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Abstract

Current parallelizing compilers cannot identify a significant fraction of parallelizable loops because they have
complex or statically insufficiently defined access patterns. As parallelizable loops arise frequently in practice, we
advocate a novel framework for their identification:speculatively execute the loop as adoall, and apply a fully
parallel data dependence test to determine if it had any cross–iteration dependences; if the test fails, then the loop
is re–executed serially. Since, from our experience, a significant amount of the available parallelism in Fortran
programs can be exploited by loops transformed throughprivatizationandreduction parallelization, our methods can
speculatively apply these transformations and then check their validity at run–time. Another important contribution
of this paper is anovel method for reduction recognitionwhich goes beyond syntactic pattern matching: it detects at
run–time if thevaluesstored in an array participate in a reduction operation, even if they are transferred through private
variables and/or are affected by statically unpredictable control flow. We present experimental results on loops from
the PERFECT Benchmarks which substantiate our claim that these techniques can yield significant speedups which
are often superior to those obtainable by inspector/executor methods.

The methods presented in this paper differ from and extendour previous work on several important points. First,
instead of distributing the loop into inspector and executor loops (the approach taken inall previous work on run–
time parallelization) we advocate the use of run–time tests to validate the execution of a loop that is speculatively
executed in parallel. Second, in addition to array privatization, the new techniques are capable of testing the validity
of the powerful reduction parallelization transformation at run–time. Finally, the new algorithms consider only data
dependences caused by actual cross–iteration data–flow (a flow of values) and thus potentially qualify more loops as
parallel than possible with our previous run–time data dependence test.
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representative of the positions or policies of the Army or the Government.



1 Introduction

To achieve a high level of performance for a particular program on today’s supercomputers, software developers
are often forced to tediously hand–code optimizations tailored to a specific machine. Such hand–coding is difficult,
increases the possibility of error over sequential programming, and the resulting code may not be portable to other
machines. Restructuring, or parallelizing, compilers address these problems by detecting and exploiting parallelism
in sequential programs written in conventional languages. Although compiler techniques for the automatic detection
of parallelism have been studied extensively over the last two decades (see, e.g., [24, 34]), current parallelizing
compilers cannot extract a significant fraction of the available parallelism in a loop if it has a complex and/or statically
insufficiently defined access pattern. One major reason for this inability to statically parallelize some programs is
that the most effective transformations,privatizationandreduction recognition, cannot be applied to a large class of
applications that have irregular domains and/or dynamically changing interactions. Typical examples are complex
simulations such as SPICE for circuit simulation, DYNA–3D and PRONTO–3D for structural mechanics modeling,
GAUSSIAN and DMOL for quantum mechanical simulation of molecules, CHARMM and DISCOVER for molecular
dynamics simulation of organic systems, and FIDAP for modeling complex fluid flows [11].

Thus, in order to realize the full potential of parallel computing it has become clear that static (compile–time)
analysis must be complemented by new methods capable of automatically extracting parallelism atrun–time[9, 11, 13].
Run–time techniques can succeed where static compilation fails because they have access to the input data. For
example, input dependent or dynamic data distribution, memory accesses guarded by run–time dependent conditions,
and subscript expressions can all be analyzed unambiguously at run–time. In contrast, at compile–time the access
pattern of some programs cannot be determined, sometimes due to limitations in the current analysis algorithms but
often because the necessary information is just not available, i.e., the access pattern is a function of the input data.
For example, most dependence analysis algorithms can only deal with subscript expressions that are linear in the
loop indices. In the presence of non–linear expressions, a dependence is usually assumed. Also, generally compilers
conservatively assume data dependences in the presence of subscripted subscripts. Although more powerful analysis
techniques could remove this last limitation when the index arrays are computed using only statically–known values,
nothing can be done at compile–time when the index arrays are a function of the input data [19, 29, 36].

Most previous approaches to run–time parallelization have concentrated on developing methods for constructing
execution schedules for partially parallel loops, i.e., loops whose parallelization requires synchronization to ensure
that the iterations are executed in the correct order.1 These methods are centered around the extraction of aninspector
loop that analyzes the data access pattern “off–line,” i.e., without side effects [8, 19, 22, 26, 27, 28, 29, 35, 36]. The
inspection phase of these schemes usually yields a partitioning of the set of iterations into subsets that can be executed
in parallel. These subsets, sometimes calledwavefronts, are scheduled sequentially by placing synchronization barriers
between them.

Unfortunately the distribution of the original loop into an inspector and executor loop is often not advantageous: if
the address computation of the array under test depends on the actual data computation, as exemplified by Fig. 1(a), then
the inspector becomes both computationally expensive and has side–effects. This means that shared arrays would be
modified during the execution of the inspector loop and saving the state of these variables would be required – making
the inspector equivalent to the loop itself. In addition, the desirable goal of exploiting coarse–grain parallelization,
i.e., at the level of large complex loops, makes it even less likely that an appropriate “inspector” loop can be extracted.
Thus, the inspector/executor approach is not a generally applicable method, i.e., it is limited to special cases.

1.1 Our approach: speculative doall parallelization

In this paper we propose a novel framework for parallelizingdo loops at run–time. The proposed framework differs
conceptually from previous methods in two major points.

� Instead of finding a valid parallel execution schedule for the loop, we focus on the problem of simply deciding
if the loop is fully parallel, that is, determining whether or not the loop has cross–iteration dependences. (This
approach was also taken in [26].)

1The only exception of which we are aware is our inspector method fordoall parallelization [26]. Run–time analysis techniques have also
been used to detectaccess anomaliesor race conditionsin parallel programs (see, e.g., [12, 23, 30]). However, these methods are generally not
appropriate for run–time loop parallelization since they are optimized for other purposes, e.g., for them minimizing memory requirements is more
important than speed.
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� Instead of distributing the loop into inspector and executor loops, wespeculativelyexecute the loop as adoall,
i.e., execute all its iterations concurrently, and apply a run–time test to check if there were any cross–iteration
dependences. If the run–time test fails, then we will pay a penalty in that we need to backtrack and re–execute
the loop serially.

Compilers often transform programs to optimize performance. The two most effective transformations for increas-
ing the amount of parallelism in a loop (i.e., removing certain types of data dependences) arearray privatizationand
reduction parallelization. Krothapalli and Sadayappan [14] proposed an inspector method for run–time privatization
which relies heavily on synchronizaton, inserts an additional level of indirection into all memory accesses, and calls for
dynamic shared memory allocation. In our previous work [26] we gave an inspector method without these drawbacks
for determining whether ado loop can be executed as adoall, perhaps by privatizing some shared variables. No
previous run–time methods have been proposed for parallelizing reduction operations.

The methods presented in this paper differ from our previous work [26] in several important ways. First, we
advocate the use of run–time tests to validate the execution of a loop that is speculatively executed in parallel. The
advantage of this approach is that the computation of the loop is performed concurrently with the tests, i.e., the memory
access pattern does not need to be extracted and analyzed separately as in inspector/executor methods.2 In Section 5 we
present experimental results on loops from the PERFECT Benchmarks which substantiate our claim that speculative
techniques can yield significant speedups which are often superior to those obtainable by inspector/executor methods.
Second, in addition to array privatization, the new techniques are capable of testing at run–time the validity of the
powerful reduction parallelization transformation. In particular, for an array element (or section), our run–time methods
are able to detect whether it participated exclusively in a reduction operation, or if all its accesses were either read–only
or privatizable. If all the memory references in ado loop fall under any of these categories then the speculative
concurrent execution of the loop was valid, i.e., the loop was indeed parallel. Finally, the new algorithms consider only
data dependences caused by actual cross–iteration data–flow (a flow of values). Thus, they may potentially qualify
more loops as parallel than the method in [26] which conservatively considered the dependences due to every memory
reference – even if no cross–iteration data–flow occurred at run–time. This situation could arise for example when a
loop reads a shared variable, but then only uses it conditionally.

Another important contribution of this paper is anovel method for reduction recognition: in contrast to the static
pattern matching techniques employed by compilers until now, our method detects if thevaluesstored in an array
participate in a reduction operation, even if they are transferred throughprivate variables and/or are affected by statically
unpredictable control flow.

Our methods for speculatively executingdo loops in parallel are described in Sections 3 and 4. In Section 5, we
present some experimental measurements of loops from the PERFECT Benchmarks executed on the Alliant FX/80
and 2800. These measurements show that the techniques presented in this paper are effective in producing scalable
speedups even though the run–time analysis is done without the help of any special hardware devices. It is conceivable,
and we believe desirable, that future machines would include special hardware devices to accelerate the run–time
analysis and in this way widen the range of applicability of the techniques and increase potential speedups.

2 Preliminaries

A loop can be executed in fully parallel form, without synchronization, if and only if the desired outcome of the loop
does not depend in any way upon the execution ordering of the data accesses from different iterations. In order to
determine whether or not the execution order of the data accesses affects the semantics of the loop, thedata dependence
relations between the statements in the loop body must be analyzed [6, 17, 24, 34, 37]. There are three possible types
of dependences between two statements that access the same memory location:flow (read after write),anti (write
after read), andoutput(write after write). Flow dependences express a fundamental relationship about the data flow in
the program. Anti and output dependences, also known as memory–related dependences, are caused by the reuse of
memory, e.g., program variables.

If there are flow dependences between accesses in different iterations of a loop, then the semantics of the loop
cannot be guaranteed if the loop is executed in fully parallel form. For example, the iterations of the loop in Fig. 1(a)
must be executed in order of iteration number because iterationi + 1 needs the value that is produced in iterationi,
for 1 � i < n. In principle, if there are no flow dependences between the iterations of a loop, then the loop may be

2 If desired, all of our run–time tests can be applied in inspector/executor mode.
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do i = 2, n
A(K(i)) = A(K(i)) + A(K(i-1))
if (A(K(i))) then

....
endif

enddo
(a)

do i = 1, n/2
S1: tmp = A(2*i)

A(2*i) = A(2*i-1)
S2: A(2*i-1) = tmp

enddo

(b)

do i = 1, n
do j = 1, m

S1: A(j) = A(j) + exp()
enddo

enddo

(c)

Figure 1:

executed in fully parallel form. The simplest situation occurs when there are no anti, output, or flow dependences. In
this case, all the iterations of the loop are independent and the loop, as is, can be executed as adoall (i.e., a fully
parallel execution). If there are no flow dependences, but there are anti or output dependences, then the loop must be
modified to remove all these dependences before it can be executed in parallel. Not all such situations can be handled
efficiently. In order to remove certain types of dependences and execute the loop as adoall, two important and
effective transformations can be applied to the loop:privatizationandreduction parallelization.

Privatizationcreates, for each processor cooperating on the execution of the loop, private copies of the program
variables that give rise to anti or output dependences (see, e.g., [10, 20, 21, 31, 32]). The loop shown in Fig. 1(b), is
an example of a loop that can be executed in parallel by using privatization; the anti dependences between statement
S2 of iterationi and statementS1 of iterationi + 1, for 1 � i < n=2, can be removed by privatizing the temporary
variabletmp. In this paper, the following criterion is used to determine whether a variable may be privatized.

Privatization Criterion: LetA be a shared array (or array section) that is referenced in a loopL. A can beprivatized
if and only if every read access to an element ofA is preceded by a write access to that same element ofA within
the same iteration ofL.

In general, dependences that are generated by accesses to variables that are only used as workspace (e.g., temporary
variables)withinan iteration can be eliminated by privatizing the workspace. However, according to the above criterion,
if a shared variable is initialized by reading a value that is computed outside the loop, then that variable cannot be
privatized. Such variables could be privatized if acopy–inmechanism for the external value is provided. Thelast
value assignmentproblem is the conceptual analog of the copy–in problem. If a privatized variable islive after the
termination of the loop, then the privatization technique must ensure that the correct value is copied out to the original
(non privatized) version of that variable. It should be noted that the need for values to be copied into or out of private
variables occurs infrequently in practice.

Reduction parallelizationis another important technique for transforming certain types of data dependent loops
for concurrent execution.

Definition: A reduction variableis a variable whosevalueis used in one associative and commutative operation of
the formx = x 
 exp, where
 is the associative and commutative operator andx does not occur inexp or
anywhere else in the loop.

Reduction variables are therefore accessed in a certain specific pattern (which leads to a characteristic data dependence
graph). A simple but typical example of a reduction is statementS1 in Fig. 1(c). The operator
 is exemplified by the
+ operator, the access pattern of arrayA(:) is read, modify, write, and the function performed by the loop is to add a
value computed in each iteration to the value stored inA(:). This type of reduction is sometimes called anupdateand
occurs quite frequently in programs.

There are two tasks required for reduction parallelization:recognizing the reduction variable, andparallelizing
the reduction operation. (In contrast, privatization needs only to recognize privatizable variables by performing data
dependence analysis, i.e., it is contingent only on the access pattern and not on the operations.) Parallel methods
are known for performing reduction operations. One typical method is to transform thedo loop into adoall and
enclose the access to the reduction variable in an unordered critical section [13, 37]. Drawbacks of this method are
that it is not scalable and requires synchronizations which can be very expensive in large multiprocessor systems. A
scalable method can be obtained by noting that a reduction operation is an associative and commutative recurrence
and can thus be parallelized using a recursive doubling algorithm [15, 16, 18]. In this case the reduction variable is
privatized in the transformeddoall, and the final result of the reduction operation is computed in an interprocessor
reduction phase following thedoall, i.e., a scalar is produced using the partial results computed in each processor
as operands for a reduction operation (with the same operator) across the processors. Thus, the difficulty encountered
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by compilers in parallelizing loops with reductions arises not from finding a parallel algorithm but from recognizing
the reduction statements. So far this problem has been handled at compile–time by syntactically pattern matching the
loop statements with a template of a generic reduction, and then performing a data dependence analysis of the variable
under scrutiny to guarantee that it is not used anywhere else in the loop except in the reduction statement [37].

3 Speculative Parallel Execution of do Loops

Consider ado loop for which the compiler cannot statically determine the access pattern of a shared arrayA that
is referenced in the loop. Instead of generating pessimistic, sequential code when it cannot unequivocally decide
whether the loop is parallel, the compiler could decide tospeculativelyexecute the loop as adoall, and produce
code to determine at run–time whether the loop was in fact fully parallel. In addition, if it is suspected that some data
dependences could be removed by privatization and/or reduction parallelization the compiler may further speculatively
apply these transformations in order to increase the chances that the loop can be executed as adoall. If the subsequent
run–time test finds that the loop was not fully parallel, then it will be re–executed sequentially. In order to speculatively
parallelize ado loop as outlined above we need the following:

� A mechanism of saving/restoring state:to save the original values of the program variables for the possible
sequential re-execution of the loop.

� An error (hazard) detection method:to test the validity of the speculative parallel execution.

� An automatable strategy:to decide when to use speculative parallel execution.

Saving/Restoring State. There are several ways to maintain backups of the program variables that may be altered by
the speculative parallel execution. If the resources (time and space) needed to create a backup copy are not too big,
then a practical solution is checkpointing prior to the speculative execution. It might be possible to reduce this cost
by identifying and checkpointing a point of minimum state in the program prior to the speculative parallel execution.
A more attractive solution is to privatize all shared variables, copy–in (on demand) any needed external values, and
copy–out any live values if the test passes, thereby committing the results computed by thedoall loop. This method
could also yield better data locality and reduce the number of messages between processors (e.g., it would generate
less coherency traffic in a cache coherent distributed shared–memory machine). Note that privatized arrays need not
be backed up because the original version of the array will not be altered during the parallel execution.

Hazard Detection. There are essentially two types of errors (hazards) that could occur during the speculative parallel
execution: (i) exceptions and (ii) the presence of cross–iteration dependences in the loop. A simple way to deal with
exceptions is to treat them as an invalid parallel execution, i.e., if an exception occurs, abandon the parallel execution,
clear the exception flag, restore the values of any altered program variables, and execute the loop sequentially. Below,
we present techniques that can be used to detect the presence of cross–iteration dependences in the loop and to test the
validity of any privatization and/or reduction parallelization transformations that were applied.

An Automatable Strategy. The main factors that the compiler should consider when deciding whether to speculatively
parallelize a loop are: the probability that the loop is adoall, the speedup obtained if the loop is adoall, and the
slowdown incurred if the loop is not adoall. For example, the compiler might base its decision on a ratio of the
estimated run–time cost of an erroneous parallel execution to the estimated run–time cost of a sequential execution.
If this ratio is small, then significant performance gains would result from a successful (valid) parallelization of the
loop, at the risk of increasing the sequential execution time by only a small amount. In order to perform a cost/benefit
analysis and to predict the parallelism of the loop, the compiler should use static analysis and run–time statistics
(collected on previous executions of the loop or from different codes); in addition, directives about the parallelism of
the loop might prove useful. In Section 4.1 a complexity analysis of our run–time tests is presented that can be used to
statically predict the minimum obtainable speedup and the maximum potential slowdown for a loop parallelized using
our techniques.

3.1 Run–time data dependence analysis

In this section we describe an efficient run–time technique that can be used to detect the presence of cross–iteration
dependences in a loop that has been speculatively executed in parallel. If there are any such dependences, then this test
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will not identify them, it will only flag their existence. We note that the test need only be applied to those scalars and
arrays that cannot be analyzed at compile–time. In addition, if any shared variables were privatized for the speculative
parallel execution, then this test can determine whether those variables were in fact validly privatized.

An important source of ambiguity that cannot be analyzed statically and potentially generates overly conservative
data dependence models is the run–time equivalent ofdead code. A simple example is when a loop first reads a shared
array element into a local variable but then only conditionally uses it in the computation of other shared variables. If
the consumption of the read value does not materialize at run–time, then the read access did not in fact contribute to
the data flow of the loop and therefore could not have caused a dependence. Since predicates seldom can be evaluated
statically, the compiler must be conservative and conclude that the read access causes a dependence in every iteration
of the loop. The test given here improves upon the Privatizingdoall test described in [26] by checking only the
dynamic data dependences caused by the actual cross–iteration flow of values stored in the shared arrays. This is
accomplished using a technique we calldynamic dead reference eliminationwhich is explained in detail following the
description of the test.

The most general version of the test, as applied to a privatized shared arrayA, is given below, i.e., it tests for all
types of dependences, and also whether the array is indeed privatizable. If some of these conditions do not need to be
verified, then the test can be simplified in a straitforward manner, e.g., if the array was not privatized for the speculative
parallel execution, then all steps pertaining to the privatization check are omitted.

The Lazy (value–based) Privatizing doall Test (LPD Test)

1. Marking Phase.(Performed during the speculative parallel execution of the loop.) For each shared arrayA[1 : s]
whose dependences cannot be determined at compile time, we declare read and write shadow arrays,Ar[1 : s]
andAw[1 : s], respectively. In addition, we declare a shadow arrayAnp[1 : s] that will be used to flag array
elements thatcannotbe validly privatized. Initially, the test assumes that all array elementsareprivatizable, and
if it is found in any iteration that the value of an element is used (read) before it is redefined (written), then it
will be marked as not privatizable. The shadow arraysAr ; Aw, andAnp are initialized to zero.

During each iteration of the loop, all definitions or uses of the values stored in the shared arrayA are processed:

(a) Definitions (done when the value is written): set the element inAw corresponding to the array element that
is modified (written).

(b) Uses (done when the value that was read is used): if this array element isnevermodified (written) in this
iteration, then set the corresponding element inAr . If the value stored in this array element has not been
written in this iteration before this use (read access), then set the corresponding element inAnp, i.e., mark
it asnotprivatizable.

(c) Count the total number of write accesses toA that are marked in this iteration, and store the result in
twi(A), wherei is the iteration number.

2. Analysis Phase.(Performed after the speculative parallel execution.) For each shared arrayA under scrutiny:

(a) Compute (i)tw(A) =
P

twi(A), i.e., the total number of definitions (writes) that were marked by all
iterations in the loop, and (ii)tm(A) = sum(Aw [1 : s]), i.e., the total number of marks inAw[1 : s].

(b) If any(Aw [:]^Ar [:]),3 i.e., if the marked areas are commonanywhere, then the loopis notadoall and
the phase ends. (Since we define (write) and use (read, but do not define) values stored at the same location
in different iterations, there is at least one flow or anti dependence.)

(c) Else if tw(A) = tm(A), then the loopis a doall (without privatizing the arrayA). (Since we never
overwrite any memory location, there are no output dependences.)

(d) Else ifany(Aw [:] ^ Anp[:]), then the arrayA is not privatizable. Thus, the loop, as executed,is not a
doall and the phase ends. (There is at least one iteration in which some element ofA was used (read)
before it was been modified (written).)

(e) Otherwise, the loop was made into adoall by privatizing the shared arrayA. (We remove all memory–
related dependences by privatizing this array.)
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do i = 1,n
z = A(K(i))
if B1(i) then

A(L(i)) = z + C(i)
endif

enddo

B1(1:4) = (1 0 1 0 1)
K(1:4) = (1 2 3 4 1)
L(1:4) = (2 2 4 4 2)

(a)

doall i = 1,n
markread(K(i))
z = A(K(i))
if B1(i) then
markwrite(L(i))
A(L(i)) = z + C(i)

endif
enddoall

(b)

doall i = 1,n
z = A(K(i))
if B1(i) then
markread(K(i))
markwrite (L(i))
A(L(i)) = z + C(i)

endif
enddoall

(c)

original shadow arrays
PD test 1 2 3 4 tw tm

Aw 0 1 0 1 3 2
Ar 1 1 1 1
Anp 1 1 1 1

Aw(:) ^Ar(:) 0 1 0 1
Aw(:) ^Anp(:) 0 1 0 1

(d)

new shadow arrays
LPD test 1 2 3 4 tw tm

Aw 0 1 0 1 3 2
Ar 1 0 1 0
Anp 1 0 1 0

Aw(:) ^Ar(:) 0 0 0 0
Aw(:) ^Anp(:) 0 0 0 0

(e)

Figure 2: The transformation of ado loop (a), using the original version of the PD test (b), and the lazy version (c). Themarkwrite
(markread) operation marks the indicated element in the shadow arrayAw (Ar andAnp) according to the criteria given in Step 1(a) (1(b)) of the
LPD test. Since dynamic dead read references are not marked in the LPD test, the arrayA fails the PD test and passes the LPD test, as shown in (d)
and (e), respectively.

Dynamic dead reference elimination. We now describe how the marking of the read and private shadow arrays,
Ar andAnp, can be postponed until the value of the shared variable is actually used (Step 1(b)). More formally, the
references we want to identify are defined as follows.

Definition A dynamic dead read referenceis a read access of a shared variable that both
(a) does not contribute to the computation of any other shared variable, and
(b) does not control (predicate) the references to other shared variables.

The value obtained through a dynamic dead read does not contribute to the data flow of the loop. Ideally, such
accesses should not introduce false dependences in either the static or the run–time dependence analysis. If it is
possible to determine the dead references at compile time then we can just ignore them in our analysis. Since this is
generally not possible (control flow could be input dependent) the compiler should identify the references that have
the potential to be unused and insert code to solve this problem at run–time. In Fig. 2 we give an example where
the compiler can identify such a situation by following thedef–use chainbuilt by using array names only. To avoid
introducing false dependences, the marking of the read shadow array is postponed until the value that is read into the
loop space is indeed used in the computation of other shared variables. In essence we are concerned with the flow of
the values stored rather than with their storage (addresses). We note that if the search for the actual use of a read value
becomes too complex then it can be stopped gracefully at a certain depth and a conservative marking of the shadow
array can be inserted (on all the paths leading to a possible use).

As can be observed from the example in Fig. 2, this method allows the LPD test to qualify more loops for parallel
execution then would be otherwise possible by just inspecting the memory references as in the original PD test [26].
In particular, after marking and counting we obtain the results depicted in the tables. The loop fails the PD test since
Aw(:) ^ Ar(:) is not zero everywhere (Step 2(b)). However, the loop passes the LPD test asAw(:) ^ Ar(:) is zero
everywhere, but only after privatization, sincetw(A) 6= tm(A) andAw(:) ^Anp(:) is zero everywhere.

Private shadow structures. The LPD test can take advantage of the processors’ private memories by using private
shadow structures for the marking phase of the test. Then, at the conclusion of the private marking phase, the
contents of the private shadow structures are merged into the global shadow structures. Note that since the order of
the writes (marks) to an element of the shadow structure is not important, all processors can transfer their private
shadow structures to the global structure without synchronization. In fact, using private shadow structures enables
some additional optimization of the LPD test as follows. Since the shadow structures are private to each processor,

3any returns the “OR” of its vector operand’s elements, i.e.,any(v[1 : n]) = (v[1]_ v[2] _ : : : _ v[n]).
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the iteration number can be used as the “mark.” In this way, no re–initialization of the shadow structures is required
between successive iterations, and checks such as “has this element been written in this iteration?” simply require
checking if the corresponding element inAw is marked with the iteration number. Another benefit of the iteration
number “marks” is that they can double as time–stamps, which are needed for performing the last–value assignment
to any shared variables that are live after loop termination.

A processor–wise version of the LPD test. The LPD Test determines whether a loop has any cross–iteration data
dependences. It turns out that essentially the same method can be used to test whether the loop, as executed, has any
cross–processordata dependences.4 The only difference is that all checks in the test refer to processors rather than
to iterations, i.e., replace “iteration” by “processor” in the description of the LPD test so that all iterations assigned
to a processor are considered as one “super–iteration” by the test. Note that a loop that is not fully parallel could
potentially pass the processor–wise version of the LPD test because data dependences among iterations assigned to the
same processor will not be detected. This is acceptable (even desirable) as long each processor executes its assigned
iterations in increasing order.

3.2 Run–time techniques for reduction parallelization

As mentioned in Section 2, there are two tasks required for reduction parallelization:recognizing the reduction
variable, andparallelizing the reduction operation. Of these, we focus our attention on the former since, as previously
noted, techniques are known for performing reduction operations in parallel. So far the problem of reduction variable
recognition has been handled at compile–time by syntactically pattern matching the loop statements with a template
of a generic reduction, and then performing a data dependence analysis of the variable under scrutiny to validate it as
a reduction variable [37]. There are two major shortcomings of such pattern matching identification methods.

1. The data dependence analysis necessary to qualify a statement as a reduction cannot be performed statically in
the presence of input–dependent access patterns.

2. Syntactic pattern matching cannot identify all potential reduction variables (e.g., in the presence of subscripted
subscripts).

In the next two sections we show how each of these two difficulties can be overcome with a combination of static
and run–time methods.

3.2.1 The LRPD test: extending the LPD test for reduction validation

In this section we consider the problem of verifying that a statement is a reduction using run–time data dependence
analysis. The potential reduction statement is assumed to syntactically pattern match the generic reduction template
x = x
 exp; reduction statements that do not meet this criterion are treated in the next section. To verify that such a
statement is a reduction we need to check that the reduction variablex satisfies the definition given in Section 2, i.e.,
thatx is only accessed in the reduction statement, and that it does not appear inexp. In addition, ifx is a reduction
variable in several potential reduction statements in the loop, then it must also be verified that each of these reduction
statements has the same operator.

Our basic strategy is to extend the LPD test to check all statically unverifiable reduction conditions. We first
consider how the test would be augmented to check only that the reduction variable is not accessed outside the single
reduction statement. This situationcould arise if the reduction variable is an array element accessed through subscripted
subscripts and the subscript expressions are not statically analyzable. For example, although statementS3 in the loop
in Fig. 3(a) matches a reduction statement, it is still necessary to prove that the elements of arrayA referenced in
S1 andS2 do not overlap with those accessed in statementS3, i.e., that:K(i) 6= R(j) andL(i) 6= R(j), for all
1 � i; j � n. Thus, the LRPD test must check at run–time that there is no intersection between the references in
S3 and those inS1 and/orS2; in addition it will be used to prove, as before, that any cross–iteration dependences
in S1 andS2 are removed by privatization. To test this new condition we use another shadow arrayAnx to flag the
array elements thatare notvalid reduction variables.Initially, all array elements are assumed to be valid reduction
variables, i.e.,Anx[:] = false. In the marking phase of the test, i.e., during the speculative parallel execution of the
loop,any array element defined or used outside the reduction statement is invalidated as a reduction variable, i.e., its

4This fact was noted by Santosh Abraham[1].
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do i=1,n
S1: A(K(i)) = ....
S2: .... = A(L(i))
S3: A(R(i)) = A(R(i)) + exp()

enddo
(a)

doall i=1,n
markwrite(K(i))
markredux(K(i))

S1: A(K(i)) = ....
markread(L(i))
markredux(L(i))

S2: .... = A(L(i))
markwrite(R(i))

S3: A(R(i)) = A(R(i)) + exp()
enddoall

(b)

do i=1,n
S1: A(R(i)) = A(R(i)) * exp(A(X(i)))
S2: A(S(i)) = A(S(i)) + exp()

enddo
(c)

initialize A_nx(:) = .false.
doall i=1,n
markwrite(R(i))
if (A_nx(R(i)) .ne. .true.) then
if (A_nx(R(i)) .ne. ’*’) markredux(R(i))

else
A_nx(R(i)) = ’*’

endif
markread(X(i))
markredux(X(i))

S1: A(R(i)) = A(R(i)) * exp(A(X(i))
markwrite(S(i))
if (A_nx(S(i)) .ne. .true.) then
if (A_nx(S(i) .ne. ’+’) markredux(S(i))

else
A_nx(S(i)) = ’+’

endif
S2: A(S(i)) = A(S(i)) + exp()

enddoall
(d)

Figure 3:The transformation of thedo loops in (a) and (c) is shown in (b) and (d), respectively. Themarkwrite (markread) operation marks
the indicated element in the shadow arrayAw (Ar andAnp) according to the criteria given in Step 1(a) (1(b)) of the LPD test. Themarkredux
operation sets the shadow array element ofA nx to true. In (d), the type of the reduction is tested by storing the operator inA nx.

corresponding element inAnx is set to true. As before, after the speculative parallel execution, the analysis phase of
the test is performed.An element ofA is a valid reduction variable if and only if it was not invalidated during the
marking phase, i.e., it was not marked inAnx as not a reduction variable for any iteration. The other shadow arrays
Anp, Aw andAr are initialized, marked, and interpreted just as before.

The LRPD test can also solve the case when theexppart of the RHS of the reduction statement contains references
to the arrayA that are different from the pattern matched LHS and cannot be statically analyzed. To validate such a
statement as a reduction we must show that no reference inexpoverlaps with those of the LHS. This is done during
the marking phase by setting an element ofAnx to true if the corresponding element ofA is referenced inexp.

In summary, the LRPD test is obtained by modifying the LPD test. The following step is added to theMarking
Phase.

1(d) Definitionsanduses: if a reference toA is notone of the two known references to the reduction variable (i.e.,
it is outside the reduction statement or it is contained inexp), then set the corresponding element ofAnx to true
(to indicate that the element isnota reduction variable). (See Fig. 3(a) and (b).)

In theAnalysis Phase, Steps 2(d) and 2(e) are replaced by the following.

2(d0) Else ifany(Aw [:]^Anp[:]^Anx[:]), then some element ofA written in the loop is neither a reduction variable
nor privatizable. Thus, the loop, as executed,is notadoall and the phase ends. (There exist iterations (perhaps
different) in which an element ofA is not a reduction variable, and in which it is used (read) and subsequently
modified.)

2(e0) Otherwise, the loop was made into adoall by parallelizing reduction operations and privatizing the shared
arrayA. (All data dependences are removed by these transformations.)

If the analysis phase validates (passes) the speculative parallel execution of the loop, then, as before, the last–value
assignments are performed for any live shared variables, andthe scalar result of each reduction is computed using
the processors’ partial results in a reduction across the processors.(See Fig. 7.) (If reductions are implemented by
placing the reduction statements in unordered critical sections, then this last step is not necessary.)
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Multiple potential reduction statements. A more complicated situation is when the loop contains several reduction
statements that refer to the same arrayA. In this case the type of the reduction operation performed on each element
must be the same throughout the loop execution, e.g., a variable cannot participate in both a multiplicative and an
additive reduction since the resulting operation is not commutative and associative and is therefore not parallelizable.
The solution to this problem is to mark the shadow arrayAnx with the reduction type. Whenever a reference in
a reduction statement is marked, the current reduction type (e.g., summation, multiplication) is checked with with
previous one. If they are not the same, the corresponding shadow element ofAnx is set to true.

In Fig 3(c) and (d), we show how a loop containing two potential reduction statements with different operators and
anexpoperand that contains references to the array under test can be transformed to perform a run–time dependence
and reduction test. The subsequent analysis of the shadow arrays will detect which elements were used in a reduction
and which are privatizable or read–only. If any element is found not to belong to one of these categories, then the
speculative parallelization was incorrect and a sequential re–execution must be initiated.

As a final remark, we note that a more aggressive implementation could promote the type of a reduction at run–time:
if a memory element is first involved in a ’+’ reduction and then switches over to a ’*’ reduction andstays that way
for all the remaining references, then the speculative parallel execution can still yield valid partial results on each
processor. It is important to remember that a reduction type can be promoted in only one direction (it cannot be
demoted back to its initial type) and only once per loop invocation. Of course, the reduction across processors must
reflect the reduction operator promotion.

3.2.2 Static reduction recognition and run–time check

As mentioned at the beginning of this section, syntactic pattern matching is not a sufficiently powerful method to
detect all the values that are “subject” to a reduction operation. In particular, syntactic pattern matching will fail to
identify a reduction whenever all the references on the RHS of the assignment “look different” from the reference on
the LHS. Thus, if a statement is in fact a reduction, but the references on the LHS and/or the RHS are indirect, then
syntactic pattern matching will fail. This situation could arise naturally, e.g., through the use of temporary variables
or subscripted subscripts. In the latter case, it can only be determined at run–time if any of the array elements are
reduction variables.

In the following we show that a combination of static and run–time techniques can be used to successfully identify
several types of potential reductions that could not be recognized with pattern matching techniques. The general
strategy is to speculate that every assignment to the array of interest is a potential reduction, unless proven otherwise
statically or by other heuristics. At run–time this assumption is then validated or invalidated on an element by element
basis.

Single statement reduction recognition

We first consider a single statement in which the references on the RHS are either dependent on the arrayA (also
referenced on the LHS) or are to values known to be independent ofA, e.g., constants, loop invariants, or distinct
global variables.

The simplest case is when the RHS contains exactly one reference toA. Consider the potential reduction statement
A(R(i)) = A(X(i)) + exp: If R(i) = X(i), for some values ofi, then the probability that the surrounding loop is
parallel is increased. In this case, the solution is simply to check this equality condition at run–time, and mark the
shadow arrayAnx accordingly.

The situation is a bit more complex when the RHS contains multiple references to the arrayA. Consider
the statementA(R(i)) = A(X1(i)) + A(X2(i)) + : : : + A(Xk(i)): This statement is a reduction if and only if
R(i) = Xj(i) for exactlyonevalue ofj (see Section 2). As the operation is commutative and associative, we cannot
discount the possibility of a reduction. In this example, we must check for equality betweenR(i) andeveryXj(i),
1 � j � k. If this equality condition is not met exactly once, thenAnx(R(i)) is set to true (to indicate it was not a
reduction). We note that a more aggressive strategy could be taken when there are multiple references toA(R(i)) on
the RHS: promote the ‘+’ reduction to a ‘*’ reduction. However, as mentioned in Section 3.2.1, the reduction type
can only be promoted once in the entire loop. Fig. 4 shows the code generated for run–time validation when the RHS
contains multiple references toA. In the interest of clarity, reduction type promotion is not shown.
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do i=1,n
S1: A(K(i)) = ....
S2: .... = A(L(i))
S3: A(S(i)) = A(R(i)) + A(T(i)) + A(X(i))

enddo
(a)

proc checkequal(x,y,ct)
{
if (x .ne. y) then

markredux(x)
else

ct = ct + 1
endif

}
(b)

initialize A_nx(:) = .false.
doall i=1,n
private int count = 0
markwrite(K(i))
markredux(K(i))

S1: A(K(i)) = ....
markread(L(i))
markredux(L(i))

S2: .... = A(L(i))
markread(R(i))
markread(T(i))
markread(X(i))
markwrite(S(i))
checkequal(R(i),S(i),count)
checkequal(T(i),S(i),count)
checkequal(X(i),S(i),count)

/*type could be promoted if count = 3*/
if (count .ne. 1) markredux(S(i))

S3: A(S(i)) = A(R(i)) + A(T(i)) + A(X(i))
enddoall

(c)

Figure 4: The code generated for thedo loop in (a) is shown in (c). In (c), the procedure in (b) is called, and themark-x operations are as
described in Fig. 3.

Multiple statement reduction recognition: Expanded Reduction Statements

We now relax all restrictions on the RHS and allow in it variables that are neither explicit functions of the array
appearing on the LHS nor explicit loop invariants. Our goal is to uncover any possible link between the LHS and
the RHS, if indeed one exists. The general strategy of our methods is a fairly straightforward demand driven forward
substitution of all the variables on the RHS, a process by which all control flow dependences are substituted by data
dependences as described in [2, 32]. Once this expression of the RHS is obtained it can be analyzed and validated by
the methods described in the previous section. In the following we explain by way of example how our new method
can identify reductions by performing in essence avalue–basedrather than a dependence–based analysis.

In Fig. 5(a) statementS3 is first labeled at compile time as a potential reduction. Then, by following the
def–use chainsof the variables on the RHS (i.e.,z andy) within the scope of the loopwe find that in statement
S1 z may potentially carry the value ofA(R(i)), while y is a constant with respect toA. The algorithm then
examinesstatementS3 after forward substitution, butdoes not actually replaceS3 in the generated code. The
substitution is done only for compiler analysis purposes. This new version ofS3, referred to asS33, is of the form:
S33 : A(R(i)) = A(K(i)) + constant. Similarly,S5 becomesS55 : A(L(i)) = A(K(i)) + constant. Next, we
label the statement pairs (S1, S3) and (S1, S5) in the original loop asexpanded reduction statements(ERSs). If we
treat each ERS as a single reduction statement, then this problem is reduced to one treated above.

The code generated for the run time marking of the ERS is inserted for both sides of the statement (RHS and LHS),
but only in the same basic block as the LHS. As we will see in a later example, this rule insures that both sides are
marked when and if there is an assignment, i.e., it insures that a value is actually passed from the RHS to LHS. Any
uses of values participating in the reduction that occur outside the ERS invalidate the ERS, i.e., set the corresponding
element of the shadow arrayAnx to true. In the case of ERSs obtained through forward substitution, the value of the
reduction reference may pass through several memory locations (intermediate variables) before reaching the statement
of the LHS. As any use of an intermediate variable represents a use of a value that participates in the reduction, it
invalidates the reduction for the corresponding element ofA. The uses can be obtained by following the def–use chain
within the scope of the loop. However, based on the dead reference elimination principle described in Section 3.1,
only those uses that contribute to the actual data–flow of the loop (when the value is passed on to a shared variable
or controls the access to a shared variable) are processed. If not all local variables carrying the reduction value end
up being used in the global data–flow within the loop, then we have either to verify that they (the local variables) are
indeed not live after loop exit, or, if that is not possible, make a conservative assumption (i.e., that all uses contribute
to the data flow). In Fig. 5(a), statementS4 passes the value ofA(K(i)) to the local variablet, which in turn passes
it to A(L(i)) in S5. The same value is also passed to the shared variableB(f(i)) in S6. Both uses (inS5 andS6)
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do i = 1,n
S1: z = A(K(i))
S2: y = constant
S3: A(R(i)) = z + y
S4: t = z
S5: A(L(i)) = t + y
S6: if (exp) B(f(i)) = t

enddo
(a)

doall i = 1,n
S1: z = A(K(i))
S2: y = constant

markread(K(i))
markwrite(R(i))
if (K(i) .ne. R(i)) then
markredux(K(i))
markredux(R(i))

endif
S3: A(R(i)) = z + y
S4: t = z

markwrite(L(i))
if (K(i) .ne. L(i)) then
markredux(K(i))
markredux(L(i))

endif
S5: A(L(i)) = t + y
S6: if (exp) then

markredux(K(i))
B(f(i)) = t

endif
enddo

(b)

Figure 5:The code generated for thedo loop in (a) is shown in (b). Themark-x operations are as described in Fig. 3.

should, in principle, invalidateAnx(K(i)). On the other hand, statementS5 is another potential reduction of the same
type as inS3 and, thus only the use inS6 needs to invalidateAnx(K(i)). The transformed code is shown in Fig. 5(b).

We note that if one of the intermediate variables is itself an array element addressed indirectly, then an additional
run–time test must be performed. For example, ifS1 andS3 in Fig. 5(a) were of the form:S1 : X(N (i)) = A(K(i))
andS3 : A(R(i)) = X(P (i)) + y, then a value would be passed fromS1 to S3 only if N (i) = P (i). However, if
the arrayX is privatizable, and occursonly in these two statements, then the run–time test is not necessary, i.e., if
N (i) = P (i), thenA(K(i)) would be processed with the read ofX(P (i)) in S3, and otherwise no data flow would
occur.

Taking control flow into account. The final situation we consider is when the forward substitution procedure must
take into account conditional branches and carry information into the expression of the ERS (see Fig. 6). The additional
difficulty presented by this case is the fact that the exact form of the RHS is not known statically. What is known,
however, is the set of all possible RHS forms, which can be computed by following all potential paths in the control
flow graph. A direct approach uses agated static single assignment(GSSA) [5, 33] representation of the program. In
such a representation, scalar variables are assigned only once. At the points of confluence of conditional branches a�
function of the form�(B;X1; X2) is used (in the GSSA representation) to select one of the two possible definitions of
a variable (X1 orX2), depending on the boolean expressionB. By proceeding backwards through the def–use chains
(which include the� functions) it is easy to expand a scalar variable in terms of boolean expressions, other scalar
variables, and array elements. In the example of Fig. 6, the variablew in statementS9would be expanded as follows:

w ) �(B3; t; A(M (i)))

) �(B3; �(B2; z; A(J(i)); A(M (i))))

) �(B3; �(B2; �(B1; A(K(i))); A(L(i)); A(J(i)); A(M (i))))

which means that the value ofw is:

w =

8>><
>>:

A(K(i)) if (B3 ^B2 ^B1) is true
A(L(i)) if (B3 ^B2 ^ :B1) is true
A(J(i)) if (B3 ^ :B2) is true
A(M (i)) if (:B3) is true

(1)

This compound equation can then be used to generate amarkread and amarkredux operation at statement
S9 wherew is read. To save unnecessary work, we only expand those scalars that are on the RHS of assignments to
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do i = 1,n
S1: w = A(M(i))
S2: t = A(J(i))
S3: if (B1) then
S4: z = A(K(i))

else
S5: z = A(L(i))

endif
S6: if (B2) t = z
S7: if (B3) w = t
S8: if (B5) A(R(i)) = A(R(i)) + z
S9: if (B6) Y(i) = w

enddo
(a)

doall i = 1,n
S1: w = A(M(i))
S2: t = A(J(i))
S3: if (B1) then
S4: z = A(K(i))

else
S5: z = A(L(i))

endif
S6: if (B2) t = z
S7: if (B3) w = t
S8: if (B5) then

markread(B1*K(i) + notB1*L(i))
markredux(B1*K(i) + notB1*L(i))
markwrite(R(i))
A(R(i)) = A(R(i)) + z
endif

S9: if (B6) then
markread(B3*B2*B1*K(i) + B3*B2*notB1*L(i)

+ B3*notB2*J(i) + notB3*M(i))
markredux(B3*B2*B1*K(i) + B3*B2*notB1*L(i)

+ B3*notB2*J(i) + notB3*M(i))
Y(i) = w
endif

enddoall
(b)

Figure 6:The code generated for thedo loop in (a) is shown in (b). Themark-x operations are as described in Fig. 3. The expressions in the
markread andmarkredux operations are abreviations ofif then else statements representing the different assignments toz (S8) andw
(S9) as in Equation 1. The operators “*”, “ +”, and “not” represent logical “and”, “or”, and “complement” operators, respectively.

shared variables or in potential reduction statements (e.g., in the case ofz in statementS8). All other scalar references
can be safely ignored. Fig. 6(b) shows the program in Fig. 6(a) after the insertion of themarkread andmarkredux
operations, which are based on the expansion of the scalar variables. The possible drawback of this approach is that
the number of potential reductions and the number of terms in the logic expressions generated may be quite large. If
this happens, we can gracefully degrade to a more conservative approach: test only some of the expressions of the
ERS and invalidate all the rest.

It is important to note that the loop in Fig. 6 exemplifies the type of loop found in the SPICE2G6 program
(subroutine LOAD) which can account for 70% of the sequential execution time.

Finally we mention that reductions such asmin, max, etc., would first have to be syntactically pattern matched, and
then substituted by theminandmaxfunctions. From this perspective, they are more difficult to recognize than simpler
arithmetic reductions. However, after this transformation, our techniques can be applied as described above.

4 Putting it All Together

In the previous sections we described run–time techniques that can be used for the speculative parallelization of loops.
These techniques are automatable and a good compiler could easily insert them in the original code. In this section,
we give a brief outline of how a compiler might proceed when presented with ado loop whose access pattern cannot
be statically determined.

1. At Compile Time.

(a) A cost/benefit analysis is performed using both static analysis (based on the asymptotic complexity of the
LPRD test given below) and run–time collected statistics to determine whether the loop should be:

(i) speculatively executed in parallel using the LRPD test,
(ii) first tested for full parallelism, and then executed appropriately (using an inspector/executor version

of the LRPD Test), or
(iii) executed sequentially.
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/* original loop */
A(1:m)
do i = 1,n

S1: A(R(i)) = A(R(i))+exp()
S2: .... = A(L(i))

enddo
(a)

/* marking phase */
/* declarations */
A(m), pA(m,procs)
A_w(m), pA_w(m,procs)
A_r(m), pA_r(m,procs)
A_nx(m), pA_nx(m,procs)
Init(pA,pA_w,pA_r,pA_nx)
doall i = 1,n
p = get_proc_id()
pA_w(R(i),p) = i

S1: pA(R(i),p) = pA(R(i),p)+exp()
if (pA_w(L(i),p) .ne. i)

pA_r(L(i),p) = i
pA_nx(L(i),p) = .true.

S2: .... = pA(L(i),p)
enddoall

(b)

/* analysis phase */
doall i = 1,proc
A_w = pA_w(1:m,i)
A_r = pA_r(1:m,i)
A_nx = pA_nx(1:m,i)
enddoall
result = test(A_w,A_r,A_nx)
if (result .eq. pass) then
/* compute reduction */
doall i = 1,m
if (A_nx(i) .eq. .false.)
A(i) = sum(pA(i,1:procs))

enddoall
else
/* execute loop sequentially */
endif

(c)

Figure 7: The simplified code generated for thedo loop in (a) is shown in (b) and (c). Privatization is not being tested because there is a read
before a write reference

(b) Generate the code needed for the speculative parallel execution. A parallel version of the original loop is
augmented with themarkread,markwrite andmarkreduxoperations for the LRPD test; if necessary
to identify reduction variables, the loop is also augmented as described in Section 3.2.2. In addition, code
is generated for: the analysis phase of the LRPD Test, the potential sequential re–execution of the loop,
and any necessary checkpointing/restoration of program variables.

2. At Run–Time.

(a) Checkpoint if necessary, i.e., save the state of program variables.

(b) Execute the parallel version of the loop, which includes the marking phase of the test.

(c) Execute the analysis phase of the test, which gives the pass/fail result of the test.

(d) If the test passed, then compute the final results of all reduction operations (from the processors’ partial
results) and copy–out the values of any live private variables. If the test failed, then restore the values of
any altered program variables and execute the sequential version of the loop.

(e) Collect statistics for use in future runs, and/or for schedule reuse in this run.

An example using iteration numbers as “marks” in private shadow arrays is shown in Fig. 7. If the speculative
execution of the loop passes the analysis phase, then the scalar reduction results are computed by performing a
reduction across the processors using the processors’ partial results. Otherwise, if the test fails, the loop is re–executed
sequentially.

4.1 Complexity of the LRPD test

The time required by the LRPD test isT (n; s; a; p) = O(na=p+ log p), wherep is the number of processors,n is the
total iteration count of the loop,s is the number of elements in the shared array, anda is the (maximum) number of
accesses to the shared array in a single iteration of the loop. We assume that the implementation of the test uses private
shadow structures. The analysis below is valid for all variants of the LRPD test.

The marking phase (Step 1) takesO(na=p + s + logp) time, i.e., proportional tomax(na=p; s; logp) time. We
record the read and write accesses, and the reduction and privatization flags in private shadow arrays using iteration
number “marks”. In order to check whether for a read of an element there is a write in the same iteration, we simply
check that element in the shadow array – a constant time operation. All accesses can be processed inO(na=p) time,
since each processor will be responsible forO(na=p) accesses. After all accesses have been marked in private storage,
the private shadow arrays can be merged into the global shadow arrays inO(s + logp) time; thelogp contribution
arises from the possible write conflicts in global storage that could be resolved using software or hardware combining.
The counting in Step 2(a) can be done in parallel by giving each processors=p values to add within its private memory,
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and then summing thep resulting values in global storage, which takesO(s=p+ logp) time [18]. The comparisons in
Step 2(b) (2(d)) ofAw with Ar (with Anp andAnx) takeO(s=p+ logp) time.

If the loop passes the test, then the final result of each reduction must be computed (unless the reduction was
parallelized using unordered critical sections) and last value assignments must be performed for the live private
variables. If the reduction operation is parallelized using unordered critical sections, then no overhead is incurred, i.e.,
the original sequential reduction operation and its transformed parallel version require the same number of operations
(within a small constant factor). However, if the reduction is parallelized using recursive doubling, then an overhead
O(s + log p) is incurred when the processors’ partial results are merged pair–wise into the scalar reduction results.
Similarly, the private variables with the latest time stamps (iteration number “marks”) can be selected for last value
assignment in timeO(s + log p).

Hash tables. If s � na=p, then the number of operations in the LRPD test does not scale since each processor
must always inspect every element of its private shadow structure when transferring it to the global shadow structure
(even though each processor is responsible for fewer accesses as the number of processors increases). Another related
issue is that the resource consumption (memory) would not scale. However, if “shadow” hash tables are used, then
each processor will only have private shadow copies of the arrayelementsaccessed in iterations assigned to it, which
will increase the cost per access by a small constant factor. Thus, if hash tables of sizeO(na=p) are used, then the
complexity of the marking phase becomesO(na=p+ log p). Similarly, using hash tables the analysis phase and any
needed last value assignments and/or processor–wise reduction operations can be performed in timeO(na=p+ log p).

5 Experimental Results

In this section we present experimental results obtained on two modestly parallel machines with 8 (Alliant FX/80 [3])
and 14 processors (Alliant FX/2800 [4]) using a Fortran implementation of our methods. However, we remark that
our results scale with the number of processors and the data size and thus they should be extrapolated for massively
parallel processors (MPPs), the actual target of our run–time methods.

We considered sevendo loops from the PERFECT Benchmarks [7] that could not be parallelized by any compiler
available to us. Our results are summarized in Table 1. For each loop, we note the type of test applied:doall
indicates cross–iteration dependences were checked (Lazy Doall (LD) test),privat indicates privatization was checked
(LPD test),reductindicates reduction parallelization was checked (LRD test). For each method applied to a loop, we
give the speedup that was obtained, and the potential slowdown thatwould have been incurredif, after applying the
method, the loop had to be re–executed sequentially. If the inspector/executor version of the LRPD test was applied,
the computation performed by the inspector is shown in the table: the notationprivatizationindicates the inspector
verified that the shared array was privatizable and then dynamically privatized the array for the parallel execution,
branch predicateandsubscript arraymean that the inspector computed these values, andreplicates loopmeans that
the inspector was work–equivalent to the original loop.

In addition to the summary of results given in Table 1, we show in Figures 8 through 14 the speedup and thepotential
slowdown measured for each loop as a function of the number of processors used. For reference, these graphs show
the ideal speedup, which was calculated using an optimally parallelized (by hand) version of the loop. The potential
slowdown reported is the percentage of the execution time that would be paid as a penalty if the test had failed, and the
loop was then executed sequentially. In cases where extraction of a reduced inspector loop was impractical because of
complex control flow and/or inter–procedural problems, we only applied the speculative methods.

Whenever necessary in the speculative executions, we performed a simple preventive backup of the variables
potentially written in the loop. In some cases, the cost of saving/restoring might be significantly reduced by using
another strategy. In order for our methods to scale with the number of processors, the shadow arrays must be distributed
over the processor space, rather than replicated on each processor (Section 4.1). For this purpose, we tried using hash
tables. Since we had at most 14 processors, the extra cost of the hash accesses dominated the benefit of reducing the
size of the shadow arrays. This was particularly true for the loops from the OCEAN and TRFD Benchmarks. However,
on a larger machine we would expect the use of hash tables to pay off. Due to this problem, the results reported do not
reflect the use of hash tables.

The graphs show that in most cases the speedups scale with the number of processors and are a very significant
percentage of the ideal speedup. When they do not scale, as mentioned above, we believe that the use of hash tables

2All benchmarks are from the PERFECT Benchmark Suite
3The final paper will include experimental results for all loops on both machines.
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Benchmark2 Experimental Results
Subroutine potential Tested Description of Loop Inspector
Loop Technique Speedup Slowdown (computation)

MDG 14 processors privatization
INTERF speculative 11.55 1.09 doall accesses to a privatizable vector guarded data accesses
loop 1000 insp/exec 8.77 1.03 privat by loop computed predicates branch predicate
BDNA 14 processors privatization
ACTFOR speculative 10.65 1.09 doall accesses privatizable array indexed by a data accesses
loop 240 insp/exec 7.72 1.04 privat subscript array computed inside loop subscript array

8 processors
TRFD speculative .85 2.17 doall small triangular loop accesses a vector data accesses
INTGRL sched reuse 1.93 2.17 indexed by a subscript array computed replicates loop
loop 540 insp/exec 1.05 1.74 outside loop

sched reuse 2.10 1.74
TRACK accesses array indexed by subscript array
NLFILT 8 processors doall computed outside loop, access pattern not applicable
loop 300 speculative 4.21 1.01 guarded by loop computed predicates
ADM accesses privatizable array thru aliases,
RUN 14 processors doall array repeatedly re–dimensioned, access not applicable
loop 20 speculative 9.01 1.02 privat pattern guarded by loop computed predicates
OCEAN 8 processors kernel–like loop accesses a vector with data accesses
FTRVMT speculative 2.23 1.45 doall run–time determined strides replicates loop
loop 109 insp/exec 2.14 1.30 26K invocations account for 40%T seq

SPICE traverses linked list terminated by a NULL
LOAD 8 processors doall pointer, all referenced arrays equivalenced data accesses
loop 40 insp/exec 2.75 1.09 reduct to a global work array

Table 1: Summary of Experimental Results.

(for MPPs) will preserve the scalability of our methods. We note that with the exception of the TRFD loop (Fig. 10),
the speculative strategy gives superior speedups versus the inspector/executor method. For both methods the potential
slowdown is small, and decreases as the number of processors increases. As expected, the potential slowdown is
smaller for the inspector/executor method.

We now make a few remarks about individual loops for which Table 1 does not give complete information.
The loop from TRACK is parallel for only 90% of its invocations. In the cases when the test failed, we restored state,

and re–executed the loop sequentially. The speedup reported includes both the parallel and sequential instantiations
(Fig. 11).

Loop 40 from SPICE is representative of the type of the loop contained in the LOAD subroutine, which accounts
for 70% of the sequential execution time. Since all the arrays are equivalenced to a global work array, all accesses
in the loop were shadowed in the LRD test, i.e., each array element was proven to be either a reduction variable,
read–only, or independent (i.e., accessed in only one iteration). For this loop we used an inspector/executor version
of the LRD test (instead of a speculative parallelization) because of complex memory management problems for the
shadow arrays in the presence of highly irregular and sparse access patterns. The ideal speedup of loop 40 is not
very large since the loop is small, imbalanced between iterations, and traverses a linked list. The linked list traversal
was parallelized using techniques we developed for automatically parallelizingwhile loops [25]. Thus, although the
obtained speedup is modest, it represents a significant fraction of the ideal speedup (see Fig. 14). Therefore, since loop
40 is one of the smallest loops in the LOAD subroutine, we expect to obtain better speedups on the larger loops (since
they have larger ideal speedups). In the camera–ready version of the paper, we will report the speedups obtained on
all loops in subroutine LOAD.

The speedups obtained for the loops from both OCEAN and TRFD are modest because they are kernels. In the
case of the loop from TRFD we were able to reuse the schedule and improve our results significantly. Because of the
large data set accessed, the loop from TRFD is the only case in which speculative execution proved to be inferior to
the inspector/executor method (saving state was a significant portion of the execution time).
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6 Conclusion

In this paper we have approached the problem of parallelizing statically intractable loops at run–time from a new
perspective – instead of determining a valid parallel execution schedule for the loop, we speculate that the loop is
fully parallelizable, a frequent occurrence in real programs. We proposed efficient, scalable run–time techniques for
verifying the correctness of a speculative parallel execution, i.e., methods for checking that there were in fact no cross–
iteration dependences in the loop. From our previous experience with static analysis and parallelization of Fortran
programs, we have found that the two transformations most effective in removing data dependences are privatization
and reduction parallelization. Thus, our new run–time techniques for checking the validity of speculative applications
of these transformations increases our chance of extracting a significant fraction of the available parallelism in even
the most complex program. The methods in this paper employ a dependence analysis based on the actual exchange
(definition or use) of values rather than on the memory references themselves. This approach leads to the exploitation
of more parallelism than was previously possibly, e.g., our general method for reduction recognition that does not rely
on syntactic pattern matching.

Our experimental results show that the concept of run–time data dependence checking is a useful solution for
loops that cannot be analyzed sufficiently by a compiler. Both speculative and inspector/executor strategies have been
shown to be viable alternatives for even modestly parallel machines like the Alliant FX/80 and 2800. We would like
to emphasize that our methods are applicable to all loops, without any restrictions on their data or control flow.

We believe that the significance of the methods presented here will only increase with the advent of massively
parallel processors (MPPs) for which the penalty of not parallelizing a loop could be a massive performance degradation.
As we have shown, our run–time tests are efficient and scalable, and thus if the target machine has many (hundreds)
processors, then the cost of our techniques will become a very small fraction of the sequential execution time. In other
words, speculating that the loop is fully parallel has the potential to offer large gains in performance (speedup), while
at the same time risking only small losses. To bias the results even more in our favor, the decision on when to apply
the methods should make use of run–time collected information about the fully parallel/not parallel nature of the loop.
In addition, specialized hardware features could greatly reduce the overhead introduced by the methods.

Finally we believe that the true importance of this work is that it breaks the barrier at which automatic parallelization
had stopped: regular, well–behaved programs. We think that the use of aggressive, dynamic techniques can extract
most of the available parallelism from even the most complex programs, making parallel computing attractive.
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