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Abstract. In the present paper we introduce the lower autocentral series
of autocommutator subgroups of a given group. Following our previous
work on the subject in 2009, it is shown that every finite abelian group

is isomorphic with nth-term of the lower autocentral series of some finite
abelian group.

1. Introduction

Let A = Aut(G) denote the group of automorphisms of a given group G. For
any element g ∈ G and α ∈ A the element [g, α] = g−1gα is an autocommutator
of g and α. We define the autocommutator of higher weight inductively as
follows:

[g, α1, α2, . . . , αi] = [[g, α1, α2, . . . , αi−1], αi]

for all α1, α2, . . . , αi ∈ A.
So the autocommutator subgroup of weight i + 1 is defined in the following

way:

Ki(G) = [G,A, . . . , A︸ ︷︷ ︸
i-times

] = ⟨[g, α1, α2, . . . , αi] | g ∈ G,α1, α2, . . . , αi ∈ A⟩.

Clearly Ki(G) is a characteristic subgroup of G for all i ≥ 1. Therefore, one
obtains a descending chain of autocommutator subgroups of G as follows:

G ⊇ K1(G) ⊇ K2(G) ⊇ · · · ⊇ Ki(G) ⊇ · · · ,
which we may call it the lower autocentral series of G. The aim of the present
paper is to prove the following main result.

Theorem 1.1. For any finite abelian group G and every natural number n ∈ N,
there exists a finite abelian group H such that

G ∼= Kn(H).
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2. Preliminary results

In order to prove our main result, we need to prove some technical lemmas,
which are interested in their own right.

Lemma 2.1. Let G = H ×K be the direct product of two characteristic sub-
groups H and K. Then for any natural number n,

Kn(H ×K) = Kn(H)×Kn(K).

Proof. Clearly every element g ∈ G can be written as g = hk, where h ∈ H
and k ∈ K. By Lemma 2.1 of [5],

Aut(G) ∼= Aut(H)×Aut(K).

Using induction on n, we show that

[hk, α1, α2, . . . , αn] = [h, α1|H , α2|H , . . . , αn|H ][k, α1|K , α2|K , . . . , αn|K ],

for all α1, α2, . . . , αn ∈ Aut(G). If n = 1, then since the subgroups H and K
are characteristic in G and hk = kh, we have

[hk, α1] = [h, α1][k, α1].

Now, assume the result holds for n− 1, then

[hk, α1, α2, . . . , αn]

= [[hk, α1, α2, . . . , αn−1], αn]

= [[h, α1|H , α2|H , . . . , αn−1|H ][k, α1|K , α2|K , . . . , αn−1|K ], αn]

= [h, α1|H , α2|H , . . . , αn−1|H , αn|H ][k, α1|K , α2|K , . . . , αn−1|K , αn|K ].

This implies that Kn(G) ⊆ Kn(H)×Kn(K).
By Lemma 2.1 of [5], any automorphism µ of H, can be extended to an

automorphism µ̄ of G. Hence, for all µ1, . . . , µn ∈ Aut(H) and h ∈ H

[h, µ1, . . . , µn] = [h, µ̄1, . . . , µ̄n] ∈ Kn(G).

Therefore Kn(H) ⊆ Kn(G). Similarly, Kn(K) is contained in Kn(G). Thus

Kn(G) = Kn(H)×Kn(K). □

Using the above notation, we have the following

Lemma 2.2. If G is a finite cyclic group, then for any natural number n,

Kn(G) = G2n .

Proof. Let G = ⟨x | xm = 1⟩ be the cyclic group of order m. Clearly φ : x 7→ xi

is an automorphism of G if and only if (i,m) = 1. Since G is abelian, it follows
that α : x 7→ x−1 is an automorphism. So by an easy induction, for all g ∈ G,
if n is even

g2
n

= [g, α, . . . , α︸ ︷︷ ︸
n-times

] ∈ G2n ,
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and if n is odd, then

g2
n

= [g−1, α, . . . , α︸ ︷︷ ︸
n-times

] ∈ G2n ,

which implies that G2n is contained in Kn(G).
Conversely, assume (2n,m) = 1 then m is odd number and hence G = G2n ,

which follows that Kn(G) ⊆ G2n . Now, assume (2n,m) ̸= 1, i.e., m is an even
number then using an easy induction for all α1, α2, . . . , αn ∈ Aut(G), we obtain
that

[g, α1, α2, . . . , αn] = g(i1−1)···(in−1) ∈ G2n ,

where αj(g) = gij , (ij ,m) = 1 that is to say ij − 1 is even, for all 1 ≤ j ≤ n.
This completes the proof. □

Lemma 2.3. Let G be a finite abelian group of odd order m and Z2 the cyclic
group of order 2. Then Kn(G) and Kn(G × Z2) are both isomorphic with G
for all natural number n.

Proof. Clearly, by the assumption (2n,m) = 1 and hence by Lemma 2.2,
Kn(G) = G.

One notes that G and Z2 are both characteristic subgroups in the direct
product G× Z2. Therefore, Lemma 2.1 implies that

Kn(G× Z2) = Kn(G)×Kn(Z2).

Now, the triviality of Kn(Z2) gives the result. □

The following proposition is very useful in our further investigations.

Proposition 2.4. Let G be a cyclic group of order 2m and H be an abelian
2-group of exponent 2n with n < m. Then

Kn(G×H) = G2n ×H2n−1

.

Proof. Let G = ⟨g | g2m = 1⟩ be the cyclic group of order 2m. Then we define
the automorphisms αh and α′

h of the group G×H, given by gαh = gh, hαh = h

and gα
′
h = gh−1, hα′

h = h−1 for all h ∈ H.
Now, if n is even, then

h2n−1

= [ g, α′
h, . . . , α

′
h︸ ︷︷ ︸

n-times

],

and if n is odd we have

h2n−1

= [ g, αh, α
′
h, . . . , α

′
h︸ ︷︷ ︸

(n−1)-times

].

These imply that H2n−1 ⊆ Kn(G×H) and G2n ⊆ Kn(G) ⊆ Kn(G×H). Thus

G2n ×H2n−1

⊆ Kn(G×H).
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On the other hand, using the structures of the groups G and H for all
α1, α2, . . . , αn ∈ Aut(G×H) and x ∈ G×H,

[x, α1, α2, . . . , αn] ∈ G2n ×H2n−1

,

which implies that Kn(G×H) ⊆ G2n ×H2n−1

and the proof is complete. □

The following theorem follows from the above proposition, which is inter-
ested in its own right.

Theorem 2.5. For all natural numbers m ≥ n1 ≥ · · · ≥ nr and n ≥ 2,

Kn(Z2m × Z2n1 × · · · × Z2nr ) = Z2m−n × Z2n1−(n−1) × · · · × Z2nr−(n−1) .

Proof of Theorem 1.1. Let G be a finite abelian group, which can be written
as a product of its Sylow subgroups. Now, if |G| is an odd number, then by
Lemma 2.3,

G = Kn(G).

Assume 2 divides |G| and A is the Sylow 2-subgroup of G, then G = A× P1 ×
· · · × Ps, where P

′

i s are Sylow pi-subgroups of G (1 ≤ i ≤ r). By Lemma 2.1,

Kn(G) = Kn(A)× P1 × · · · × Ps.

As A is an abelian 2-group, we may write A as a direct product of cyclic groups
of orders some powers of 2, as follows:

A ∼= Z2m × Z2n1 × · · · × Z2nr ,

where m ≥ n1 ≥ · · · ≥ nr.
Now, we choose the abelian group

H = Z2m+n × Z2n1+n−1 × · · · × Z2nr+(n−1) × P1 × · · · × Ps.

It can be easily seen that

Kn(H) = G,

and hence the claim is proved. □

References
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