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Abstract

While the optimization problem behind deep

neural networks is highly non-convex, it is fre-

quently observed in practice that training deep

networks seems possible without getting stuck in

suboptimal points. It has been argued that this

is the case as all local minima are close to be-

ing globally optimal. We show that this is (al-

most) true, in fact almost all local minima are

globally optimal, for a fully connected network

with squared loss and analytic activation func-

tion given that the number of hidden units of one

layer of the network is larger than the number

of training points and the network structure from

this layer on is pyramidal.

1. Introduction

The application of deep learning (LeCun et al., 2015) has

in recent years lead to a dramatic boost in performance in

many areas such as computer vision, speech recognition or

natural language processing. Despite this huge empirical

success, the theoretical understanding of deep learning is

still limited. In this paper we address the non-convex opti-

mization problem of training a feedforward neural network.

This problem turns out to be very difficult as there can

be exponentially many distinct local minima (Auer et al.,

1996; Safran & Shamir, 2016). It has been shown that the

training of a network with a single neuron with a variety of

activation functions turns out to be NP-hard (Sima, 2002).

In practice local search techniques like stochastic gradient

descent or variants are used for training deep neural net-

works. Surprisingly, it has been observed (Dauphin et al.,

2014; Goodfellow et al., 2015) that in the training of state-

of-the-art feedforward neural networks with sparse con-

nectivity like convolutional neural networks (LeCun et al.,

1990; Krizhevsky et al., 2012) or fully connected ones one
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does not encounter problems with suboptimal local min-

ima. However, as the authors admit themselves in (Good-

fellow et al., 2015), the reason for this might be that there

is a connection between the fact that these networks have

good performance and that they are easy to train.

On the theoretical side there have been several interesting

developments recently, see e.g. (Brutzkus & Globerson,

2017; Lee et al., 2016; Poggio & Liao, 2017; Rister & Ru-

bin, 2017; Soudry & Hoffer, 2017; Zhou & Feng, 2017).

For some class of networks one can show that one can train

them globally optimal efficiently. However, it turns out that

these approaches are either not practical (Janzamin et al.,

2016; Haeffele & Vidal, 2015; Soltanolkotabi, 2017) as

they require e.g. knowledge about the data generating mea-

sure, or they modify the neural network structure and ob-

jective (Gautier et al., 2016). One class of networks which

are simpler to analyze are deep linear networks for which it

has been shown that every local minimum is a global min-

imum (Baldi & Hornik, 1988; Kawaguchi, 2016). While

this is a highly non-trivial result as the optimization prob-

lem is non-convex, deep linear networks are not interesting

in practice as one efficiently just learns a linear function. In

order to characterize the loss surface for general networks,

an interesting approach has been taken by (Choromanska

et al., 2015a). By randomizing the nonlinear part of a feed-

forward network with ReLU activation function and mak-

ing some additional simplifying assumptions, they can re-

late it to a certain spin glass model which one can analyze.

In this model the objective of local minima is close to the

global optimum and the number of bad local minima de-

creases quickly with the distance to the global optimum.

This is a very interesting result but is based on a number

of unrealistic assumptions (Choromanska et al., 2015b). It

has recently been shown (Kawaguchi, 2016) that if some of

these assumptions are dropped one basically recovers the

result of the linear case, but the model is still unrealistic.

In this paper we analyze the case of overspecified neural

networks, that is the network is larger than what is required

to achieve minimum training error. Under overspecifica-

tion (Safran & Shamir, 2016) have recently analyzed under

which conditions it is possible to generate an initialization

so that it is in principle possible to reach the global opti-

mum with descent methods. However, they can only deal

with one hidden layer networks and have to make strong
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assumptions on the data such as linear independence or

cluster structure. In this paper overspecification means that

there exists a very wide layer, where the number of hid-

den units is larger than the number of training points. For

this case, we can show that a large class of local minima

is globally optimal. In fact, we will argue that almost ev-

ery critical point is globally optimal. Our results generalize

previous work of (Yu & Chen, 1995), who have analyzed a

similar setting for one hidden layer networks, to networks

of arbitrary depth. Moreover, it extends results of (Gori &

Tesi, 1992; Frasconi et al., 1997) who have shown that for

certain deep feedforward neural networks almost all local

minima are globally optimal whenever the training data is

linearly independent. While it is clear that our assumption

on the number of hidden units is quite strong, there are sev-

eral recent neural network structures which contain a quite

wide hidden layer relative to the number of training points

e.g. in (Lin et al., 2016) they have 50,000 training samples

and the network has one hidden layer with 10,000 hidden

units and (Ba & Caruana, 2014) have 1.1 million training

samples and a layer with 400,000 hidden units. We refer to

(Ciresan et al., 2010; Neyshabur et al., 2015; Vincent et al.,

2010; Caruana et al., 2001) for other examples where the

number of hidden units of one layer is on the order of the

number of training samples. We conjecture that for these

kind of wide networks it still holds that almost all local

minima are globally optimal. The reason is that one can

expect linear separability of the training data in the wide

layer. We provide supporting evidence for this conjecture

by showing that basically every critical point for which the

training data is linearly separable in the wide layer is glob-

ally optimal. Moreover, we want to emphasize that all of

our results hold for neural networks used in practice. There

are no simplifying assumptions as in previous work.

2. Feedforward Neural Networks and

Backpropagation

We are mainly concerned with multi-class problems but

our results also apply to multivariate regression problems.

Let N be the number of training samples and denote by

X = [x1, . . . , xN ]T ∈ R
N×d, Y = [y1, . . . , yN ]T ∈

R
N×m the input resp. output matrix for the training data

(xi, yi)
N
i=1, where d is the input dimension and m the

number of classes. We consider fully-connected feedfor-

ward networks with L layers, indexed from 0, 1, 2, . . . , L,
which correspond to the input layer, 1st hidden layer, etc,

and output layer. The network structure is determined by

the weight matrices (Wk)
L
k=1 ∈ W := R

d×n1 × . . . ×
R

nk−1×nk×. . .×R
nL−1×m; where nk is the number of hid-

den units of layer k (for consistency, we set n0 = d, nL =
m), and the bias vectors (bk)

L
k=1 ∈ B := R

n1 × . . .×R
nL .

We denote by P = W × B the space of all possible pa-

rameters of the network. In this paper, [a] denotes the set

of integers {1, 2, . . . , a} and [a, b] the set of integers from

a to b. The activation function σ : R → R is assumed at

least to be continuously differentiable, that is σ ∈ C1(R).
In this paper, we assume that all the functions are applied

componentwise. Let fk, gk : Rd → R
nk be the mappings

from the input space to the feature space at layer k, which

are defined as

f0(x) = x, fk(x) = σ(gk(x)), gk(x) = WT
k fk−1(x) + bk

for every k ∈ [L], x ∈ R
d. In the following, let Fk =

[fk(x1), fk(x2), . . . , fk(xN )]T ∈ R
N×nk and Gk =

[gk(x1), gk(x2), . . . , gk(xN )]T ∈ R
N×nk be the matrices

that store the feature vectors of layer k after and before ap-

plying the activation function. One can easily check that

F1 = σ(XW1 + 1NbT1 ),

Fk = σ(Fk−1Wk + 1NbTk ), for k ∈ [2, L].

In this paper we analyze the behavior of the loss of the

network without any form of regularization, that is the final

objective Φ : P → R of the network is defined as

Φ
(

(Wk, bk)
L
k=1

)

=
N
∑

i=1

m
∑

j=1

l(fLj(xi)− yij) (1)

where l : R → R is assumed to be a continuously differ-

entiable loss function, that is l ∈ C1(R). The prototype

loss which we consider in this paper is the squared loss,

l(α) = α2, which is one of the standard loss functions in

the neural network literature. We assume throughout this

paper that the minimum of (1) is attained.

The idea of backpropagation is the core of our theoretical

analysis. Lemma 2.1 below shows well-known relations for

feed-forward neural networks, which are used throughout

the paper. The derivative of the loss w.r.t. the value of

unit j at layer k evaluated at a single training sample xi is

denoted as δkj(xi) = ∂Φ
∂gkj(xi)

. We arrange these vectors

for all training samples into a single matrix ∆k, defined as

∆k = [δk:(x1), . . . , δk:(xN )]T ∈ R
N×nk .

In the following, A ◦B denotes the Hadamard product be-

tween two matrices, i.e. (A ◦B)ij = AijBij .

Lemma 2.1 Let σ, l ∈ C1(R). Then it holds

1. ∆k =

{

l′(FL − Y ) ◦ σ′(GL), k = L

(∆k+1W
T
k+1) ◦ σ

′(Gk), k ∈ [L− 1]

2. ∇Wk
Φ =

{

XT∆1, k = 1

FT
k−1∆k, k ∈ [2, L]

3. ∇bkΦ = ∆T
k 1N ∀ k ∈ [L]
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Note that Lemma 2.1 does not apply to non-differentiable

activation functions like the ReLU function, σReLU(x) =
max{0, x}. However, it is known that one can approxi-

mate this activation function arbitrarily well by a smooth

function e.g. σα(x) = 1
α
log(1 + eαx) (a.k.a. softplus)

satisfies limα→∞ σα(x) = σReLU(x) for any x ∈ R.

3. Main Result

We first discuss some prior work and present then our main

result together with extensive discussion. For improved

readability we postpone the proof of the main result to

the next section which contains several intermediate results

which are of independent interest.

3.1. Previous Work

Our work can be seen as a generalization of the work of

(Gori & Tesi, 1992; Yu & Chen, 1995). While (Yu & Chen,

1995) has shown that for a one-hidden layer network, that

if n1 = N − 1, then every local minimum is a global min-

imum, the work of (Gori & Tesi, 1992) considered also

multi-layer networks. For the convenience of the reader,

we first restate Theorem 1 of (Gori & Tesi, 1992) using our

previously introduced notation. The critical points of a con-

tinuously differentiable function f : Rd → R are the points

where the gradient vanishes, that is ∇f(x) = 0. Note that

this is a necessary condition for a local minimum.

Theorem 3.1 (Gori & Tesi, 1992) Let Φ : P → R be

defined as in (1) with least squares loss l(a) = a2. As-

sume σ : R → [d, d̄] to be continuously differentiable with

strictly positive derivative and

lim
a→∞

σ′(a)

d̄−σ(a)
> 0, lima→∞

−σ′′(a)

d̄−σ(a)
> 0

lima→−∞
σ′(a)

σ(a)−d
> 0, lima→−∞

σ′′(a)

σ(a)−d
> 0

Then every critical point (Wl, bl)
L
l=1 of Φ which satisfies

the conditions

1. rank(Wl) = nl for all l ∈ [2, L],

2. [X,1N ]T∆1 = 0 implies ∆1 = 0

is a global minimum.

While this result is already for general multi-layer net-

works, the condition “[X,1N ]T∆1 = 0 implies ∆1 = 0” is

the main caveat. It is already noted in (Gori & Tesi, 1992),

that “it is quite hard to understand its practical meaning”

as it requires prior knowledge of ∆1 at every critical point.

Note that this is almost impossible as ∆1 depends on all

the weights of the network. For a particular case, when

the training samples (biases added) are linearly indepen-

dent, i.e. rank([X,1N ]) = N , the condition holds auto-

matically. This case is discussed in the following Theorem

3.4, where we consider a more general class of loss and

activation functions.

3.2. First Main Result and Discussion

A function f : Rd → R is real analytic if the correspond-

ing multivariate Taylor series converges to f(x) on an open

subset of R
d (Krantz & Parks, 2002). All results in this

section are proven under the following assumptions on the

loss/activation function and training data.

Assumptions 3.2 1. There are no identical training

samples, i.e. xi 6= xj for all i 6= j,

2. σ is analytic on R, strictly monotonically increasing

and

(a) σ is bounded or

(b) there are positive ρ1, ρ2, ρ3, ρ4, s.t. |σ(t)| ≤
ρ1e

ρ2t for t < 0 and |σ(t)| ≤ ρ3t+ ρ4 for t ≥ 0

3. l ∈ C2(R) and if l′(a) = 0 then a is a global minimum

These conditions are not always necessary to prove some of

the intermediate results presented below, but we decided to

provide the proof under the above strong assumptions for

better readability. For instance, all of our results also hold

for strictly monotonically decreasing activation functions.

Note that the above conditions are not restrictive as many

standard activation functions satisfy them.

Lemma 3.3 The sigmoid activation function σ1(t) =
1

1+e−t , the tangent hyperbolic σ2(t) = tanh(t) and the

softplus function σ3(t) =
1
α
log(1 + eαt) for α > 0 satisfy

Assumption 3.2.

The conditions on l are satisfied for any twice continu-

ously differentiable convex loss function. A typical ex-

ample is the squared loss l(a) = a2 or the Pseudo-

Huber loss (Hartley & Zisserman, 2004) given as lδ(a) =
2δ2(

√

1 + a2/δ2 − 1) which approximates a2 for small

a and is linear with slope 2δ for large a. But also non-

convex loss functions satisfy this requirement, e.g. the

Blake-Zisserman, corrupted Gaussian and Cauchy func-

tions (Hartley & Zisserman, 2004) (p.617-p.619).

As a motivation for our main result, we first analyze the

case when the training samples are linearly independent,

which requires N ≤ d+1. It can be seen as a generalization

of Corollary 1 in (Gori & Tesi, 1992).

Theorem 3.4 Let Φ : P → R be defined as in (1) and let

the Assumptions 3.2 hold. If the training samples are lin-

early independent, that is rank([X,1N ]) = N , then every

critical point (Wl, bl)
L
l=1 of Φ for which the weight matri-

ces (Wl)
L
l=2 have full column rank, that is rank(Wl) = nl

for l ∈ [2, L], is a global minimum.



The Loss Surface of Deep and Wide Neural Networks

Theorem 3.4 implies that the weight matrices of potential

saddle points or suboptimal local minima need to have low

rank for one particular layer. Note however that the set

of low rank weight matrices in W has measure zero. At

the moment we cannot prove that suboptimal low rank lo-

cal minima cannot exist. However, it seems implausible

that such suboptimal low rank local minima exist as ev-

ery neighborhood of such points contains full rank matrices

which increase the expressiveness of the network. Thus it

should be possible to use this degree of freedom to further

reduce the loss, which contradicts the definition of a local

minimum. Thus we conjecture that all local minima are

indeed globally optimal.

The main restriction in the assumptions of Theorem 3.4 is

the linear independence of the training samples as it re-

quires N ≤ d+ 1, which is very restrictive in practice. We

prove in this section a similar guarantee in our main The-

orem 3.8 by implicitly transporting this condition to some

higher layer. A similar guarantee has been proven by (Yu

& Chen, 1995) for a single hidden layer network, whereas

we consider general multi-layer networks. The main ingre-

dient of the proof of our main result is the observation in

the following lemma.

Lemma 3.5 Let Φ : P → R be defined as in (1) and let

the Assumptions 3.2 hold. Let (Wl, bl)
L
l=1 ∈ P be given.

Assume there is some k ∈ [L− 1] s.t. the following holds

1. rank([Fk,1N ]) = N

2. rank(Wl) = nl, l ∈ [k + 2, L]

3. ∇Wk+1
Φ
(

(Wl, bl)
L
l=1

)

= 0

∇bk+1
Φ
(

(Wl, bl)
L
l=1

)

= 0

then (Wl, bl)
L
l=1 is a global minimum.

The first condition of Lemma 3.5 can be seen as a gener-

alization of the requirement of linearly independent train-

ing inputs in Theorem 3.4 to a condition of linear inde-

pendence of the feature vectors at a hidden layer. Lemma

3.5 suggests that if we want to make statements about the

global optimality of critical points, it is sufficient to know

when and which critical points fulfill these conditions. The

third condition is trivially satisfied by a critical point and

the requirement of full column rank of the weight matrices

is similar to Theorem 3.4. However, the first one may not

be fulfilled since rank([Fk,1N ]) is dependent not only on

the weights but also on the architecture. The main difficulty

of the proof of our following main theorem is to prove that

this first condition holds under the rather simple require-

ment that nk ≥ N − 1 for a subset of all critical points.

But before we state the theorem we have to discuss a par-

ticular notion of non-degenerate critical point.

Definition 3.6 (Block Hessian) Let f : D → R be a

twice-continuously differentiable function defined on some

open domain D ⊆ R
n. The Hessian w.r.t. a subset of vari-

ables S ⊆ {x1, . . . , xn} is denoted as ∇2
Sf(x) ∈ R

|S|×|S|.
When |S| = n, we write ∇2f(x) ∈ R

n×n to denote the full

Hessian matrix.

We use this to introduce a slightly more general notion of

non-degenerate critical point.

Definition 3.7 (Non-degenerate critical point) Let f :
D → R be a twice-continuously differentiable function de-

fined on some open domain D ⊆ R
n. Let x ∈ D be a

critical point, i.e. ∇f(x) = 0, then

• x is non-degenerate for a subset of variables S ⊆
{x1, . . . , xn} if ∇2

Sf(x) is non-singular.

• x is non-degenerate if ∇2f(x) is non-singular.

Note that a non-degenerate critical point might not be non-

degenerate for a subset of variables, and vice versa, if it is

non-degenerate on a subset of variables it does not neces-

sarily imply non-degeneracy on the whole set. For instance,

∇2f(x) =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

, ∇2f(y) =

1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

Clearly, det∇2f(x) = 0 but det∇2
{x1,x2}

f(x) 6= 0, and

det∇2f(y) 6= 0 but det∇2
{y3,y4}

f(y) = 0. The concept

of non-degeneracy on a subset of variables is crucial for

the following statement of our main result.

Theorem 3.8 Let Φ : P → R be defined as in (1) and let

the Assumptions 3.2 hold. Suppose nk ≥ N − 1 for some

k ∈ [L − 1]. Then every critical point (W ∗
l , b

∗
l )

L
l=1 of Φ

which satisfies the following conditions

1. (W ∗
l , b

∗
l )

L
l=1 is non-degenerate on {(Wl, bl) | l ∈ I},

for some subset I ⊆ {k + 1, . . . , L} satisfying

{k + 1} ∈ I,

2. (W ∗
l )

L
l=k+2 has full column rank, that is, rank(W ∗

l ) =
nl for l ∈ [k + 2, L],

is a global minimum of Φ.

First of all we note that the full column rank condition of

(Wl)
L
l=k+2 in Theorem 3.4, and 3.8 implicitly requires that

nk+1 ≥ nk+2 ≥ . . . ≥ nL. This means the network needs

to have a pyramidal structure from layer k + 2 to L. It is

interesting to note that most modern neural network archi-

tectures have a pyramidal structure from some layer, typi-

cally the first hidden layer, on. Thus this is not a restrictive
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requirement. Indeed, one can even argue that Theorem 3.8

gives an implicit justification as it hints on the fact that such

networks are easy to train if one layer is sufficiently wide.

Note that Theorem 3.8 does not require fully non-

degenerate critical points but non-degeneracy is only

needed for some subset of variables that includes layer

k + 1. As a consequence of Theorem 3.8, we get directly a

stronger result for non-degenerate local minima.

Corollary 3.9 Let Φ : P → R be defined as in (1) and let

the Assumptions 3.2 hold. Suppose nk ≥ N − 1 for some

k ∈ [L − 1]. Then every non-degenerate local minimum

(W ∗
l , b

∗
l )

L
l=1 of Φ for which (W ∗

l )
L
l=k+2 has full column

rank, that is rank(W ∗
l ) = nl, is a global minimum of Φ.

Let us discuss the implications of these results. First, note

that Theorem 3.8 is slightly weaker than Theorem 3.4 as it

requires also non-degeneracy wrt to a set of variables in-

cluding layer k + 1. Moreover, similar to Theorem 3.4 it

does not exclude the possibility of suboptimal local min-

ima of low rank in the layers “above” layer k + 1. On the

other hand it makes also very strong statements. In fact, if

nk ≥ N − 1 for some k ∈ [L − 1] then even degenerate

saddle points/local maxima are excluded as long as they

are non-degenerate with respect to any subset of parame-

ters of upper layers that include layer k + 1 and the rank

condition holds. Thus given that the weight matrices of the

upper layers have full column rank , there is not much room

left for degenerate saddle points/local maxima. Moreover,

for a one-hidden-layer network for which n1 ≥ N − 1,

every non-degenerate critical point with respect to the out-

put layer parameters is a global minimum, as the full rank

condition is not active for one-hidden layer networks.

Concerning the non-degeneracy condition of main Theo-

rem 3.8, one might ask how likely it is to encounter degen-

erate points of a smooth function. This is answered by an

application of Sard’s/Morse theorem in (Milnor, 1965).

Theorem 3.10 (A. Morse, p.11) If f : U ⊂ R
d → R is

twice continuously differentiable. Then for almost all w ∈
R

d with respect to the Lebesgue measure it holds that f ′

defined as f ′(x) = f(x) + 〈w, x〉 has only non-degenerate

critical points.

Note that the theorem would still hold if one would draw

w uniformly at random from the set {z ∈ R
d | ‖z‖2 ≤ ǫ}

for any ǫ > 0. Thus almost every linear perturbation f ′ of

a function f will lead to the fact all of its critical points are

non-degenerate. Thus, this result indicates that exact de-

generate points might be rare. Note however that in prac-

tice the Hessian at critical points can be close to singular

(at least up to numerical precision), which might affect the

training of neural networks negatively (Sagun et al., 2016).

As we argued for Theorem 3.4 our main Theorem 3.8 does

not exclude the possibility of suboptimal degenerate local

minima or suboptimal local minima of low rank. However,

we conjecture that the second case cannot happen as ev-

ery neighborhood of the local minima contains full rank

matrices which increase the expressiveness of the network

and this additional flexibility can be used to reduce the loss

which contradicts the definition of a local minimum.

As mentioned in the introduction the condition nk ≥ N−1
looks at first sight very strong. However, as mentioned in

the introduction, in practice often networks are used where

one hidden layer is rather wide, that is nk is on the order of

N (typically it is the first layer of the network). As the con-

dition of Theorem 3.8 is sufficient and not necessary, one

can expect out of continuity reasons that the loss surface of

networks where the condition is approximately true, is still

rather well behaved, in the sense that still most local min-

ima are indeed globally optimal and the suboptimal ones

are not far away from the globally optimal ones.

4. Proof of Main Result

For better readability, we first prove our main Theorem 3.8

for a special case where I is the whole set of upper layers,

i.e. I = {k + 1, . . . , L} , and then show how to extend

the proof to the general case where I ⊆ {k + 1, . . . , L} .
Our proof strategy is as follows. We first show that the

output of each layer are real analytic functions of network

parameters. Then we prove that there exists a set of pa-

rameters such that rank([Fk,1N ]) = N. Using proper-

ties of real analytic functions, we conclude that the set

of parameters where rank([Fk,1N ]) < N has measure

zero. Then with the non-degeneracy condition, we can ap-

ply the implicit-function theorem to conclude that even if

rank([Fk,1N ]) = N is not true at a critical point, then still

in any neighborhood of it there exists a point where the

conditions of Lemma 3.5 are true and the loss is minimal.

By continuity of Φ, this implies that the loss must also be

minimal at the critical point.

We introduce some notation frequently used in the proofs.

Let B(x, r) = {z ∈ R
d | ‖x− z‖2 < r} be the open ball

in R
d of radius r around x.

Lemma 4.1 If the Assumptions 3.2 hold, then the output of

each layer fl for every l ∈ [L] are real analytic functions

of the network parameters on P.

Proof: Any linear function is real analytic and the

set of real analytic functions is closed under addition,

multiplication and composition, see e.g. Prop. 2.2.2 and

Prop. 2.2.8 in (Krantz & Parks, 2002). As we assume

that the activation function is real analytic, we get that

all the output functions of the neural network fk are real

analytic functions of the parameters as compositions of

real analytic functions. ✷
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The concept of real analytic functions is important in our

proofs as these functions can never be “constant” in a set of

the parameter space which has positive measure unless they

are constant everywhere. This is captured by the following

lemma.

Lemma 4.2 (Nguyen, 2015; Mityagin, 2015) If f : Rn →
R is a real analytic function which is not identically zero

then the set {x ∈ R
n | f(x) = 0} has Lebesgue measure

zero.

In the next lemma we show that there exist network param-

eters such that rank([Fk,1N ]) = N holds if nk ≥ N − 1.

Note that this is only possible due to the fact that one uses

non-linear activation functions. For deep linear networks,

it is not possible for Fk to achieve maximum rank if the

layers below it are not sufficiently wide. To see this, one

considers Fk = Fk−1Wk + 1NbTk for a linear network,

then rank(Fk) ≤ min{rank(Fk−1), rank(Wk)} + 1 since

the addition of a rank-one term does not increase the rank

of a matrix by more than one. By using induction, one gets

rank(Fk) ≤ rank(Wl) + k − l + 1 for every l ∈ [k].

The existence of network parameters where

rank([Fk,1N ]) = N together with the previous lemma

will then be used to show that the set of network parameters

where rank([Fk,1N ]) < N has measure zero.

Lemma 4.3 If the Assumptions 3.2 hold and nk ≥ N − 1
for some k ∈ [L − 1], then there exists at least one set of

parameters (Wl, bl)
k
l=1 such that rank([Fk,1N ]) = N.

Now we combine the previous lemma with Lemma 4.2 to

conclude the following.

Lemma 4.4 If the Assumptions 3.2 hold and nk ≥
N − 1 for some k ∈ [L − 1] then the set S :=
{

(

Wl, bl
)k

l=1

∣

∣

∣
rank([Fk,1N ]) < N

}

has Lebesgue mea-

sure zero.

We conclude that for nk ≥ N − 1 even if there are net-

work parameters such that rank([Fk,1N ]) < N , then every

neighborhood of these parameters contains network param-

eters such that rank([Fk,1N ]) = N.

Corollary 4.5 If the Assumptions 3.2 hold and nk ≥ N−1
for some k ∈ [L − 1], then for any given (W 0

l , b
0
l )

k
l=1 and

for every ǫ > 0, there exists at least one
(

Wl, bl
)k

l=1
∈

B
(

(

W 0
l , b

0
l

)k

l=1
, ǫ
)

s.t. rank([Fk,1N ]) = N.

Proof: Let S :=
{

(

Wl, bl
)k

l=1

∣

∣

∣
rank([Fk,1N ]) < N

}

.

The ball B
(

(

Wl, bl
)k

l=1
, ǫ
)

has positive Lebesgue mea-

sure while S has measure zero due to Lemma 4.4. Thus,

for every
(

Wl, bl
)k

l=1
∈ B

(

(

W 0
l , b

0
l

)k

l=1
, ǫ
)

\ S it holds

rank([Fk,1N ]) = N. ✷

The final proof of our main Theorem 3.8 is heavily based

on the implicit function theorem, see e.g. (Marsden, 1974).

Theorem 4.6 Let Ψ : Rs × R
t → R

t be a continuously

differentiable function. Suppose (u0, v0) ∈ R
s × R

t and

Ψ(u0, v0) = 0. If the Jacobian matrix w.r.t. v,

JvΨ(u0, v0) =







∂Ψ1

∂v1
· · · ∂Ψ1

∂vt

...
...

∂Ψt

∂v1
· · · ∂Ψt

∂vt






∈ R

t×t

is non-singular at (u0, v0), then there is an open ball

B(u0, ǫ) for some ǫ > 0 and a unique function α :
B(u0, ǫ) → R

t such that Ψ(u, α(u)) = 0 for all u ∈
B(u0, ǫ). Furthermore, α is continuously differentiable.

With all the intermediate results proven above, we are fi-

nally ready for the proof of the main result.

Proof of Theorem 3.8 for case I = {k + 1, . . . , L}
Let us divide the set of all parameters of the network

into two subsets where one corresponds to all param-

eters of all layers up to k, for that we denote u =
[vec(W1)

T , bT1 , . . . , vec(Wk)
T , bTk ]

T , and the other corre-

sponds to the remaining parameters, for that we denote

v = [vec(Wk+1)
T , bTk+1, . . . , vec(WL)

T , bTL]
T . By abuse

of notation, we write Φ(u, v) to denote Φ
(

(Wl, bl)
L
l=1

)

.

Let s = dim(u), t = dim(v) and (u∗, v∗) ∈ R
s×R

t be the

corresponding vectors for the critical point (W ∗
l , b

∗
l )

L
l=1.

Let Ψ : Rs × R
t → R

t be a map defined as Ψ(u, v) =
∇vΦ(u, v) ∈ R

t, which is the gradient mapping of Φ
w.r.t. all parameters of the upper layers from (k + 1) to

L. Since the gradient vanishes at a critical point, it holds

that Ψ(u∗, v∗) = ∇vΦ(u
∗, v∗) = 0. The Jacobian of Ψ

w.r.t. v is the principal submatrix of the Hessian of Φ w.r.t.

v, that is, JvΨ(u, v) = ∇2
vΦ(u, v) ∈ R

t×t. As the crit-

ical point is assumed to be non-degenerate with respect

to v, it holds that JvΨ(u∗, v∗) = ∇2
vΦ(u

∗, v∗) is non-

singular. Moreover, Ψ is continuously differentiable since

Φ ∈ C2(P) due to Assumption 3.2. Therefore, Ψ and

(u∗, v∗) satisfy the conditions of the implicit function the-

orem 4.6. Thus there exists an open ball B(u∗, δ1) ⊂ R
s

for some δ1 > 0 and a continuously differentiable function

α : B(u∗, δ1) → R
t such that

{

Ψ(u, α(u)) = 0, ∀u ∈ B(u∗, δ1)

α(u∗) = v∗

By assumption we have rank(W ∗
l ) = nl, l ∈ [k+2, L], that

is the weight matrices of the “upper” layers have full col-

umn rank. Note that (W ∗
l )

L
l=k+2 corresponds to the weight
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matrix part of v∗ where one leaves out W ∗
k+1. Thus there

exists a sufficiently small ǫ such that for any v ∈ B(v∗, ǫ),
the weight matrix part (Wl)

L
l=k+2 of v has full column

rank. In particular, this, combined with the continuity of

α, implies that for a potentially smaller 0 < δ2 ≤ δ1, it

holds for all u ∈ B(u∗, δ2) that

Ψ(u, α(u)) = 0, α(u∗) = v∗,

and that the weight matrix part (Wl)
L
l=k+2 of α(u) ∈ R

t

has full column rank.

Now, by Corollary 4.5 for any 0 < δ3 ≤ δ2 there exists a

ũ ∈ B(u∗, δ3) such that the generated output matrix F̃k at

layer k of the corresponding network parameters of ũ satis-

fies rank([F̃k,1N ]) = N. Moreover, it holds for ṽ = α(ũ)
that Ψ(ũ, ṽ) = 0 and the weight matrix part (W̃l)

L
l=k+2 of

ṽ has full column rank. Assume (ũ, ṽ) corresponds to the

following representation
{

ũ = [vec(W̃1)
T , b̃T1 , . . . , vec(W̃k)

T , b̃Tk ]
T ∈ R

s

ṽ = [vec(W̃k+1)
T , b̃Tk+1, . . . , vec(W̃L)

T , b̃TL]
T ∈ R

t

We obtain the following























Ψ(ũ, ṽ) = 0 ⇒ ∇Wk+1
Φ
(

(W̃l, b̃l)
k
l=1

)

= 0

Ψ(ũ, ṽ) = 0 ⇒ ∇bk+1
Φ
(

(W̃l, b̃l)
k
l=1

)

= 0

rank(W̃l) = nl, ∀ l ∈ [k + 2, L]

rank([F̃k,1N ]) = N

Thus, Lemma 3.5 implies that (W̃l, b̃l)
L
l=1 is a global mini-

mum of Φ. Let p∗ = Φ
(

(W̃l, b̃l)
L
l=1

)

= Φ(ũ, ṽ). Note that

this construction can be done for any δ3 ∈ (0, δ2]. In par-

ticular, let (γr)
∞
r=1 be a strictly monotonically decreasing

sequence such that γ1 = δ3 and limr→∞ γr = 0. By Corol-

lary 4.5 and the previous argument, we can choose for any

γr > 0 a point ũr ∈ B(u∗, γr) such that ṽr = α(ũr) has

full rank and Φ(ũr, ṽr) = p∗. Moreover, as limr→∞ γr =
0, it follows that limr→∞ ũr = u∗ and as α is a continu-

ous function, it holds with ṽr = α(ũr) that limr→∞ ṽr =
limr→∞ α(ũr) = α(limr→∞ ũr) = α(u∗) = v∗. Thus we

get limr→∞(ũr, ṽr) = (u∗, v∗) and as Φ is a continuous

function it holds

lim
r→∞

Φ
(

(ũr, ṽr)
)

= Φ(u∗, v∗) = p∗,

as Φ attains the global minimum for the whole sequence

(ũr, ṽr).

Proof of Theorem 3.8 for general case

In the general case I ⊆ {k + 1, . . . , L}, the previous proof

can be easily adapted. The idea is that we fix all layers in

{k + 1, . . . , L} \ I. In particular, let
{

u = [vec(W1)
T , bT1 , . . . , vec(Wk)

T , bTk ]
T

v = [vec(WI(1))
T , bTI(1), . . . , vec(WI(|I|))

T , bTI(|I|)]
T .

Let s = dim(u), t = dim(v) and (u∗, v∗) ∈ R
s×R

t be the

corresponding vectors at (W ∗
l , b

∗
l )

L
l=1. Let Ψ : Rs × R

t →

R
t be a map defined as Ψ(u, v) = ∇vΦ

(

(Wl, bl)
L
l=1

)

with

Ψ(u∗, v∗) = ∇vΦ
(

(W ∗
l , b

∗
l )

L
l=1

)

= 0.

The only difference is that all the layers from

{k + 1, . . . , L} \ I are hold fixed. They are not con-

tained in the arguments of Ψ, thus will not be involved in

our perturbation analysis. In this way, the full rank prop-

erty of the weight matrices of these layers are preserved,

which is needed to obtain the global minimum.

5. Relaxing the Condition on the Number of

Hidden Units

We have seen that nk ≥ N − 1 is a sufficient condi-

tion which leads to a rather simple structure of the critical

points, in the sense that all local minima which have full

rank in the layers k + 2 to L and for which the Hessian is

non-degenerate on any subset of upper layers that includes

layer k + 1 are automatically globally optimal. This sug-

gests that suboptimal locally optimal points are either com-

pletely absent or relatively rare. We have motivated before

that networks with a certain wide layer are used in prac-

tice, which shows that the condition nk ≥ N − 1 is not

completely unrealistic. On the other hand we want to dis-

cuss in this section how it could be potentially relaxed. The

following result will provide some intuition about the case

nk < N − 1, but will not be as strong as our main result

3.8 which makes statements about a large class of critical

points. The main idea is that with the condition nk ≥ N−1
the data is linearly separable at layer k. As modern neural

networks are expressive enough to represent any function,

see (Zhang et al., 2017) for an interesting discussion on

this, one can expect that in some layer the training data be-

comes linearly separable. We prove that any critical point,

for which the “learned” network outputs at any layer are

linearly separable (see Definition 5.1) is a global minimum

of the training error.

Definition 5.1 (Linearly separable vectors) A set of vec-

tors (xi)
N
i=1 ∈ R

d from m classes (Cj)
m
j=1 is called lin-

early separable if there exist m vectors (aj)
m
j=1 ∈ R

d and

m scalars (bj)
m
j=1 ∈ R so that aTj xi + bj > 0 for xi ∈ Cj

and aTj xi + bj < 0 for xi /∈ Cj for every i ∈ [N ], j ∈ [m].

In this section, we use a slightly different loss function than

in the previous section. The reason is that the standard least

squares loss is not necessarily small when the data is lin-

early separable. Let C1, . . . , Cm denote m classes. We
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l1 l2

Figure 1. An example of l1, l2.

consider the objective function Φ : P → R from (1)

Φ
(

(Wl, bl)
L
l=1

)

=

N
∑

i=1

m
∑

j=1

l
(

fLj(xi)− yij
)

(2)

where the loss function now takes the new form

l
(

fLj(xi)− yij
)

=

{

l1
(

fLj(xi)− yij
)

xi ∈ Cj

l2
(

fLj(xi)− yij
)

xi /∈ Cj

where l1, l2 penalize the deviation from the label encoding

for the true class resp. wrong classes. We assume that the

minimum of Φ is attained over P. Note that Φ is bounded

from below by zero as l1 and l2 are non-negative loss func-

tions. The results of this section are made under the follow-

ing assumptions on the activation and loss function.

Assumptions 5.2 1. σ ∈ C1(R) and strictly monotoni-

cally increasing.

2. l1 : R → R+, l1 ∈ C1, l1(a) = 0 ⇔ a ≥ 0, l′1(a) =
0 ⇔ a ≥ 0 and l′1(a) < 0 ∀ a < 0

3. l2 : R → R+, l2 ∈ C1, l2(a) = 0 ⇔ a ≤ 0, l′2(a) =
0 ⇔ a ≤ 0 and l′2(a) > 0 ∀ a > 0

In classification tasks, this loss function encourages higher

values for the true class and lower values for wrong classes.

An example of the loss function that satisfies Assumption

5.2 is given as (see Figure 1):

l1(a) =

{

a2 a ≤ 0

0 a ≥ 0
l2(a) =

{

0 a ≤ 0

a2 a ≥ 0

Note that for a {+1,−1}-label encoding, +1 for the true

class and −1 for all wrong classes, one can rewrite (2) as

Φ
(

(Wl, bl)
L
l=1

)

=
N
∑

i=1

m
∑

j=1

max{0, 1− yijfLj(xi)}
2,

which is similar to the truncated squared loss (also called

squared hinge loss) used in the SVM for binary classifica-

tion. Since σ and l are continuously differentiable, all the

results from Lemma 2.1 still hold. Our main result in this

section is stated as follows.

Theorem 5.3 Let Φ : P → R+ be defined as in (2) and let

the Assumptions 5.2 hold. Then it follows:

1. Every critical point of Φ for which the feature vectors

contained in the rows of Fk are linearly separable and

all the weight matrices (Wl)
L
l=k+2 have full column

rank is a global minimum.

2. If the training inputs are linearly separable then every

critical point of Φ for which all the weight matrices

(Wl)
L
l=2 have full column rank is a global minimum.

Note that the second statement of Theorem 5.3 can be con-

sidered as a special case of the first statement. In the case

where L = 2 and training inputs are linearly separable, the

second statement of our Theorem 5.3 recovers the similar

result of (Gori & Tesi, 1992; Frasconi et al., 1997) for one-

hidden layer networks.

Even though the assumptions of Theorem 3.4 and Theo-

rem 5.3 are different in terms of class of activation and loss

functions, their results are related. In fact, it is well known

that if a set of vectors is linearly independent then they are

linearly separable, see e.g. p.340 (Barber, 2012). Thus

Theorem 5.3 can be seen as a direct generalization of The-

orem 3.4. The caveat, which is also the main difference to

Theorem 3.8, is that Theorem 5.3 makes only statements

for all the critical points for which the problem has become

separable at some layer, whereas there is no such condition

in Theorem 3.8. However, we still think that the result is

of practical relevance, as one can expect for a sufficiently

large network that stochastic gradient descent will lead to

a network structure where the data becomes separable at a

particular layer. When this happens all the associated criti-

cal points are globally optimal. It is an interesting question

for further research if one can show directly under some

architecture condition that the network outputs become lin-

early separable at some layer for any local minimum and

thus every local minimum is a global minimum.

6. Discussion

Our results show that the loss surface becomes well-

behaved when there is a wide layer in the network. Im-

plicitly, such a wide layer is often present in convolutional

neural networks used in computer vision. It is thus an in-

teresting future research question how and if our result can

be generalized to neural networks with sparse connectiv-

ity. We think that the results presented in this paper are a

significant addition to the recent understanding why deep

learning works so efficiently. In particular, since in this pa-

per we are directly working with the neural networks used

in practice without any modifications or simplifications.
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