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The discovery of a relatively complete Australopithecus sediba adult female skeleton permits a
detailed locomotor analysis in which joint systems can be integrated to form a comprehensive
picture of gait kinematics in this late australopith. Here we describe the lower limb anatomy of
Au. sediba and hypothesize that this species walked with a fully extended leg and with an inverted
foot during the swing phase of bipedal walking. Initial contact of the lateral foot with the ground
resulted in a large pronatory torque around the joints of the foot that caused extreme medial
weight transfer (hyperpronation) into the toe-off phase of the gait cycle (late pronation). These
bipedal mechanics are different from those often reconstructed for other australopiths and suggest
that there may have been several forms of bipedalism during the Plio-Pleistocene.

The locality of Malapa, South Africa, has
yielded two relatively complete skeletons
of Australopithecus sediba, dated at 1.977

million years ago (1, 2). This species has a com-
bination of primitive and derived features in the
hand (3), upper limb (4), thorax (5), spine (6),
and foot (7) in a hominin with a relatively small
brain (8), a human-like pelvis (9), and a mosaic
of Homo- and Australopithecus-like craniodental
anatomy (1, 10, 11). The foot in particular pos-
sesses an anatomical mosaic not present in either
Au. afarensis or Au. africanus (7), supporting the
contention that there were multiple forms of bi-
pedal locomotion in the Plio-Pleistocene (12). The
recent discovery of an Ardipithecus-like foot from
3.4-million-year-old deposits at Burtele, Ethiopia,
further shows that at least two different kinematic
solutions to bipedalism coexisted in the Pliocene
(13). Here we describe the lower limb of Au.
sediba [specimen numbers and attributions are
provided in table S1 (14)] and propose a hy-
pothesis for how this late australopith walked.

Lower Limb of MH1
The holotype of Au. sediba is Malapa Hominin
1 (MH1), a juvenile male partial skeleton whose
lower limb consists of a right proximal femur
(fig. S1), small shaft fragments from the tibia
and fibula, and foot bones already described (7)
(table S1). The proximal femur is australopith-
like, with a long, anteroposteriorly compressed

femoral neck (fig. S2) and low neck-shaft angle
(110° to 115°) (table S2). Posterolaterally, there
is a third trochanter, inferior to which is a well-
developed hypotrochanteric fossa, a human fea-
ture reflecting a large insertion area for the gluteus
maximus (15).

Lower Limb of MH2
The lower limb of MH2, an adult female, con-
sists of a right femoral head and neck, part of the
proximal femoral shaft, the left proximal fibula,
and the right knee joint (including the patella).
Additionally, as already described (7), MH2 pre-
serves an articulated distal tibia, talus, and calca-
neus and a partial fifth metatarsal. The proximal
femur preserves much of the head and neck (fig.
S1). As in MH1, the neck is anteroposteriorly com-
pressed (table S2). Viewed superiorly, the head
appears to be prolonged anteriorly, as is the case
in most humans (16).

The right knee of MH2 is represented by an
86.7-mm-long fragment of the distal femur (fig.
S3), two fragments that conjoin to form most of
the tibial plateau (fig. S4), and a relatively com-
plete patella composed of two conjoining frag-

ments, one of which remains partially embedded
in calcified sediment. This part of the patella has
been digitally extracted from micro–computed
tomography (mCT) scans, and a nearly complete
knee cap has been reconstructed (fig. S5). The
posteromedial part of the distal femur has been
sheared away, but the lateral condyle, patellar ar-
ticular surface, distal shaft, and most of the medial
condyle are well preserved. The bicondylar angle
is estimated to be ~9°, which is within the range
of modern humans but is low for an australopith
(table S3). There is a sustrochlear hollow just su-
perior to the patellar surface, evidence of contact
with the patella in a fully extended position (17)
(fig. S6). There is a strong medial condylar boss,
an anatomy unique to hominins, and evidence for
a “tibial dominant” knee capable of full extension
(18) (fig. S7). Most notable is the high lateral
patellar lip. The lateral trochlear groove angle (19)
is 31.3°, 3 SD above the modern human mean
(20) and far greater than any ape trochlear angle,
because apes tend to have flat trochlear grooves
(Fig. 1). A high lateral patellar lip serves as a
bony mechanism for patellar retention during bi-
pedal gait (21, 22). The extension of the lateral lip
in Au. sediba is not a function of overall anterior
expansion of the patellar surface, as is found in
Homo (18), and is restricted just to the lateral side
(fig. S8). Laterally, there is a deep groove for the
popliteus, an internal rotator of the tibia and
stabilizer of the knee. This muscle may have
been important in resisting internal rotation of
the femur during stance phase. The relatively nar-
row tibial spines on the MH2 tibial plateau sug-
gest enhanced knee mobility (23), although this
anatomy may also be related to the small size of
Au. sediba (24).

On the proximal tibia, the medial condyle is
flat and the lateral condyle is slightly convex an-
teroposteriorly, similar to the condition found in
other small australopiths (specimens A.L. 129-1
and StW 514), although the functional importance
of this convexity is unclear (25). There appears to
be a small notch on the lateral plateau, perhaps in-
dicating the presence of a double meniscus attach-
ment and thus possibly greater osteoligamentous
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Fig. 1. The lateral patellar lip. The lat-
eral trochlear groove angle (19) is sim-
ilar in Australopithecus (TM 1513, Sts 34,
A.L. 129-1, A.L. 333-4, and A.L. 333w-56),
early Homo (KNM-ER 1472, KNM-ER 1481,
and KNM-WT 15000), and modern humans
(20). This measurement inMH2 (U.W. 88-63)
is over 3 SD higher than in modern humans.
Apes have flat trochlear grooves (18) (fig. S7)
and thus lateral trochlear groove angles near
zero. Bottom images, from left to right, are as
follows: TM 1513, KNM-ER 1472, modern
human, andMH2, all scaled to the same size.
They have been positioned so that the me-
dial patellar surface is horizontal, which
corresponds closely to the orientation rec-
ommended in (18). Note the extreme lateral patellar lip in MH2.
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control over rotation at the knee as inHomo prox-
imal tibiae (26). However, the absence of this
notch in other australopiths does not necessarily
imply the absence of a double insertion (27).

The patella is small, measuring 27.1 mm wide
mediolaterally and 13.1 mm thick anteroposte-
riorly. It is 24.7 mm tall superoinferiorly, which
is probably just short of the actual height, be-
cause there is some damage to the distolateral
aspect of the apex. The posterior part of the pa-
tella is human-like in being strongly convex
mediolaterally (fig. S9), with a high central keel
separating the condylar facets medially and
laterally.

The most proximal 97.1 mm of the left fibula
ofMH2 is preserved as four conjoining fragments
(fig. S10). The fibula is more gracile than modern

ape fibulae and in this respect resembles specimen
OH 35 (fig. S11). The MH2 fibula has an osteo-
phytic growth at the biceps femoris insertion.

Lower Limb of MH4
MH4, an adult or near-adult individual of un-
known sex, is represented by two conjoining
pieces of a tibia described previously (7). Here
we provide an estimated total length, possible
because the proximal tibia, though not recov-
ered, has left a natural cast of its anterior sur-
face in the calcified sediment (fig. S12). We
estimate total tibial length at approximately
271mm,with a possible range of 267 to 275mm,
depending on the degree of proximal tibial retro-
version and the proximal projection of the tib-
ial spines.

The Kinematics of Walking in Au. sediba
The anatomy of the foot (7), spine (6), pelvis (9),
and knee (this paper) indicate that Au. sediba
was an obligate biped. Based primarily on the
lower limb, pelvic, and vertebral morphology of
MH2, and to a lesser extent on the pedal mor-
phology of MH1, we propose that Au. sediba was
a hyperpronator (28) with exaggerated medial
weight transfer during the stance phase of ter-
restrial bipedalism (Fig. 2). Modern human hy-
perpronators serve as a kinematic reference
model for this gait and its musculoskeletal con-
sequences. We suggest that MH2 expressed this
kinematic variation, and Au. sediba did with reg-
ular frequency, although the hypothesis that the
entire species walked in this manner will re-
quire further testing with additional fossil ma-
terial (14).

At heel strike of bipedal locomotion, humans
commonly have a slightly supinated rearfoot and
forefoot, which are passively driven by the ground
reaction force into pronation of the subtalar and
more distal joints during the subsequent mid-
stance phase of walking. Video and plantar pres-
sure data reveal that apes contact the ground with
the heel (29) and often the lateral midfoot simul-
taneously in what has been termed “inverted heel-
strike plantigrady” (30, 31). The abducted hallux
serves a stabilizing role during quadrupedal
walking in apes, contributing little to propulsion
(31). The divergent hallux is suggested to have
served a similar stabilizing role during bipedal
walking in Ardipithecus ramidus (32).

In a small percentage of modern humans,
the foot is excessively inverted (termed forefoot
and/or rearfoot varus) during the swing phase of
walking, resulting in heel strike with the foot in
a highly supinated posture, with ground contact
established along the lateral border of the heel
and forefoot (33). Contact between the ground
and the lateral side of the foot introduces a large
pronatory torque around the subtalar and more
distal joints, which drives the foot into prona-
tion (33, 34). As the foot is driven into pronation,
there are high medially directed torques that can
not only cause excess loading on the bones of
the medial column of the foot (35) but also stress
the soft tissues, such as the ligaments supporting
the medial longitudinal arch and the muscles
whose tendons insert plantomedially, particularly
the tibialis anterior and tibialis posterior. Plantar
fasciitis, medial tibial stress syndrome (shin splints),
and tibial stress fractures are therefore common
injuries experienced by late and hyperpronating
modern humans (34). Although hyperpronation
can have pathological consequences in modern
humans, we are proposing here that the skeleton
of Au. sediba reveals a suite of anatomies that
are adaptive for, or consequences of, this kind of
walking (Fig. 3).

Reconstruction of the conjoined elements of
the rearfoot of MH2 demonstrates that the calca-
neus had an inverted set (fig. S13), which is a
contributing factor to hyperpronation in modern
humans (36). However, the inverted heel itself

Fig. 2. Hyperpronation. (A) The pedal
bones of Au. sediba are superimposed on a
human foot in dorsal view. These bones are
not all from the same individual (see table
S1 for details). We hypothesize that MH2
would have contacted the ground along the
lateral edge of an inverted foot. This would
generate a ground reaction resultant (blue
arrows) that would be positioned lateral
to the joints of the foot, creating a large
pronatory torque (red arrows). Although
apes often land along the lateral edge of
an inverted foot (30, 31), they swing their
body mass laterally over the stance foot dur-
ing bipedal gait, effectively producing a
counteracting supinatory torque. Au. sediba
had a pelvis with sagitally oriented ilia (9),
suggesting a human-like abductor mechanism
and in turn suggesting a medially positioned center of mass relative to the stance leg (illustrated by the
large blue arrow at bottom left). This position of the center of mass would exacerbate the pronatory torque
at the subtalar, midtarsal, and tarsometatarsal joints. (B) Excessive pronation on a weight-bearing foot
(curved red arrow) causes a chain of rotatory movements proximal to the foot. The tibia internally rotates
(green arrow) as the talus plantarflexes and adducts. The femur also internally rotates [(42, 43); curved blue
arrow], increasing the lateral deviation of the patella (small blue arrow). Pronation at the foot causes an
anterior pitch of the center of mass [(34, 43); black arrow], counteracted by hyperlordosis of the lumbar
region (6). Au. sediba possesses anatomies that are adaptive to, or consequences of, these motions.

Fig. 3. Skeletons of Au. sediba:
left, MH1 (pictured with MH4
tibia); right, MH2. Several anat-
omies of these skeletons are con-
sistent with a hyperpronating gait.
The base of the fourth metatarsal is
convex, indicating that the midfoot
was hypermobile. The medial malle-
olus and talar headarehypertrophied,
reflecting loading of an inverted foot
and mobility at the talonavicular
joint, respectively. The rearfoot is in
an inverted position, a risk factor
for hyperpronation in modern hu-
mans. Hyperpronators internally ro-
tate the femur and tibia and are at a
greater risk for patellar dislocation.
The high lateral patellar lip reduces the risk of patellar subluxation. Osteophytes on the origin of the rectus
femoris/iliofemoral ligament proximal attachment and insertion of the biceps femoris indicate soft tissue
strain: possible consequences of a hyperpronating gait. MH2 has elevated lumbar lordosis (6), perhaps to
compensate for the excessive anterior pitch of the center of mass common in hyperpronators.
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would not necessarily produce a pronatory torque,
because there is considerable variation in the
position of the subtalar joint axis relative to the
ground reaction force location (37). MH2 also
had a gracile calcaneal tuber (7), with a supe-
riorly positioned lateral plantar process, which
reduced the surface area of the plantar aspect of
the heel in Au. sediba and would have reduced
the effectiveness of the subcalcaneal heel pad
(based on size information rather than material
properties), which has been shown to dissipate
peak stress during heel strike (38). To compensate,
we hypothesize that Au. sediba landed simul-
taneously on the heel and along the lateral foot
at touch down, in much the same way that Afri-
can apes walk (inverted heel-strike plantigrady)
(31). This is achievable in a bipedal hominin
that has full knee extension by slightly increas-
ing normal plantarflexion angle during foot con-
tact. Because of the wider midfoot and forefoot,
landing along the lateral side of an inverted foot
would provide a large moment arm around the
midtarsal and tarsometatarsal joints that would
also transfer to the subtalar joint. Thus, a large

pronatory torque would drive the foot into pro-
nation (Fig. 2). There is suggestive evidence for
excessive pronation in the Au. sediba tarsals. An
elevated degree of pronation is possible in Au.
sediba, because the subtalar joint has a high ra-
dius of curvature and is therefore quite mobile
and capable of an extreme range of motion (7).
The relatively large talar head of MH2 (7) may
signal elevated talonavicular mobility, especially
because this joint is central to midfoot pronation
in humans (39).

Landing on an inverted foot would also load
the medial portion of the tibiotalar joint and in-
troduce a shear force across the medial malleolus.
This may explain the form of the medial malleoli
of both MH2 and MH4, which are mediolaterally
thicker than those of other fossil hominins or
modern humans (7). However, pronation does
not occur at the tibiotalar joint but at the subtalar
joint and joints of the midfoot. As the foot is
driven into pronation by a high pronatory torque,
the more distal parts of the medial foot would be
excessively loaded (35). A foot adapted for this
kind of locomotion may therefore be expected to

exhibit increased mechanical reinforcement of
bones in the medial portion of the foot. We pre-
dict that, if additional foot elements are recovered,
we will see greater joint and diaphyseal robus-
ticity in medial relative to lateral tarsals, meta-
tarsals, and phalanges (Table 1).

During midstance, the foot is more mobile
and better able to conform to its substrate. In hy-
perpronators, the talus adducts and plantarflexes
excessively, dropping the longitudinal arch and
contributing to hypermobility of the midfoot. Al-
though we hypothesize that Au. sediba pos-
sessed an arched foot (7) (fig. S14), there is also
evidence for midfoot mobility. A right fourth
metatarsal, possibly from MH1, has a highly con-
vex base dorsoplantarly, suggesting the presence
of midfoot flexion or a “midtarsal break” (40).
Other hominin fourth metatarsal bases from
Au. afarensis, Au. africanus, and the OH 8 foot
are human-like and do not exhibit evidence for
a midtarsal break (Fig. 4) (40, 41). The con-
vexity of the Malapa fourth metatarsal is thus
unexpected and implies more mobility at the
lateral tarsometatarsal joint in this hominin than
in any other. We suggest that the seemingly con-
tradictory anatomies in the foot of Au. sediba
(possession of an arched foot and long plantar
ligament together with midfoot mobility) can
only be explained in the context of a bipedal foot
that hyperpronates when weight-bearing (14).

In modern humans, excessive pronation may
have damaging effects in lower limb joints prox-
imal to the foot. In hyperpronators, the tibia and
femur both internally rotate excessively (42, 43)
under a patella that is relatively fixed by the
rectus femoris attachment to the anterior inferior
iliac spine (AIIS) as the quadriceps femoris con-
tracts to extend the leg during toe-off (34). Be-
cause this occurs late in the gait cycle, during
knee extension, the patella is pulled laterally,
and thus hyperpronators are at risk for both
patellofemoral pain (44) and patellar subluxation
(45, 46). A hominin bony adaptation that helps
prevent patellar subluxation is a raised lateral lip
of the distal femur (21, 22). The extreme lateral
patellar lipping of MH2 (Fig. 1) (figs. S7 and
S8) may be an adaptation to resist injurious lat-
eral translation of the patella during hyperprona-
tion of the foot and resulting internal rotation of
the tibia and femur during late stance phase.
This skeletal adaptation in Au. sediba may also
implicate a reduced or absent vastus medialis
obliquus in counteracting lateral translation of
the patella. The fact that a lateral lip is present at
birth (17, 18) can be extrapolated to indicate that
the species Au. sediba (and not just MH2) was
adapted for this kind of locomotion (14). Fur-
thermore, the large popliteal groove present on
the MH2 femur may indicate strong muscular
involvement in counteracting the internal rota-
tion of the femur on a fixed tibia, because the
popliteus acts as an external rotator of the femur
during stance phase.

Hyperpronation drives the entire leg medially
during stance phase and may strain any muscle

Table 1. Evidence for hyperpronation in Au. sediba.

Hyperpronating biomechanics Anatomical predictions Morphology in Au. sediba

Initial ground contact on an
inverted foot, resulting in
high medially directed
forces on tibiotalar joint

Inverted calcaneus and
thick medial malleolus

Calcaneus in inverted set and
predicted forefoot in varus
set; thickest medial malleoli
of any known hominin.

Excessive pronation at
subtalar joint

Increased mobility at
subtalar joint

High radius of curvature
of talar facet on calcaneus.

Excessive pronation at
midtarsal joints and
tarsometatarsal joints

Mobile midfoot in
coronal plane

Greatly enlarged talar head,
suggestive of talonavicular
mobility.

Increased strain on soft
tissue of medial foot

Components of medial arch,
plantar aponeurosis (if
present), and tibialis
posterior tendon under stress

Currently unknown. Predicted
robust navicular tuberosity;
reduced metatarsophalangeal
joint extension if plantar
aponeurosis taut.

Increased strain on foot
bones distally and
medially

Increased robusticity of medial
tarsals, metatarsals, and
phalanges

Currently unknown. Predicted to
be relatively robust medially;
if partially divergent, hallux
could also help counter pronatory
torque.

Lowered arch and
increased midfoot mobility

Increased sagittal plane
dorsiflexion evident in
bones of midfoot

Convex surface to base of fourth
metatarsal indicative of midtarsal
break; predicted concavity of
metatarsal facets on cuboid.

Increased knee mobility Greater rotatory capacity
and greater role for knee
stabilizers, such as
popliteus and biceps femoris

Tibial spines close together
and enlarged popliteal
groove on distal femur.

Increased internal
rotation of femur

Increased strain on muscles
crossing both hip and
knee joints

Osteophytic growths on both origin for
rectus femoris and insertion of
biceps femoris. Predicted to
have enlarged origin on the anterior
superior iliac spine for sartorius.

Increased risk of patellar
subluxation

Bony adaptations for
patellar retention

Highest lateral patellar lip of
any known hominin.

Anterior tilt of the pelvis Increased lumbar lordosis Last lumbar vertebra has very
high wedging angle.
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crossing both the knee and the hip joints (e.g.,
the rectus femoris), particularly those inserting
laterally in the leg (e.g., the long head of the
biceps femoris). As previously mentioned, the
insertion for the biceps femoris on the proximal
fibula is osteophytic, indicative of elevated strain
on this insertion area (fig. S10). The MH2 ilium
has an unusually large and projecting AIIS (fig.
S15), suggesting that the rectus femoris (and/or
iliofemoral ligament) was under considerable
strain during gait. As the femur internally rotates
and adducts, the AIIS will be stressed by exces-
sive stretching of the rectus femoris tendinous
origin. Finally, hyperpronators experience an an-
terior pitch of the center of mass relative to the
hip joint (43), requiring compensatory hyper-
lordosis to shift the center of mass posteriorly
back over the hip joints, often resulting in lower
back pain (34). The last lumbar vertebra of Au.
sediba has very high dorsal wedging, suggest-
ing elevated lordosis (6), which may have adapted
this species to the challenges of being a hyper-
pronating biped.

Although we find the evidence compelling that
Au. sediba, or at least MH2, was a hyperpronat-
ing biped (Fig. 3 and Table 1), the selective
advantage of this form of bipedality is unclear.
There is little evidence that other known austra-
lopiths were hyperpronators, because the pecu-
liar anatomies of the Au. sediba foot, knee, and
hip are not found in earlier australopiths. Recent
work on the Laetoli footprints (47, 48) suggests
that although the makers of the prints (presum-
ably Au. afarensis) walked with a human-like
gait, they had slightly less medial weight transfer.
The hallux of Au. afarensis is domed and robust
(49), indicating that weight transfer was more
human-like than ape-like, but there probably were
at least subtle differences in how Au. afarensis
walked as compared to most modern humans.
We hypothesize that terrestrial bipedalism in Au.
sediba also differed subtly from that in most
humans today, with Au. sediba engaging in more
weight transfer on to the medial foot (hyper-

pronation) rather than less, as may have been the
case with Au. afarensis.

Our interpretation of Malapa skeletal morphol-
ogy extends the variation in Australopithecus
locomotion. As suggested by others (7, 12, 13),
there were different kinematic solutions for being
a bipedal hominin in the Plio-Pleistocene. The
MH2 skeleton provides insight into one of those
potential solutions: hyperpronation. This mode
of locomotion may be a compromise between
an animal that is adapted for extended knee bi-
pedalism and one that either still had an arboreal
component or had re-evolved a more arboreal
lifestyle from a more terrestrial ancestor. There
is some postcranial evidence that the South Afri-
can species Au. africanus may have been more
arboreal than the east African Au. afarensis (50, 51),
and a hypothesized close relationship between
Au. africanus and Au. sediba (1, 11), along with
features in the upper limbs of the latter thought
to reflect adaptations to climbing and suspension
(3, 4), is consistent with a retained arboreal com-
ponent in the locomotor repertoire of Au. sediba.
Pronation is an important foot motion that shifts
weight onto the medial side of the foot in climb-
ing apes (52, 53) and serves a role inweight transfer,
shock absorption, and negotiation of uneven sub-
strates during human bipedal gaits. An animal
that was adapted to do both reasonably well may
have had to support an increasingly mobile foot
by evolving a large mobile medial column and
important stabilizing anatomies at the knee and
hip, in order to survive in these dual worlds.
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