

lim
n→∞

P�Mn�MST� =Mn�NNG�� = 1:(2)

This key comparison is achieved by Theorem 1 below.
In the ecological model, one may wish to record the number of insulated

bushes and their positions, rather than simply whether or not such a bush
exists. Alternatively, one may wish to record the length and location of the
edge of the MST that is longest, second longest, and so on; similarly for the
k-NNG. This takes us into the realm of weak convergence of �ν + 1�-
dimensional point processes, which is the setting of our most general results
(Theorems 2 and 3), which include (1) as a special case.

The generalization of (1) to the �k+1�-NNG, with longest edge again denoted
Mn, is

lim
n→∞

P�nπνMν
n − log n− k log�log n� + log k! ≤ α� = exp�−e−α�:(3)

Henze [17] proves a related result by an argument he says is “long and te-
dious.” Steele and Tierney [30] observe that this can be modified to prove (3)
for k = 0 (i.e., (1) for the NNG), for the toroidal model with ν ≥ 2 or the Eu-
clidean model with ν = 2. Here we use a completely different argument based
on Stein’s method, to prove a more general point-process result (Theorem
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2) with (3) as a special case. The basic idea is quite simple; see Section 4.
The method can be used to give explicit error bounds in (3). We consider the
toroidal model for all k ≥ 0 and all ν, and the Euclidean model for k = 0 and
ν ≤ 2. The results for �k + 1�-NNG hold for ν = 1; our arguments for MST
apply only for ν ≥ 2.

The MST and k-NNG have applications in computer science, the physical
sciences and in biology; see the references in [29] and [30]. Statisticians have
used the MST and k-NNG on n random points in ν dimensions, representing
multivariate observations, as a means of imposing a structure on these points.
For example, the MST is bound up with the so-called single linkage algorithm
for partitioning the points of Xn into clusters, as described in, for example,
[15, 16]. The single linkage clusters “at level r” are the components of the
MST when edges of length greater than r are removed, and Mn is the level
above which there is just one cluster.

The edges of the MST have been used as a multivariate analogue to the
interpoint spacings for one-dimensional data. For example, Rohlf [26] pro-
poses the use of longest edges of the MST as a means of detecting multivari-
ate outliers. For a recent use of this method, see [13]; for criticisms see [9].
Part of the problem is that the distribution of Mn for the MST has not been
well understood. The results in this paper are a step towards rectifying this
situation.

We briefly mention some other results in the field. Appel and Russo [3, 4]
derive strong laws for Mn for both the NNG and MST, complementing the
weak limits given here. Dette and Henze [10] look at Mn for the NNG in the
Euclidean model with ν ≥ 3, which is not considered here. Other functionals
besides Mn for which weak limits have been derived are the total edge length
(see [6] for the k-NNG, [21] for the MST), and the minimum edge length ([27]).
Jaillet [18] derives a bound on the probability that Mn is large for the MST,
which he uses to compare Euclidean and toroidal models, with regard to total
edge length. Also related are results of Hall [14] and Janson [20] concerning
the coverage of the cube B by small balls, for example, the probability that
every point of B is covered by at least k balls of radius r centered at Xn. The
statement that Mn ≤ r for the k-NNG is the statement that every point of Xn

is covered by at least k + 1 such balls. An application of Stein’s method to a
coverage problem is given in [1].

Qualitatively, the meaning of (1) is that (i) for the NNG, the asymptotics
for Mn are as if the nearest-neighbor distances were independent, and (ii)
the longest edge is likely to be the same for the MST as for the NNG. It is
reasonable to expect this description to be valid for other distributions of the
ηi, besides the uniform case considered here. In Penrose [24] the description
is shown to hold for normally distributed ηi.

2. Statement of results. For α ∈ R, we shall say that an edge �i; j� of
the MST or NNG is α-long if nπν�d�i; j��ν − log n > α. Thus, (1) says the
probability that no α-long edge exists tends to exp�e−α�. Since (1) holds for the
NNG, our first theorem gives us the comparison (2) between MST and NNG.
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Theorem 1. Consider the toroidal model with ν ≥ 2 or the Euclidean model
with ν = 2. Let α ∈ R. Then with probability approaching 1 as n→ ∞, every
α-long edge of the MST on Pn or on Xn is also in the corresponding NNG, and
moreover every such edge has an end at a leaf of the MST, that is, a vertex of
degree 1.

Our most general results are given in terms of point processes, a natural
setting for the study of extreme values. To state them, we first need to give
some definitions. Given a separable metric space E, a point process Y on
E is a random set of points in E that is at most countable. We write Y �A�
for the number of points of Y in a set A. The particular spaces of interest
here are (1) E = B = �−0:5;0:5�ν, with the Euclidean or toroidal metric, and
(2) E = R×B.

We refer to a finite point process in B as nice if the interpoint distances
are a.s. all distinct. The empirical point processes Xn and Pn on B of this
paper are nice (in either the Euclidean or toroidal metric), so that the MST
and k-NNG are a.s. uniquely defined. For point processes on R×B, we have
a different definition of niceness, which we now explain.

Suppose the points of a finite or countable set y ⊂ R × B can be listed as
y = ��tm;xm�; m ≥ 1�, with t1 > t2 > t3 > · · ·, and with tm→−∞ as m→∞
in the case that y is infinite. We shall refer to this as the canonical listing of
the points of y.

Let S denote the semiring of subsets of R×B of the form �α;β� ×A, with
−∞ < α ≤ β ≤ ∞, and with A ⊂ B being a product of intervals.

We shall say a point process Y in R×B is nice if (1) it has a.s. a canonical
listing, and (2) P�Y �∂S� > 0� = 0 for all S ∈ S . Our notion of weak conver-
gence of nice point processes on R×B is given by the equivalent statements
of the following lemma.

Lemma 1. Let Yn, n ≥ 0 be a sequence of nice point processes on R × B,
with Y0 being infinite almost surely. Then the following statements (a) and (b)
are equivalent.

(a) For any collection of disjoint sets R1; : : : ;RK in S ,

�Yn�R1�;Yn�R2�; : : : ;Yn�RK��→d �Y0�R1�;Y0�R2�; : : : ;Y0�RK�� as n→∞;

where →d is convergence in distribution in Rν;
(b) There exist coupled point processes Y ′n; n = 0;1;2; : : :, all on the same

probability space, such that (i) Y ′n has the same distribution as Yn, for each n,
and (ii) with Y ′n given by the canonical listing Y ′n = ��T′n;m;X′n;m�;m ≥ 1�, we
have �T′n;m;X′n;m� → �T′0;m;X′0;m� almost surely as n→∞, for each m.

Proof. Obviously (b) implies (a). Conversely, assume (a). Let ��Tn;m;Xn;m�;
m ≥ 1� be the canonical listing of Yn. Let S1; : : : ; SM ∈ S . By re-expressing
the following events in terms of the number of points of point processes in sets
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in S , and using (a), we have

lim
n→∞

P

[ M⋂
m=1

��Tn;m;Xn;m� ∈ Sm�
]
= P

[ M⋂
m=1

��T0;m;X0;m� ∈ Sm�
]
:

Therefore (see [8], page 19), ��Tn;m;Xn;m�; m≥1�→d ��Tn;m;Xn;m�; m≥1�
in �R×B�∞ as n→∞, and (b) follows by the Skorohod representation theorem
([12], Theorem 3.1.8). 2

Definition. Given nice point processes Yn; n ≥ 0, with Y0 almost surely
infinite, we write Yn→d Y0 as n→∞ if either statement (a) or (b) in Lemma
1 holds. This is also equivalent to the convergence in distribution of Yn to Y0
viewed as random elements of the space of point measures on �−∞;∞� ×B,
with the vague topology (see [25], Chapter 3).

We now look at nearest neighbors. Given a nice point process Y =
�η1; : : : ; ηN� in B, we define Ri; k�Y � to be the distance from ηi to its kth
nearest neighbor in Y , using the Euclidean or toroidal metric according to
the context. Write Ri�Y � for Ri;1�Y �; that is,

Ri�Y � = min�d�i; j�y j ≤N�:(4)

We define a point process on R × B, denoted Gn;k�Y �, which records the
(rescaled) lengths and locations of long edges of the �k + 1�-NNG on Y , as
follows:

Gn;k�Y � = ��nπν�Ri; k+1�Y ��ν − log n− k log�log n� + log k!; ηi�x ηi ∈ Y �:
We write simply Gn�Y � for the point process Gn;0�Y � = ��nπν�Ri�Y ��ν −
log n;ηi�x ηi ∈ Y �.

Let P∞ denote a nonhomogeneous Poisson point process on R × B with
mean measure µ�·� = E�P∞�·�� given by µ�dtdx� = e−t dtdx. In the canonical
listing P∞ = ��Tm;Xm�; m ≥ 1�, the Tm are the points of a Poisson process
on R with mean measure e−t dt, arranged in decreasing order, and the Xi are
independent and uniform on B. Our main result for the k-NNG has this point
process as a weak limit, as follows.

Theorem 2. For the toroidal model with ν ≥ 1 or the nontoroidal Euclidean
model with ν = 1 or ν = 2,

Gn�Pn� →d P∞ as n→∞;(5)

and

Gn�Xn� →d P∞ as n→∞:(6)

Also for the toroidal model with ν ≥ 1, and k ≥ 0,

Gn;k�Pn� →d P∞ as n→∞;(7)

and

Gn;k�Xn� →d P∞ as n→∞:(8)
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In particular, if Mn denotes the length of the longest edge of the �k+ 1�-NNG,
then

lim
n→∞

P�nπνMν
n − log n− k log�log n� + log k! ≤ α� = exp�−e−α�:(9)

For α ∈ R, we shall call an edge �i; j� of the �k + 1�-NNG α-long if
nπν�d�i; j��ν− log n−k log�log n�+ log k! ≥ α. The following result is intended
to clarify the statement of Theorem 2; it says that the risk of an α-long edge
being counted twice over by the point process Gn�Pn� or Gn�Xn� is negligible.

Lemma 2. Let α ∈ R. For the toroidal model with ν ≥ 1 and k ≥ 0, or the
Euclidean model with ν ≤ 2 and k = 0, the number of α-long edges �i; j� of the
�k+ 1�-NNG on Xn or Pn for which ηi is the �k+ 1�st nearest neighbor of ηj
and ηj is the �k+ 1�st nearest neighbor of ηi, converges in probability to zero.

Lemma 2 can be deduced from Theorem 2. In brief, take εn → 0 so that
P�Mn > εn� → 0. Since a homogeneous Poisson process on B has no multiple
points a.s., the probability that there exist i; j ≤ Nn with d�i; j� ≤ εn, such
that the edge from i to its �k + 1�st nearest neighbor is α-long and likewise
for j, converges to zero.

By Lemma 2, the number of α-long edges of the �k+1�-NNG on Pn has the
same asymptotic distribution as the number of points Gn�Pn� in �α;∞� × B;
since this set is in S , by Theorem 2 this asymptotic distribution is Poisson
with mean exp�−α�, and therefore (9) follows. Similarly, Theorem 2 gives us
asymptotic formulas for the (joint) distributions of the second, third and so on,
longest edges of the k-NNG, and also says that the locations of these edges
are asymptotically independent and uniform on B.

Turning to the MST, we define a point process recording the lengths and
locations of long edges of the MST, as for the NNG. To do this, we specify
the location of edge �i; j� by the midpoint of the geodesic from ηi to ηj.
This midpoint, denoted m�i; j�, is an element of B satisfying d�m�i; j�; ηi� =
d�m�i; j�; ηj� = �1/2�d�i; j�. Set

Mn�Y � = ��nπν�d�i; j��ν − log n;m�i; j��x �i; j� ∈MST�Y ��:

Our main result for the MST is the following.

Theorem 3. In the toroidal model with ν ≥ 2 or the Euclidean model with
ν = 2,

Mn�Pn� →d P∞ as n→∞ and Mn�Xn� →d P∞ as n→∞:

Theorem 3 can be deduced from Theorems 1 and 2 by a routine argument
which we omit. The remaining sections are devoted to the proofs of Theorems
1 and 2. The restatements of parts of these theorems in the later sections are
labelled as propositions.
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3. The MST on the torus. In this section we prove Theorem 1 for the
Poisson toroidal model (Proposition 1 below). First we prove a weaker version
of that result.

Lemma 3. Let α ∈ R, and let rn = rn�α� be given by

nπνr
ν
n − log n = α:(10)

For the toroidal model, let Dn�i; j� be the event that �i; j� is an edge of the
MST on Pn and that d�i; j� ≥ rn, but Ri�Pn� < rn and Rj�Pn� < rn. Then

lim
n→∞

P

[ ⋃
i<j≤Nn

Dn�i; j�
]
= 0:(11)

Remarks. Lemma 3 suffices to prove interesting statements about the
MST in the Poisson, toroidal model. Indeed, it is easy to deduce the basic
result (1) for MST in the Poisson toroidal model from the corresponding result
for NNG and Lemma 3. In terms of the ecological model with range of infec-
tion rn, Lemma 3 says that with probability approaching 1, every insulated
bush is isolated. That is, its rn-neighborhood contains no other bush.

The proof uses ideas from continuum percolation. For r > 0, x ∈ Rν and any
set of points S in Rν, let the “r-cluster of x in S,” denotedCr�xyS�, be the union
of �x� and the set of of y ∈ S such that there is a sequence y1; : : : ; yn = y
of points of S with d�yi; yi−1� < r for each i, with y0 = x. This notation
is relevant to the MST because of the following deterministic fact, given in
Proposition 2.1 of Alexander [2]: for a nice point process Y = �η1; : : : ; ηN�
in B,

�i; j� ∈MST�Y � iff ηj /∈ Cd�i; j��ηiyY �:(12)

It is immediate from (12) that if d�i; j� = Ri�Y �, then �i; j� ∈ MST�Y �, that
is, the NNG is a subgraph of the MST.

Let Pλ be a homogeneous Poisson process of rate λ on Rν. The proof of
Lemma 3 is based on the fact that for large λ, the 1-cluster of 0 in Pλ, if finite,
is likely to be a singleton. This is a special case of Theorem 3 of Penrose [23].

Lemma 4 ([23]). Suppose ν ≥ 2. Then

lim
λ→∞

P�card�C1�0yPλ�� <∞�
P�C1�0yPλ� = �0��

= 1:

Proof of Lemma 3. Write Cni for the cluster Crn�ηiyPn�. By (12), Dn�i; j�
is contained in the event that Cni and Cnj are distinct and are not singletons.

For any S ⊂ B, let diam�S� denote its diameter sup�d�x;y�x x;y ∈ S�. For
ρ > 0, define events

En�ρy i� = �0 < diam�Cni � < ρrn�(13)

and

Fn�ρy i; j� = �diam�Cni � > ρrn� ∩ �diam�Cnj� > ρrn� ∩ �Cni 6= Cnj�:(14)
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Then
⋃

i<j≤Nn

Dn�i; j� ⊂
( ⋃
i≤Nn

En�ρy i�
)
∪
( ⋃
i<j≤Nn

Fn�ρy i; j�
)
:(15)

Let P ′λ denote a homogeneous Poisson process on Rν of rate λ. By Palm
theory for the Poisson process, spatial homogeneity of the torus and the scaling
property of the Poisson process,

E

[ ∑
i≤Nn

1�0 < diam�Cni � < ρrn�
]
=
∫
B
P�0 < diam�Crn�xyPn�� < ρrn�ndx

= nP�0 < diam�Crn�0yP
′
n�� < ρrn�

= nP�0 < diam�C1�0yP ′nrνn�� < ρ�:

(16)

Since nrνn→∞ as n→∞, it follows from Lemma 4 that

lim
n→∞

P�0 < diam�C1�0yP ′nrνn�� < ρ�
P�C1�0yP ′nrνn� = �0��

= 0:(17)

By the definition of rn, the denominator P�C1�0yP ′nrνn� = �0�� is equal to
exp�−πνnrνn� = n−1e−α, so that the expression (16) converges to zero, and
for any fixed ρ > 0,

lim
n→∞

P

[ ⋃
i≤Nn

En�ρy i�
]
= 0:(18)

The proof of Lemma 3 is completed by applying the following result, along
with (15) and (18).

Lemma 5. Let Fn�ρy i; j� be defined by (14). Then there exists ρ ∈ �0;∞�
such that for the toroidal model,

lim
n→∞

P

[ ⋃
i<j≤Nn

Fn�ρy i; j�
]
= 0:

Proof. We modify the proof of Lemma 2 of [23] to take into account the
fact that we work on a finite region.

For a > 0 and x in the torus B, let Ba�x� be the closed ν-dimensional cube
of side a centered at x, “wrapped around” toroidally so that Ba�x� ⊂ B.

Take δ = δ�n� ∈ ��9ν�−1; �8ν�−1�, such that 1/�2δrn� is an integer (this is
possible for large n). Let Tνn denote the lattice torus Zν∩�−1/�2δrn�;1/�2δrn��
with opposite faces identified, made into a graph by connecting nearest-
neighbor pairs as for the usual integer lattice.

Suppose Fn�ρy i; j� occurs. We construct a “path” (or “surface” if ν > 2) of
boxes of side δrn, which separates Cni from Cnj , and which must be devoid of
points of Pn. Let Wi denote the union of the balls of radius 3rn/4 centered at
the points of Cni ; this set is connected. Let Ui denote the set of z ∈ Tνn such
that Bδrn�δrnz� has nonempty intersection with Wi; this is a connected subset
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of Tνn. Let ∂jUi denote the exterior external boundary of Ui, that is, the set
of z ∈ Tνn\Ui such that z has a neighbor in Ui and such that δrnz and ηj lie
in the same connected component of B\Wi.

For each z ∈ ∂jUi, the cube Bδrn�δrnz� lies near the boundary of Wi and
by an application of the triangle inequality cannot contain any point of Pn.
Since δrn∂jUi is exterior both to Wi and to Wj, it has diameter at least ρrn;
therefore card�∂Ui� ≥ ρ/δ: Finally, ∂jUi is ∗-connected. (A set A ⊂ Zν is said
to be ∗-connected of for each z, z′ ∈ A, there is a finite path �zn� in A from z
to z′, with �zn − zn−1�∞ = 1 for each zn in the path; the modification from Zν

to the torus Tνn should be clear.) See, for example, Lemma 2.1 of [11].
Let An;m denote the set of ∗-connected sets A ⊂ Tνn of cardinality m. By

the remarks in the previous paragraph,

P

[ ⋃
i<j≤Nn

Fn�ρy i; j�
]
≤

∑
m≥ρ/δ

P

[
∃ A ∈ An;myPn

( ⋃
z∈A

Bδrn�δrnz�
)
= 0

]

≤
∑

m≥ρ/δ
card�An;m� exp�−mnδνrνn�:

(19)

By a Peierls argument (see [22], Lemma 3) there is a constant γ = γ�ν�, such
that the number of ∗-connected sets (“lattice animals”) of cardinality m in Tνn
containing the origin is bounded above by eγm, for all n;m. Therefore

card�An;m� ≤ �δrn�−ν exp�γm�:

Also, if n is large, then nδdrνn ≥ �δν/2πν� log n and γ < �δd/4πν� log n, so that

P

[ ⋃
i<j≤Nn

Fn�ρy i; j�
]
≤ �δrn�−ν

∑
m≥ρ/δ

exp��γ − nδνrνn�m�

≤ �δrn�−ν
∑

m≥ρ/δ
exp�−��δν/4πν� log n�m�

≤ c�n/ log n� exp�−��δν/4πν� log n�ρ/δ� ≤ c′n1−ρδν−1/4πν ;

where c; c′ are positive constants. If the (fixed) value of ρ is suitably big, this
converges to zero. 2

Proposition 1. Let α ∈ R, and let rn = rn�α� be given by (10). Then for
the toroidal model,

lim
n→∞

P�d�i; j� ≥ rn for some edge �i; j� ∈MST�Pn�\NNG�Pn�� = 0:(20)

Moreover, with probability approaching 1 as n → ∞, every edge of the MST
with length greater than rn has one end at a leaf.

Proof. Let Ri;2�Pn� denote the distance from ηi to its second-nearest
neighbor in Pn. Then for any α < β, setting rn = rn�α� and sn = rn�β�, and
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writing Ur�x� for the ball of radius r centered at x ∈ Rν,

E�card�i ≤Nnx rn�α� ≤ Ri�Pn� ≤ Ri;2�Pn� < rn�β���
= nP�Pn�Urn

�0�� = 0y Pn�Usn
�0�� ≥ 2�

= n exp�−nπνrνn��1− exp�−nπν�sνn − rνn���1+ nπν�sνn − rνn���
= n exp�−nπνrνn� − n exp�−nπνsνn��1+ nπν�sνn − rνn��
= e−α − e−β�1+ �β+ log n� − �α+ log n��
= e−β�eβ−α − 1− �β− α��(21)

≤ �β− α�2e−α/2;(22)

where the last inequality is from Taylor’s theorem. If ε > 0 and α ∈ R, we can
take α = α1 < α2 < · · · < αK, such that exp�−αK� < ε and such that

K−1∑
k=1

�αk+1 − αk�2 exp�−αk�/2 < ε:(23)

By (22) and (23), writing Ri for Ri�Pn�, we have

P

[ ⋃
1≤k≤K

⋃
i<j≤Nn

�rn�αk� ≤ max�Ri;Rj� < d�i; j� < rn�αk+1��
]
< 2ε:(24)

Also, by (1), for large enough n,

P

[ ⋃
i≤Nn

�Ri ≥ αK�
]
< exp�−αK� + ε < 2ε:(25)

Third, by Lemma 3,

lim
n→∞

P

[ ⋃
1≤k≤K

⋃
i<j≤Nn

�max�Ri;Rj� < rn�αk� ≤ d�i; j�y

�i; j� ∈MST�Pn��
]
= 0:

(26)

If d�i; j� ≥ rn�α� for some edge �i; j� of the MST on Pn that is not in the
NNG, so that d�i; j� > max�Ri;Rj�, then one of the three events described
in (24), (25) and (26) must occur. So by combining these three estimates, we
obtain (20), since ε is arbitrary.

We now prove the final sentence, that every α-long long edge of the MST is
likely to end at a leaf. By the above, we may assume that all such edges are
in the NNG, so that if �i; l� is in the MST with d�i; l� ≥ rn, then d�i; l� = Ri

or d�i; l� = Rl. Assuming the former, i could fail to be a leaf only if it were
the nearest neighbor of some j 6= l, and therefore it now suffices to prove

lim
n→∞

P

[ ⋃
i≤Nn

⋃
i6=j≤Nn

�rn ≤ Ri < Rj = d�i; j��
]
= 0:(27)
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By Palm theory for the Poisson process,

P

[ ⋃
i≤Nn

�Ri > 3rn�
]
≤ n exp�−nπν�3rn�ν� → 0:

Also, by the calculation in (33) below,

lim
n→∞

P

[ ⋃
i<j≤Nn

�Ri > rn� ∩ �Rj > rn� ∩ �d�i; j� < 3rn�
]
= 0;

and these together yield (27).

4. The NNG on the torus. In this section we consider the NNG in the
the Poisson toroidal model. Before proving the main point process limit (Propo-
sition 5), we give a new proof of the basic formula (1). Let α ∈ R, and define
rn = rn�α� by (10) above; that is, nπνrνn = log n+ α:

Partition the boxB = �−0:5;0:5�ν intomν disjoint boxes of sidem−1, labelled
B1;B2; : : : ;Bmν and centered at a1; : : : ; amν , respectively. Define the variable
Xi to be the indicator of the event that there is a single point of Pn in Bi, that
is, Pn�Bi� = 1, and that Pn�Bj� = 0 for all j with 0 < d�aj; ai� < rn. Define
pi = E�Xi� and pij = E�XiXj�. Writing a ∼m b if a/b→ 1 as m→∞ (with
n fixed), we have pi ∼m �n/mν� exp�−nπνrνn�:

Let v�rny r� be the volume of the union of two balls of radius rn, with centers
a distance r apart. Then pij = 0 if d�ai; aj� < rn, and

pij ∼m �n/mν�2 exp�−nv�rnyd�ai; aj��� on rn < d�ai; aj�:
Define

Ym
n =

mν∑
i=1

Xiy Yn = lim
m→∞

Ym
n :(28)

Then Yn is the number of i for which Ri�Pn� > rn, where Ri�Pn� is the
distance from ηi to its nearest neighbor in Pn, and

E�Yn� = lim
m→∞

E�Ym
n � = n exp�−nπνrνn� = e−α:(29)

To use the Chen–Stein method, as given in [5], we define a “neighborhood of
influence” Ni for each i ≤mν by

Ni = �jx d�ai; aj� ≤ 3rn�(30)

and define the quantities

b1 =
∑
i

∑
j∈Ni

pipj; b2 =
∑
i

∑
i6=j∈Ni

pij:(31)

Then

lim
m→∞

b1 = �n exp�−nπνrνn��2πν�3rn�ν = e−2απν�3rn�ν;(32)
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which converges to 0 as n→∞. Also,

lim
m→∞

b2 = n2
∫
rn≤�x�≤3rn

exp�−nv�rny �x���dx

≤ n2πν�3rn�ν exp�−�3/2�nπνrνn�
= 3νn2��log n+ α�/n��e−α/n�3/2;

(33)

which converges to 0 as n → ∞. Since Xi is independent of Xj for j /∈ Ni,
it follows from Theorem 1 of [5] that the total variation distance between the
distribution of Yn and the Poisson with mean e−α is at most 2 limm→∞�b1 +
b2�, and therefore Yn converges in distribution to that Poisson distribution.
Therefore if Mn is the maximum edge-length for the NNG on the Poisson
toroidal model,

lim
n→∞

P�Mn ≤ rn� = lim
n→∞

P�Yn = 0� = exp�−e−α�:

In view of the definition (10) of rn, this gives us (1).
We now prove (5) for the torus. Let G ′n denote the point process Gn�Pn�;

that is, G ′n = ��nπν�Ri�Pn��ν − log n;ηi�; 1 ≤ i ≤Nn�:

Proposition 2. For the toroidal model, G ′n→d P∞.

Proof. Let K be a fixed positive integer, and let S1; : : : ; SK be disjoint
subsets of R × B, with each Si in the semiring S . For 1 ≤ k ≤ K, write
Sk = Ak× �αk; βk�, with Ak ⊂ B a ν-fold product of intervals. By Lemma 1, it
suffices to prove that the K-dimensional random vector �G ′n�S1�; : : : ;G ′n�SK��
converges in distribution to �Z1; : : : ;ZK�, where Z1; : : : ;ZK are independent
Poisson variables with E�Zk� = �exp�−αk� − exp�−βk���Ak� for 1 ≤ k ≤ K,
with � · � denoting volume.

Divide B into cubes B1; : : : ;Bmν with Bi centered at ai as before. Define

Rm
i x= min�d�ai; aj�x j 6= i; Pn�Bj� ≥ 1�:

Let Xk
i be the indicator variable of the event �Pn�Bi� = 1� ∩ �ai ∈ Ak� ∩

�Rm
i ∈ �rn�αk�; rn�βk���. Here rn�αk� and rn�βk� are given by (10). That is,

nπν�rn�t��ν = log n+ t.
Let α = min�α1; : : : ; αK�. Let Xi be the indicator of the event �Pn�Bi� =

1� ∩ �Rm
i ≥ rn�α��. Since the regions S1; : : : ; SK are pairwise disjoint,

K∑
k=1

Xk
i ≤Xi a.s.(34)

Define pki = EXk
i and pi = EXi. Also, define pij = EXij and pklij = E�Xk

iX
l
j�:

Define

Ym
n;k =

mν∑
i=1

Xk
i y Yn;k = lim

m→∞
Ym
n;k = G ′n�Sk�:(35)
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Let γk = βk if βk <∞ and γk = αk if βk = ∞. Then Xk
i is determined by the

outcomes of Pn in those Bj with �ai − aj� ≤ rn�γk�. Set β = max�γ1; : : : ; γk�.
Define N k

i to be the set of �j; l� (1 ≤ j ≤ m2; 1 ≤ l ≤ K) such that
d�ai; aj� ≤ 3rn�β�, so that Xk

i is independent of Xl
j for �j; l� /∈ N k

i . Define
the quantities

b′1 =
∑

�i; k�

∑

�j; l�∈N k
i

pkip
l
jy b′2 =

∑

�i; k�

∑

�i; k�6=�j;l�∈N k
i

pklij :(36)

Set N ′
i = �jx d�ai; aj� ≤ 3rn�β��. By (34), b′1 ≤ b1 and b′2 ≤ b2, where b1 and

b2 are as defined in (31), except that the sums are now over N ′
i . Therefore by

a similar argument to (32) and (33), we obtain

lim
n→∞

lim sup
m→∞

b′1 = lim
n→∞

lim sup
m→∞

b′2 = 0:(37)

Also, limm→∞E�Ym
n;k� = E�Zk�. By Theorem 2 of [5], the total variation dis-

tance between the distributions of �Yn;1; : : : ;Yn;K� and �Z1; : : : ;ZK� are
bounded by 4 lim supm→∞�b′1+b′2�. By (37), �Yn;1; : : : ;Yn;K� converges in dis-
tribution to �Z1; : : : ;ZK� as n→∞. 2

5. Boundary effects. We now drop the toroidal assumption for ν = 2 (for
ν ≥ 3, the resulting boundary effects dominate). First we look at the NNG.

Proposition 3. For the Euclidean model with ν ≤ 2, Gn�Pn� →d P∞ as
n→∞.

Proof. Let α > 0 and let rn be given by (10). Let YE
n denote the number

of points of Pn whose nearest neighbor (in the Euclidean metric) is within a
distance greater than rn. The correction to the mean due to boundary effects
is

E�YE
n � −E�Yn� =

∫
�x∈Bx d�x;∂B�≤rn�

n exp�−n�Urn
�x� ∩B��dx+ o�1�;(38)

where Ur�x� denotes the r-neighborhood of x in B, and � · � denotes Lebesgue
measure.

Let In be the contribution to the integral in (38) from values of x =
�x1; : : : ; xν� with �xi − �1/2�� ≤ rn for just a single value of i, that is, x close
to just one face of B. Then

In = 2ν�1+ o�1��
∫ rn

0
n exp�−n�Urn

��−�1/2� + t;0; : : : ;0�� ∩B��dt:(39)

Let g�ry t� denote the volume of the intersection of the ν-dimensional unit ball
Ur�0� with the slab �0; t� ×Rν−1. Then

�Urn
�−�1/2� + t;0; : : : ;0� ∩B� = �πνrνn/2� +g�rny t� = �πνrνn/2� + rνng�1y t/rn�;

so that by the change of variable u = t/rn,

In = 2ν�1+ o�1��n exp�−nπνrνn/2�
∫ 1

0
exp�−nrνng�1yu��rn du:(40)
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Since nrνn→∞ as n→∞, and
∫ 1

0 exp�−θg�1yu��du ∼ �πν−1θ�−1 as θ→∞,

In ∼ 2νnrn�e−α/n�1/2/�πν−1nr
ν
n�

= c�n1/2rn��nrνn�−1;
(41)

where c is a constant. Since nrνn→∞ logarithmically, In→ 0 for ν ≤ 2.
For ν = 2, the contribution to the integral in (38) from sites x = �x1; x2� near

the corners, that is, with �xi−�1/2�� ≤ rn for i = 1;2, is at most 4r2
nn�e−α/n�1/4,

which converges to zero. Therefore limn→∞E�YE
n � = exp�−α� for ν ≤ 2.

To show that the Chen–Stein method still gives Poisson limits, we need to
check that the boundary contributions to the quantities b1 and b2 of (31) are
negligible. The contribution to b1 from regions near the edge but not near the
corner is bounded by the expression

crnr
2
n�n exp�−nπr2

n/2��2 = c′r3
nn

2−1

which converges to zero.
For any pair �x;y� with x;y ∈ B, with x close to the left edge of B but

not close to the corner, with rn ≤ �x − y� ≤ 3rn and with x closer to the left
edge of B than y, there exist a half-disk centered at x and a disjoint quarter-
disk centered at y, both contained in B. Therefore the contribution to b2 from
regions near the edge but not near the corner of B is bounded by

crnr
2
nn

2 exp�−3nπr2
n/4� = c′r3

nn
2−�3/4�;

which converges to zero.
The contributions both to b1 and to b2 from regions near the corner are

bounded by

c�r2
n�2n2 exp�−nπr2

n/4� = c′r4
nn

2−�1/4�;

which also converges to zero. Therefore for ν = 2, the arguments from Section
4 carry over to the Euclidean model, and so the statement (5) from Theorem
2 is also valid for the Euclidean model. 2

Turning to the MST, we prove that the results of Section 3 carry over from
the toroidal to the Euclidean model for ν = 2.

Proposition 4. Let ν = 2. Let α ∈ R, and let rn = rn�α� be given by (10).
Then for the Euclidean model,

lim
n→∞

P�d�i; j� > rn for some �i; j� ∈MST�Pn�\NNG�Pn�� = 0:(42)

Also, with probability approaching 1, every edge of the MST with length greater
than rn has one end at a leaf.

To prove this, we shall require some analogous results to Lemma 4 for
percolation on the half-space and quarter-space. Let H denote the half-space
�0;∞� × R, and let Q denote the quarter-space �0;∞� × �0;∞�. Let PH

λ (re-
spectively, P Q

λ ) denote the Poisson process of rate λ on H (respectively, Q).
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For x ∈ R2 and any set A ⊂ R2, we write Lr�xyA � for the event that x is the
left-most point of Cr�xyA �, that is, the first coordinate of x is less than the
first coordinate of any other point of Cr�xyA �.

Lemma 6. For any ρ > 0,

lim
λ→∞

sup
x∈H

P�0 < diam�C1�xyPH
λ �� < ρyL1�xyPH

λ ��
P�C1�xyPH

λ � = �x��
= 0:

Lemma 7. For any ρ > 0 and any ε > 0,

lim
λ→∞

sup
x∈Q

(
exp�λ��1/4� − ε��P�diam�C1�xyP Q

λ �� < ρ�
)
= 0:

We do not give detailed proofs of these results here. Lemma 6 can be proved
by a similar argument to Lemmas 1 and 3 of [23]. Lemma 7 can be proved by a
cruder version of the argument yielding Lemma 3 of [23]. Here the connection
function g�·� of [23] is simply the indicator function of the unit circle, which
simplifies the arguments somewhat.

Lemma 8. Let ν = 2, let α ∈ R and let rn = rn�α� be given by (10). For
the Euclidean model, let DE

n �i; j� be the event that �i; j� is an edge of the
MST on Pn, and that d�i; j� ≥ rn, but Ri�Pn� < rn and Rj�Pn� < rn. Then

limn→∞P�
⋃
i<j≤Nn

DE
n �i; j�� = 0:

Proof. For ρ > 0, let FE
n �ρy i; j� denote the event that the (Euclidean)

clusters Crn�ηiyPn� and Crn�ηjyPn� are distinct, and both of diameter at least
ρrn. For x ∈ B, let Gn�ρyx� denote the event that (i) 0 < diam�Crn�xyPn�� <
ρrn, and (ii) x is the closest point to ∂B in Crn�xyPn�. Then for any ρ > 0,

⋃
i<j≤Nn

DE
ij ⊂

( ⋃
i<j≤Nn

FE
n �ρy i; j�

)
∪
( ⋃
i≤Nn

Gn�ρyηi�
)
:(43)

The proof of Lemma 5 also works in the Euclidean setting; therefore we can
take ρ > 0 such that

lim
n→∞

P

[ ⋃
i<j≤Nn

FE
n �ρy i; j�

]
= 0:(44)

Also, by Palm theory for the Poisson process,

E

[ ∑
i≤Nn

1�Gn�ρyηi��
]
= n

∫
B
P�Gn�ρyx��dx:(45)

We partition B = �−1/2;1/2�2 into three regions; a central region

B1
n = �−�1/2� + 2ρrn; �1/2� − 2ρrn�2;

a corner region

B2
n = ��x1; x2� ∈ Bx �xi − �1/2�� < 2ρrn; i = 1;2�;
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and an edge region B3
n = B\�B1

n ∪B2
n�. By the proof of (18),

n
∫
B1
n

P�Gn�ρyx��dx→ 0 as n→∞:

Turning to the edge region, let x = �x1; x2� ∈ B3
n with x1 = −�1/2� + trn

and 0 < t < ρ. Then, setting e = �1;0� ∈ R2, we have

P�Gn�ρyx�� = P�0 < diam�Crn�trneyPH
n �� < ρrnyLrn�trneyPH

n ��
= P�0 < diam�C1�teyPH

nr2
n
�� < ρyL1�teyPH

nr2
n
��

≤ P�C1�teyPH
nr2

n
� = �te��

= P�Crn�xyPn�� = �x��;

(46)

where the inequality holds uniformly in t, for large enough n, by Lemma 6.
Therefore

n
∫
B3
n

P�Gn�ρyx��dx ≤ n
∫
B3
n

P�Crn�xyPn� = �x��;(47)

which converges to 0 by the proof of Proposition 3.
Finally we deal with the integral over the corner region. By a similar ar-

gument to (46), using Lemma 7, we have for large n that

P�diam�Crn�xyPn�� ≤ ρrn� ≤ exp�−�1/8�nπr2
n�; x ∈ B2

n:

Therefore for some constant c, the contribution to the integral in (45) from B2
n

is bounded by cnr2
nn
−1/8, which converges to zero. Therefore the expression in

(45) converges to 0. This, together with (44) and (43), gives us the result. 2

Proof of Proposition 4. For the Euclidean model, (21) holds up to a
boundary correction which is o�1� as n → ∞. Therefore the proof in Section
3 of Proposition 1 can be adapted to the Euclidean model, using Lemma 8, to
give us the result.

6. Non-Poisson models. We now extend our results from Pn to Xn. We
do this by considering a Poisson process of slightly smaller intensity that is
dominated by Xn with high probability.

Lemma 9. Define the function n− of n by n− = n−n3/4. Then for the toroidal
model with ν ≥ 2 or the Euclidean model with ν = 2,

Gn�Pn−� →d P∞ as n→∞:(48)

Proof. Define the function hnx R → R in such a way that hn�n−πνrν −
log n−� = nπrν − log n; that is, define

hn�t� = �t+ log�n−���n/n−� − log n:

Then Gn�Pn−� is the image of Gn−�Pn−� under the mapping �t;x� 7→ �hn�t�;x�.
Since Gn−�Pn−� →d P∞ by results already proved, and since hn�t� → t as
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n → ∞, locally uniformly in t, it follows by condition (b) in our definition of
weak convergence that (48) also holds. 2

Proposition 5. For the toroidal model with ν ≥ 2 or the Euclidean model
with ν = 2,

Gn�Xn� →ν P∞ as n→∞:(49)

Proof. With n− as above, write N−n for Nn− , and P −n for Pn− . Given α ∈ R,
let rn = rn�α� be given by (10) as before. Define the sets

S−n = �i ≤N−n x Ri�P −n � ≥ rn�y Sfn = �i ≤ nx Ri�Xn� ≥ rn�:(50)

The superscript f stands for “fixed,” referring to the fact that Xn has a non-
random number of points.

The point processes Xn and P −n are coupled, since Xn is obtained from P −n
by adding n−N−n points to Pn, if N−n ≤ n, or by removing N−n −n points from
Pn if N−n > n; the latter case is exceptional since by Chebyshev’s inequality,
P�N−n > n� → 0. In view of Lemma 9, to prove (49) it suffices to prove that
for any given α,

lim
n→∞

P�Sfn 6= S−n � = 0:(51)

If Sfn\S−n is nonempty, and N−n ≤ n, then some point of Xn\P −n is added in
the vacant region Vn defined by

Vn = �x ∈ Bx d�x;ηi� ≥ rn for all i ≤N−n�;
with volume denoted �Vn�. Therefore,

P
[
Sfn\S−n 6= \

]
≤ P��N−n −EN−n � > n3/4� +P

[ 2n3/4⋃
i=1

�η′i ∈ Vn�
]
;

where η′1; η
′
2; : : : are independent and uniform on B, representing added

points. By Chebyshev and Fubini, for the toroidal model,

P
[
Sfn\S−n 6= \

]
≤ Var�N−n �
�n3/4�2 + 2n3/4E�Vn�

≤ n−1/2 + 2n3/4 exp�−πνrνn�n− n3/4��
= n−1/2 + 2n3/4�e−αn−1�1+ o�1��� → 0:

(52)

For the Euclidean model with ν = 2, it can be checked that n3/4E��Vn�� still
tends to 0; the corrections for boundary effects are negligible, by a similar
calculation to the proof of Proposition 3.

Let Wn denote the union of those balls of radius rn centered at points of
P −n but devoid of other such points. If S−n\S

f
n is nonempty, and N−n ≤ n, then

some point of Xn\P −n is added in the region Wn. Therefore, if Y−n denotes the
number of points of P −n whose nearest neighbor in P −n is at a distance of more
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than rn, we have for each k that

P
[
S−n\Sfn 6= \yY−n = k

]
≤ P��N−n −EN−n � > n3/4�

+P
[ 2n3/4⋃
i=1

�η′i ∈WnyY−n = k�
]

≤ n−1/2 + 2n3/4k�πνrνn�:

(53)

The bounds in (52) and (53) converge to zero. Since the sequence L �Y−n � is
tight (in fact, weakly convergent), (51) follows. 2

Turning to the MST, we now prove Theorem 1 for Xn.

Proposition 6. Let α ∈ R, and let rn = rn�α� be given by (10). Then for
the toroidal or Euclidean model,

lim
n→∞

P�d�i; j� ≥ rn for some �i; j� ∈MST�Xn�\NNG�Xn�� = 0:(54)

Moreover, with probability approaching 1 as n → ∞, every edge of the MST
on Xn with length greater than rn has one end at a leaf.

Proof. We proceed as in Lemma 3 from Section 3. Let Df
n�i; j� be the

event that �i; j� is an edge of the MST on Pn, and that d�i; j� ≥ rn, but
Ri�Xn� < rn and Rj�Xn� < rn. We prove that

lim
n→∞

P

[ ⋃
i<j≤n

Df
n�i; j�

]
= 0:(55)

Let E−n �ρy i� denote the event that 0 < diam�Crn�ηiyP −n �� < ρrn, and let

E
f
n�ρy i� denote the event that 0 < diam�Crn�ηiyXn�� < ρrn.

Suppose that N−n ≤ n, and that Ef
n�ρyj� occurs for some j ≤ n, but⋃

i≤N−n E
−
n �ρy i� does not. Then, since its diameter is less than ρrn, the inter-

section of Crn�ηjyXn� with P −n is either empty or consists of isolated points. In
the first case, �Xn\P −n � ∩Vn is nonempty; in the second case, �Xn\P −n � ∩Wn

is nonempty, with Vn and Wn defined in the proof of Proposition 5 above.
Therefore

P

[ ⋃
i≤n
Ef
n�ρy i�

]
≤ P

[ ⋃
i≤N−n

E−n �ρy i�
]
+P��N−n −EN−n � > n3/4�

+P
[ ⋃

i≤2n3/4

�η′i ∈ Vn�
]
+P

[ ⋃

i≤2n3/4

�η′i ∈Wn�
]
:

(56)

Suppose r−n is defined by (10) but using n− instead of n. Since r−n > rn for
large n, it follows from (18) in the toroidal case, or from the proof of Lemma 8
in the Euclidean case, that the first term in the right-hand side of (56) tends
to zero. The other terms in (56) tend to zero by the estimates in (52) and (53).
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Let Ff
n�ρy i; j� be the event that the clusters Crn�ηiyXn� and Crn�ηjyXn�

are distinct, and are both of diameter greater than ρrn. The proof of Lemma
5 also shows that P�⋃i<j≤nF

f
n�ρy i; j�� → 0 for some ρ. Thus for suitable ρ,

lim
n→∞

(
P

[ ⋃
i≤n
Ef
n�ρy i�

]
+P

[ ⋃
i<j≤n

Ff
n�ρy i; j�

])
= 0;

which shows that (55) holds.
To complete the proof of (54), proceed as in the proof of Proposition 1 from

Section 3 with Pn replaced by Xn; the place of (21) in that proof is taken by

lim
n→∞

E�card�i ≤ nx x rn�α� ≤ Ri�Xn� ≤ Ri;2�Xn� < rn�β���

= e−β�eβ−α − 1− �β− α��;
which follows from a routine calculation for the multinomial distribution,
which we omit.

The final sentence of Proposition 6 is verified by checking that (27) still
holds with Nn replaced by n.

7. The k-NNG.

Proposition 7. For the toroidal model with ν ≥ 1 and k ≥ 0, if Mn de-
notes the length of the longest edge of the �k + 1�-NNG on Pn or Xn, then
limn→∞P�nπνMν

n − log n − k log�log n� + log k! ≤ α� = exp�−e−α�: More gen-
erally, (7) and (8) hold; that is, Gn;k�Pn� →d P∞ and Gn;k�Xn� →d P∞ as
n→∞.

Proof. Let α > 0. Define sn = sn�α; k� by nπνsνn = log�n/k!�+k log�log n�+
α; so that

lim
n→∞

n exp�−nπνsνn��nπνsνn�k/k! = e−α:(57)

Divide the torus B into disjoint boxes Bi centered at ai, 1 ≤ i ≤mν, as before.
For this section, define Xi to be the indicator of the event that Pn�Bi� = 1,
and that card�jx Pn�Bj� > 0; 0 < d�ai; aj� < sn� = k, and set

pi = E�Xi� ∼m �n/mν� exp�−nπνsνn��nπνsνn�k/k!(58)

Also, set pij = E�XiXj�. Define Ym
n =

∑mν

i=1Xi; and Yn = limm→∞Y
m
n : Thus,

Yn is the number of i for which Ri; k+1�Pn� > rn > Ri; k�Pn�, and

E�Yn� = lim
m→∞

E�Ym
n � = n exp�−nπνsνn��nπνsνn�k/k!;(59)

so that limn→∞E�Yn� = e−α by (57). Similarly,

lim
n→∞

Ecard�i ≤Nnx Ri; k�Pn� > sn� = 0;

so that the weak limit of Yn is the same as the weak limit of card�i ≤ Nn x
Ri; k+1�Pn� > rn�.
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As before, set Ni = �jx d�ai; aj� ≤ 3rn�, and set b1 =
∑
i

∑
j∈Ni

pipj and
b2 =

∑
i

∑
i6=j∈Ni

pij: Then

lim
m→∞

b1 = �E�Yn��2πν�3sn�ν;

which converges to 0 as n→∞.
Recall that v�ry t� denotes the volume of the union of two balls of radius r,

with centers a distance t apart. Let v1�ry t� denote the volume of the inter-
section of these two balls, and let v2�ry t� = �1/2��v�ry t� − v1�ry t�� denote the
volume that lies in the first ball but not the second. Then

lim
m→∞

b2 = n2
∫
�x�≤sn

P�Z1 +Z2 = Z1 +Z3 = k− 1�dx

+ n2
∫
sn<�x�≤3sn

P�Z1 +Z2 = Z1 +Z3 = k�dx;
(60)

where Z1, Z2, Z3 are independent Poisson variables with mean nv1�sny �x��,
nv2�sny �x��, nv2�sny �x��, respectively. The first term in the right-hand side of
(60) is equal to

n2
∫ 3sn

t=0
�νπνtν−1 dt� exp�−nv�sny t��

k−1∑
l=0

�nv1�sny t��k−1−l�nv2�sny t��2l:

Take the sum outside the integral and use the fact that v�sny t� = πνs
ν
n +

v2�sny t� and vi�sny t� = sνnvi�1y t/sn�. By the change of variable u = t/sn and
then by the bound v1�1yu� ≤ πν, the lth term in the sum is

n2 exp�−nπνsνn�
∫ 3

u=0
�νπνsνnuν−1du�

× exp�−nsνnv2�1yu���nsνnv1�1yu��k−1−l�nsνnv2�1yu��2l

≤ νπk−lν n2sνn�nsνn�k+l−1 exp�−nπνsνn�

×
∫ 3

0
exp�−nsνnv2�1yu���v2�1yu��2luν−1 du:

(61)

Since v2�1yu�/u is bounded away from zero and from infinity on 0 < u < 3
and since

∫∞
0 e−θuumdu = const: × θ−�m+1� as a function of θ, the expression

in (61) is at most less than or equal to

c�nsνn�k+l−�2l+ν�n exp�−nπνsνn� ≤ c′�nsνn�−l−ν;(62)

where the last inequality is from (57). This last bound converges to zero, and
one can show similarly that the second sum in the right-hand side of (60)
converges to zero. Therefore limn→∞ limm→∞ b2 = 0, and by the result from
[5], Yn converges in distribution to a Poisson with mean e−α, giving us (9).
The remainder of the proof of (7) is as spelled out in Section 4 for the special
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case k = 0. Likewise, (8) is proved by obvious modifications of the proof of
Proposition 5 in Section 6.
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