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Abstract. An incident longitudinal, or transverse, plane wave is scattered by a bounded
region immersed in an infinite isotropic and homogeneous elastic medium. The region
could be either a rigid scatterer or a cavity. Integral representations for the total
displacement field, as well as for the introduced spherical scattering amplitudes are given
explicitely in a compact form. Representations for the scattering cross-section whenever
the incident wave is a longitudinal or a transverse wave are also provided. Using
Papkovich potentials and low-frequency techniques the scattering problems are reduced to
an iterative sequence of potential problems which can be solved successively in terms of
expansions in appropriate harmonic functions. In each one of the four cases (longitudinal
and transverse incidence on rigid scatterer and cavity) the corresponding exterior boundary
value problems that specify the approximations as well as the analytic expressions for the
scattering amplitudes and the scattering cross-section are given explicitly. The leading
low-frequency term of the scattering cross-section for a rigid scatterer is independent of
the wave number while for the case of a cavity it is proportional to the fourth power of the
wave number. The low-frequency limit of the displacement field which corresponds to the
static problem when the scatterer is a cavity, does not depend on the geometrical
characteristics of the scatterer and it is always a constant.

1. Introduction. The problem of scattering of a plane harmonic elastic wave by an
obstacle appears as an exterior boundary value problem for the time independent Navier
equation with specific boundary conditions on the surface of the obstacle and prescribed
asymptotic form (known as radiation conditions) in the neighborhood of infinity.

The usual boundary conditions correspond to a rigid scatterer, described by the
vanishing of the total displacement field on the surface of the obstacle, to a cavity, which
is described by the vanishing of the surface traction and to a penetrable body, on the
surface of which both the displacement and the traction fields are continuous. The

•Received by the editors June 8, 1983. This work constitutes a part of the doctoral dissertation of the
second author performed under the guidance of the first.

©1984 Brown University



226 GEORGE DASSIOS AND KIRIAKIE KIRIAKI

radiation conditions, which are the same for any type of boundary conditions, impose the
requirement that the scattered wave propagates away from the scatterer and it is
diminished as the inverse first power of the distance from the scatterer.

The incident wave is a time harmonic plane wave propagating along a direction k and
polarized either in the direction of propagation k (longitudinal wave), or perpendicular to
the propagation vector k (transverse wave). In either case the incident wave has no
singularities in the finite Euclidean space. The first attempt to solve the scattering problem
for the simplest three dimensional geometry, that of the sphere is due to Ying and Truell
[19] who, in 1956, solved the problem of scattering of a plane longitudinal wave by a rigid
sphere, a spherical cavity and a penetrable sphere. Four years later Einspruch, Witterholt
and Truell [9] succeeded in solving the same problem with an incident transverse plane
wave. The difficulty caused by a transverse incident wave, over the simpler case of a
longitudinal incident wave, is due to the polarization vector which destroys the azimouthal
symmetry of the problem.

The general theory of scattering of elastic waves is very well exposed by Kupradze [10]
who discusses many interesting quantitative as well as qualitative aspects of elastic wave
propagation and scattering, including the specific expressions for the fundamental solu-
tions, the radiation conditions and a few integral representations.

The present work is very much affected by Kupradze's book.
The work of Barratt and Collins [2] provides the first investigation of the scattering

amplitude as well as the scattering cross-section. On the basis of their formulae they have
evaluated the scattering cross-section for a sphere and a cylinder at the low-frequency
approximation. Barratt and Collins are based on Kupradze's work too.

Using the work of Barratt and Collins, Lawrence [11] has calculated the scattering
cross-section for a rigid scatterer which has three mutually perpendicular planes of
symmetry and the direction of incidence coincides with one of the axis of symmetry. His
work refers also to the low-frequency case. In a latter paper Lawrence [12] improved his
previous result by letting the direction of incidence have any orientation with respect to
the symmetry axis of the scatterer. As an application of his technique he found the
low-frequency scattering cross-section of a rigid ellipsoid.

Integral representations for the displacement field are also given by Banauch [1],
Wheeler and Sternberg [18] who proved uniqueness theorems as well and Pao and
Varatharajulu [13]. Waterman [16, 17] has given a matrix formulation for scattering of
elastic waves. For low-frequency scattering and corresponding integral theorems one can
use Twersky's work [14, 15],

In this work an integrated and systematic theory for scattering of elastic waves by
convex obstacles is developed. The incident wave could be either a longitudinal or a
transverse plane wave and the scatterer is a rigid body or a cavity. Integral representations
for the total (incident plus scattered) field are given which involve the surface stress
operator on the surface of the scatterer. Spherical scattering amplitudes are introduced
through integral representations of the asymptotic form of the total field, in such a way
that the boundary conditions can be directly inserted in the representations. The evalua-
tion of the spherical scattering amplitudes demand the calculation of exactly one type of
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integral for each one of the two cases, for the rigid scatterer and the cavity. Similar
representations for the scattering amplitude, both for longitudinal and transverse incident
waves, are established. To the leading order approximation, in the low-frequency region,
the scattering cross-section for the rigid scatterer is independent of the wave number,
while for the cavity it is proportional to the fourth power of the wave number.

The four scattering problems, corresponding to the combinations of the two types of
incident waves with the two types of boundary conditions, are studied in the case of the
low-frequency expansions where the characteristic dimension a of the obstacle is much
smaller than the wavelength of the incident wave. The value of a is defined as the radius
of the smallest sphere that circumscribes the obstacle.

All the wave fields of the problem as well as the fundamental dyadic solution are
expanded in power series of the wave number. Using these expansions the wave problem
is reduced to a sequence of potential problems, which by means of Papkovich potential
representations for the displacement field can be solved iteratively by means of ap-
propriate harmonic functions. It is known that when no body forces are present the vector
and the scalar Papkovich potentials are no longer independent and therefore only the
vector potential is needed to describe the problem. Nevertheless if both potentials are
introduced their dependence can be used to overcome technical difficulties caused by
nontrivial coordinate systems.

The particular potential problems that determine all the coefficients are stated ex-
plicitely. Integral representations for every coefficient, as well as their asymptotic form, far
away from the scatterer, are found. The far field form provides particular solutions of the
corresponding Poisson equation. To a large extent the analysis of the potential problems
for the successive coefficients is guided by the relative work of the first author [3, 4, 5, 6]
for the scattering of sound waves.

Following Twersky's ideas it is succeeded to show that the leading term approximation
of the scattering cross-section can be obtained by using less low-frequency coefficients
than those obtained by Barratt-Collins [2], It is also showed that the lowest approximation
of the displacement field, for the case of a cavity is a constant, independent of the shape
of the scatterer.

2. Formulation of the problem. Let V~ be a bounded, convex and closed subset of R3,
having a smooth boundary S. The set V~ will be referred to as the scatterer. Let V be the
complement of V~ . Assume that the space V is filled with an isotropic and homogeneous
elastic medium specified by the Lame constants \ and ju. If the harmonic time dependence
e~'°" is suppressed, then the displacement field u(r) satisfies the time-independent lin-
earized equation of dynamic elasticity.

/iAu + (A + jn)v(v ■ u) + pw2u = 0 (1)

where it is assumed that there are no body forces, p is the mass density and u is the
angular frequency. Eq. (1) is also written as

c2v(v • u) - cjv X (v X u) + co2u = 0 (2)
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where

c] = M/P (3)
and

c2P = (A + 2 fi)/p (4)

when the vector identity

V X (v X u) = V(V u) - Au (5)
is used. By scaling the space variables it is possible to have p = 1 and this is done in the
rest of this work. It is well known that the solution of (2) is the sum of a longitudinal wave
u ̂  propagating with the phase velocity cp and a transverse wave us propagating with the
phase velocity cJ( i.e.,

u(r) = u^r) + us (r) (6)

where iip is usually called the P-wave and us the S-wave.
Each one of the waves u;' and us satisfies the wave equation with phase velocities cp and

cs respectively. Both and us waves have the same angular frequency co which is related
to the phase velocities cp and cs by the relations

oj = cpkp = csks, (7)

where kp = 2ir/\p and ks = 2-u/\s are the wave numbers of the P and the S-waves
respectively, while Xp and \s are the relative wave lengths. Consider, an incident
longitudinal plane wave

3>p(r) = r (8)

where k(') is the unit propagation vector, and an incident transverse plane wave

4>s(r) = belk-* r (9)

where the polarization vector b is perpendicular to the direction of propagation k, i.e.,

b • k = 0. (10)
The harmonic time dependence e~'*" has also been eliminated from ^ and <!>*. The
scatterer V~ can be either a rigid scatterer, in which case

4»(r) + u(r) = 0, rGS, (11)

or a cavity, in which case

r(4»(r) + w(r)) = 0, reS (12)

where 4> is either <bp or O1,

T = 2jun • V + An div + jun X rot (13)

is the surface stress operator and n is the exterior unit normal on S. The scattering
problems considered in the present work are stated as follows. An incident longitudinal, or

(1 )The hat " " on the top of a vector indicates that the vector has unit magnitude.
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transverse, plane wave <l> is scattered by a rigid inclusion, or a cavity. As a result of the
scattering process a scattered wave u emanates from the scatterer. In the elastic medium V
the total displacement field is the superposition of the incident and the scattered field

^(r) = 3>(r) + u(r), r G S (14)

The longitudinal part u'' of the scattered field u satisfies the radiation conditions

lim u'(r) = 0, lim r( - i*ju'(0) = 0, (15)
r-> oo r-» oo \ UT /

uniformly over directions. The transverse part us of u satisfies the radiation conditions

lim us(r) = 0, lim rl ^ — i7cvuv(r)) = 0, (16)
r-» oc r-oo \ Or ')

uniformly over directions. The above form (15) and (16) of the radiation conditions are
due to Kupradze [10]. The scattering problem consists in finding the field ¥ that satisfies
the time independent Navier equation (1), or (2) in V, the boundary condition (11) or (12)
on S, while u satisfies the radiation conditions (15) and (16). These are actually four
scattering problems corresponding to the combinations of the two types of incident waves
with the two types of boundary conditions.

3. Integral representations. Betti's third formula [10] for the vector fields u and v which
have continuous second order derivatives, states that

J [u(r') • A*i>(r') — p(r') • A*u(r')] dV

= f [u(r') • 7V(r') - v(r') • 7u(r')] ds (17)
JdSi

where

A* = cs2A + (cj - c?)v V. (18)

T is the surface stress operator given by (13) and S2 is a bounded regular (in the sense that
Gauss Theorem can be applied) domain. Let f(r, r')(2) be the fundamental dyadic
solution of equation (1), i.e.

(A* + w2)r(r,r') = —47r5(r — r')I, (19)

where: I = x, ® x, + x2 <S> \2 + x3 ® x3 is the identity dyadic and 6(r — r') represents
the Dirac measure concentrated at r. Then

f(r,r')= 2 I\jXk®Xj (20)
kj= l

(2)The symbol " ~ " on the top of a capital letter denotes a dyadic (second rank tensor).
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and
k2 eik&-T'\ i

r. (r,r') = -4 f -tSkl - -1-J to I ** r | w2 0*^.

•k^-r'\ eik£-r'\

r - r

kf eik#~r\ , e'V r'l(xk~ x'k)(xj- x'j)
, +2 I r - r' | kJ w21 r - r' |3

— (l ~ ikp\r-T'\)SkJ

1 - ik„ I r
k

I r r' I2

r'l

co21 r - r' i3

r|/ v   y/
)(*/-*;)

CO21 r - r' I3

2 1 - ikjr - r'
A:: — 3 

I r - r' I2

co21 r — r'
— (1 - ik,\r- T'\)SkJ. (21)

An exterior integral representation for the k th component uk(r) of the scattered wave can
be obtained by applying Formula (17) for a classical solution u(r) of (1) and the vector
fields xk ■ f(r,r'), k= 1,2,3. The integration extends over a region 9,f K which lies outside
the scatterer, outside a small sphere of radius e centered at the point r and inside a large
sphere of radius R that includes the scatterer and the observation point r. In the limit as
e->0+ and R-> + oo. Relations (15), (16) yield after some long calculations the
following integral representations, which hold for every r E V and k = 1,2,3.

Mr> = 4^^["(r') ' TA*k ■ f(r,r'))

- (xA • f(r,r')) • rr,u(r')] dS(r'). (22)

Therefore the scattered field u(r) satisfies the representation

U(r) = ~ f(r'r') ' rru(r')] dS(r') (23)

for r E V. The representation (23) coincides with the one given by Pao and Varatharajulu
[13] with the appropriate modifications. Since the plane wave <I> is a solution of (1) which
has no singularities in R3, Betti's third formula implies that

jf[*(0 ■ Tt,f(r, r') - f(r, r') • T^)] dS{r') = 0. (24)

Relations (23) and (24) provide the following integral representation for the total field
xP(r) in the exterior domain V,

*(r) = *(r) + 4^/[^(r') " ̂ f(r,r') - f(r,r') • rr*(r')] dS(r'), (25)
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where 0 can be either the longitudinal plane wave 4>p given by (8) or the transverse plane
wave given by (9). If the scatterer is rigid then ^ vanishes on S and the corresponding
integral representation assumes the form

*(r) = *(r) - ^jff(r.r') ■ TT*(r') dS(r'). (26)

On the other hand a cavity is described by the vanishing of on S and the
corresponding integral representation becomes

*(r) = *(r) + • rr,f(r,r') dS(r'). (27)

Whenever r varies on S, relation (26) becomes an integral equation for the rigid scattering
problem (1), (11), (15), (16), while relation (27) becomes an integral equation for the cavity
scattering problem (1), (12), (15), (16). In any case the representations (26), (27) are very
useful for the description of the far-field behaviour of the scattered wave.

4. The scattering amplitudes. Barratt and Collins [2], using the asymptotic relations
proved by Kupradze [10], were able to show that as r -> + oo the longitudinal part up and
the transverse part u! of the scattered wave satisfy the relations:

u'(r) = hr(V,<p)r^ + (28)

and

«'(>") = (fc#(#,9)^ + (29)

where r, 6, <p are the unit vectors of the spherical coordinates. The function hri has the
outgoing radial direction f and denotes the scattering amplitude of the longitudinal wave
u''. Similarly the function + hv<j> have a tangential direction and denotes the
scattering amplitude of the transverse wave u5. The form of the radiation relations (28)
and (29) reflects the fact that on the surface of a large sphere, far away from the scatterer,
the scattered wave behaves like a spherically expanding wave whose longitudinal part
propagates along the radius while its transverse part is polarized tangentially to the sphere.
Integral representations for the scattering amplitudes over the surface of the scatterer will
be derived in the sequel.

The fundamental dyadic f is written as

f(r,r') = f'(r,r') + P(r,r') (30)
where

e'V-'l
R(r,r') =

w2|r - r'|3
k2p(r - r') ® (r - r')

+ (l-*Jr — r'l)(i-3(|-,r')®(,7r')
I r - r'12

(31)
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describes the longitudinal part and

r'l
I>,r') = -

w21 r - r' I3

k2

kf(r - r') ® (r - r')

I r — r' I2

+ (32)

describes the transverse part. By means of the asymptotic relation

F ztt = f + ~ )» r~> <x> (33)r - r \r

and

|r — r'|= r — f • r' + 0[ — I, r -> oo (34)r

it is concluded that, as r -> oo

and

~ p pikpT I 1

p-(r,r') = f®f— ^+0(^1 (35)

e 'ikst r' eiksr / j

C r \r-
rj(r,r') = (I — r <8> r) - — )- 0 — I. (36)

The dyadic r ® r in (35) indicates the radial behaviour of the longitudinal part of f far
away from the scatterer. Similarly, the dyadic I - r ® r in (36) indicates the tangential
behaviour of the transverse part of f in the radiation region.

In order to apply the surface stress operator

Tr. = 2/xn' • vr> + Xn'Vr< • +jun' X vr. X (37)

on the fundamental dyadic f(r, r') it is necessary to evaluate the asymptotic form of the
gradient of f with respect to the variable r'. This can be done by evaluating Vr f(r, r') and
then using the asymptotic relations (33) and (34) to obtain

ik„ , „ ,eikpr
VrT(r,r') = -r ® f ® r-f e"'Vr 

cp r

-r® (I - r® r)-^e"'**f r — + o(-r) (38)
c: r \ r I
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as r -> oo. Taking the scalar and the vector invariants between the first two vectors of the
triadic Vr f it is concluded that as r -> oo,

Vr-f(r,r')= -f^-'V-r'£^l + 0(-L) (39)

and

Vr' x f (r, r') = (4 ®<p-tp®4 + ol -U (40)
c; r \ r I

where we have used the following spherical representation of the identity dyadic

I = r®r + $®# + ^>®<p. (41)
Substituting (38), (39) and (40) into the expression for T^ffr, r') the following asymptotic
form, as r -* oo, is derived

ik„ , e'V~'k„r r f Tr f(r, r') = -n' • (XI + 2jur ® r) <8> r—e ,k»
cp

— jn[2(n' • t)6 +(A'X<p)]®d —
c?

— ft[2(n' • r)<p — (n' X 6 )] ® y-f-e
ik. —ik.r- r'

r

+ 0(A), r- 00. (42)
r

Contracting from the left with ^(r') the asymptotic form of the dyadic rrT(r, r') one
obtains the following expression as r -> oo

*(r') • rr,f(r,r')

= *2(*(r') ® ft'): (® t)te~ik>t r'h(kpr)

+ A:2[2(*(r') ® ft'): (f ® » ) + (*(r') X ft') ■ q>]6e~ik'ir'h(ksr)

+ A:s2[2(*(r') ® ft'): (f ® <p) - (*(r') X ft') • &]<pe~ik,ir h(ksr)

+ o(Jj) (43)

where h(x) = e'x/ix is the zeroth order spherical Hankel function of the first kind and the
indicated double inner product is defined as

(a ® b): (c ® d) = (a • d)(b • c). (44)
Substituting (35), (36) and (43) into (25) it follows that as r -> oo,

u(r) = gr(f,fc)M( V) + S»(r^){>h(ksr)

+gv(f,k)#(^r) + of-^) (45)
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where the normalized spherical scattering amplitudes gr, g# and which describe the
effect of the scatterer in the directions r, 4 and <p respectively, due to an incident plane
wave propagating along k, are defined as follows

s,(f,k) = kin,-. I Y^-I + ® f) " • f), («>\ \ + 2ii A + 2ju" 'I cj

g<>(f,k) = fcJ2[2^:f®d+(hJ-^)] -%/,•#), (47)
c:

gv(r,k) = kl[2Hs:r®<p-{hs-6)] (48)

and

Hp = 4~^(r') ® &'e~*>*■*' dS(r'), (49)

&s = f *(r') ® n'e~iks' T' dS(r'), (50)

K = ^l*(r')®"'e-ik°tT'<lS(r'), (51)

lp = ^fTr*(r')e-ik>tTdS(r'), (52)

ls = ^jTMx')e-ik^dS{t'). (53)

The vector hJ is the vector invariant of the dyadic Hs.
The advantage of the integral representations (46)—(53) for the normalized spherical

scattering amplitudes gr, g# and gv, over the corresponding representations of Barratt and
Collins lies on the fact that (46)-(53) involve the values of ¥ on 5 and therefore the
boundary conditions (12) or (13) are immediately applicable. On the other hand, due to
the different wave numbers kp and ks, the representations of Barratt and Collins cannot
be combined in a straight forward manner in such a way that the total field ^ appears in
the corresponding integrands.

The first term in the right-hand side of (45) corresponds to that part of the scattered
wave which is due to the longitudinal wave and is directed along the radial direction r.
Similarly the second and the third terms in the right hand side of (45) are due to the
transverse wave and are polarized on a tangent (perpendicular to f) plane. This polariza-
tion vector g9& + gvq> can also be written as follows

g»(r,k)# + g„(?,k)<p = g,(r, k)

= k2s\lHs: r ® (I - r ® r) + hj X r]
ik

2 Is ■ (I - * ® f) (54)
C
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where the representation
= (55)

has been used.
The vector field g,(r, k) describes the tangential behaviour of the scattered wave in the

region of radiation and can be used whenever the particular contributions to the directions
& and q> are not important. It is the tangential normalized vector scattering amplitude. For
a rigid scatterer 4* vanishes on S and hence Hp, Hs and hs vanish too. In this case the three
scattering amplitudes become

g^d(r,k) = -%/,-f), (56)
cp

grd(f,k) = -%/,•*), (57)
ĉS

g^d(r,k)= - V). (58)
rcs

If the scattering region is a cavity, then Tty vanishes on S and so do the integrals lp and ls.
The corresponding scattering amplitudes in this case are

= kl"r ( xh>~1 + FfV <® f)'' <5»
k) = kj\2Hs: f ® 6 + (hs ■ cp)], (60)

g;a^(f,k) = k][2H- f ® <p - (h, • 4 )]. (61)

5. The scattering cross-section. The scattering cross-section is defined as the ratio of the
time average rate (over a period) at which energy is scattered by the body, to the
corresponding time average rate at which the energy of the incident wave crosses a unit
area normal to the direction of propagation. The scattering cross-section is a measure of
the disturbance caused by the scatterer to the incident wave. The rate at which the energy
of the time harmonic displacement field u(r)e~'"' crosses a surface element with normal n
is given by

-Re(ru(r)e-'"'}^ Re{u(r)<T,w'} (62)

where is the surface stress operator (13) evaluated in the normal direction n.
Calculating the time average of (62) over a period 2w/w for the incident waves

^>p(r)e~"" and $s(r)e_'"', where <PP, <I>! are given by (8) and (9) respectively, it is
obtained that

e' = j Im[(T*') ■(*')*]=■£-, (63)

e' = flm[(TO') •(**)*] =^, (64)



236 GEORGE DASSIOS AND KIRIAKIE KIRIAKI

where the star indicates complex conjugation and ep, es are the time average rate at which
the incident P and 5 plane waves respectively cross a unit area normal to the direction of
propagation k.

On the other hand, the time average rate at which energy is scattered by the body is the
time average rate at which the energy of the scattered field is transmitted across a large
sphere Sr, r » 1, enclosing the scatterer. As before, if u(r)e~"°' is the displacement field for
the scattered wave the stress vector on the surface of the sphere Sr, at the point r is given
by Tu(r)e~'"', where T is the surface stress operator with n = r. The rate at which the
energy of the scattered field is transmitted across Sr is given by the integral

-f Re{ru(r)e~'"'} Re{u(r)e~'w'} dS. (65)
Jsr

Evaluating the corresponding time average over a period it is concluded that

e — y Im J (7u(r)) • u*(r) dS. (66)

On the surface Sr the traction has the asymptotic form, as r —■ oo,

7u(r) = 2jur • Vu(r) + Arv • u(r) l(irX (v X u(r))
e'kpr , - elk'r I 1

= (X + 2 li)grt^j~ +li(gt& +gv<q>)^y~+ Oj—j (67)

which, in view of (45), gives

(ru(r)) • (u*(r)) = ,A-tl^|gr|2 + i (68)
kpr ksr

Substituting (68) into (66) it is concluded that

e(k) = ^J^_Jc^k(f.k)|2 + c,3(|gd(r,k)|2 +|g?(f,k)| ) rfQ(f), (69)

where the integration is taken over the unit sphere. From (63), (64) and (69) the scattering
cross-sections op and as, corresponding to an incident P and S wave respectively are
expressed as follow

«(k) _ ,, ( L-3l„l2^ /,—3/1„ I2kpf _[kp3\gr\2 + ks3(\g/+\gv\2) (70)'H=i

_ e(k) _
e- =kJn=\kp*\g'\2 + k'3(\g*f+\g<i>\2) ^71^

Obviously, the integrals that appear in the right-hand side of (70) and (71) are not the
same since the amplitudes gr, g$ and gv, which correspond to longitudinal and transverse
incidence, differ.
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Dimensionalwise, since the normalized spherical scattering amplitudes gr, g9, g^ are
dimensionless, it is concluded that the scattering cross-section ap or as have the dimen-
sions of area, i.e.

[a] = [L2,M°,T°] (72)
and this fact justifies the characterization of a as cross-section.

Using Jones' Lemma for the asymptotic evaluation of double integrals, Barratt and
Collins [2] have expressed the scattering cross-sections by means of the values of the
spherical scattering amplitudes in the forward direction. Their results translated to our
terminology read as follow

o' = -^Regr(k,k) (73)
kp

and

o'= -^Re{g#(k,k)(b-*) + gv(k,k)(b-$)} (74)
ks

where b is the polarization vector of the incident S'-wave.

6. The low-frequency theory. It is well known that the solutions of the time-independent
Navier Equation (1), considered as functions of the wave number ks or k , are analytic in
a neighborhood of zero. As a consequence, the displacement field can be expanded in a
convergent power series of the wave number ks or kp. For convenience, as well as
comparison purposes, the following terminology is introduced

k = ks
k1Tz = E = -L

^ k]
(75)

Then the total field ^ satisfies the equation

T2A^(r) + (1 - t2)v(v • ^(r)) + r2A:2>I'(r) = 0. (76)

Inserting the expansion

*(0 = 1 (77)
n = 0 ' n = 0

into (76) and equating equal powers of k the following sequence of partial differential
equations is obtained

r2A«I»n(r) + (1 - t2)V V • <*>» = n(n - l)0„_2(r) (78)

for n — 0,1,2, 
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The expansion (77) separates the spatial from the wave number dependence of the
solution. In fact equation (78) describes the spatial dependence of ¥ that corresponds to
the Hth power of k. For n = 0 and n = 1 equation (78) coincides with the static Navier
equation in the absence of body forces, while for n > 2 it corresponds to the static Navier
equation with a body force proportional to the (n — 2)th order coefficient which is known
from previous steps. The boundary conditions (11) and (12) are transformed into the
boundary conditions

4>„(r) = 0, reS, n = 0,1,2,... (79)
and

r*B(r) = 0, reS, ii = 0,1,2,... (80)

for the rigid scatterer and the cavity respectively. The incident waves can also be expanded
into convergent power series of k as follows

*'(r) = fc 2 %^(k-r)"

and

(81)
n = 0

*'(r)=&2 ^f(k-r)". (82)
n=0 T

In order to find the low-frequency expansion of the fundamental dyadic f(r, r') it is
observed that

1 eik*~r'] - 1 I e'T/c|r~r'i eik^~r'\
r(r'r'} = m 17^1 ~ VfVr\ ~

= Ii | (Jk£ _ f +i 2 M^(T" - 1)VrVr|r - r'|"~'. (83)
u A n! a " n\n n=0 r n=0

In the last sum, the term that corresponds to n = 0 is zero since t° — 1 = 0. The term
n — 1 is also zero since VrVr | r — r' |' ~1 =0. Furthermore, for n 2,

VrVr|r - r'\" ' = («-!) i+(»-3 )(i-,r;»8(rr,)
r -r

|r — r'| . (84)

Finally the fundamental dyadic has the expansion

fv A 1 v ('Tk)" - i ar(r>r) = ~ 2 -1—r-y^r.r')u - (85)^ n = 0
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where

f„(r< •"')
I r — r' |"_l , + + (. — !) ~~r^ ^ (r — r*) ® (r — rf)

n + 2 J n + 2 \r — r'P

(86)

for n = 0,1,2, From (77) and (86) it is derived that

mr)- i {-^T*n(r) (87)
n=0

and

n\

TtH r,r')=7 1 ^Y„(r, r') (88)n'r /i = 0

where

^ / a (n-1) i .|"-27;'T"(r^) = -?^T2)|r"r|

/x(2t"+2 + «)
n' • (r - rQ - (r - r') ® n'

I r - r' I I r — r' I

+ Mn - 3)(r.« - i)»--('-0 (r-r-)0(r-^)
PV A Ir — r | | r — r' |

+ [\(» + 2)Tn+2 + 2iit(T"+2- 1)]" (89)

The expression in brackets in (89) involves only the unit vector (r — r')/|r — r'| and
therefore is bounded in r. Hence, as r -* + oo the order of Tr,f„(r, r') coincides with the
order of r"~2. In particular 7j.-y0 and Tr y, vanish as r -» + oo. Substituting (77), (81), (82),
(85), (87) and (88) into (25) and equating equal powers of k, the following integral
relations among the coefficients ^>0, <!»,, <t>„ are obtained

<*>» = a„(k ■ r)" + 2 (p)/[^(r0 •Tr,f„-p(r,r')
^ p = 0 s

-yp(r,r')-Tr,<t>n_p(r')]dS(r') (90)

where

a„
k, when O =

6 V> <f> (91)-, when <P = <P5,
r
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and f„(r, r'), Tr,yn(r, r') are given by (89), (92) respectively. Since

f0(r,r') = o(y), r-» + oo (92)

the integral relation (90) assumes the following asymptotic integral representation for the
n th coefficient

= «„(k • r)"
n- 1

+ 4^2 (J )/[W • rr<y„-p(r,r') - y„-p(r,r') ■ 7,Op(r')j dS(r')" P=0

yj, r -» + 00. (^3)

By straightforward calculations it can be shown that the nonvanishing part of the
asymptotic expression (93) satisfies equation (78). Consequently a particular solution of
the nonhomogeneous equation (78) is provided by

P„(r) = «„(k ■ r)"

V ( J)/[W " T,yn-P(r,r') - y„-p(r,r') • 7r,4»p(r')] dS(i>). (94)
p~0

Since y,(r, r') is a constant dyadic the p = n — 1 term in (94) can be omitted without
effecting the particular solution of (78). Nevertheless keeping the term p = n — 1 in the
sum P„(r) provides both a particular solution of (78) and the asymptotic behaviour of
0„(r) as r -» + oo. In particular for the case of a cavity the p = n — 1 term can always be
omitted since rr.f,(r, r') is of the order of \/r as r — +oo. The solution of (78) is now
written as

*fl(r) = P» + U„(r) (95)

where the function P„(r), given by (94) satisfies (78) and describes the nonvanishing
behaviour of <f>„(r), as r -> + oo. The function Un(r) satisfies the homogeneous equation

r2AU„(r) + (1 - t2)w • U„(r) = 0 (96)

the boundary condition

LU„(r) = -LP„(r), r G 5, (97)

where L is the identity operator when S is rigid and the surface stress operator T when the
scatterer is a cavity and for r + oo

U(r) = <?(-M. (98)
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Introducing the vector and the scalar Papkovich potentials A" and B" through the
representation

U„(r) = A" + |(t2- l)v(r- \" + B"), n = 0,1,2,... (99)

and substituting into (96) it is concluded that

AA" = 0, n = 0,1,2,..., (100)
Azr = 0, n = 0,1,2  (101)

It is well known that the potentials A" and B" for the homogeneous equation (96) are not
independent. As a matter of fact the vector potential A" alone suffices to solve Equation
(96). Nevertheless, in applications [7, 8], it is crucial to introduce both potentials A" and
B" and to use their dependence in order to be able to find closed form solutions for the
corresponding potential problems. Recapitulating, the steps one has to follow in order to
evaluate the nih coefficient <!>„ for the low-frequency expansion of the displacement field
are: (a) evaluate the integrals in (94) to find P„(r) and (b) find harmonic functions A" and
B" such that

A"(r) + ^(t2 - 1)v(r • A"(r) + B"(r)) = -iP„(r), rGS (102)

and

A"(r) + ^(t2 — l)v(r • A"(r) + B"(r)) = o(y), r-+oo. (103)

Then the n th coefficient is given by

4>„(r) = P„(r) + A"(r) + |(t2 - l)v(r ■ A"(r) + B"(r)). (104)

In particular, for the first two coefficients

po(r) = «o-
P,(r) = a,(k • r)

+ 4~/[<&o(r') ' Tr'-Yi(r,r') - y,(r,r') • Tr,<I>0(r')] dS(r').477JH

Since
* r3

(105)

. / A r + 2 =
Yi(r,r)= 3t I. (106)

the functions P0, Pj for the rigid scatterer become

P0^d(r) = a0, (107)

P,r,ngld(r) = «,(k • r) - ll±| jfrr.^0(r') dS(r') (108)
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and for the cavity
P0cavity(r) = a0, (109)

pcavity(r) = a,(k • r), (110)

where a0, a, are given by (91).
In particular, the solution 4>0 for the cavity is always equal to a0, as it is given by (91).

Indeed the constant function 4>0 = a0 satisfies, for n = 0, Eq. (78), and the conditions (80)
and (93). The uniqueness theorem implies that there is no other solution.

7. The far-field behaviour at low-frequency. In order to derive the low-frequency
expansions for the scattering amplitudes gr, gd and g9, the expansions (77), (87) and

e-tk,*-r'= f (111)
n = 0 " '

00

n = 0

are substituted into (49)—(53) to obtain

2 (112)

Hr = -t 2 tJ^r- 2 (J)(-1 >"f*,® "'If ■ • (113)
n=0 ' p s

«, = i; 2 {j^r~ 2 (114)
n=0 p=0 5

K = 2 2 (p) (— ~) P/^>n-p(r ) x "'(f ' r')P dS(r'), (115)

1p= 47 1 2 (p)(-lYjTr&„-p(r')(t-T,ydS(r'), (116)
n=0 ' p=0 s

<,=i 2 (1")
n—0 ' p=0

Inserting the expressions (113)—(117) into (56)—(61) it yields

\n+ 11 00 ('lr\n n

grrigid(f,k) = —j I !H- I J (-i)'+V-/j;.*,-,M(f O'^(r'),
47rc/> n = 0 ' p = 0 J

(118)

«»*"('•11) = ̂  2 2 t,-,(.')((.o'*),
H7TLs n — 0 ' p = 0 5

(119)
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n+ 1

y VTK>
477C?«?"<••*)-S? 2 i (;)(-v)'"«■ ■ <y w),T,,tj n — 0 p — 0 •*

(120)
for the case of a rigid scatterer and

«;••'»(= i i 2 (J)<-i)'+'
«=1 ' p=0

■[(1 — 2t2)I + 2r2r 0 r]: fo„_p(r') 0 ft'(r • r'f dS(r'), (121)

n=1 p = 0

■jf[2f 0 rf: <Vp(r') 0 ft' + <p ■ <J>,_p(r') X n'](r • r')p <tf(r'), (122)

^.t)^i^p2(",)(4:'+'
«=i * p=0

■ f[2t ® <p: *„_„( r') 0 ft' - 6 • On_p(r') X ft'] (r • r')p JS(r'). (123)

The series expansions (121)—(123) start with n = 1 since all the terms that correspond to
n = 0 involve the surface integral js ft' dS which vanishes by the divergence theorem.
Therefore the normalized spherical scattering amplitudes are 0(k) for the rigid scatterer
and 0(k3) for the cavity, as k -> 0. In particular the leading term approximations for the
rigid scatterer, as k -» 0, are

g^d(f,k) = jTt,%(x')dS{x') + 0(k2), (124)

g^d(r,k) = ■ f Tr,%(r') dS(r') + 0(k2), (125)

g^d(r,k) = - ■ jyP0(r') dS(r') + 0(k2). (126)

Similarly, by means of the formula

fh'®r'dS(r') = f vr'dV = VI, (127)
Js JV~

where V is the volume of the scatterer. It is obtained that the leading term approximations
for the case of a cavity, as k 0, are

grcavity(f,k) = -^[(1 -2T2)I + 2T2f®r]

Fao0r- /"o,(r') ® n'^S(r')
* c

+ 0(k4), (128)
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grily(tk) =

g^(f,k)= ,kx

a0 • 6 - 2r ® 4: f<P,(r') ® n'dS(r')

-q> ■ f<P,(r') X n' dS(r') + 0(k4), (129)

477 -a0 • <p - 2r <S> <p: f<P,(r') ® n'^S(r')

+ # • fo,(r') X n'dS(r') 0(£4). (130)

The low-frequency expansions for the scattering cross-sections are derived by substituting
the corresponding expansions (118)—(123) into the formulae (70) and (71). The leading
term approximations, as k -> 0, for the four problems of concern here, can be obtained by
first expressing the relative integrals in terms of r alone, then use formulae [see Appendix].

f r^(r) = 0, (131)
llMi

f f®f^(f) = ^I, (132)
l®1= i J

f r ®r ®r^(r) = 0 ® 0 ® 0, (133)•>1=1

f r <8> f <S» r O r dfi(r)
Jf\=\

477a
3 3

i ® i + 2 e, ® ey ® e, ® ey + e,
i,j= l i=i

(134)
and finally perform the indicated contractions.

Following this program one obtains for
(i) /^-incidence on a rigid scatterer.

a4d = TTT~i / ^r-fT%dS(r')
16 77 jU" |r| = 1 •'j

2

+ # • /Y<D0 c?S(r') + y - (T% dS(r') JS2(r) + 0(k2)

^~2 JT*o rfS(rO • / [I + (t3 - l)f ® f] Jfi(r) • fdS(r') + 0(£2)
7i \irJs 1*1= l Js

2

(T<t>0dS(r') + 0(k2). (135)
J c

16 77" 2/X*

t(t3 + 2)

12 77JU2
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(ii) S-incidence on a rigid scatterer.

°ngid = ~ same as arf&ld, with <I>0 corresponding to 5-incidence]. (136)

(iii) f-incidence on a cavity.

3/.4a' = T k
1677" •/|r|=l

V

'cavity — 1 f T [(1 — 2x2)I + 2-r2f <S> f]: Ka0 ® r - fa,(r') ® n'^5(r')1 z y,5j_ i

+ -a0 • # - 2r ® /*,(/■') ® n'^(r') - <p • /"$,(r') X n'^(r')
T J c J „

— a0 ■ <p — 2r ® <p: /"^(r') ® n'^S(r') + $ • Aj>,(r') X ft'<£>(/-')t ./

21

T3^4 877F2

j </a(f)

+ 0(/:6)

+ tV2h o •/ r ® r </B(f) • a0
1677" [ 3t */|fi= i

+ f<P,(r') ® n'dS(r'): f [r(l - 2t2)2I ® I + 2t3(1 - 2r2)(l ® r ® r + r ® r ® I)
•/|f|= i

+ 4r ® I ® r + 4(r5 - l)r ® r ® r ® r] dQ(r)

: fft' ® 0,(r') rfS(r') + fa,(r') X ft'^S(r') • ( (I - f ® f) d!i(t) ■ [*,(?) X ft'dS(r')
Js Js Jft=l JS

— 4 f&tir') ® n'dSff): [ r ® I X f </B(?) • fair') X ftVS(r')l + 0(k6)
JS •'|f|=l Js

T3^4

6077
5^T 2+ ̂  V2 + (28t5 - 40t3 + 15t - 8) /*,(r') ■ n'JS(r')

2

— 10 fa^r') X n'dS(r') + 4(r5 + 4) fa^f) ® ft'dS(r') + 0(k6),
S

(137)

where the norm of a dyadic is defined as

||a ® b||2 = 2 (a,A)2- (138)
'•7=1

In the third part of (137) all terms that evaluate to zero has been omitted.
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(iv) S-incidence on a cavity.

acavity = ~ same as acpavhy, with O, corresponding to S-incidence]. (139)

From (135) and (137) it is observed that the leading low-frequency approximation of the
scattering cross-section for the rigid scatterer is independent of the wave number, while
for the cavity the corresponding approximation is of the order of k4.

In other words, the total energy scattered by a rigid scatterer is by four orders of
magnitude of the wave number, more than the corresponding total energy scattered by a
cavity. Comparing the above results with Rayleigh's law of scattering for sound waves,
which says that in the low-frequency limit the total energy scattered by a rigid scatterer is
proportional to the fourth inverse power of the wavelength, it is observed that in the case
of elastic waves Rayleigh's law holds true for the case of a cavity. The corresponding
energy scattered by a rigid body is independent of the wavelength. Comparing the results
(135) and (137) with the corresponding results (73), (74) of Barratt and Collins [2] it is
observed that the leading term approximation, as k — 0, of the scattering cross-section
using the expressions (73), (74) demand the knowledge of the coefficients <I»0, <!>! for the
rigid scatterer and the coefficients <J>0, 4>,, <E>2, <t>3, <t>4 for the cavity while by means of
(135) and (137) the corresponding approximations are obtained when it is known only O0
for the rigid scatterer and $0, <!>, for the cavity. Considering the rapidly increasing
difficulty in evaluating the coefficients <!>„ for specific problems [7, 8], this technique of
evaluating the scattering cross-section using the lowest possible coefficients is very
efficient.

Appendix. The divergence theorem implies that

f rdQ(r) = f (v\)dV(r) = 0. (A.l)W= 1 •/M<1

Alone the same line, it is obtained that

f r®rdSt(r) = f vr dV(r) = f v( - ) dV(r)
|f1= 1 •/|r|<l M* 1 r

= /'/ [~^r^ + l)r2d^)dr= r ® r dtt(r) +Jo •/|f)=i \ r r J i J^=\ z

(A.2)
and by solving with respect to the surface integral it is implied that

47T ~
■ r dU(rJ =

■/|fi=i
f r <S> r d^l(r) = ~l. (A.3)

•'!rl=l i

Formula (A.l) denotes that the 3 integrals over the unit sphere of all first degree
monomials of the directional cosines of r are zero.

Similarly, Formula (A.3) denotes that among the 32 = 9 corresponding integrals of
second degree monomials there are only three different to zero. They correspond to the
base dyads e, ® e,, i = 1,2,3 and they all have the same value 47t/3. For the 33 = 27
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integrals of the third degree monomials of the directional cosines, the divergence theorem
provides

[ r ® r ® r dfl(r) — f vr ® r dV{r) = f V ( —r-~ ) dV(j)
•/|r1= 1 M5* 1 M5® 1 \ r2 I

r\ f I -2r ® r ® f + I ® r + r ® I \ 2 j= JJ     r2dtt(r)dr
J0 -/|r)= 1 \ r I

= — f r ® r ® r dtt(i) + -Jr f (I ® r + r ® I) di2(f).
= 1 L J\r\= 1^=1

(A.4)
From (A.l) it is concluded that

f r ® r ® rdQ(r) =jl ® ( r dQ(r) + \ ( r</fl(r)<8>!
|i1= 1 4 •/|fl=l 4"/|r|=l

= 0® 0® 0. (A.5)

Therefore all the third degree monomials of the directional cosines of r have zero integrals
over the unit sphere. For the 34 = 81 integrals of the fourth degree monomials it follows
that

( r ® r ® r ® r dtt(r) = f Vr®r®rdfi(r)
•,|t|=l •/|r|<l

r I r ® r ® r \ Jrr, .= / V  —\dV(r)
•'M'Si \ r I

r\ r -3r ® r ® f ® r + I ® r ® r + f ® \ ® r + r ® r ® I , ,_/A. ,
= / /    rzdSl{r)dr

J0 y|fj=l r

3 f
= — -z I r ® r ® r ® r c/£2(r)

2 -/|fi= 1

+ \f [l®f®f +r®I®r + r® r® I] <i£2(r). (A.6)1 •/W=i

Inserting (A.3) into (A.6) it is confirmed that

r r Q9 r » ir a\l[i) = 4w
■>l=i
J r ® r ® r ® r dti(r) = [e, ® e, ® ey ® e, + e, ® e; ® e, ® e, + e, ® e; ® e; ® e,]

4 77" r~ ~ " "|= -jj [i ® I + e,® e,® e, ® ey + e, ® I ® e,J, (A.7)

where repeated indices, in (A.7), indicate summation from 1 to 3. Continuing this
technique for higher degree monomials it is concluded that the integrals over the unit
sphere of all odd degree monomials of the directional cosines of r are zero. In addition,
those of the integrals of the above monomials, of degree 2 n, that, do not vanish, have the
same value which is equal to 4ir/(2n + 1)!!, where the double factorial represents the
product of the odd natural numbers from 1 to (2n + 1).
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The above computational technique is very efficient, especially where the degree of the
monomials is n > 2, e.g. for n = 8 there are 38 = 6.561 integrals to evaluate, where with
the use of the above method there is no need to evaluate any integral.
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