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Abstract. A scheme of a statically determinate planar truss with two 
additional supports duplicating the main ones is proposed. The formula for 
the dependence of the lower estimate of the first natural frequency on the 
number of panels is obtained. The solution is compared with the numerical 
one. Determination of the forces in the rods by the method of cutting out 
the nodes and with all the transformations performed in the Maple 
computer mathematics system. The high accuracy of the result is shown 
with a large number of panels. 

1 Introduction 

Calculation of the spectra of natural vibrations of structures, along with the calculation of 
strength and stability, is of great importance for ensuring the operability of structures. The 
first (fundamental) frequency in the natural frequency spectrum is the most important. 
Finding the entire spectrum requires the use of numerical methods [1, 2]. There are two 
approximate estimates for determining the first frequency. Below is Dunkerley's estimate 
[3–5], above – Rayleigh [6]. The calculation formulas in these methods are quite simple, so 
analytical approaches are applicable here. In this paper, we consider calculating the first 
frequency of a regular truss by the Dunkerley method. The task is to obtain an analytical 
expression for the dependence of the first frequency on the size and weight of the truss and 
the number of panels. The peculiarity of the proposed scheme of the truss is that additional 
supports are introduced into the scheme, making this truss outwardly statically 
indeterminate. It is impossible to determine the support reactions regardless of the forces in 
the rods in such a truss. Static analysis and formulas for the deflection of such trusses 
depending on the number of panels are given in the handbook [7]. The problems of the 
existence of regular statically determinate rod systems and their calculation were raised in 
the works [8, 9]. 

Analysis of the spectra of natural vibrations of building structures is in demand in 
solving problems of seismic safety [10–14] and in optimization problems [14–17]. 
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2 Methods 

2.1 The truss scheme 

Consider a girder-type truss with a diagonal lattice. The inertial properties of the truss are 
modeled by identical weights located at the nodes of the lower belt. A truss with n panels in 
half a span contains 8 12n    rods. Each panel contains two rods of length in chords and 
two in a cruciform lattice. The side panels are shortened and have additional movable 
support. The truss is symmetrical. Ignoring horizontal displacements, consider only vertical 
vibrations of the weights. In this case, the number of degrees of freedom of the cargo 
system of the truss is equal to N = 2n – 3. The height of the truss is 3h. Despite the external 
static uncertainty, analytical methods are available for this truss to find the dependences of 
deformations and forces on the number of panels. 
 

 
Fig. 1. Truss, n=4. 

2.2  Dunkerley method  

Consider an approximate solution using the Dunkerley method. The lower estimate of the 
first vibration frequency is given by the formula: 
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where k  is the vibration frequency of one mass located at the node of the lower belt. The 
dynamic equation of vibrations of one mass has the form: 

0,k k kmy d y   

where kd  is the stiffness coefficient (k is the mass number), ky  is the vertical displacement 

of the mass, and ky  is the acceleration. Hence the expression for the vibration frequency of 

a single mass /k kd m  (partial frequency) follows. The stiffness coefficient is 
determined by the Maxwell-Mohr's formula: 
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Here it is indicated ( )kS the forces in the member with a number   from the action of a 
single vertical force applied to the node, where the mass with the number k is located, 
where EF is the stiffness of the bars, l  is the length of the bar  . The forces of five non-
deformable support rods are not included in the total. According to (1) 
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To find forces in the elements, you can use the program in the Maple [18] system, which 
gives forces in an analytical form. The program uses the method of cutting nodes and 
solving the joint system of equilibrium equations for all nodes of the truss. The unknowns 
also include the reactions of the supports. The system matrix includes the values of the 
direction cosines of the forces found from the coordinates of the regular grid of nodes. The 
calculation of the sequence of trusses with an increasing number of panels shows that the 
type of the sum n  does not change (property of the regularity of the system) 
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where 2 29c a h   is the length of the brace. We have a sequence of formulas: 
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The general terms of the sequences of coefficients at 3 3,a c  and 3h  are obtained from 
solving the recurrent equations using the rgf_findrecur operator from the special genfunc 
package of the Maple system 
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Taking into account (2) and (3), we obtain the final formula for the lower 
boundary of the first natural vibration frequency of the structure: 
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2.3 Calculation of the spectrum of natural frequencies 

Consider an algorithm for calculating the entire frequency spectrum of a truss. The first 
(smallest) value of this spectrum is needed for comparison with the obtained analytical one. 
Differential equations of the dynamics of the system of loads have the form: 
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where 1 2[ , ,..., ]T

NY y y y   are the vertical displacements of the masses, ND  is the 

stiffness matrix, NM  is the diagonal matrix of inertia in size N N , and Y  is the 
acceleration vector. If the masses are the same, then the inertia matrix is expressed through 
the unit one N NM mI . The compliance matrix NB is inverse to the stiffness matrix ND . 
Its elements are determined in the same way as in the one-dimensional case by the Maxwell 
- Mohr formula: 
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Multiply (6) by NB  the left. Taking into account the identity 2Y Y  , which is 

valid for small harmonic oscillations, the problem is reduced to the problem of matrix NB  

eigenvalues: ,NB Y Y  where 21/ ( )m    is the eigenvalue of the matrix NB ,   is 
the natural frequency of oscillations. This problem can be solved only numerically. 

3 Results and Discussion 

We estimate the error of the formula (5) from comparison with the numerical solution of 
the problem on the eigenvalues of the matrix. The eigenvalues of the matrix are determined 
using the Eigenvalues operator from the LinearAlgebra package of the Maple system. 
Graph (2) compares the curves of the dependence of the first frequency, obtained 
numerically and according to formula (5). The elastic modulus for steel rods is adopted: 

52 10 МPaE   , the cross-sectional areas of the rods are equal: 240.5 smF  . In the nodes 
of the lower belt, masses m = 1000 kg are located. For plotting the graphs, the following 
dimensions were taken: a = 5 m, h = 3 m. The curve constructed by the analytical solution 
(5) turns out to be slightly lower than the numerical solution. The accuracy of the obtained 
analytical solution increases with the number of panels. This can be seen more clearly if we 
introduce the relative error 1 1( ) /D     . If we do not take into account the first 
section corresponding to unrealistically small numbers of panels, then we can conclude that 
an increase in the number of panels leads to an increase in the accuracy of the obtained 
formula (5). 
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Fig. 2. Frequency dependence on the number of panels; I is numerical solution 1 ; II is analytical 

assessment D . 

Calculations show that the choice of dimensions, stiffness, and mass has almost no 
effect on the accuracy of the lower estimate. Only the number of panels has the greatest 
impact. 

 

 
Fig. 3. The error of Dunkerley estimation depending on the number of panels 

Depending on the number of panels, the solution error changes monotonically from 21% at 
n = 4 to 9% at n> 14. 
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On the basis of the described technique for obtaining the lower frequency limit, the 
authors also attempted to find the upper limit of the first frequency in an analytical form 
using the Rayleigh energy method [6]. It is known that the Rayleigh method is more 
accurate than the Dunkerley method. However, the final formula turned out to be too 
cumbersome for practical use. 

The found solution to the problem for estimating the first truss frequency for an 
arbitrary number of panels turned out to be quite simple. It does not contain sums and series 
and does not involve the use of special functions. Polynomials in the number of panels 
through which the coefficients are calculated have a degree of at most four. The formulas 
can be used to estimate the frequency of oscillations of a truss with a very large number of 
rods, that is, in those cases where the accumulation of computational errors is most likely, 
and difficulties arise with the amount of computations. The obtained estimate can also be 
used for a truss with different stiffness of bar elements. It is enough to introduce two 
correction factors h  and с  for the stiffness of the lattice rods. The values of the 
coefficients (4) will not change, and formula (3) in this case takes the form 

 
3 3 3 2

1, 2, 3,/ /( ) / ( ).c hn n n nC a C EFc C h h     

4 Conclusion 

The main results of the work are as follows: 
1. A scheme of a truss with additional supports is proposed. Despite the external static 
indeterminacy, the design allows an analytical solution to the problem. 
2. An explicit dependence of the main frequency of oscillations of the truss on the number 
of panels was obtained. 
3. Comparison with the numerical solution of the eigenvalue problem has shown the high 
accuracy of the analytical solution found for a large number of panels. 
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