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Consider a complete graph Kn where the edges have costs given by independent random
variables, each distributed uniformly between 0 and 1. The cost of the minimum span-
ning tree in this graph is a random variable which has been the subject of much study.
This note considers the large deviation probability of this random variable. Previous
work has shown that the log-probability of deviation by ε is −Ω(n), and that log-prob-
ability of Z exceeding ζ(3) this bound is correct; log Pr[Z ≥ ζ(3) + ε] = −Θ(n). The
purpose of this note is to provide a simple proof that the scaling of the lower tail is also
linear, log Pr[Z ≤ ζ(3) − ε] = −Θ(n).
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1 Introduction

If the edge costs of the complete graph Kn are independent random variables, each uniformly dis-
tributed between 0 and 1, then the cost of a minimum spanning tree is a random variable which
has expectation asymptotically equal to ζ(3) =

∑
∞

i=1 i
−3 [3]. Furthermore, after an appropriate

rescaling, this random variable converges in distribution to a Gaussian distribution with an explic-
itly known variance of about 1.6857 [5]. This note considers the large deviation probability of this
random variable, denoted Zn.

In [6], as an example application of Talagrand’s Inequality, it is shown that Zn satisfies an
exponential tail inequality of the form

Pr[|Zn − ζ(3)| ≥ ε] ≤ e−Cεn.

(See also [2] for an alternative approach with additional details). Simple considerations show that
for the log-probability of Zn exceeding ζ(3) this bound is correct, which is to say that log Pr[Zn ≥
ζ(3) + ε] = −Θ(n). For example, the probability that every edge incident to vertex 1 has cost at
least 1/2 is (1/2)n−1, and conditioned on this event, whp Zn = (1 + o(1))(ζ(3) + 1/2).

The behavior of the lower tail is not as simple to identify. A casual inspection may lead to the
conjecture that the lower tail is even more tightly concentrated than the upper tail. The previous
paragraph described how an overly large value of Zn can be “blamed” on a single vertex which
has only expensive edges. However, for a single vertex to be similarly responsible for the cost of
the tree being significantly lower than expected, it needs to have a lot of edges with cost less than
ζ(3)/n. This occurs with log-probability of −Θ(n logn).

The purpose of this note is to show that the lower tail of Zn is at least e−Cn for any constant
deviation less than ζ(3). (Note that, for example, Pr[Zn ≤ ζ(3) − (ζ(3) − n−10)], is not at least
e−Cn.)

Theorem 1 Let the random variable Zn be the cost of the minimum spanning tree when the edges

of the complete graph Kn have costs selected independently and uniformly at random in the interval

[0, 1]. Then, for any ε ∈ (0, 1), there exists a constant δ, such that for all sufficiently large n,

Pr[Zn ≤ (1 − ε)ζ(3)] ≥ e−δn.

Though this scaling behavior is not terribly surprising, it does rule out the possibility of a
surprise. This is in contrast with, for example, the surprising result on the concentration of the
eigenvalues in random matrix due to Alon, Krivelevich, and Vu [1]. That paper considers how
tightly an eigenvalue of a random matrix is concentrated around its mean, and shows that, for
example, the log-probability of deviation of the first eigenvalue of the adjacency matrix of Gn,1/2

of scales like −Ω(n2).

2 Lower bound

The argument establishing a lower bound is based on the observation that if the weights on the
edges are independent and given by the minimum of 2 random variabless selected uniformly at
random from [0, 1] then the expected cost is ζ(3)/2 (this is proved by Steele in [7] and extended
by Frieze and McDiarmid in [4]; in fact, the only feature of the edge weight distribution that is
important to the expected value of Zn is the behavior of the density function at 0.)
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To make use of this observation, consider the following complicated way to generate Zn: Look
first at a larger probability space, where each edge has 2 values, X+

e and X−

e , and each vertex has
a polarity chosen uniformly at random, Φ(v) ∈ ±1. Then, to obtain Zn, consider the graph where

edge e = {u, v} has weight Ye = X
Φ(u)Φ(v)
e .

Edge weights generated in this manner are identically distributed with the original model, and so
the cost of the minimium spanning tree is distributed identically with Zn. But with this generative
procedure it is easy to obtain a lower bound on the log-probability of the event {Zn ≤ 3ζ(3)/4}.
Consider the minimum spanning tree in the graph where edge e has weight min{X+

e , X
−

e }. Since

this is a tree, there is a function ψ which assigns every vertex a polarity so that X
ψ(u)ψ(v)
e is the

minimum of the 2 values. (To see this, designate some vertex the root, and start by arbitrarially
assigning a polarity to the root, and then assigning the polarity of additional vertices in the order
given by a breadth-first search of the minimum spanning tree.) If this function is the one that
comes up, then the expected cost of Zn is asymptotic to ζ(3)/2, and, by Markov’s inequality,
Pr[Zn ≥ 3/2(ζ(3)/2) | Φ = ψ] ≤ 2/3. The event {Φ = ψ} has the same probability as the event
that Φ equals any other polarity function, so unconditionally, Pr[Zn ≤ 3ζ(3)/4] ≥ (1/3)2−n.

For values of ε > 1/4, repeat this argument but with the larger probability space containing k
different weights for each edge, and Φ(v) chosen uniformly from k complex roots of unity. Again,
considering as a weight the minimum of the k weights on each edge leads to the expected value
ζ(3)/k, and probability that this random variable exceeds 2ζ(3)/k is at most 1/2. Since there
is again a function ψ that results in selecting the minimum value for each edge in the minimum
spanning tree, an upper-bound on the unconditional probability is

Pr[Zn ≤ 2ζ(3)/k] ≥ (1/2)k−n.

Note that this argument also works when k is a function of n, showing that

log Pr[Zn = O(1/k)] = −Ω(n log k).

References

[1] Alon, N., Krivelevich, M., and Vu, V. H. On the concentration of eigenvalues of random
symmetric matrices. Israel J. Math. 131 (2002), 259–267.

[2] Flaxman, A. D., Frieze, A., and Krivelevich, M. On the random 2-stage minimum
spanning tree. In SODA ’05: Proceedings of the sixteenth annual ACM-SIAM symposium on

Discrete algorithms (Philadelphia, PA, USA, 2005), Society for Industrial and Applied Mathe-
matics, pp. 919–926.

[3] Frieze, A. M. On the value of a random minimum spanning tree problem. Discrete Appl.

Math. 10, 1 (1985), 47–56.

[4] Frieze, A. M., and McDiarmid, C. J. H. On random minimum length spanning trees.
Combinatorica 9, 4 (1989), 363–374.

[5] Janson, S. The minimal spanning tree in a complete graph and a functional limit theorem for
trees in a random graph. Random Structures Algorithms 7, 4 (1995), 337–355.

2



[6] McDiarmid, C. On the method of bounded differences. In London Mathematical Society

Lecture Note Series, vol. 141. Cambridge University Press, 1989, pp. 148–188.

[7] Steele, J. M. On Frieze’s ζ(3) limit for lengths of minimal spanning trees. Discrete Appl.

Math. 18, 1 (1987), 99–103.

3


