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Abstract

Haug [1, 2] has recently shown there is a speed limit for fundamental particles just below the speed

of light given by v

max

= c

q
1� l

2
p

�̄

2 . This speed limit means that the mass of a fundamental particle not
will go towards infinity as v approaches c in the Einstein relativistic mass equation. The relativistic mass
limit for a fundamental particle is the Planck mass. In this paper we use the same velocity limit in the
Lorentz transformation. This leads to what we think could be significant results with some interesting
interpretations. In addition we look at rapidity as well as relativity of simultaneity for subatomic particles
at this maximum velocity for masses.
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1 The Lorentz Transformation at the Maximum Velocity

for Fundamental Particles

The Lorentz [3, 4] transformation is given by the following equation; see also [5], [6] and [7].

x̂ =
x� vtq
1� v

2

c

2 ,

, ŷ = y ẑ = z, t̂ =
t� xv

c

2q
1� v

2

c

2

.

Here we will look at the limit of the Lorentz transformation for fundamental particles based on
the maximum velocity recently given by Haug. The length transformation for the reduced Compton
wavelength must be

x̂ =
�̄� tvq
1� v

2

c

2

(1)

In the case where a fundamental particle moves at the maximum velocity v

max

at which it can travel
before it bursts into energy we get:
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We can estimate
q

1� l

2
p

�̄

2 by using a series expansion, here given by the first three terms:
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It can be shown that the first term of the series expansion gives a very accurate result and that further

terms are negligible as long as
l

2
p

�̄

2 << 1. This is the case for all observed subatomic particles, including
even the Higgs mass, but not for the Planck mass, since the reduced Compton wavelength of the Planck
mass is l

p

. Replacing the series expansion into equation 2 we get
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And the inverse Lorentz length transformation is given by
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again using a series expansion we get
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Very interesting is the special case of �̄ = l

p

; in this case both equation 2 and 5 will return l

p

. That
is a Planck length object has the same length no matter what frame it is observed from. This makes
the Planck length very unique. Based on Haug’s atomism the Planck length is likely the diameter of
the indivisible particle. We can only observe an indivisible particle at the moment of counter-strike with
another indivisible particle. This again is the Planck mass that is the same as observed from any reference
frame; see [1].

The round trip distance we get from the Lorentz transformation is

�̄� tv

maxq
1� v

2
max

c

2

+
�̄+ tv

maxq
1� v

2
max

c

2

=
1
2
l

p

+ 2
�̄

2

l

p

� 1
2
l

p

= 2
�̄

2

l

p

(7)

In the special case of �̄ = l

p

, we get 2l
p

. Bear in mind that under atomism we assert that twice the
Planck length is the length of a Planck mass, which consists of two indivisible particles with diameter l

p

laying next to each other in the instant of counter-strike.

Lorentz time transformation

Similarly, for the Lorentz time transformation we get:
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Again, we use the series expansion for
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For a signal going in the opposite direction we get
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and again we use a series expansion approximation:
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In the special case of �̄ = l

p

we have that both equation 8 and 11 simply return a Planck second: that

is
l

p

c

. It is interesting to note that the transformation in this special case does not change the value from
its input. The Planck second seems to be invariant.

Further, the round trip time is given by
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In the Appendix we also show how this is linked to the invariant Minkowski space-time interval.

2 Rapidity

In 1908, Minkowski [8] showed how the Lorentz transformation could be seen as a hyperbolic rotation
of the space-time coordinates. This leads to the development of rapidity, also known as the hyperbolic
parameter; see [9, 10, 11].

Rapidity is given by
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where artanh is the inverse hyperbolic tangent function. Further, we have
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Based on this, the Lorentz transformation can be written as
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Further, we must have

v
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= tanh(w) (18)

For small values of v we have, w ⇡ v

c

, but for large values of v this is no longer true. In addition, we
have the following link between rapidity and Einstein’s relativistic Doppler shift
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All this is well known, but here we will look at equations linked to rapidity when using the maximum
velocity for a mass (fundamental particles) v
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. This leads to
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Again we use a series expansion approximation,
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Further, we have the following relationships
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This also means, see [1], that we must have
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We can, for example, calculate the maximum rapidity for an electron. We are using �̄ = �̄

e

⇡
3.861593⇥ 10�13 and Planck length of l

p

⇡ 1.61619910�35, this gives
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This means we get a rapidity limit for an electron equal to �52.22102184 > v < 52.22102184. We can
also use this to find the maximum velocity of an electron:

v

max

c

= tanh(w
max

) ⇡ tanh(52.22102184) ⇡ 0.9999999999999999999999999999999999999999999991241561704

(28)
which, as expected, is the same maximum velocity derived for a electron as given by [1, 2]. The

rapidity of a Planck mass, �̄ = l

p

, must be
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This again is consistent with the concept that a Planck mass is at rest as observed from any reference
frame. Further, we have
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Again we see that the Planck mass must be the same as observed from any reference frame. This
basically just shows that our theory of the maximum velocity leads to a maximum mass of fundamental
particles equal to the Planck mass. When the fundamental particles travel at the maximum speed v

max

they will turn into a Planck mass. This Planck mass is, based on the atomist view, highly unstable and
will turn into pure energy instantaneously. In our theory there is a maximum velocity for each so-called
“elementary” particle, a maximum Doppler frequency, and a maximum mass for fundamental particles
that is equal to the Planck mass, and a minimum reduced Compton wavelength of l

p

. What is remarkable
is that the Planck mass and the Planck length are the same as observed from any reference fame.

3 Relativity of Simultaneity at the Maximum Velocity for

Masses

The time di↵erence between two distant events in Einstein’s relativity of simultaneity is given by
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Equation 32 can be derived directly from the Lorentz transformation and is well known from a series
of sources in the special relativity theory literature; see, for example, [12, 13, 14, 15, 16]. When we replace
the length L with the reduced Compton wavelength of a particle and v with the maximum velocity for a
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In the special case where �̄ = l

p

we cannot use the series expansion approximation result 34, because

it only holds for
l
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2 << 1. Going back to equation 33 and inputting �̄ = l
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That is to say, for a Planck mass (the collision of two indivisible particles) there is no time di↵erence
between the two events; in reality they are one event. This is not a surprise in the view of atomism,
because the Planck mass event is the collision of two indivisible particles: the collision happens in a single
point and is therefore simultaneous. Still, the Planck mass itself has a length of 2l

p

. That is the length
of two indivisible particles with diameter l

p

laid out next to each other. Further, a Planck mass has a
reduced Compton wavelength of �̄ = l

p

, which under atomism is the distance center to center between two
indivisible particles. For all non-Planck mass particles there is a time di↵erence related to the reduced
Compton wavelength of the particle in question.

4 Summary

We have presented the Lorentz transformation as well as rapidity and the relativity of simultaneity in the
limit for a maximum speed of particles with mass. This points towards the idea that the Planck length
is the same from any reference frame and the Planck mass is as well. This makes the Planck mass very
unique. The Planck mass is actually at rest in every reference frame. The Planck mass can be seen as
the turning point of “light”. Doesnt light stand still as observed from any reference frame just in the
instant it turns around (is reflected) in a reflection point? This is best understood under atomism, where
the Planck mass is simply two indivisible particles at the moment of counter-strike. The two indivisible
particles always move at the speed of light and each one has a potential mass of half the Planck mass
when it is not counter-striking. At the instant of counter-strike they each have a rest mass equal to half
the Planck mass, and together they form the Planck mass.

Appendix: Minkowski Space-Time Interval

Minkowski [8] showed that the space-time interval was invariant:
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This is as expected. And in relation to the inverse Lorentz transformation we have
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which means that the Minkowski space-time interval for a fundamental particle traveling at its maxi-
mum speed is
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This is as expected.
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