The lower tail of the random minimum spanning tree

Abraham D. Flaxman
abie@microsoft.com

September 22, 2006
Technical Report
MSR-TR-2006-132

Consider a complete graph K_{n} where the edges have costs given by independent random variables, each distributed uniformly between 0 and 1 . The cost of the minimum spanning tree in this graph is a random variable which has been the subject of much study. This note considers the large deviation probability of this random variable. Previous work has shown that the log-probability of deviation by ε is $-\Omega(n)$, and that \log-probability of Z exceeding $\zeta(3)$ this bound is correct; $\log \operatorname{Pr}[Z \geq \zeta(3)+\varepsilon]=-\Theta(n)$. The purpose of this note is to provide a simple proof that the scaling of the lower tail is also linear, $\log \operatorname{Pr}[Z \leq \zeta(3)-\varepsilon]=-\Theta(n)$.

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
http://www.research.microsoft.com

1 Introduction

If the edge costs of the complete graph K_{n} are independent random variables, each uniformly distributed between 0 and 1 , then the cost of a minimum spanning tree is a random variable which has expectation asymptotically equal to $\zeta(3)=\sum_{i=1}^{\infty} i^{-3}$ [3]. Furthermore, after an appropriate rescaling, this random variable converges in distribution to a Gaussian distribution with an explicitly known variance of about 1.6857 [5]. This note considers the large deviation probability of this random variable, denoted Z_{n}.

In [6], as an example application of Talagrand's Inequality, it is shown that Z_{n} satisfies an exponential tail inequality of the form

$$
\operatorname{Pr}\left[\left|Z_{n}-\zeta(3)\right| \geq \varepsilon\right] \leq e^{-C_{\varepsilon} n}
$$

(See also [2] for an alternative approach with additional details). Simple considerations show that for the log-probability of Z_{n} exceeding $\zeta(3)$ this bound is correct, which is to say that $\log \operatorname{Pr}\left[Z_{n} \geq\right.$ $\zeta(3)+\varepsilon]=-\Theta(n)$. For example, the probability that every edge incident to vertex 1 has cost at least $1 / 2$ is $(1 / 2)^{n-1}$, and conditioned on this event, whp $Z_{n}=(1+o(1))(\zeta(3)+1 / 2)$.

The behavior of the lower tail is not as simple to identify. A casual inspection may lead to the conjecture that the lower tail is even more tightly concentrated than the upper tail. The previous paragraph described how an overly large value of Z_{n} can be "blamed" on a single vertex which has only expensive edges. However, for a single vertex to be similarly responsible for the cost of the tree being significantly lower than expected, it needs to have a lot of edges with cost less than $\zeta(3) / n$. This occurs with \log-probability of $-\Theta(n \log n)$.

The purpose of this note is to show that the lower tail of Z_{n} is at least $e^{-C n}$ for any constant deviation less than $\zeta(3)$. (Note that, for example, $\operatorname{Pr}\left[Z_{n} \leq \zeta(3)-\left(\zeta(3)-n^{-10}\right)\right]$, is not at least $e^{-C n}$.)

Theorem 1 Let the random variable Z_{n} be the cost of the minimum spanning tree when the edges of the complete graph K_{n} have costs selected independently and uniformly at random in the interval $[0,1]$. Then, for any $\varepsilon \in(0,1)$, there exists a constant δ, such that for all sufficiently large n,

$$
\operatorname{Pr}\left[Z_{n} \leq(1-\varepsilon) \zeta(3)\right] \geq e^{-\delta n} .
$$

Though this scaling behavior is not terribly surprising, it does rule out the possibility of a surprise. This is in contrast with, for example, the surprising result on the concentration of the eigenvalues in random matrix due to Alon, Krivelevich, and Vu [1]. That paper considers how tightly an eigenvalue of a random matrix is concentrated around its mean, and shows that, for example, the log-probability of deviation of the first eigenvalue of the adjacency matrix of $\mathbb{G}_{n, 1 / 2}$ of scales like $-\Omega\left(n^{2}\right)$.

2 Lower bound

The argument establishing a lower bound is based on the observation that if the weights on the edges are independent and given by the minimum of 2 random variabless selected uniformly at random from $[0,1]$ then the expected cost is $\zeta(3) / 2$ (this is proved by Steele in [7] and extended by Frieze and McDiarmid in [4]; in fact, the only feature of the edge weight distribution that is important to the expected value of Z_{n} is the behavior of the density function at 0 .)

To make use of this observation, consider the following complicated way to generate Z_{n} : Look first at a larger probability space, where each edge has 2 values, X_{e}^{+}and X_{e}^{-}, and each vertex has a polarity chosen uniformly at random, $\Phi(v) \in \pm 1$. Then, to obtain Z_{n}, consider the graph where edge $e=\{u, v\}$ has weight $Y_{e}=X_{e}^{\Phi(u) \Phi(v)}$.

Edge weights generated in this manner are identically distributed with the original model, and so the cost of the minimium spanning tree is distributed identically with Z_{n}. But with this generative procedure it is easy to obtain a lower bound on the log-probability of the event $\left\{Z_{n} \leq 3 \zeta(3) / 4\right\}$. Consider the minimum spanning tree in the graph where edge e has weight $\min \left\{X_{e}^{+}, X_{e}^{-}\right\}$. Since this is a tree, there is a function ψ which assigns every vertex a polarity so that $X_{e}^{\psi(u) \psi(v)}$ is the minimum of the 2 values. (To see this, designate some vertex the root, and start by arbitrarially assigning a polarity to the root, and then assigning the polarity of additional vertices in the order given by a breadth-first search of the minimum spanning tree.) If this function is the one that comes up, then the expected cost of Z_{n} is asymptotic to $\zeta(3) / 2$, and, by Markov's inequality, $\operatorname{Pr}\left[Z_{n} \geq 3 / 2(\zeta(3) / 2) \mid \Phi=\psi\right] \leq 2 / 3$. The event $\{\Phi=\psi\}$ has the same probability as the event that Φ equals any other polarity function, so unconditionally, $\operatorname{Pr}\left[Z_{n} \leq 3 \zeta(3) / 4\right] \geq(1 / 3) 2^{-n}$.

For values of $\varepsilon>1 / 4$, repeat this argument but with the larger probability space containing k different weights for each edge, and $\Phi(v)$ chosen uniformly from k complex roots of unity. Again, considering as a weight the minimum of the k weights on each edge leads to the expected value $\zeta(3) / k$, and probability that this random variable exceeds $2 \zeta(3) / k$ is at most $1 / 2$. Since there is again a function ψ that results in selecting the minimum value for each edge in the minimum spanning tree, an upper-bound on the unconditional probability is

$$
\operatorname{Pr}\left[Z_{n} \leq 2 \zeta(3) / k\right] \geq(1 / 2) k^{-n} .
$$

Note that this argument also works when k is a function of n, showing that

$$
\log \operatorname{Pr}\left[Z_{n}=\mathcal{O}(1 / k)\right]=-\Omega(n \log k) .
$$

References

[1] Alon, N., Krivelevich, M., and Vu, V. H. On the concentration of eigenvalues of random symmetric matrices. Israel J. Math. 131 (2002), 259-267.
[2] Flaxman, A. D., Frieze, A., and Krivelevich, M. On the random 2-stage minimum spanning tree. In SODA '05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms (Philadelphia, PA, USA, 2005), Society for Industrial and Applied Mathematics, pp. 919-926.
[3] Frieze, A. M. On the value of a random minimum spanning tree problem. Discrete Appl. Math. 10, 1 (1985), 47-56.
[4] Frieze, A. M., and McDiarmid, C. J. H. On random minimum length spanning trees. Combinatorica 9, 4 (1989), 363-374.
[5] Janson, S. The minimal spanning tree in a complete graph and a functional limit theorem for trees in a random graph. Random Structures Algorithms 7, 4 (1995), 337-355.
[6] McDiarmid, C. On the method of bounded differences. In London Mathematical Society Lecture Note Series, vol. 141. Cambridge University Press, 1989, pp. 148-188.
[7] Steele, J. M. On Frieze's $\zeta(3)$ limit for lengths of minimal spanning trees. Discrete Appl. Math. 18, 1 (1987), 99-103.

