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Abstract 

We propose the Local Split Decision tree (LSD tree, for 
short), a data structure supporting efficient spatial access to 
geometric objects. Its main advantages over other structures 
are that it performs well for all reasonable data distributions, 
cover quotients (which measure the overlapping of the data 
objects), and bucket capacities, and that it maintains mul- 
tidimensional points as well as arbitrary geometric objects. 
These properties demonstrated by an extensive performance, 
evaluation make the LSD tree extremely suitable for the im- 
plementation of spatial access paths in geometric databases. 
The paging algorithm for the binary tree directory is inter- 
esting in its own right because a practical solution for the 
problem of how to page a (multidimensional) binary tree 
without access path degeneration is presented. 

1. Introduction 
In non-standard applications such as cartography, CAD 

and robotics, Database Management Systems have to orga- 
nize large sets of multidimensional geometric objects on 
secondary storage such that these objects can quickly be 
retrieved according to their spatial locations. Typical spa- 
tial queries are the retrieval of an object by its coordinates 
(exact match) and range queries where all objects geomet- 
rically intersecting the query region are selected for further 
processing or presentation on a screen. Since the set of ob- 
jects varies over time, insertions and ‘deletions have to be 
perfomml as well. 

Data structures, which efficiently support spatial ac- 
cess to geometric objects, usually divide the data space into 
cells and store all objects located in a cell in an associ- 
ated data bucket. As far as multidimensional points are 
concerned, various efficient data structures have been pro- 
posed (see e.g. @ee87], [HSW8&], [HSWSSb], [KS86], 
lKS881, [KWSSI, [NHS841; [Otoo86], [Rob81]). In typical 
applications, however, most objects are arbitrary geometric, 
i.e. non-point, objects. In many situations, it has proven 
to be useful to represent non-point objects by their (mini- 
mal) bounding boxes, serving as simple geometric keys, We 
therefore concentrate on multidimensional intervals, as far 
as non-point objects are concerned 
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An obvious approach for storing intervals uses data 
structures for points. Here, intervals need not be entirely 
contained in a cell, but may instead intersect several cells. 
Hence, in order to perform range queries efficiently, infor- 
mation about an interval must be stored in each bucket, 
whose corresponding cell intersects the interval. Using 
this so-called clipping technique, the space requirements in- 
crease substantially due to the redundant information. 

The clipping approach is based on data structures which 
partition the data space into pairwise disjoint cells. To 
avoid clipping problems, in R-Trees ([Gut84], [FSR87]). 
respectively multilayer grid files [SWSS], the data space is 
divided into overlapping cells, such that all, respectively 
most, intervals are entirely contained in a cell, i.e. need 
not be clipped. Unfortunately, the R-Tree suffers from a 
poor exact match performance and often from inefficient 
range queries because cells may overlap considerably in 
a dynamic setting. In the multilayer grid file with each 
layer a grid file is associated inducing a directory overhead 
which deteriorates the efficiency of operations concerning 
few objects.* 

In the so-called tran.+ormation technique (lJIin85], 
[SK88]), k-dimensional intervals are interpreted as points in 
a 2kdimensional space, in order to use point data structures 
in a standard way. For instance, a l-dimensional interval 
[a, b] may be interpreted as point (a, b). Since a 5 b holds, 
the image space is a triangle. The main drawbacks of this 
approach are that the point distribution in the triangular im- 
age space is extremely skew and that a (bounded) range 
query on intervals becomes a partly unbounded range query 
on image points. 

From a wide spectrum of performance tests we have 
got the experience that the efficiency of spatial data struc- 
tures depends at least on the object distribution, the cover 
quotient defined as the sum of all object areas divided by 
the area of the data space, and the bucket capacity, i.e. the 
maximal number of objects in a bucket. For an increas- 
ing cover quotient as well as for small bucket capacities, 
clipping and overlapping cell techniques deteriorate substan- 
tially. On the other hand, all non-tree structures (see e.g. 
[HSW88a], Ir<S86], [KS881, [NHS84]) degenerate for skew 
object distributions. 

In this paper, we propose a data structure support- 
ing spatial access to k-dimensional points as well as k- 
dimensional intervals. The access to intervals is based on 
the transformation technique. A sophisticated directory tree 
together with a refined splitting technique eliminates the pre- 
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Figure 2.1: Possible partition of the data space for an LSD tree 

vious drawbacks of this technique. The performance eval- 
uation convincingly demonstrates that the new structure is 
well qualified for maintaining large sets of geometric ob- 
jects. However, the main advantage of the new structure is 
not only the efficient spatial access but also its robustness. 
By robustness we mean that the new structure behaves well 
for all reasonable data distributions, cover quotients and 
bucket capacities. 

Section 2 explains the new data structure for point 
objects while in section 3 the generalization to non-point 
objects is provided. In section 4 a performance evaluation 
of the new structure and a comparison with the multilayer 
grid file is presented. Section 5 concludes the paper. 

2. The LSD tree for points 

2.1 Basic ideas and properties 

Like most structures, the new structure partitions the 
data space into painvise disjoint cells with associated buck- 
ets of fixed size. In contrast to the grid file [NHS84], how- 
ever, it is not grid oriented, i.e. all cell boundaries may 
occur at arbitrary positions. The free choice of split posi- 
tions is the basis of the graceful adaptation to arbitrary skew 
object distributions. Since a new split position can be cho- 
sen locally optimal, i.e. optimal with respect only to the cell 
to be split and independent from other existing cell bound- 
aries, we call the new strocture Local Split Decision tree 
(LSD tree, for short). Figure 2.1 shows a possible partition 
of a zdimensional data space for an LSD tree. 

The LSD directory maintaining the flexible data space 
partition is a binary tree similar to a kd tree [Ben75]. Each 
node of this tree represents one split decision by storing the 
split dimension and the split position. Figure 2.2 illustrates 
the LSD tree associated with the data space partition of 
Figure 2.1. 

It should be obvious that the directory provides the 
freedom for using the split strategy best suitable for the 
actual application. This is an important advantage over other 
structures (see e.g. tFn3387], [HSW88al, [KS861, lKS881, 
[NHS84]) where split decisions are more or less influenced 
by previous split decisions. Furthermore, the size of the 

Figure 2.2: LSD tree associated with 

the data space partition of Figure 2.1 

directory is directly related to the number of buckets, i.e. 
for n buckets the d&ctory contains n-l nodes. This is in 
contrast to the grid file where several entries in the directory 
may point to the same bucket. 

Besides the advantages of the LSD tree directory there 
are some drawbacks which are typical for multidimensional 
binary tree structures: 

1. A multidimensional bii tree may become unbal- 
anced, i.e. may contain long paths with almost no 
branches, and 

2. no suitable method for paging a multidimensional bi- 
nary tree is known. (The interesting paging technique 
presented in &ZL88] is suitable only for the one- 
dimensional case.) 

We overcome these problems by introducing a paging 
algorithm which preserves the following external balancing 
PropeW 

The number of external directory pages which are tra- 
versed on any two paths from the directory root to a 
bucket diJers by at most 1. 

When geometric objects are inserted into an initiahy 
empty LSD tree the directory grows up to a size when it 
cannot be kept in the dedicated part of the main memory 
any longer. Then the paging algorithm determines a subtree 
to be paged on secondary storage such that the external 
balancing property is preserved. If tbe subtree consists of 
n, nodes, the main memory is then able to receive additional 
n, nodes until a further invocation of the paging algorithm 
must take place. 

Figure 2.3 shows the overall structure of the LSD tree. 

2.2 A closer hk 

In this section, we discuss the LSD tree in more detail 
by explaining the insertion of a new geometric object into 
the structure. 
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Figure 2.4: Effect of a bucket split 

The search for the bucket b which will receive the new 
object is guided by the’directory as in kd trees. If b does 
not overflow, the insertion is finished, otherwise the bucket 
split algorithm creates two new buckets b and b, from b 
according to a split strategy we describe afterwards. In case 
of a bucket split the pointer in the directory referencing b 
is changed to a pointer referencing a new directory node q 
representing the split decision concerning b, i.e. the new 
node q is inserted into the directory by calling the directory 
insertion algorithm explained later. The new node q points 
to the new buckets bi and b,,. Figure 2.4 depicts the effect 
of a bucket split. 

We distinguish between two inherently distinct types 
of split strategies: 

1. Data dependent split strategies 
These strategies depend only on the objects stored in 
the bucket to be split. A typical example for such a 
strategy is to choose for the split position the aver- 
age of all object coordinates with respect to a certain 
dimension. 

2. Distribution dependent split strategies 
These strategies choose the split dimension and the split 
position independently of the actual objects stored in 
the bucket to be split. A typical example for such 

a strategy is to split a cell into two cells of equal 
areas. Note that this “halving split strategy” relies on 
the assumption of a uniform distribution of the objects. 

Since the LSD directory is a binary tree, any type of 
split strategy can be implemented in an easy and efficient 
manner. Note that data dependent split strategies cannot 
be realized by data structures based on hashing (see e.g. 
[HSW88al, [KS861, [KSSSI, lNI-IS841). 

We now turn our attention to the directory of the LSD 
tree. As already mentioned in the previous section, if the 
number of nodes in the directory T exceeds the maximal 
possible number of internal nodes, a subtree of T is written 
onto secondary storage, i.e. stored in a directory page. In 
such a directory page a subtree is organixed as a sequential 
heap of fixed height hr. Hence, whenever the height of the 
associated subtree exceeds h, after an additional insertion, 
a directory page split has to be perfomxd. The directory 
page split algorithm is simple: the left and right subtree of 
the root are stored in two distinct directory pages and the 
root is inserted into the directory T by calling the directory 
insertion algorithm. 

We are now in a position to describe how a new node q, 
resulting from a bucket or a directory page split, is inserted 
into the directory T by the directory insertion algorithm. 
The heart of this algorithm is the paging algorithm we 
explain afterwards. In the following, we assume that the 
main memory capacity reserved for the directory T is ni. 
The directory insertion algorithm assures that the internal 
prefix tree Ti of the directory T contains at most ~-1 nodes. 
lb10 cases may occur: 

case 1: The father p of the new node q is an internal node. 

cast 1.1: 

case 1.2: 

The number of internal nodes is less than 
ni-1. Then insert q into Ti and finish. 
The number of internal nodes is equal to 
ni-1. Then insert q into Ti, cdl the paging 
algorithm for T, and finish. Note that after 
the execution of the paging algorithm the 
number of internal nodes is at most b-1. 

case 2: The father p of the new node q is a node in a subtree 
TP of T stored in an external directory page. 

case 21: After the insertion of q the height of TP is 
at most hr.; then finish. 

case 2.2: After the msertion of q the height of TP is 
greater than hr. Then call the directory page 
split algorithm for TP and finish. 

The paging algorithm is called when after an insertion 
of an additional node the size of the internal PE~IX tree Ti 
reaches the maximal possible number ni of internal nodes. 
The algorithm searches for a subtree TI in Ti such that 
paging TI preserves the external balancing property &fined 
in section 2.1. This property is preserved if T, is a paging 
candidate, i.e. T‘ fultllls the following properties: * 
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Figure 2.5: Directory before and after paging subiree T, 

1. 

2. 
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Any path from the mot of TI down to a bucket contains 
the minimal number of external directory pages (of all 
pat.hsinthedirectoryT). 
The height of Ts is at most hr. 

Figure 2.5 shows a directory before and after paging 
subtree Ts. 
If more than one paging candidate occurs in Ti, the 

paging algorithm chooses a candidate with the maximal 
possible number of nodes. 

In order to direct the search for a paging candidate in 
Ti the following numbers are attached to each node v in Ti: 
n-(v), resp. nep&v),: the minimal, resp. maximal, 

number of external directory pages occurring on any 
path in T containing v. 

s(v): the number of nodes of the biggest paging candidate 
which can be reached from v. 

h(v): The height of the subtree with root v in Ti. 
The paging algorithm moves down the internal direc- 

tory Ti branching at each node w on the search path accord- 
ing to the following criteria: 

1. If neM(left son of w) # nw(right son of w), 
continue with the son with lower rim. 

2. If new(left son of w) = n~(right son of w), 
continue with the son with greater s. 

The root r of a paging candidate T‘ is determined if 

1. h(r)<h,and 
2. n-(r) = nep&r). 

The second condition assures that after paging Ts the exter- 
nal balancing property is preserved for T. 

It should be clear that after the insertion of a new node q 
into the internal directory Ti, resp. the paging of a subtree TI 
of Ti, the numbers nw, nep,,,,, s and h must be updated 
foreachnodewonthepathPfromtherootofTitothe 
father of q, msp. to the father of the root of Ts (now stored 
in an external directory page). These numbers can easily 
be recomputed from the existing numbers of the nodes (and 
their direct sons) on the path P. 

2.3 The operations 

23.1 Exact match 

In an exact match operation the directory is traversed 
until the corresponding bucket is determined. The bucket 

is scanned until the object searched for is located or the 
search ends unsuccessfully. 

233 Insertion 

The insertion algorithm has been explained in detail in 
the previous section. 

233 Deletion 

The deletion of a node in the directory T basically 
works inversely to the insertion of a node. Due to space 
limitations we cannot discuss this topic in more detail. 

23.4 Range query 

In a range query all points located in the query region 
are reported. According to Fredman lFred801, a query 
region may be a rectangle (orthogond range query), a circle 
(circular range query) or a polygon @olygonal range query). 
In the following, we restrict the discussion to orthogonal 
range queries, because the algorithm is the same for all query 
types, except for the procedures evaluating whether a data 
region is enclosed by, intersected by, or disjoint from the 
query region. But these are details left to the implementation 
level. 

In order to report all points located in the query region 
Q we have to traverse the LSD tree to determine all buckets 
whose associated cells intersect Q. The query algorithm 
moves down the LSD tree branching at each directory node 
w according to the following criteria: (Here D(w) denotes 
the data region which is the union of all data cells whose 
corresponding buckets can be reached from w.) 

1. If&nD(rightsonofw) = 0, 
continue with the left son of w. 

2. IfQnD(leftsonofw) = 0, 
continue with the right son of w. 

3. Otherwise continue with both sons of w. 

Note that Q n D(w) # 0 is the invariant condition of 
the loop of the query algorithm. Hence, in l., resp. 2.. 
C$ ; z; son of w) # 0, resp. Q rl D(right son of w) 

, . 

3. The LSD tree for non-point objects 

We explain the non-point situation for k-dimensional 
intervals which serve as bounding boxes for arbitrary geo- 
metric objects in many applications. We restrict the dis- 
cussion to the 2-dimensional situation, i.e. to rectangles in 
the plane, because a generalization to higher dimensions is 
straightforward. 

To store a set of rectangles in the LSD tree we use 
the transform&on technique (lI-Iin851, [SK883), i.e. 2- 
dimensional rectangles are stored as 4dimensional points. 
We choose the simple corner representation [SK881 which 
considers for each of the two dimensions the lower and 
upper bounds of the rectangles to be distinct dimensions. 

The idea is simple but several severe problems arise 
from this approach. First, there is a strong conelation be- 
tween upper and lower bounds, because for each dimension 
the upper bound of a rectangle is always greater than (or 
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equal to) the lower bound. Because of the correlation all 
points are located in a triangular shaped subspace of the im- 
age space. Furthermore, since in almost all applications all 
rectangles are small compared to the data space, the points 
are located in a small strip above the diagonal. 

Data structures which rely on a rectangular shaped data 
space and partition the data space into rectangular cells 
tend to degenerate for such applications, especially if they 
are based on hashing techniques. However, the LSD tree 
overcomes the drawbacks of the transformation technique 
if a refined bucket split strategy is used. Since the split 
strategy is crucial to the efficiency of the LSD tree for non- 
point objects, we devote the next section to this topic. 

3.1 The split strategies 

In this section, we discuss split strategies suitable for 
the skew data distributions induced by the transformation 
technique. First of all, a suitable split strategy must take into 
account the correlation between lower and upper bounds of 
rectangles in the original dimension I, resp, 2, stored in 
dimensions 1 and 2, resp. 3 and 4. 

We will explain two different split strategies, a data 
dependent and a distribution dependent one. The data 

dependent split strategy is simple: For the split dimension 
under concern the average over all coordinates of objects 
stored in the bucket to be split including the object to be 
inserted is chosen as the split position. 

The distribution dependent split strategy is a combi- 
nation of two basic (distribution dependent) split strategies 
each of them designed for an extreme situation. The first 
split strategy relies on the (fictitious) assumption that all 
rectangles are degenerated to points, i.e. the upper and 
lower bounds coincide for each dimension. Here, all im- 
age points are located on the diagonal w.r.t the dimensions 
1 and 2, resp. 3 and 4. A suitable split strategy for this case 
is to split the data cell into two cells containing equally 
long parts of the diagonal. The split position achieved by 
this split strategy is denoted bp SPr in Figure 3.1. 

The second basic split strategy relies on the assump- 
tion that all image points am uniformly distributed over the 
triangular subspace of the image space b&t from dimen- 
sions 1 and 2, resp. 3 and 4. Here, a suitable split strategy 
halves the data cell into two cells of equal areas. The split 
position achieved by this split strategy is denoted bp SPs 
in Figure 3.1. 

The split position SP calculated by the combined split 
strategy is the weighted sum of SPt and SP2: 

SP = aSPI +(1 -a)SPs ) where 

(Here Ld denotes the lower and & the upper bound of the 
data space wf.t the split dimension d) 

The effect of the choice of Q is that for large data 
cells SP approaches SPi while for smalI celIs SP approaches 

Figure 3.1: Split positions achieved by two basic split strategies 

SP2. This effect is desirable for the usual situation where 
rectangles tend to be small compared to the data space and 
hence the image points tend to be located in a strip above 
the diagonal. We performed simulations with other roots 
but the lo* root behaved well in all cases. 

33 The operations 
In this section, we discuss the LSD tree operations for 

non-point objects. The operations exuct match, insertion 
and deletion are identical to the corresponding operations 
for 4dimensional points. In the case of a range query 
the situation is different, because the original 2dimensional 
query region and the 4dimensional image query region 
differ substantially because of the different representations 
of the objects. 

In a range query, the query region can either be an 
orthogonal rectangle, a circle or a polygon. Independent of 
the three kinds of query regions we distinguish between two 
query types for a set of rectangles % (see [SKSS]): 

1. Rectangle intersection: 
GivenaqueryregionQfindallR~~s.t. QnR# 0. 

2. Rectangle enclosure: 
Given a query region Q tind all R E % s.t. R E Q. 

In contrast to the point situation, the algorithm for 
circular and polygonal range queries is different from the 
algorithm for orthogonal range queries. However, due to 
space limitations of the paper we discuss only orthogonal 
range queries. 

We begin explaining the rectangle intersection problem 
for orthogonal query regions. In this case, the original 2- 
dimensional query region for rectangles pi, ut] x ps, us] is 
transformed into a 4dimensional query region for points. 

For each original dimension d E (1,2) we define 

~#d,ud]) sf [Ld,Ud] x [Id,Ud] . 

Then for the original query region pi, ui] x [1s, us] the im- 
age tegion is given by cp(@t , ui]) x(p([ls, ui]). Figure 3.2 
illustrates the transformation of a query interval &I, ttd]. 

The area of the.image region can be reduced by using 
the transformation ‘p’ instead of 9. Let & denote the 
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Figure 3.3: Improved transformation of query interval [b. ~1 

greatest extension of an inserted rectangle for dimension 
d, then 

%” &ud]) sf [Id - Ed,Ud] x [Id,Ud + Ed] . 

Figure 3.3 illustrates the improved transformation of a query 
interval [ld, udl. 

For the image region the range query algorithm for 
points can directly be used. 

We continue tbe discussion with the rectangle enclosure 
problem for orthogonal query regions. Since in this case for 
each dimension d both, the lower and the upper bound of 
a rectangle, must be enclosed in the query interval [ld, ~1, 
we use the simple transformation 

19(b,ud]) d’ [bud] x [bud] . 

The image query region for the rectangle enclosure 
problem is smaller than for the rectangle intersection prob- 
lem. Hence, an enclosure query can be performed more 
efficiently than an intersection query. Note that this holds 
only for transformation techniques and not for clipping or 
overlapping cell techniques. 

Figure 4.1: “Uniformly distributed” rectangles 

4. Performance evaluation 

To assess the merits of the LSD tree we have evaluated 
the performance for rectangles in the plane. We do not 
discuss the efficiency of the LSD tree for points, because 
the performance for rectangles is an upper bound of the 
performance for points, We have implemented an LSD tree 
on a SUN workstation in Modula-2. 

The inter& directory is stored in an array storing 1000 
nodes. An external directory page of sire 512 bytes contains 
subtrees up to a height of 6 organized as sequential heaps. 
We choose bucket capacities of 5 and 50 rectangles. 

The simulations are based on a sophisticated random 
.rectangle generator creating sets of 10,000 and 100,000 
rectangles according to two different distributions. These 
distributions are illustrated for 1,000 rectangles in Figures 
4.1 and 4.2. Since the cover quotient remains constant at 
2.5, in the case of 10,000, resp. 100,000, rectangles the 
average area of a rectangle is 10, resp. 100, times smaller 
than for 1,000 rectangles. 

Bucket splits are performed according to the split strate- 
gies described in section 3.1. In the case of the data depen- 
dent split strategy we used a refined insertion procedure: If 
a new rectangle causes the split of a bucket bi which has 
a brother bucket b, i.e. both buckets stem from the same 
bucket split with split line S, and the capacity of b is not 
exhausted, the object which is closest to S in bi is moved to 
b and S is updated in the directory. Then the new rectangle 
can be inserted without a bucket split. Otherwise, bt is split. 

First, we focus on the directory evaluation. We have 
randomly inserted 10,000, resp. 1OO,ooO, uniformly dis- 
tributed rectangles and 10,000, resp. lOO,OCQ skew dis- 
tributed rectangles into an initially empty LSD tree. To sim- 
ulate a “worst case” situation, 100,ooO uniformly distributed 
rectangles have been inserted in “sorted” order. The “sort- 
ing” has been carried out by random insertions into an LSD 
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10,ooo ” ” ” 3.419 994 21 1 221 18.7 46 

23,085 997 204 2 4,836 8.7 % 

loo.ooo ” distrib. ” 33,787 985 16 2 3501 16.2 % 

storage utilizatim 

buckets bucket overall 
utilia- storage 
lion UtiliZa- 

lion (loo 

zky 

2,865 69.8 % 68.2 % 

282 70.9 % 68.1 % 

2,838 70.5 % 68.8 % 

290 69.0 % 66.3 8 

392 60.6 % 59.0 % 

3266 61.2 % 59.6 % 

25,883 77.3 % 71.8 % 

2593 77.2 % 71.7 % 

Table 4.1: Size of the directory and storage utilization (directory page size = 512 bytes; max. number of internal nodes = 1OW) 

Figure 4.2: “Skew distributed” rectangles 

tree with bucket capacity 5 followed by a left to right scan 
through the LSD leaves. The results are shown in Table 4.1. 

It comes out very clearly that the size of the directory 
does not depend on the data distribution but on the split 
strategy (and of course on the size of the data set and the 
bucket capacity). For unsorted situations, the data depen- 
dent split strategy performs significantly better than the dis- 
tribution dependent variant, while, as expected, in the sorted 

case the distribution dependent split strategy is the winner. 
For the sorted case and the data dependent split strategy the 
unbalance of the directory is reflected mainly by the height 
of the internal directory. Because of the external balancing 
property the number of external directory levels is 2 as for 
the distribution dependent split strategy. The utilization of 
the directory pages is mainly influenced by the split strategy 
and the bucket capacity (and, for the data dependent split 
strategy, of course by the order of insertion). 

For the same test set we have also measured the bucker 
utilization which is defined as 

number of stored objects 
number of buckets x bucket capacity 

and the overall storage utilization defined as 

number of stored objects x 100 bytes 

bytes needed for the LSD tree 

which includes the storage space needed for the directory 
and some administrative informations. Empty buckets are 
not allocated but represented by nil-pointers in the directory. 
The results m shown in ‘pdble 4.1. 

For the data dependent split strategy the bucket utiliza- 
tion is independent of the object distribution and slightly 
above the theoretical value of 69.3% (In 2). Due to the 
refinement of the insertion procedure which prefers small 
bucket capacities the utilization is even higher for bucket 
capacity 5. The bucket utilization of 86.6% for the sorted 
situation is a consequence of the same effect. For the dis- 
tribution dependent split strategy the bucket utilization is 

- 51- 



number of rectangle 
-gl= distribution 

unifoml 

*, 

skew 

I 

unifolm 

skew 

I lOO,OCHI skew 

Table 4.2: Rang query pexformauce (directory page size = 512 bytes; max. number of internal no&s = 1000) 

below 69% but still above 60% and hence not bad at all. A 
comparison of the overall storage utilization and the bucket 
utilization convincingly demonstrates that the storage space 
needed to accommodate the directory is rather small com- 
pared to the data storage space. 

We now turn our attention to the performance of the 
LSD tree operations. Clearly, in an exact match at most i 
directory pages and one bucket must be read if the directory 
contains i external levels. The performance of the insertion 
procedure is easy to estimate, too. For bucket capacity 5, 
resp. 50, we have between 4 and 5, resp. less than 3, ex- 
ternal accesses (directory page and bucket I/G) per inserted 
object, if 100,000 objects are inserted into an initially empty 
LSD tree irrespective of the split strategy used. 

Hence, we focus on range queries. We concentrate on 
the intersection query because its performance is an upper 
bound of the enclosure query performance. (Experiments 
show that the enclosure queries can be carried out 10% faster 
than intersection queries on the average.) Table 4.2 shows 
the average number of external accesses for two types of 
range queries. For square regions of sixes 0.5% and 5% 
of the size of the data space, we have performed 20 range 
queries each, at random positions. 

As with all other data structures larger query regions 
lead to fewer disk accesses per found object, because the 
number of buckets completely contained in the query region 
grows faster than the number of buckets intersected by the 
region boundary. 

Another important characteristic number is the hit ratio, 
defined as 

number of objects found 

bucket capacity x disk accesses ’ 

The hit ratio is higher for smaller bucket capacities, be- 
cause of the higher selectivity. For the data dependent split 
strategy, bucket capacity 5, skew distribution, and query 
type 2, the hit ratio is 66.4% if only bucket accesses are 
counted. This is nearly optimal with respect to a normal 
bucket utilization of 69.3%. For smaller query regions and 
larger bucket capacities the hit ratio deteriorates: Changing 
the bucket capacity to 50 yields 54.2%. 

The performance results in the sorted situation can be 
explained by the fact that the data cells tend to be long and 
small for the dam dependent split strategy in this case. 

For the remainder of this section we compare the per- 
formance of the LSD tree and the multilayer gridfile [SW881 
using 5 layers (5L-GF for short). According to the multi- 
layer philosophy layer 5 is implemented as a clipping grid 
file. We have inserted 50,000 uniform distributed rectan- 
gles in random order into both initially empty structures. 
The cover quotient is 2.5 and the bucket capacity varies 
from 5 to 30 in steps of 5. It turns out that the SL-GF is not 
able to work with bucket capacity 5. After the insertion of 
20,974 rectangles a bucket of the clipping layer could not 
be split because each rectangle stored in this bucket covered 
the whole corresponding data cell. (For the skew data dis- 
tribution the 5L-GF runs into a similar error situation even 
for bucket capacity 10.) 

Figure 4.3 shows the bucket utilization for the LSD tree 
with the data dependent split strategy (LSD&J, the LSD 
2 wiem~G~tribution dependent split strategy (LSD&, 

. 
The range query performance is illustrated in Figures 

4.4 and 4.5. We have used the same query types as before. 
For the first, resp. second type, 308, resp. 2712, objects are 
selected on the average. 
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Figure 4.3: Bucket utilization 
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Figure 4.4: Range query performance (0.5% of the data space) 

Figure 4.5: Range query performance (5% of the data space) 

It turns out that the LSD tree with the data dependent 
split strategy clearly outperforms the SL-GF while the LSD 
tme with the distribution dependent split strategy is at least 
as efficient as the SL-GF. We have not compared the exact 
match and insertion performance because it is obvious that 
the 5 layers of the SL-GF do not allow a competitive 
pXfOIRllUlCe. 

It should be noted that besides its better overall perfor- 
mance the LSD tree is much easier to implement than the 
SL-GF and does not need an additional (completely differ- 
ent) “overtlow” data structure for storing objects which do 
not fit into the main structure. 

5. Conclusion 

We have proposed the LSD tree, a data structure sup- 
porting efficient spatial access to geometric objects. Its main 
advantages over other structures are that it performs well for 
all reasonable data distributions, cover quotients, and bucket 
capacities, and that it maintains multidimensional points as 
well as arbitrary geometric objects. These properties make 
the LSD tree extremely suitable for the implementation of 
spatial access paths in geometric databases. 

In addition to the performance evaluation an analysis 
of the expected storage utilization and the expected external 

height proves the efficiency of the LSD tree [HSW89]. At 
the moment, we are implementing more general (spatial) 
operations, like non-orthogonal range queries, point queries 
[SK881 and queries where geometric as well as standard 
attributes are qualified. Furthermore, we are embedding the 
LSD tree as spatial access path into the geometric database 
system Gral [Gtit89]. Hence, an empirical study about the 
benefits of the LSD tree in such an environment can be 
carried out in the near future. 
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