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One Sentence Summary 

A diverse set of neuromodulators facilitates the formation of a dynamic, low-

dimensional integrative core in the brain that is recruited by diverse cognitive demands  
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Abstract 

The human brain integrates diverse cognitive processes into a coherent whole, shifting 

fluidly as a function of changing environmental demands. Despite recent progress, the 

neurobiological mechanisms responsible for this dynamic system-level integration 

remain poorly understood. Here, we used multi-task fMRI data from the Human 

Connectome Project to examine the spatiotemporal architecture of cognition in the 

human brain. By investigating the spatial, dynamic and molecular signatures of system-

wide neural activity across a range of cognitive tasks, we show that large-scale neuronal 

activity converges onto a low dimensional manifold that facilitates the dynamic 

execution of diverse task states. Flow within this attractor space is associated with 

dissociable cognitive functions, and with unique patterns of network-level topology and 

information processing complexity. The axes of the low-dimensional neurocognitive 

architecture align with regional differences in the density of neuromodulatory 

receptors, which in turn relate to distinct signatures of network controllability estimated 

from the structural connectome. These results advance our understanding of functional 

brain organization by emphasizing the interface between low dimensional neural 

activity, network topology, neuromodulatory systems and cognitive function. 
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Main Text 

The human brain is a complex adaptive system in which diverse behaviors arise from 

coordinated neural activity across a range of spatial and temporal scales. Linking 

activity within this large-scale neural architecture to the diversity of cognitive states 

remains an important goal for neuroscience.  

The analysis of complex brain networks can be used to discern the organizational 

properties of the brain that are crucial for its functional dynamics1. Network accounts of 

brain function have hypothesized that a ‘dynamic core’ of regions flexibly guide the 

flow of activity within the brain to facilitate cognition2,3. These frameworks predict that 

a distributed set of core regions is active across multiple tasks4,5 and integrates more 

specialized regions6, altering baseline communication dynamics in service of task-

specific computations. Although computational approaches have investigated these 

large-scale patterns8, little is currently known about the mechanisms that facilitate 

system-wide brain state dynamics as a function of cognition. 

One tractable approach to this problem is to exploit the redundancy within complex 

systems by utilizing dimensionality reduction techniques9,10. These approaches uncover 

latent functional patterns in complex datasets by distilling brain activity patterns into 

spatiotemporally similar components10. The dynamics of the system can then be 

interrogated within this low-dimensional space, offering insights into the mechanisms 

that underlie the system’s function. These approaches have successfully been used in 

the past to elucidate the functional brain circuitry that underlies the behavioral 

repertoires of a diverse range of organisms, including the nematode (Caenorhabditis 

elegans), the fruit fly (Drosophila melanogaster) and the ferret (Mustela putorius furo)11-14. 

Computational modeling suggests that similar dynamic low-dimensional mechanisms 

should exist within human brains1.  

Here, we analyze whole-brain functional neuroimaging data across a suite of cognitive 

tasks to identify the low-dimensional dynamic core of cognition in the human brain. We 

demonstrate that the dynamic functional organization of the brain across a suite of 

cognitive tasks describes a flow along a low-dimensional phase space. This dynamic 

flow aligns with unique cognitive brain states that recur across distinct cognitive tasks. 

We next demonstrate that the flow of activity reflects an ‘integrative core’ that 

maximizes information processing complexity over relatively long time scales. Finally, 

we show that the axes of this low-dimensional space are closely related to spatial 
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patterns of gene expression for specific families of neuromodulatory receptors, and also 

to unique signatures of structural network controllability, which together provide a 

plausible biological mechanism for the modulation of system-level brain dynamics. 

These results present a novel view of brain function based on the coordinated dynamics 

of functional brain networks over time and provide a mechanistic account of the 

association between a suite of distinct neuromodulatory systems and cognitive 

function. 

 

Low dimensional global brain activity recurs across multiple cognitive tasks  

We used high temporal resolution 3T fMRI data (TR = 0.72s) from the Human 

Connectome Project to examine Blood Oxygen Level Dependent (BOLD) activity from 

200 unrelated individuals across seven cognitive tasks, each of which engages distinct 

cognitive functions: emotional processing, gambling, mathematical calculation, 

language processing, motor execution, working memory performance, relational 

matching and social inference15. Preprocessed BOLD time series were extracted from 

375 cortical and subcortical parcels16 and concatenated across all seven tasks and across 

all subjects. To ensure reproducibility, analyses were initially developed within an 100-

subject Discovery dataset and then replicated within an 100-subject Replication cohort. 

 

Principal component analysis (PCA) was applied to the multi-task BOLD time series, to 

reorganize the regional BOLD data into a smaller set of spatially orthogonal principal 

components (PCs; Figure 1A). Across divergent cognitive tasks, we found a dominant, 

low-dimensional neural signal10: the first five PCs accounted for 67.9% of the variance 

and resolved greater than 90% of the embedding space17 (Figure 1B). 

 

The time series of each PC (tPC) was created by weighting the original BOLD time 

series from the Replication dataset with the parcel loading for each spatial component 

from the Discovery dataset at each time point of the experiment. This step allowed us to 

track the engagement of each PC over time. The first tPC, which explained 38.1% of 

signal variance across all tasks, reflected a task-dominant signal that was strongly 

correlated with the overall task block structure across all seven tasks (r = 0.64, p < 0.01; 

Figure 1C) and was strongly replicable across cohorts (r = 0.84). This result is consistent 

with previous work that has demonstrated a distributed network of task-invariant brain 

regions that persists across the performance of multiple unique cognitive tasks4-6. In 
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addition, the analysis demonstrated prominent spatial overlap between PC1 and dorsal 

attention, frontoparietal and visual networks, along with striatum, thalamus and lateral 

cerebellum (Figure 1D). Importantly, fitting a PCA to each of the seven individual tasks 

separately did not recover the same underlying principal component, but instead 

identified spatial maps that aligned with the idiosyncratic demands of each task (Figure 

S1). 

 

 

Figure 1 – Spatiotemporal principal component analysis across multiple cognitive tasks. A) spatial 

maps for the first five principal components (colored according to spatial weight; thresholded for 

visualization); B) line plot representing the percentage of variance explained by first 10 principal 

components; bar plot depicting the percentage of false nearest neighbors for first 10 principal 

components; C) correspondence between convolved, concatenated task block regressor (grey) and the 

time course of the first five tPCs (black) – color intensity of the blocks reflect the correlation between tPC1-

5 and each of the unique task blocks; D) mean spatial loading of first 5 PCs, organized according to a set 

of pre-defined networks. Key: DAN – dorsal attention; VIS – visual; FPN – frontoparietal; SN – salience; 

CO – cingulo-opercular; CPar – cingulo-parietal; VAN – ventral attention; SM – somatomotor; RSp – 
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Retrosplenial; FTP – frontotemporal; DN – default mode; AUD – auditory; tPC – temporal principal 

component. 

 

The next three components (tPC2-4) reflected a closer relationship with specific cognitive 

tasks (Figure 1C). For example, tPC2 (10.3% variance explained) was associated with the 

social task and language processing; tPC3 (8.4%) with gambling and emotion; and tPC4 

(6.3%) with the math task (Figure 1C/D). In contrast, tPC5 (4.8%) was associated with 

engagement across multiple tasks (r = 0.20, p < 0.01). The time course of tPC5 was 

correlated with the absolute value of the first derivative of the task design (r = 0.11, p < 

0.01), suggesting that tPC5 was uniquely associated with the transition into and out of 

unique task states. In accordance with this finding, tPC5 was associated with activity 

across a right-lateralized system of cingulate, parietal and opercular cortical regions 

(Figure 1A) that have previously been shown to play a crucial role in cognitive task 

engagement and error monitoring4. 

 

Global brain state dynamics 

PCA imposes orthogonality onto the data, a crucial step in providing the low 

dimensional subspace in which to embed the phase space manifold (Figure 2). Other 

popular methods (such as independent component analysis) find a different set of 

optimal solutions (such as maximal statistical independence) but these are not, in 

general, linearly independent18. Importantly, state space attractors are invariant to linear 

transformations of their embedding phase space as long as the dimensions remain 

orthogonal19. Hence, PCA enables analysis of the state-space trajectory (or flow) of the 

dominant low-dimensional signal, which in turn reflects the temporal evolution of the 

global brain state. Any residual variance (i.e., from those components not included in 

the reconstruction) represents a stochastic influence on the ensuing flow. 

 

To facilitate further analysis of the low-dimensional embedding space, the tPC1 time 

course was partitioned into relative phase segments11: a trough in tPC1 defined the LOW 

phase (blue in Figure 2A); an increase in tPC1 defined the RISE phase (red); a plateau in 

the tPC1 signal defined the HIGH phase (orange); and a decrease in tPC1 defined the 

FALL phase (light blue) of the low-dimensional flow of tPC1 (see Methods for details). 

The resulting phase portrait describes the temporal evolution of the low-dimensional 

signal shared across all behavioral tasks (Figure 2B and Movie 1; see Figure S2 for 

projection of tPC4-5). The different phases of tPC1 were distinctly related to exogenous 
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task demands, with a greater frequency of HIGH phases during task blocks across all 

seven tasks, and LOW phases during interleaved rest blocks across tasks (p < 0.01). By 

calculating the mean activity across the trajectories in Figure 2B, and projecting these 

into the embedding space, we were able to recover a canonical low dimensional 

manifold20 that transcends multiple cognitive task states (Figure 2C)21 and that was 

similar following regression of task-mediated effects prior to PCA22 (Figure S3). After 

accounting for task-effects, the distribution of tPC1 dwell times was best described by an 

exponential distribution (Figure 2D), which is consistent with a noise-driven multistable 

process25, in which the global brain state transitions between relatively shallow 

attractors. That is, even though the average flow is smooth, the naïve (i.e. non-averaged) 

flow bears the imprint of noise-driven excursions. However, it is important to clarify 

that the specific nature of the flow through this embedding space invariably reflects a 

combination of the timing and particular cognitive processes driven by the specific 

tasks, and thus would not be invariant to changes in external context23. 
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Figure 2 – A low-dimensional embedding space characterizes the temporal organization of the brain 

across cognitive tasks. A) The procedure used to partition tPC1 into unique phases – LOW (blue), RISE 

(red), HIGH (orange) and FALL (light blue); B) a 3-dimensional scatter plot comparing the first three 

tPCs, colored according to the character of tPC1; C) the low dimensional manifold traversed by the global 

brain state across the first three dimensions, with arrows depicting the direction of flow along the 

manifold; D) the dwell times for the HIGH and LOW sections of tPC1, which were best fit by exponential 

distributions – inserts demonstrate the tails of each distribution. 

 

The cognitive relevance of the global brain state 

Having demonstrated that brain state dynamics can be effectively described by the 

temporal evolution along a low-dimensional trajectory, we were next interested in 

understanding the potential cognitive relevance of the brain’s functional architecture. 

Although the seven tasks were qualitatively distinct, we predicted that each of the tasks 

should recruit similar cognitive capacities, albeit to varying degrees that were defined 

by idiosyncratic task challenges and complexity. 

 

To test this hypothesis, meta-analytic data was utilized from an existing ‘topic-

modeling’ analysis that identified the latent structure present across 5,809 functional 

neuroimaging studies. This approach links spatial BOLD activation patterns to the 

‘topics’ investigated in the original fMRI experiments26. Four ‘topic families’ – 

representing ‘Motor’, ‘Cognitive’, ‘Language’ and ‘Memory’ – were identified by 

clustering the activation patterns from a 50 topic solution using the NeuroSynth 

repository (Figure 3A; each family represented a number of sub-topics identified in the 

meta-analysis; results were confirmed using a ‘reverse inference’ approach; Table S1)26. 

A time series was then created for each topic family by weighting the original BOLD 

data with the spatial activation pattern of each topic family over time. Comparison with 

the PC time series revealed a clear relationship between the tPC time series and latent 

cognitive processes – for instance, ‘Motor’ and ‘Cognitive’ functions were jointly 

separated from ‘Memory’ and ‘Language’ function by tPC1, but were separated from 

one other by tPC5 (Figure 3B). These results confirmed our hypothesis that flow along 

the low-dimensional manifold was associated with the recruitment of distinct sets of 

cognitive functions. 
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Figure 3 – The cognitive relevance of the low-dimensional embedding space. A) Four NeuroSynth 

“topic families”: Motor (red), Cognition (yellow), Language (green) and Memory (blue); B) bar plot 

demonstrating loading of Topic Families onto top five principal components; C) scatter plot of time 

points of the first two tPCs, colored according to their loading onto each of the four NeuroSynth topic 

families; D) mean value (bootstrapped 100 times) of tPC1-2 for each topic family, compared to a block 

bootstrapped null distribution (5,000 iterations); E) temporal conjunction between the topic families and 

the four phases of the tPC1 manifold – asterisks denote p < 0.01 (block bootstrapped null model). 

 

To project the topic families into the low-dimensional embedding space, the regional 

BOLD pattern at each time point was assigned to the topic family to which it 

demonstrated the strongest spatial correspondence using a ‘winner-take-all’ approach 

(Figure 3C). To test for significance, we constructed a null dataset (5,000 iterations) 

using a block-randomization bootstrapping procedure that arbitrarily (and repeatedly) 

splits and reorganizes data over time, similar to the way a dealer would ‘cut’ a deck of 

cards. This approach scrambles the alignment of the data to the task structure but 

largely preserves autocorrelation, which can have important influences on the relative 

degrees of freedom in the data. By comparison to this null distribution, the four topic 
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families occupied unique subspaces of the low dimensional manifold (Figure 3D): the 

‘Motor’ and ‘Cognitive’ families were active during HIGH phases, whereas the 

‘Memory’ and ‘Language’ families were active during LOW phases of the manifold (p < 

0.01; Figure 3E). These results highlight the clear relationship between flow on the low-

dimensional manifold and recruitment of specific cognitive processes. 

 

Complex cognitive brain state dynamics 

We hypothesized that flow along the tPC1 dimension represented an integrative core 

that balances the competing requirements of global integration (adaptively modifying 

the functional network signature of the brain in response to task demands) and 

differentiation (ensuring the distinctive configuration of neural systems required of 

each cognitive state)2,27. To test this hypothesis, we calculated time-varying functional 

connectivity from the concatenated BOLD time series (after first regressing task effects 

from each time series) and applied graph theoretical analyses to the resultant temporal 

connectivity matrices. We used a general linear model to examine the relationship 

between the tPC1-5 time series and time-resolved network architecture, allowing the 

identification of the topological signature of each PC. Expression of tPC1 was associated 

with a distributed and integrated network topology with strong connections across 

functionally specialized modules (Figure 4A). In contrast, the topological signatures of 

lower components were more heterogeneous (Figure 4B). Specifically, tPC2-4 

demonstrated a trade-off between integration and segregation, whereas tPC5 displayed 

a relatively segregated signature (Figure 4C). These patterns suggest that different low-

dimensional components may reflect unique constraints on the balance between 

integration and segregation in the brain. 
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Figure 4 – The low-dimensional integrative core of the brain across cognitive tasks. A) surface plot of 

the most integrative regions in tPC1 (regions significantly more integrative than null model); B) parcel-

wise participation coefficient (BT) across the top 5 PCs, with block resampling null values displayed as 

grey region; stars designate significance of mean BT across the whole brain (*** - p < 0.01; ** - p < 0.05); C) a 

surface plot of the most integrative regions in tPC5; D) mean BT for each of the four phases of the tPC1 

manifold – asterisks denote p < 0.01 (block bootstrapped null model); E) correlation between regional BT 

and Lempel Ziv Complexity (r = 0.424; p < 0.001); F) black line: mean autocorrelation function (ACF) for 

all regions; red line: correlation between regional ACF and BT; grey rectangle – values for which null 

hypothesis was not rejected.  

 

The most integrative regions associated with PC1 were diffusely distributed across the 

majority of canonical ‘resting state’ networks, involving regions within the frontal, 

parietal and temporal cortex, along with the bilateral amygdala and the lateral 

cerebellum (Figure 4A). There was a distinct relationship between time-resolved 

network topology and the low-dimensional manifold (Figure 4D): the topological 

architecture of the brain was more integrated during the HIGH phases (median 

participation coefficient [BT] across all parcels = 0.24 ± 0.1; p < 0.01) but segregated 

during the LOW phases (0.15 ± 0.1; p < 0.01). There was also a significant relationship 

between global network integration (mean BT) and the ‘Cognitive’ topic family (mean BT 

across all parcels = 0.24 ± 0.1; p < 0.01). In contrast, the ‘Memory’ topic family was 

associated with a more segregated network topology (0.15 ± 0.1; p < 0.01).  

 

Although system-wide integration is an important signature of complex networks, 

biological systems also need to retain sufficient flexibility to cope with an array of 

adaptive challenges. That is, the global brain state should also demonstrate 
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differentiation2, reflecting the need for each state of the brain to be distinct from every 

other possible state. To test this prediction, we estimated the Lempel Ziv complexity of 

each regional time series7. Lempel Ziv complexity estimates the number of distinct 

binary sequences required to recapitulate a test sequence – information-rich time series 

have higher complexity and thus require a larger dictionary of sequences in order to 

recreate them7. As predicted2, the mean regional signature of integration was positively 

correlated with Lempel Ziv complexity (r = 0.42; p < 0.01; Figure 4E). 

 

The brain can also control information flow by modulating inter-regional interactions at 

different temporal scales. Previous work has demonstrated a heterogeneity of time-

scales across the brain29,30, in which sensory regions process information quickly (i.e., on 

the order of milliseconds-to-seconds) whereas more integrated hubs attune to 

information on slower time-scales (i.e., seconds-to-minutes). To determine whether the 

low-dimensional topological signature of tPC1 was associated with a unique temporal 

signature, we correlated the extent of autocorrelation within each region with the 

loading between the time-resolved participation coefficient (BT) and tPC1. This analysis 

revealed a negative correlation at shorter time scales (0.72 – 5.02 seconds) and a positive 

correlation at longer time scales (9.36 – 13.68 seconds; p < 0.05; Figure 4F), suggesting 

that tPC1 processes information at relatively slow time-scales.  

 

Neurotransmitter receptor gradients gate cognitive brain dynamics 

We next sought to understand the factors that control flow on the low-dimensional 

manifold outside of the particular sensory constraints imposed by each task. A plausible 

candidate for orchestrating global control over brain state dynamics are the ascending 

neuromodulatory systems of the brainstem and forebrain31. These highly conserved 

nuclei project widely throughout the brain to modulate the ‘gain’ of receptive neuronal 

populations and hence, alter inter-regional communication32. That is, they are able to 

broadly modulate brain network connectivity in a flexible manner33. An extensive 

literature links neuromodulatory systems with to a broad range of cognitive functions34, 

and receptors from several neurotransmitter families have been implicated in either 

facilitating or inhibiting cognitive processing31. Interactions among these systems are 

also crucial, suggesting that the neuromodulatory system acts as a complex adaptive 

network that maintains non-linear influence over brain network topology and 

dynamics35. 
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To test this hypothesis, we used the Allen Brain Micro-Array Atlas (http://human.brain-

map.org/) to identify the spatial coverage of a range of metabotropic neurotransmitter 

receptors using post mortem data on variation in neurotransmitter receptor gene 

expression. We investigated two main classes of receptor with known opposing effects 

on cognitive function: a facilitatory group, including the dopaminergic D1
31, the 

noradrenergic α2A
31, the cholinergic M1

36 and the serotonergic 5HT2A receptors37; and an 

inhibitory group, including the D2, α1A and 5HT1A receptors (due to inconsistent evidence 

in the literature, no muscarinic receptors were included in the inhibitory group). Each of 

these receptors modulates the signal-to-noise ratio in neurons by activating G-protein-

coupled receptors38-40, with effects typically most pronounced at the network level41,42. 

 

To compare brain state dynamics with neuromodulatory coverage, we related the 

spatial pattern of receptor density to each of the system-wide signatures identified in 

the preceding analyses (Table S2). We observed opposing relationships between the 

neuromodulatory groups and the first two tPCs (see Table S2): the facilitatory group 

loaded positively onto tPC1, whereas the inhibitory group loaded negatively (Figure 5). 

In contrast, tPC2 better delineated the receptor families, loading positively onto 

dopaminergic and noradrenergic, and negatively onto serotonergic and cholinergic 

receptors (Figure 5). The neuromodulatory groups also demonstrated unique topology: 

the facilitatory group was associated with increased functional integration (Figure 5; 

Modularity [Q] = 0.14), whereas the inhibitory group was relatively segregated (Q = 

0.55). Our results thus provide a link between neuromodulatory system heterogeneity 

and the dynamic neural states required for diverse cognitive tasks35,43. 
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Figure 5 – The neurochemical signature of integrated cognitive function. The mean density of tPC1-2 for 

two classes of neurotransmitter receptor maps: a group known to facilitate cognition (D1, α2A, 5HT2A and 

M1; right) and a group known to inhibit cognition (D2, α1A, 5HT1A; left). The spatiotemporal patterns in 

these two classes were associated with differential network topologies: the facilitatory group was 

associated with an integrated brain, whereas the inhibitory group was associated with a relatively 

segregated brain – force directed plots reflect the mean time-resolved functional connectivity matrix 

when loading was positive for either the inhibitory (blue) or facilitatory (red) group (thresholded and 

binarized at 10% density for visualization purposes); and different classes of controllability: the 

facilitatory states were associated with high average controllability, whereas the inhibitory states were 

associated with high modal controllability. 

 

The spatial overlap between low-dimensional system dynamics (estimated from task 

fMRI) and neurotransmitter receptor topography (estimated from post mortem brain 

tissue) suggests that global brain state dynamics may be controlled by the recruitment 

of distinct neurotransmitter classes44. To test this hypothesis, we compared the spatial 

maps for each receptor sub-type with structural network signatures that mediate 

distinct control patterns in the human brain: some regions are able to drive the brain 

into many different states (known as ‘average’ controllability), whereas others facilitate 

the engagement of ‘hard to reach’ states (‘modal’ controllability)45 (Figure 5). The 

regional signature of these two control classes were estimated using structural diffusion 

data from the Human Connectome Project46, and then related to the receptor maps from 

the Allen Brain Atlas. We observed strong positive correlations between the facilitatory 
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group and ‘average’ controllability, and between the inhibitory group and ‘modal’ 

controllability (Figure 5; Table S2)45. Further analysis showed that the spatial loadings 

for PC1 were selectively correlated to each region’s strength (weighted degree; r = 0.34; p 

< 0.001). Our results are therefore consistent with the notion that control over network 

dynamics is a relatively distributed capacity47 that may be mediated by highly 

conserved neuromodulatory systems that guide the flow of the brain across the low-

dimensional manifold. 

 

Discussion  

The neural activity required for the execution of cognitive tasks corresponds to flow 

within a low-dimensional state space. Across multiple, diverse cognitive tasks, the 

dynamics of large-scale brain activity engage an integrative core of brain regions that 

maximizes information-processing complexity and facilitates cognitive performance; 

only to then dissipate as the tasks conclude, flowing towards a more segregated 

architecture. Our findings further suggest that the brain’s dynamic trajectory is guided 

by a diverse set of highly conserved modulatory neurotransmitter systems that 

transition between distinct phases of the attractor, thus providing a plausible biological 

mechanism for the control of brain state dynamics. Overall, our results provide a novel 

framework for studying cognitive neuroscience from the perspective of large-scale 

dynamical systems, linking the flow of cognition to the dynamic reconfiguration of 

functional networks in the human brain driven by distinct neuromodulatory systems. 

 

The low-dimensional, integrated component that occurs on the plateau phase of the 

state-space trajectory recurs across multiple unique tasks and forms the functional 

backbone of cognition within the human brain. Fluctuations in this core network 

architecture are associated with maximal information processing complexity across 

relatively long time-scales, suggesting that the temporal signature of the integrative 

core is information-rich and accumulates information over long time-scales29,30. This 

slow, integrative core – consistent with prior multi-task analyses4-6 – contrasts with the 

architecture during epochs in which there was no task, in which the brain occupied a 

segregated topology and was associated with a shorter time-scale of information 

processing. We also find a low-dimensional component corresponding to task onset and 

offset (tPC5). Notably these results were robust to permutation testing and replicated in 

an independent cohort. However, the specific form of the flow we describe likely 
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reflects idiosyncrasies of the task fMRI battery and in particular, the predominant use of 

visual stimuli and reliance on motor responses. Nonetheless, we propose that a flow 

between the integrated and segregated phases will persist beyond the specific tasks 

used here, and likely constrains cognitive capacities across a variety of psychological 

contexts. Future experiments could usefully examine the low-dimensional architecture 

of the brain across a broader range of psychological capacities, including ecologically 

valid contexts48 such as naturalistic stimulation paradigms.  

 

It has been known for some time that ascending neuromodulatory systems provide 

important constraints on cognitive function31,49, but the systems-level mechanisms 

responsible for these capacities have remained relatively obscure. Here, we provide a 

mechanistic account of the association between these distinct neuromodulatory systems 

and cognitive function. Specifically, a diverse set of modulatory neurotransmitter 

receptors occupy a privileged spatial location in the cortex that maximizes their ability 

to modulate the flow of cognitive brain states over time23. Neuromodulatory receptors 

stimulate G-protein coupled receptors, which alter trans-membrane ion gradients, and 

thus make neurons more (or less) likely to fire in response to glutamatergic input39. 

Mechanistically, this process has been interpreted as altering the signal-to-noise ratio 

within neural circuits50 – that is, neuromodulatory receptors play an information-gating 

role in the brain51. Crucially, computational work has also linked neuromodulatory 

activity to the alteration of the current attractor state52, which in turn could influence the 

flow of low-dimensional activity in the brain to facilitate cognition (Figures 3 and 4). 

Our results provide empirical evidence for these concepts, and further support the 

notion that neuromodulation exerts network-level effects on the brain42,50. Indeed, it is 

these non-linear, competitive and cooperative dynamic interactions between 

neuromodulatory systems that likely imbue the nervous system with its remarkable 

flexibility35,43, enabling the hard-wired “backbone” of the brain to dynamically facilitate 

the neural coalitions required to navigate an evolving affordance landscape53. 

 

Our observations yield novel predictions that can guide future work. For example, 

similar low-dimensional analyses of brain function in other species, notably other 

primates, might clarify whether or not shifts in this organizational framework underpin 

some of the distinctive cognitive abilities of humans. Strong phylogenetic conservatism 

in neuromodulatory systems suggests that evolution has modified pre-existing 
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structures to shape human cognitive function; and the neural architecture that we have 

described offers a plausible substrate for such changes. Within our own species, 

variation in the low-dimensional core of the brain may also underlie some 

psychological manifestations of neuropsychiatric and neurodegenerative disorders. If 

so, detailed mapping of individual differences in the integrative core may suggest novel 

therapeutic interventions. Future work could use the form of the attractor to enable 

model-based hemodynamic deconvolution, hence uncovering the form of the 

generative processes. More generally, we hope that this work will provide a platform 

for future insights into the modular and integrative processes that form the 

infrastructure for cognition in the human brain. 
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Methods 

Data acquisition  

Data used in the preparation of this work were obtained from the Human Connectome 

Project (HCP) database.  For both the Discovery and Replication analyses, minimally 

preprocessed fMRI data were acquired from 100 unrelated participants (mean age 29.5 

years, 55% female54). For each participant, BOLD data from the LR encoding session 

from seven unique tasks were acquired using multiband gradient-echo EPI, amounting 

to 23 minutes 17 seconds of data (1940 individual time points) per subject. The 

following parameters were used for data acquisition: TR = 720 ms, echo time = 33.1 ms, 

multiband factor = 8, flip angle = 52 degrees, field of view = 208x180 mm (matrix = 104 x 

90), 2x2x2 isotropic voxels with 72 slices, alternated LR/RL phase encoding.  

 

Data pre-processing 

Bias field correction and motion correction (12 linear DOF using FSL’s FLIRT) were 

applied to the HCP resting state data as part of the minimal preprocessing pipeline54. 

Temporal artifacts were identified in each dataset by calculating framewise 

displacement from the derivatives of the six rigid-body realignment parameters 

estimated during standard volume realignment55, as well as the root mean square 

change in BOLD signal from volume to volume (DVARS). Abnormal frames were not 

excluded from the data. However, we observed no significant relationship between any 

of the tPC time series and framewise displacement (estimated from the temporal head 

motion parameters) at the individual subject level (p > 0.5). Following artifact detection, 

nuisance covariates associated with the 12 linear head movement parameters (and their 

temporal derivatives), frame-wise displacement, DVARS, and anatomical masks from 

the CSF and deep cerebral WM were regressed from the data using the CompCor 

strategy56. To ensure equivalence across tasks, the data were also normalized within 

each temporal window, which effectively controlled for the global signal, while also 

equilibrating the data across independent subjects. Finally, a temporal low-pass filter (f 

< 0.125 Hz) was applied to the data. 

 

Brain parcellation 

Following pre-processing, the mean time series was extracted from 375 pre-defined 

regions-of-interest (ROI). To ensure whole-brain coverage, we extracted 333 cortical 

parcels (161 and 162 regions from the left and right hemispheres, respectively) using the 
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Gordon atlas16, 14 subcortical regions from Harvard-Oxford subcortical atlas (bilateral 

thalamus, caudate, putamen, ventral striatum, globus pallidus, amygdala and 

hippocampus), and 28 cerebellar regions from the SUIT atlas57. 

 

Cognitive tasks 

Seven unique tasks were utilized from the Human Connectome Project consortium: 

Emotion, Gambling, Language/Math, Motor, N-back, Relational and Social15. For each 

task, a block regressor was created by partitioning the time series into time points in 

which subjects were actively performing the task; and those in which they were 

‘resting’ (note: not all tasks contained designated ‘rest’ blocks). Of note, the ‘rest’ blocks 

in the Math task involved an auditory, language-based task. The time points associated 

with each block were convolved with a canonical haemodynamic response function 

(using the spm_hrf.m from SPM12) and then concatenated over time to create a single 

task block regressor. These served as reference time series for comparison to the tPC 

time series (see grey lines in Figure 1B). All results were successfully replicated using a 

finite impulse response model. 

 

Principal component analysis 

Pre-processed data from each task were concatenated to form a multi-task time series 

per subject and a spatial PCA was performed on the resultant data58. Task block 

structure was not regressed from the data prior to PCA estimation. The time series of 

each PC was then estimated by calculating the weighted mean of the group-level BOLD 

time series associated with each respective PC11. To aid inference, group-level tPC time 

series were calculated by taking the mean for each PC time series across all subjects. To 

estimate the appropriate dimensionality of the data17, we calculated the percentage of 

false nearest neighbors following the PCA decomposition (a measure of effective 

embedding across dimensions17), and found that there were < 10% present in the top 

five PCs, and <1% present in the top ten PCs (Figure 1B). 

 

To ensure that the low-dimensional embedding space was not adversely affected by the 

task block structure, we replicated our analysis using the residuals of a ordinary least 

squares regression in which we modeled regional BOLD data according to the task 

structure present across all seven tasks (with independent blocks modeled as unique 

regressors). Each of the major results in our study was replicated following this 
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procedure, suggesting that, although the low-dimensional signature of the brain was 

related to the temporal structure imposed by the tasks, this factor was not solely 

responsible for the psychophysiological relationships observed in our study.  

 

To ensure that the PCA results were robust to individual differences, we ran two 

subsequent analyses: i) the same analysis was conducted in a Replication cohort (N = 

100); and ii) a bootstrap analysis was performed by estimating a PCA on 100 randomly 

chosen subjects (with replacement, from a larger pool of 200 unrelated subjects). Each of 

these analyses was associated with robustly similar results to the group mean analysis 

(r > 0.85). 

 

To determine the importance of running the PCA across all concatenated tasks, we 

performed three subsequent analyses: i) we re-ran separate PCAs for each task, 

individually and found that, although one of the first five components for each task was 

strongly related to task block structure (r > 0.50), the spatial weightings were dissimilar 

to the pattern observed when all tasks were concatenated (mean r = 0.18 ± 0.2) and more 

similar to the main effect of each task (mean r = 0.72 ± 0.2). A difference score was then 

calculated between the two groups, which allowed us to estimate statistical significance 

using the Dunn and Clark Statistic (ZI*); ii) we used a bootstrapping approach in which 

we randomly selected between 2-6 tasks and re-ran the PCA, and then performed both 

a spatial and temporal correlation between the topography and time series for PC1, 

respectively. In doing so, we found that at least 4 tasks were required to recreate the 

pattern found across the original 7 tasks (Figure S1); and iii) we ran a standard GLM 

using the concatenated task block structure, demonstrating a selective positive 

correlation between the spatial map of PC1 and the resultant Beta map  (r = 0.94; p < 

0.001). A similar significant relationship was selectively observed between PC5 and the 

Beta map estimated from a GLM comparing task-onsets to BOLD activity (r = 0.34; p < 

0.001). 

 

Relationship between principal components and task block structure 

To estimate the relationship between the tPC time series and the task block structure, 

we ran a series of linear regression analyses comparing the temporal fluctuations in tPC 

time courses and the concatenated, convolved task block time series, both for the entire 

set of seven tasks and also for each task independently. In a similar fashion to the 
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spatial PCs, tPCs were strongly replicable across the Discovery and Replication cohorts 

(mean r across tPC1-5: 0.84 ± 0.1), confirming the specificity of low dimensional temporal 

brain activity during cognitive task performance. Finally, none of the tPCs were 

significantly correlated with typical noise confounds, such as head motion (framewise 

displacement; mean r across tPC1-5: 0.00 ± 0.1) or signals from the white matter and 

cerebrospinal fluid (mean r across tPC1-5: 0.00 ± 0.1) at the individual subject level, nor 

the global signal over time (r = -0.04). In addition, there were no interactions between 

task blocks and head motion, and results were found to be replicable when performing 

moderate levels of ‘scrubbing’ (i.e., censoring data with framewise displacement > 0.25 

and DVARS > 2.5%)2. 

 

Low-dimensional manifold 

To describe flow along the low-dimensional embedding space, we used an approach 

previously utilized in C. elegans calcium imaging11, in which the global brain cycle is 

partitioned into four ‘phases’ using the time course of the tPC1 as a reference signal: a 

trough in tPC1 defined the LOW phase (tPC1(t) < 33rd percentile; blue in Figure 2A), an 

increase in tPC1 defined the RISE phase (33rd percentile < tPC1(t) < 67th percentile & 

dtPC1’ > 0; red), a plateau in the tPC1 signal defined the HIGH phase (tPC1(t) > 67th 

percentile; yellow), and a decrease in tPC1 defined the FALL phase (33rd percentile < 

tPC1(t) < 67th percentile & dtPC1’ < 0; green). After classifying low-dimensional activity 

into these four phases, we then performed a linear interpolation on each trajectory (i.e., 

to warp each segment into a set of identically-sized vectors). We were then able to 

estimate the trajectory of a low-dimensional ‘manifold’20 by calculating the mean 

activity across the interpolated trajectories, which in turn could be projected into the 

embedding space to describe the manifold (Figure 2C).  

 

Using the four tPC1 phases (LOW, RISE, HIGH and FALL), we estimated the ‘dwell 

time’ for each of the phases explored by the first PC by calculating the number of 

consecutive TRs in which each phase was present in the data. We then separately fit 

exponential, Weibull (stretched exponential), power law and gamma distributions to 

these data (these reflect the likelihood of a multistable, critical or metastable process 

respectively, see 25). The log likelihood of each fit was then used to compute the 

Bayesian Information Criterion (BIC) for each distribution – low values here represent 

stronger evidence for a particular fit. We found that exponential fits were better able to 
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explain the data (i.e. lower BIC = -34,637) than were the Weibull (BIC = -33,814), gamma 

(BIC = -33,620) or power-law (BIC = -7,012) distributions.  

 

Topic mapping 

To determine the potential cognitive relevance of the low-dimensional embedding 

space, we created regional estimates of 28 spatial maps that represented a curated 

selection of the 50 ‘topics’ identified during a large-scale analysis of existing 

neuroimaging literature26, in which we excluded topics that were not explicitly related 

to psychological constructs. These 28 maps were further collapsed into four tight-knit 

‘topic families’ (see Table S1) by calculating the spatial similarity of each map and then 

clustering the matrix using a weighted version of the Louvain algorithm (i.e. the 

algorithm described in Time-resolved network topology). Topic Families were assigned 

labels according to the top 10 terms associated with the topic-word loading matrix that 

related study terms to brain mappings. We then created a weighted mean between each 

of these topic family spatial maps and the concatenated BOLD time series data. Using a 

‘winner-take-all’ approach, we categorized each time point according to the topic family 

with the strongest spatial correspondence to the regional BOLD pattern present at that 

time, which allowed us to then project the topic families into the low dimensional 

embedding space (Figure 3C). Finally, we used a non-linear, block bootstrapping 

permutation test, which preserves some of the autocorrelation structure, to demonstrate 

that the four topic families were selectively associated with unique aspects of the low 

dimensional manifold (5,000 iterations; p < 0.01). 

 

Time-resolved functional connectivity 

To estimate functional connectivity between the 375 ROIs, we used the Multiplication of 

Temporal Derivatives (M) technique59. M is computed by calculating the point-wise 

product of temporal derivative of pairwise time series (Equation 1). The resultant score 

is then averaged over a temporal window, w, in order to reduce the contamination of 

high-frequency noise in the time-resolved connectivity data. A window length of 20 TRs 

was used in this study, though results were consistent across a range of w values (10-50 

TRs). To ensure relatively smooth transitions between each task, connectivity analyses 

were performed on each individual task separately, and were subsequently 

concatenated. In addition, all analyses involving connectivity (or the resultant 
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topological estimates) incorporated the junction between each task as a nuisance 

regressor. 

 

 𝑀"#$ = &
'∑

)$*+,×$.+,/
01+*,×1+.,2

$3'
$        [1] 

 

Where for each time point, t, the M for the pairwise interaction between region i and j is 

defined according to equation 1, where t’ is the first temporal derivative (t+1 – t) of the 

ith or jth time series at time t, σ is the standard deviation of the temporal derivative time 

series for region I or j and w is the window length of the simple moving average. This 

equation can then be calculated over the course of a time series to obtain an estimate of 

time-resolved connectivity between pairs of regions.  

 

Time-resolved network topology 

The Louvain modularity algorithm from the Brain Connectivity Toolbox (BCT60) was 

used in combination with the MTD to estimate time-resolved community structure. The 

Louvain algorithm iteratively maximizes the modularity statistic, Q, for different 

community assignments until the maximum possible score of Q has been obtained (see 

Equation 2). The modularity estimate for a given network is therefore a quantification of 

the extent to which the network may be subdivided into communities with stronger 

within-module than between-module connections. 

 

 𝑄5 = &
𝓋7∑ )𝑤"#3 − 𝑒"#3/𝛿<*<."# − &

𝓋73𝓋=∑ )𝑤"#> − 𝑒"#>/𝛿<*<."#   [2] 

 

where v is the total weight of the network (sum of all negative and positive 

connections), wij is the weighted and signed connection between regions i and j, eij is the 

strength of a connection divided by the total weight of the network, and δMiMj is set to 1 

when regions are in the same community and 0 otherwise. ‘+’ and ‘–‘ superscripts 

denote all positive and negative connections, respectively.  

 

For each temporal window, we assessed the community assignment for each region 500 

times and a consensus partition was identified using a fine-tuning algorithm from the 

Brain Connectivity Toolbox (BCT, http://www.brain-connectivity-toolbox.net/). This 

afforded an estimate of both the time-resolved modularity (QT) and cluster assignment 
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(CiT) within each temporal window for each participant in the study. We calculated all 

graph theoretical measures on un-thresholded, weighted and signed connectivity 

matrices60 and the γ parameter was set to 1. Consistent with previous studies61, the 

average number of communities identified in each window was 2.74 ± 0.5. 

 

Based on time-resolved community assignments, we estimated within-module 

connectivity by calculating the time-resolved module-degree Z-score (WT; within 

module strength) for each region in our analysis (Equation 3)62, where κiT is the strength 

of the connections of region i to other regions in its module si at time T, �̅�A*B  is the 

average of κ over all the regions in si at time T, and 𝜎DE*B  is the standard deviation of κ in 

si at time T. 

 

 𝑊"5 =
D*B>DGE*B
1HE*B

         [3] 

 

The participation coefficient, BT, quantifies the extent to which a region connects across 

all modules (i.e. between-module strength) and has previously been used to 

successfully characterize hubs within brain networks (e.g. see 63). The BT for each region 

was calculated within each temporal window using Equation 4, where κisT is the 

strength of the positive connections of region i to regions in module s at time T, and κiT 

is the sum of strengths of all positive connections of region i at time T. Negative 

connections were discarded prior to calculation. The participation coefficient of a region 

is therefore close to 1 if its connections are uniformly distributed among all the modules 

and 0 if all of its links are within its own module. 

 

 𝐵"5 = 1 − ∑ 0D*EBD*B
2
KLM

AN&        [4] 

 

To determine the topological signature of each tPC, we used a general linear model to 

fit the top five tPC time series to time-varying network topology. Although 

synchronous sensory inputs do not necessarily force regions to couple together over 

time5, we first regressed out all unique patterns associated with the task blocks from 

each of the seven tasks (with each unique block modeled as a separate regressor). In 

addition, the calculation of the temporal derivative also down-weights the task effects 

on overall activity that are presumed to drive spurious functional connectivity59. We 
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then fit a general linear model using the tPC time series as predictors, along with 

separate regressors that modeled the junction between corresponding tasks. Separate 

models were fit for unique regional BT values. We subsequently ran a block 

bootstrapping permutation test to determine whether there were significantly elevated 

values of BT within predefined networks of the brain (5,000 iterations; p < 0.01). In 

addition, we also analyzed multiple separate window lengths (10 – 100 in steps of 10), 

and observed a similar relationship between mean BT and tPC1, albeit with a peak in 

similarity at a window length of 20 TRs).  

 

Complex cognitive brain state dynamics 

To explore the functional signature of the integrative core, we calculated the mean intra-

regional connectivity for all regions connected to the integrative core (mean regional-to-

core connectivity [transformed using Fisher’s r-to-Z] > 1.0) and compared this value to 

the mean connectivity for all regions outside of the core (i.e. mean regional-to-core 

connectivity ≤ 1.0). Prior to calculating the difference score, we first applied a Fisher’s r-

to-Z transform to each data point to increase Gaussianity. These values were compared 

using an independent samples t-test. 

 

To estimate time series differentiation, we calculated the Lempel Ziv complexity7 of 

each region’s concatenated time series, binarized to values greater than or less than 0. 

We then ran a Pearson’s correlation comparing the LZ complexity scores with the 

participation coefficient (BT) associated with tPC1 (i.e. the regional beta weights from a 

general linear model in which the tPC time series were regressed against time-resolved 

BT values). The autocorrelation function was estimated for each region by calculating 

the time-delayed Pearson’s correlation between each region’s pre-preprocessed BOLD 

time series, using a lag of 1-30 TRs (0.7 – 21.6s). For each lag, a Pearson’s correlation was 

conducted between the integrative core and the autocorrelation function of each region. 

For each analysis, a block resampling permutation test was conducted to test statistical 

significance. 

 

Neurotransmitter receptor mapping 

To investigate the potential pharmacological correlates of progressive evolution along 

the manifold, we interrogated the neurotransmitter receptor signature of each region of 

the brain. To do so, we used the Allen Brain Atlas micro-array atlas 
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(http://human.brain-map.org/) to identify the regional signature of genetic expression of 

metabotropic neurotransmitter receptors that were a priori related to cognitive function. 

We identified neurotransmitter receptor maps for receptors from four major 

neurotransmitter families, which were grouped into two families: a facilitatory group, 

comprising dopaminergic (D1), noradrenergic (α2A), cholinergic (M1) and serotonergic 

(5HT2A) receptors; and an inhibitory group, comprising D2, α1A, and 5HT1A receptors. We 

first identified the spatial topography of each receptor sub-type. We then created a 

weighted mean between each of these neurotransmitter receptor maps and the 

concatenated BOLD time series data. These time series were then related to: a) the tPC 

time series; b) the topic map time series; and c) the time-resolved topological time 

series. We applied a series of block-resampling permutation tests to test for temporal 

alignments between neurotransmitter receptor maps and the manifold and topic family 

maps, separately (5,000 iterations; p < 0.01).  

 

Structural Controllability 

A structural connectome was created from diffusion MRI data from 842 subjects (372 

males and 470 females, age 22 ~ 36) from the HCP cohort using a deterministic fiber 

tracking algorithm that leverages information in spin distribution functions (for details, 

see 46). The spatial resolution was 1.25 mm isotropic, TR was 5500 ms, TE was 89.50 ms, 

the b-values were 1000, 2000, and 3000 s/mm2, and the total number of diffusion 

sampling directions was 90, 90, and 90 for each of the shells, in addition to 6 b0 images. 

A weighted connectivity matrix was quantified using the same cortical and subcortical 

parcellation used in the functional analysis. The strength (i.e. weighted degree) of each 

region was collected for further analysis, and a simple randomized null model (5,000 

permutations) was run in order to determine whether the core regions demonstrated 

greater structural inter-connectivity than the rest of the brain. 

 

To estimate regional controllability, we calculated the average and modal controllability 

of the weighted structural connectome (see 45 for details). Briefly, average controllability 

is defined as the Trace(𝑊D>&), where 𝑊D =	∑ 𝐴Q𝐵D𝐵DR𝐴QS
QNT  is the Controllability Gramian, 

A is the weighted connectivity matrix and B is the input matrix that defines the control 

points in the network; and modal controllability is computed as the eigenvector matrix 

V = [vij] of the network adjacency matrix A (if the entry vij is small, then the jth mode is 

poorly controllable from node i. While it is known that these measures relate to 
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degree/strength, there is also evidence that they remain after controlling for degree, and 

hence may relate to other topological features of the structural connectome47. The 

regional patterns created from these analyses were then used to create a weighted mean 

between each of these control maps and the concatenated BOLD time series data. These 

time series were then related to the other outcome measures in our study, and we used 

a block-resampling null model to determine statistical significance. We also correlated 

the spatial loading of the first five PCs with the strength (i.e. weighted degree) of each 

region within the structural connectome. 
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Supplementary Figures S1-S2 

 

 

  

Figure S1 – results of the bootstrapping analysis that shows that 4-5 tasks are required to discover the 

same underlying principal component (tPC1) that recurs across task blocks; error bars denote standard 

error across 100 iterations. 

 

 

Figure S2 – embedding space, comparing tPC1 with tPC4 and tPC5. 
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Figure S3 – embedding space (tPC1-3) following regression of the task block structure. 
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Tables 

Family Topic number Main Term PC1 PC2 PC3 PC4 PC5 

Motor/Attention 

Topic 000 Motor Observation 0.36 0.21 -0.36 -0.33 0.21 

Topic 011 Motion 0.37 0.29 -0.12 -0.17 0.10 

Topic 015 Spatial 0.35 0.11 -0.07 -0.27 0.22 

Topic 035 Sensory -0.23 -0.05 -0.06 -0.44 0.36 

Topic 041 Attention 0.46 0.03 -0.18 -0.05 0.14 

Topic 049 Motor 0.10 -0.07 -0.18 -0.51 0.30 

Memory 

Topic 001 Vision/Object 0.25 0.29 0.16 0.05 0.00 

Topic 005 Faces 0.17 0.30 0.16 0.19 -0.02 

Topic 007 Language -0.01 0.03 0.01 -0.03 -0.06 

Topic 008 Inhibition -0.01 -0.22 0.00 0.01 0.09 

Topic 010 Mind Wander -0.35 -0.08 0.14 0.22 0.08 

Topic 012 Memory -0.02 -0.02 0.09 0.47 -0.18 

Topic 017 Social -0.25 0.17 -0.15 0.46 -0.19 

Topic 019 Fear 0.05 -0.07 -0.08 0.03 0.02 

Topic 023 Emotion + -0.27 0.21 0.16 0.29 0.01 

Topic 025 Learning 0.14 -0.19 0.00 0.05 -0.12 

Topic 029 Reward -0.07 -0.33 0.08 0.30 0.09 

Topic 040 Emotion - -0.40 0.07 0.11 0.44 -0.01 

Cognition 

Topic 002 Conflict/Control 0.50 -0.40 -0.31 0.04 -0.11 

Topic 022 Working Memory 0.51 -0.39 -0.28 0.14 -0.16 

Topic 033 Processing 0.48 0.10 -0.21 -0.04 -0.17 

Topic 042 Number 0.44 -0.24 -0.28 -0.01 -0.07 

Topic 047 Conflict/Control 0.39 -0.29 -0.18 0.02 -0.05 

Language 

Topic 003 Visual 0.11 0.32 0.26 -0.23 -0.04 

Topic 020 Language 0.33 0.22 -0.04 -0.01 -0.36 

Topic 032 Speech/Aud -0.25 0.09 0.09 -0.28 -0.19 

Topic 036 Language -0.07 0.25 -0.10 0.14 -0.45 

Topic 044 Semantic 0.13 0.19 0.05 0.05 -0.31 

Table S1 – NeuroSynth Topic Families. Values denote Pearson’s correlations: red/blue – p < 0.001; 

orange/light blue – p < 0.01; grey – p > 0.05. 
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Family Receptor PC1 PC2 PC3 PC4 PC5 Mot Cog Mem Lang BT 

Facilitatory 

D1R 0.35 0.54 0.36 0.00 0.16 0.23 0.51 -0.22 0.57 0.18 

α2AR 0.43 0.27 -0.24 -0.28 0.22 0.26 0.39 -0.30 -0.10 0.19 

M1R 0.40 -0.30 -0.35 0.32 0.03 0.13 0.55 0.17 -0.05 0.12 

5HT2AR 0.58 -0.07 0.23 0.04 0.12 0.75 0.80 -0.35 0.31 0.18 

Inhibitory 

D2R -0.42 0.33 -0.06 -0.05 -0.05 -0.51 -0.71 0.32 0.07 -0.17 

α1AR -0.40 0.16 -0.46 -0.24 0.09 -0.36 -0.51 0.18 -0.36 -0.20 

5HT1AR -0.53 -0.24 -0.15 0.15 -0.14 -0.71 -0.69 0.53 -0.21 -0.18 

Table S2 – Neuromodulatory Families. Values denote Pearson’s correlations: red/blue – p < 0.001; 

orange/light blue – p < 0.01; grey – p > 0.05. 
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