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The luxury effect beyond cities: bats respond 
to socioeconomic variation across landscapes
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Abstract 

Background: The luxury effect describes the positive relationship between affluence and organism diversity or 
activity in urban ecosystems. Driven by human activities, the luxury effect can potentially be found at a broader scale 
across different landscapes. Previously, the luxury effect relationship has been established within a city for two bat 
species, the red bat (Lasiurus borealis) and the evening bat (Nycticeius humeralis). We examined landscape-scale pat-
terns of bat activity distribution—using empirical data for seven bat species for the luxury effect. We also identified 
bat-land cover associations for each species. Across North Carolina, USA, we used the mobile transect survey protocol 
of the North American Monitoring Program to record bat activity at 43 sites from 2015 to 2018. We collected land 
cover and income data at our transect locations to construct generalized linear mixed models to identify bat-land 
cover and bat-income relationships.

Results: We found that across landscapes, activity of the red bat and the evening bat was positively correlated to 
income independent of land cover, consistent with previous single-city results. We found a negative relationship 
between hoary bat (Lasiurus cinereus) activity and income. All seven species had specific land cover associations. 
Additionally, we found a positive interaction term between income and evergreen forest for the red bat and a positive 
interaction term between income and woody wetland for hoary bat.

Conclusions: Our results demonstrated that the luxury effect is an ecological pattern that can be found at a 
broad spatial scale across different landscapes. We highlight the need for multi-scale ecology studies to identify the 
mechanism(s) underlying the luxury effect and that the luxury effect could cause inequity in how people receive the 
ecosystem services provided by bats.
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Background
The term “luxury effect” describes a functional rela-

tionship that links affluence and biodiversity in urban 

ecosystems [1]. Hope et  al. [1] suggested that in urban 

ecosystems the traditional resource-diversity relationship 

has been modified by human activities. Instead of natu-

ral resources being limiting factors, financial resources 

that interact with land use, legacy effects, and other 

sociocultural factors shape the biodiversity patterns in 

urban areas [1]. The luxury effect has been demonstrated 

worldwide across different plant and animal species in 

many urban areas (e.g. [2–6]).

There are several factors that could potentially drive 

the luxury effect in an urban area (see [7] for a com-

prehensive review). Affluence, generally measured by 

median household income, predicts where people live 

and how people manage their property. These human 

activities directly affect the physical structure, microcli-

mate, and vegetation of different parts of an urban area 

[8–11], which can consequently impact animal distribu-

tions [12–14]. Human activities are also influenced by the 

existing environmental heterogeneity and inequity in an 

urban area and may amplify the heterogeneity and ineq-

uity over time [15–18]. Therefore, the core driver of the 

luxury effect is the difference in human activities caused 

by the socioeconomic differences.
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The luxury effect is found in cities likely because urban 

ecosystems have the highest human density and are 

highly impacted by human activities [19]. As the world is 

urbanizing, it is important to examine whether the lux-

ury effect of urban ecosystems could be found in other 

landscapes and whether it is evident at a broader scale. At 

the global scale, studies have shown that terrestrial bio-

diversity hotspots are in low-income developing coun-

tries [20–22]. However, many biodiversity hotspots such 

as the Amazon rainforest or the south-central region of 

China have very limited human presence and still con-

tain primary vegetation [20]. In contrast, there has been 

no empirical study to examine the luxury effect in land-

scapes that all have been heavily modified by humans and 

compare the magnitude of this effect across landscapes.

Differences in human activities caused by socioeco-

nomic differences can be found in landscapes other than 

the urban landscape. In the US, the socioeconomic back-

ground of farmers influences whether they would partici-

pate in conservation-compatible practices and programs 

on farmlands [23]. In Australian agroecosystems, 

whether farmers participate in conservation schemes for 

farming practices is influenced by complex social factors 

[24]. Piemonti et  al. [25] demonstrated that watershed 

conservation and management actions could be influ-

enced by landowners’ socioeconomic background. Even 

in protected areas, various land use activities are driven 

by socioeconomic factors [26], such as exurban housing 

developments in areas close to nature for the wealthy [27, 

28] or cattle grazing on mesic habitats driven by rent eco-

nomics [29]. Therefore, it is reasonable to expect that the 

luxury effect in urban ecosystems can scale up spatially 

and be found across landscapes.

Previously, a single-city study of bat distribution pat-

terns indicated bats responded to urban affluence vari-

ations. Li and Wilkins [4] found that in a medium-sized 

city (Waco, Texas, USA), two tree-roosting bat species, 

the eastern red bat (Lasiurus borealis) and the evening 

bat (Nycticeius humeralis) had a higher probability of 

presence in neighborhoods with higher median house-

hold income. Further, in this study these two species 

responded to vegetation coverage, which was consistent 

with their habitat preference [30]. However, contradic-

tory to studies that examine urban vegetation and afflu-

ence (e.g. [8, 31]), vegetation coverage was not correlated 

to median household income in Waco. The independence 

of vegetation coverage and median household income, 

and that both factors affect bat distribution [4], suggests 

that the luxury effect is more complicated than a simple 

altering of habitat availability [1].

Bats are able to explore large areas and are associ-

ated with different land cover types [32, 33]. In France, a 

landscape scale study showed that four bat species avoid 

intensive agriculture whereas the effect of urban land 

cover varies by species [34]. In the USA, two bat species 

positively respond to urban land cover [35]. In Italy, the 

lesser horseshoe bat (Rhinolophus hipposideros) distribu-

tion at the landscape scale is associated broad-leaved for-

ests [36]. In addition to land cover types, socioeconomic 

differences among landscapes elements could potentially 

be perceived by bats and affect distribution.

The objective of our study was to examine if the luxury 

effect could be found in bats at the landscape scale using 

empirical data collected across multiple urban centers. 

We also aimed to identify species-specific bat-land cover 

associations and test whether the luxury effect and bat-

landcover association were two independent processes. 

Because there are only a few bat species in most parts of 

the US and the occurrence of these species is common, 

alpha diversity is less informative than the activity of bats 

[7]. Hence, we selected seven common North American 

bat species as the target to examine the luxury effect in 

species-specific bat activity. The target species were the 

big brown (Eptesicus fuscus), eastern red (L. borealis), 

hoary (L. cinereus), silver haired (Lasionycteris noctiva-

gans), evening (Nycticeius humeralis), tricolored (Per-

imyotis subflavus), and Mexican free-tailed (Tadarida 

brasiliensis) bat. Specifically, we hypothesized that across 

different landscapes, the luxury effect would be found 

in L. borealis and N. humeralis but not in other species 

based on previous single-city results [4]. We predicted 

that both species would positively respond to affluence 

as measured by median household income. Furthermore, 

we expected no correlation between affluence and any 

specific type of land cover and species-specific bat-land 

cover associations.

Results
Between 2015 and 2018, we collected 10,899 bat passes 

that met identification criteria. From these bat passes 

we identified 805 passes of E. fuscus, 2609 passes of L. 

borealis, 158 passes of L. cinereus, 585 passes of L. noc-

tivagans, 1857 passes of N. humeralis, 1016 passes of P. 

subflavus, and 350 passes of T. brasiliensis. Among the 

43 sites, deciduous forest was the most common land 

cover type followed by evergreen forest and pasture/hay 

(Table 1). Of all 15 land cover types, 13 were present in all 

sites (Table 1). High intensity developed land was absent 

in one site and emergent herbaceous wetland absent in 

seven sites. The average income measured at the 43 sites 

was $45,882.42 (US dollar). The range for income was 

$32,075.15 to $65,285.81 (all US dollar, Table 1).

For species-specific bat activity–land cover relation-

ships, we found that E. fuscus activity was positively cor-

related to all four types of urban development as well as 

deciduous forest (Table  2, Fig.  1). Negative correlations 
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were found between E. fuscus activity and evergreen for-

est, shrub, grassland/herbaceous, cultivated crops, and 

both types of wetlands (Table 2, Fig. 1). Lasionycteris noc-

tivagans showed similar association patterns to E. fuscus 

except that L. noctivagans did not respond to grassland/

herbaceous land cover. Tadarida brasiliensis had posi-

tive correlations with urban development, and the same 

negative bat activity–land cover relationships as L. nocti-

vagans. Additionally, T. brasiliensis activity decreased as 

barren land cover increased (Table 2, Fig. 1). 

In contrast to the three species above, L. borealis and 

P. subflavus, had negative relationships with all 4 types 

of urban development land cover (Table 2, Fig. 1). Activ-

ity of both species also decreased with increased bar-

ren land cover. As evergreen forest, mixed forest, and/

or shrub land cover increased, so did L. borealis activ-

ity. However, there was a negative relationship between 

emergent herbaceous wetland land cover and L. borea-

lis activity. The only land cover type that increased P. 

subflavus activity was woody wetland (Table  2, Fig.  1). 

Lasiurus cinereus and N. humeralis activity was not 

associated with urban development land cover. Lasiurus 

cinereus activity increased with deciduous forest cover 

and decreased with evergreen forest, shrub, grassland/

herbaceous, pasture/hay, and both types of wetland cover 

(Table 2, Fig. 1). Nycticeius humeralis activity decreased 

with pasture/hay cover and increased with evergreen for-

est, shrub, or woody wetland cover (Table 2, Fig. 1).

As hypothesized, there was a positive relationship 

between bat activity and income for L. borealis and N. 

humeralis (Fig.  2). We also found a negative correlation 

between income and L. cinereus activity (Fig. 2). No bat-

income relationship was found for the other species. In 

the post hoc modeling for L. borealis and N. humeralis, 

we examined interactions between income and land 

cover type that had a positive relationship on bat activ-

ity. We found a positive interaction term between income 

and evergreen forest for L. borealis activity (Table 3), sug-

gesting the positive effect of income on L. borealis activ-

ity was stronger in areas with more evergreen forest. No 

interaction term was found for other land cover–income 

pairs for L. borealis and N. humeralis. We examined 

interactions between income and land cover variables 

that had a negative relationship with L. cinereus activity. 

We found a positive interaction term between income 

and woody wetland for L. cinereus activity (Table  3), 

suggesting L. cinereus activity would decrease more as 

income increased in areas with more woody wetlands.

Discussion
Our study showed that bat-land cover associations at 

the landscape scale were consistent with previous stud-

ies at finer scales. Both L. borealis and N. humeralis are 

tree roosting species [37, 38] associated with tree cover 

at the local scale (e.g. [4, 39, 40]). Herein, we found the 

same relationships between bat activity and certain types 

of forest cover at a much broader scale. Moreover, N. 

humeralis can additionally roost in buildings whereas 

L. borealis roosts exclusively in trees [37, 38, 41]. Thus, 

it was not surprising that we found L. borealis negatively 

associated with urban development whereas the response 

of N. humeralis to urban development was neutral.

Interestingly, our study also showed that the luxury 

effect could be found across landscapes. After account-

ing for spatial and temporal relationships, two previously 

studied species, L. borealis and N. humeralis, showed the 

same positive response to affluence as found in a single-

city study [4]. However, certain ecological traits might 

not be sufficient to explain why the luxury effect could 

be found across different landscapes beyond urban eco-

systems. This is because income was not correlated with 

any land cover type across our study area. Furthermore, 

there was a positive interaction term between income 

and evergreen forest cover for L. borealis, suggesting that 

the luxury effect was more profound in areas with more 

evergreen forest. This interaction, consistent with Li and 

Wilkins [4], suggests that income and land cover habitat 

might function through different mechanisms to shape 

the bat activity patterns.

Certain mechanisms have been suggested for the 

luxury effect. For sedentary organisms, such as plants, 

Table 1 Mean, standard deviation, and  range for  land 

cover (percentage in  5  km buffer) and  income (US dollar) 

used to examine bat-land cover/bat-income relationships

Variable Mean SD Range

Developed, open space 6.82 4.38 2.02–22.27

Developed, low intensity 2.43 2.87 0.11–12.44

Developed, medium 
intensity

0.85 1.23 0.01–5.71

Developed high intensity 0.32 0.52 0–2.76

Barren land (rock/sand/clay) 0.39 0.93 0.01–5.77

Deciduous forest 32.82 28.89 0.01–87.51

Evergreen forest 12.00 9.15 0.59–45.05

Mixed forest 2.59 2.05 0.15–8.25

Shrub/scrub 5.93 5.13 0.52–21.04

Grassland/herbaceous 4.54 3.30 0.37–15.00

Pasture/hay 10.98 11.07 0.01–48.09

Cultivated crops 7.64 12.34 0.01–45.11

Woody wetlands 9.53 13.58 0.02–55.17

Emergent herbaceous 
wetlands

1.09 2.38 0–11.69

Median household income 
($)

45,882.42 6539.29 32,075.15–65,285.81
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human actions determined by affluence can directly 

alter the physical environment, such as water availability, 

which may favor certain ecological traits [1, 6, 7]. Simi-

larly, water sources could potentially affect more mobile 

species. Our land cover data has a 30-m resolution [42], 

which did not capture small water bodies such as small 

creeks, ponds, or swimming pools. The importance of 

both natural and artificial water source to bats has been 

established (e.g. [43–46]) and wealthier people prefer to 

purchase properties that include water bodies for various 

reasons [27, 28, 47]. Thus, we speculate that water avail-

ability, especially small water bodies might contribute to 

the luxury effect found at the broad scale.

In addition to water sources, food or prey sources, 

which may be influenced by multiple environmental 

variables have been shown to affect predators’ distri-

bution [48]. Studies of highly mobile meso-carnivores 

demonstrated that wealthier neighborhoods had higher 

vegetation coverage to support more small mammals, 

which were the prey for urban coyotes [14, 49]. Simi-

larly, the importance of insect diversity and abundance 

to bats have been well documented (e.g. [50, 51]). Even 

though very few studies have compared insect diversity 

and abundance across landscapes with varying affluence, 

it is evident that high affluence organic farming promotes 

high insect diversity and abundance [23, 24, 52, 53]. Thus, 

we also speculate that insect food sources might also con-

tribute to the luxury effect. Future studies should exam-

ine the luxury effect on insects at broad spatial scales.

Both water and food sources could potentially con-

tribute to the luxury effect we found for L. borealis and 

N. humeralis. However, it is puzzling that we also found 

L. cinereus activity negatively associated with income, 

independent of land cover. In Li and Wilkins [4], L. 

cinereus activity was only recorded on the outskirts of the 

city, thus was not tested for the luxury effect. Lasiurus 

Table 2 Generalized linear mixed regression model coefficient 95% confidence interval for  bat-land cover, and  bat-

income relationships; significant relationships in italic

EPFU, Eptesicus fuscus; LABO, Lasiurus borealis; LACI, L. cinereus; LANO, Lasionycteris noctivagans; NYHU, Nycticeius humeralis; PESU, Perimyotis subflavus; TABR, Tadarida 

brasiliensis

Variable EPFU LABO LACI LANO NYHU PESU TABR

Developed open 
space

0.0423 to 0.1030 − 0.0707 to 
− 0.0315

− 0.0283 to 
0.0615

0.0520 to 0.1135 − 0.0392 to 
0.0049

− 0.0958 to 
− 0.0290

0.0742 to 0.1493

Developed low 
intensity

0.0368 to 0.1449 − 0.1060 to 
− 0.0476

− 0.0466 to 
0.1315

0.0491 to 0.1501 − 0.0435 to 
0.0262

− 0.1392 to 
− 0.0332

0.0771 to 0.1999

Developed 
medium 
intensity

0.0869 to 0.3337 − 0.2495 to 
− 0.1107

− 0.1079 to 
0.2953

0.1450 to 0.3602 − 0.1014 to 
0.0526

− 0.2908 to 
− 0.0655

0.1949 to 0.4617

Developed high 
intensity

0.0821 to 0.6138 − 0.5413 to 
− 0.2088

− 0.4174 to 
0.5624

0.2798 to 0.7725 − 0.2450 to 
0.1284

− 0.6791 to 
− 0.0953

0.3627 to 0.9565

Cultivated crops − 0.0763 to 
− 0.0324

− 0.0086 to 
0.0072

− 0.0249 to 
0.0374

− 0.0445 to 
− 0.0075

− 0.0101 to 
0.0058

− 0.0145 to 
0.0083

− 0.0484 to 
− 0.0125

Pasture/hay − 0.0179 to 
0.0112

− 0.0074 to 
0.0076

− 0.0734 to 
− 0.0232

− 0.0109 to 
0.0179

− 0.0178 to 
− 0.0008

− 0.0235 to 
0.0017

0.0040 to 0.0362

Barren land − 0.0080 to 
0.0231

− 0.2831 to 
− 0.0099

− 0.9462 to 
0.2207

− 0.4192 to 
0.1504

− 0.061 to 
0.2311

− 0.8276 to 
− 0.2072

− 0.9151 to 
− 0.0750

Grassland/herba-
ceous

− 0.1033 to 
− 0.0152

− 0.0314 to 
0.0232

− 0.2376 to 
− 0.0713

− 0.0546 to 
0.0348

− 0.0179 to 
0.0466

− 0.0846 to 
0.0030

− 0.0253 to 0.0890

Shrub − 0.1740 to 
− 0.0801

0.0097 to 0.0412 − 0.2020 to 
− 0.0065

− 0.1086 to 
− 0.0334

0.0081 to 0.0441 − 0.0039 to 
0.0514

− 0.1076 to 
− 0.0269

Deciduous forest 0.0085 to 0.0236 − 0.0036 to 
0.0034

0.0227 to 0.0528 0.0003 to 0.0138 − 0.0068 to 
0.0002

− 0.0041 to 
0.0073

− 0.0006 to 0.0127

Evergreen forest − 0.0588 to 
− 0.0178

0.0004 to 0.0221 − 0.1213 to 
− 0.0309

− 0.0447 to 
− 0.0045

0.0031 to 0.0268 − 0.0073 to 
0.0272

− 0.0604 to 
− 0.0084

Mixed forest − 0.1124 to 
0.0421

0.0030 to 0.0879 − 0.2002 to 
0.0334

− 0.0946 to 
0.0641

− 0.0513 to 
0.0434

− 0.0027 to 
0.1364

− 0.0429 to 0.1412

Emergent 
herbaceous 
wetlands

− 0.2695 to 
− 0.0023

− 0.0775 to 
− 0.0007

− 1.2877 to 
− 0.0500

− 0.3173 to 
− 0.0799

− 0.0263 to 
0.0526

− 0.0734 to 
0.0516

− 0.3799 to 
− 0.1094

Woody wetlands − 0.0706 to 
− 0.0209

− 0.0028 to 
0.0118

− 0.0987 to 
− 0.0003

− 0.0663 to 
− 0.0259

0.0016 to 0.0169 0.0001 to 0.0214 − 0.0520 to 
− 0.0183

Income − 1.2980 to 
0.9523

0.1031 to 1.3445 − 3.1720 to 
− 0.4910

− 1.3846 to 
0.8113

0.4060 to 1.8020 − 1.2866 to 
0.6646

− 0.8104 to 1.8686
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cinereus is a solitary tree foliage roosting species [54], 

which is consistent with its association with decidu-

ous forests in our study. Lasiurus cinereus also prefers 

open space to forage [41, 54]. However, none of these 

ecological traits explains the association with low income 

areas. One possible explanation could be that L. cinereus 

responded to nighttime illumination. Regional economic 

activities have been found to be correlated to nighttime 

Fig. 1 Generalized linear mixed model regression coefficient 95% confidence intervals (based on 1000 rounds of bootstrapping) in relation to 0 (0 

as red vertical dash line; non-overlapping means significant in yellow solid line, overlapping means non-significant in blue dash line) for bat-land 

cover relationships; EPFU, Eptesicus fuscus; LABO, Lasiurus borealis; LACI, L. cinereus; LANO, Lasionycteris noctivagans; NYHU, Nycticeius humeralis; PESU, 

Perimyotis subflavus; TABR, Tadarida brasiliensis 

Fig. 2 Generalized linear mixed model regression coefficient 95% confidence intervals (based on 1000 rounds of bootstrapping) in relation to 0 (0 

as red vertical dash line; non-overlapping means significant in yellow solid line, overlapping means non-significant in blue dash line) and scatter 

plot with estimated significant regression trend line/range for bat-income relationships; EPFU, Eptesicus fuscus; LABO, Lasiurus borealis; LACI, L. 

cinereus; LANO, Lasionycteris noctivagans; NYHU, Nycticeius humeralis; PESU, Perimyotis subflavus; TABR, Tadarida brasiliensis 
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illumination [55]. How bats responded to nighttime illu-

mination have been found for certain species (e.g. [56, 

57]), a study on nighttime light effects on L. cinereus may 

help to understand our result.

As Ackley et  al. [2] suggested, affluence might be a 

holistic index of habitat structure that characterizes 

a combination of many different aspects of the envi-

ronment. Thus, future studies should focus on under-

standing what exactly bats perceive as habitat. It is also 

important to point out that the income range in this 

study was not particularly large. The mobile transect 

survey we used in our study required a certain length of 

a transect and a constant sampling speed [58] and thus 

prevented sampling in some urban areas with the high-

est income. Additionally, our study region lacked extreme 

low-income areas. Future studies should consider other 

sampling methods to include high-income urban areas 

and expand the spatial scale to include areas with lower 

oncome. Lastly, based on the intermediate disturbance 

theory, the relationship between bat activity and income 

could be non-linear [59, 60], which is also a topic for 

future studies.

For species that did not show linear association with 

income, our study provides a broad scale examination of 

their land cover associations, which are consistent with 

each species ecology based on fine scale studies. For 

example, P. subflavus, is tree roosting species that uses 

wetlands and forages on aquatic insects [44, 61–63]. Our 

analysis shows the same association with woody wet-

land at the landscape scale. Our results also support the 

importance of functional guilds in land cover selection 

for bats [36, 64–66]. For example, open space foragers, 

such as E. fuscus or T. brasiliensis showed associations 

with urban cover whereas tree roosting species gener-

ally associated with forest cover. Furthermore, our results 

showed that no single land cover type could benefit all 

seven species, suggesting the importance of conserv-

ing different land cover types for the conservation of 

bats. The species-specific bat activity-land cover asso-

ciations also call for more fine scale ecological studies 

to answer questions such as why L. noctivagans showed 

a positive association with deciduous forests but a nega-

tive one with evergreen forest. Lastly, our study analyzed 

the composition of land cover types and it is important 

to note that the spatial configuration of land cover types 

also affects the distribution of organisms [67]. Future 

studies should address how connectivity (or fragmenta-

tion) of certain types of land cover affects bat activity.

Conclusion
Our study demonstrated that the luxury effect in urban 

ecosystems can be found beyond cities. It is an ecologi-

cal pattern that is evident across different landscapes 

at a broad spatial scale. The luxury effect may function 

through a mechanism or mechanisms different from 

simple bat-land cover associations. Fine scale studies are 

needed to better understand the specific habitat require-

ments of bats, especially due to the rapid urbanization 

and increase of anthropogenic environments. We also 

suggest that the luxury effect should be examined in dif-

ferent taxa, worldwide. The consistency of the luxury 

effect between spatial scales we found in the state of 

North Carolina, USA and in one city, Waco, Texas, USA, 

suggests that the luxury effect is broad and scalable. 

Table 3 Post hoc generalized linear mixed regression model coefficient 95% confidence interval for  income and  land 

cover interaction term for  bat activity (significant terms in  italic); other variables in  the  models were reported 

in Additional file 2

Species Variable interaction term Regression coefficient 
95% confidence 
interval

Lasiurus borealis Income × evergreen forest 0.0044 to 0.1206

Income × mixed forest − 0.2522 to 0.3651

Income × shrub − 0.1867 to 0.0051

Lasiurus cinereus Income × evergreen forest − 1.8770 to 1.3499

Income × shrub − 1.5448 to 2.0974

Income × grassland/herbaceous − 1.8732 to 0.9881

Income × pasture/hay − 2.1516 to 0.0587

Income × woody wetlands 0.2140 to 2.3580

Income × emergent herbaceous wetlands − 0.4870 to 2.2350

Nycticeius humeralis Income × evergreen forest − 0.1348 to 0.0102

Income × shrub − 0.1485 to 0.0530

Income × woody wetlands − 0.2713 to 0.0537
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Importantly, the luxury effect has cascading impacts on 

both the environment and on humans [7]. There is an 

enormous value of bats to humans because of the ecosys-

tem services they provide such as insect predation, seed 

dispersal, and pollination [68–71]. Potentially, the ecosys-

tem services provided by bats may be unequally received 

by people with different levels of income, as found in 

urban vegetation, due to the luxury effect [3, 31, 72].

Methods
Study region and sampling site selection

We recorded bat activity across North Carolina (NC), 

USA (Fig.  3a). All seven target species have statewide 

distributions [35]. North Carolina is approximately 

140,000  km2 with three geographical regions (west to 

east): mountains, piedmont, and coastal plain. Accord-

ing to US Census data in 2016, the median household 

income of NC is approximately $50,000 (the 38th in the 

US), lower than the national value (approx. $59,000). 

The two largest metropolitan areas (Charlotte, NC and 

Raleigh, NC) are in the piedmont region. Smaller urban 

centers (e.g. Asheville, NC and Wilmington, NC) are pre-

sent in the mountains or coastal plain regions, function-

ing as regional hubs and tourism destinations [73].

We followed the North American Bat Monitoring 

Program (NABat) grid cell framework to select sites 

for field sampling. Detailed NABat grid cell framework 

and sampling site selection criteria were described in 

Loeb et al. [58] and Li and Kalcounis-Rueppell [35]. The 

NABat grid cell framework divides North America into 

10 km by 10 km grid cells. All grid cells are ranked with 

a generalized random-tessellation stratified survey design 

algorithm, which allows subsampling of NABat grid 

cells to form a set of sites that are spatially balanced yet 

Fig. 3 a North American Bat Monitoring Program (NABat) grid cells selected for the mobile transect survey across North Carolina with the 2016 

American Community Survey 5-year estimates of median household income shown at census block group scale (darker shade in blue indicates 

higher level of income, white indicates no data, income data available at https ://www.censu s.gov/progr ams-surve ys/acs/data/data-via-ftp.html). b 

A demonstration of a survey site, including one NABat grid cell, one mobile transect, one 5 km buffer, and 100 random points for extracting income 

data

https://www.census.gov/programs-surveys/acs/data/data-via-ftp.html
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randomized [58]. We treated one NABat grid cell as a 

sampling site. In 2015, we selected 32 sites for field sam-

pling. In each year from 2016 to 2018 we re-evaluated 

site availability based on logistic constraints and added 

sites to replace sites that were no longer available for 

sampling. We had 39, 33, 34 sites for 2016 to 2018 field 

seasons respectively. Overall, we had 43 unique sampling 

sites across the state of NC that represented different 

landscapes (Fig. 3a). Within the 43 sties we collected 276 

individual samples.

Bat mobile transect survey and acoustic identification

To sample bat activity at a site, we used the NABat mobile 

transect survey protocol. At a sampling site, we mapped 

a 30–35  km non-overlapping transect before the field 

season. Details of transect road selection and an exam-

ple of the transect spatial layout are presented in Li and 

Kalcounis-Rueppell [35]. Briefly, we used Anabat SD2 bat 

detectors and related car mount accessories (Titley Sci-

entific, Australia) for the NABat mobile transect survey 

protocol to record bat acoustic activity. All sampling was 

in June and July of each year. We only sampled on nights 

with no rain or heavy fog, and with wind speeds less than 

10  km/h. The transect survey started 45  min after sun-

set and was driven at a constant speed of 32  km/h and 

followed all local traffic rules. Each transect was driven 

twice a season within 7 nights. We also coordinated tran-

sect sampling dates at sites across years for consistency. 

For example, if a site was sampled early in June the first 

year, we endeavored to sample it early in June in subse-

quent years. For each transect sample, we recorded date, 

temperature, relative humidity, wind speed, and percent 

cloud cover at the beginning and the end of the survey. 

We used the mean of each variable collected at the begin-

ning and the end of the survey (except for date) as survey 

covariates for the transect sample.

All acoustic recordings were processed with Analook 

(Version 4.2g, Titley Scientific, Australia) for manual 

species identification, as in Li and Kalcounis-Rueppell 

[35]. We only included recordings with at least three 

complete and clear bat echolocation pulses for species 

identification and defined each qualified recording as a 

bat pass. The first author compared all recordings based 

on bat echolocation pulse characteristics (measured by 

AnaLook) suggested by O’Farrell et  al. [74] and Kunz 

and Parsons [75] with a known bat echolocation library 

described in Li and Kalcounis-Rueppell [35] to identify 

species. The species identification process was conserva-

tive. Certain species pairs, such as E. fuscus and L. noc-

tivagans, or L. borealis and N. humeralis, can produce 

similar echolocation pulses. For these pairs, we did not 

identify a recording to species unless the unique char-

acteristics of a species were found in multiple pulses. 

Further, we did not differentiate L. borealis from L. semi-

nolus (Seminole bats) as these two species cannot be 

identified acoustically [76]. We only identified the seven 

target species. For each species, the dependent variable 

for statistical analyses was bat activity measured as num-

ber of bat passes per transect. We did not standardize 

bat activity by survey time because the amount of time 

to drive a transect was uniform (approximately 60 min). 

Further, all dependent variables and statistical analyses 

were species specific and we did not make any compari-

sons across species because there are species biases in 

acoustic methods of bat surveys [77].

Land cover and affluence data collection

We used land cover as an indicator of general habitat 

structure experienced by bats [78, 79]. Our land cover 

data source was the National Land Cover Database 2016 

(NLCD 2016, [42]). Using ArcMap (10.4.1, ESRI, Califor-

nia), we generated a 5 km radius buffer around each tran-

sect. We selected 5 km as the buffer radius because it is 

the common nightly active range of most target bat spe-

cies [30, 35, 80, 81] and we were interested in examining 

the luxury effect at the landscape scale, not the local scale 

[40, 67, 82]. We used ArcMap to extract land cover raster 

images from NLCD 2016 and used FRAGSTATS [83] to 

calculate the percentage of each land cover type within 

the buffer as the indicator of the amount of each land 

cover type available. All land cover types described in 

Yang et al. [42] were considered. A preliminary multi-col-

linearity test of all land cover types showed that all four 

developed land cover types (open space, low, medium, 

high intensities) were highly correlated (all correlation 

coefficients > 0.6, all variance inflation factors > 5, Addi-

tional file 1; [84]).

To avoid multi-collinearity, we modeled each land 

cover type separately. Further, we opted to examine 

all land cover types without combining highly corre-

lated land cover types because different types of urban 

land cover may function as specific habitat structure for 

bats. For example, high intensity developed land which 

includes urban center office buildings might function as 

roosting habitat for bats [85, 86], and open space devel-

oped land which includes parks might function as forag-

ing habitat [87, 88].

We used median household income as the indicator 

of affluence [1, 7]. For our median household income 

variable, we used the 2016 American Community Sur-

vey (ACS) 5-year estimates published by the US Census 

(https ://www.censu s.gov/progr ams-surve ys/acs/data/

data-via-ftp.html), because we needed income data from 

all areas regardless of the community size (Fig. 3a; [89]). 

Median household income was available at the cen-

sus block group scale from the ACS 5-year estimates. 

https://www.census.gov/programs-surveys/acs/data/data-via-ftp.html
https://www.census.gov/programs-surveys/acs/data/data-via-ftp.html
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Because most census blocks did not align with the 5 km 

buffer and some blocks only overlay with the buffer by a 

small portion, we decided to use random points to cal-

culate the weighted average median household income 

for each buffer. At each bat sampling site, within the 5 km 

radius buffer of the transect, we used ArcGIS to gener-

ate 100 spatially random points (Fig.  3b) to extract 100 

median household income measurements for a site. We 

explicitly excluded census block groups with no data dur-

ing this process. We calculated the mean of 100 meas-

urements and used the mean as the “income” variable 

to represent the affluence of each bat sampling transect. 

Lastly, we calculated the variance inflation factor for 

income with land cover and found no collinearity (all cor-

relation coefficients < 0.3, all variance inflation factors < 2, 

Additional file 1).

Statistical analyses

All analyses were done in R (version 3.4.2, [90]). We mod-

eled each independent variable separately then explored 

possible interaction terms, post hoc, for selected land 

cover type and income pairs. We found that for all seven 

species, bat activity variance was different from the mean 

(all variance to mean ratios > 4). Therefore, we modeled 

bat activity with a negative binomial distribution [91, 92]. 

We also tested all possible spatial and temporal autocor-

relations in bat activity in the preliminary analysis, and 

adjusted models accordingly [93].

Temporal autocorrelation of bat activity could occur 

between the two sample nights at a site within a season. 

Since all sites had two nights within a season, we first 

used Wilcoxon signed-rank test to compare all night one 

with all night two, independent from survey covariates. 

We found a difference between night one and night two 

(p < 0.05 for all species). Next, we used generalized linear 

models as the preliminary analysis to if the survey covari-

ates would affect bat activity. We found that all species 

except for L. noctivagans were significantly affected by 

temperature (Additional file  2), consistent with previ-

ous work in the area [94]. Other survey covariates men-

tioned above had no effect on bat activity. Therefore, we 

included temperature as a covariate for all bat activity-

land cover/income models except for L. noctivagans.

All target bat species may migrate regionally during the 

winter and cause local population size difference between 

summers [95]. Hence, we also conducted preliminary 

analyses with generalized linear models to evaluate if 

year had an effect on bat activity. We found that year was 

Fig. 4 Box plot of species-specific bat activity (number of bat passes per transect) in relation to sampling years; all species responded to year 

significantly; EPFU, Eptesicus fuscus; LABO, Lasiurus borealis; LACI, L. cinereus; LANO, Lasionycteris noctivagans; NYHU, Nycticeius humeralis; PESU, 

Perimyotis subflavus; TABR, Tadarida brasiliensis 
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a significant variable for all bat species (Fig. 4, Additional 

file  2). Thus, we used generalized linear mixed-effects 

models to model bat activity-land cover/income rela-

tionship with year as a random effect using R package 

lme4 [84]. We further tested if the effect of temperature 

was nested within years by testing the interaction term 

between year and temperature. We found that for E. 

fuscus, N. humeralis, and P. subflavus, the effect of tem-

perature varied between years (Additional file  2). Thus, 

for these three species, temperature was modeled as a 

covariate nested within the random effect of year. In this 

way, temperature was treated as a random slope and the 

relationship between bat activity and temperature was 

allowed to vary in slope with each year.

To test for potential spatial autocorrelation, we used 

the null generalized linear mixed-effects model includ-

ing only temperature and year for all species but L. noc-

tivagans, and only year for L. noctivagans, to calculate 

model residuals for Moran’s I test using R package ape 

v5.2 [96, 97]. Using p < 0.05 as the significance criterion, 

we found spatial autocorrelation in E. fuscus, L. borealis, 

L. cinereus, L. noctivagans, and N. humeralis. For these 

five species, we calculated a spatial autocovariate using 

the distance-band based neighbor scheme and neigh-

bor weights of inverse distance with R package spdep 

v0.8-1 [14, 96, 98]. We included the spatial autocovari-

ate to account for spatial autocorrelation in the models 

for these species. Although other modeling techniques 

can address spatial autocorrelation [96, 99] we used this 

approach to support the negative binomial distribution 

for our bat activity variable (see [100]).

For a more robust inference, we applied bootstrap-

ping to the generalized linear mixed-effects models and 

generated confidence intervals for independent variables 

as suggested by Bates et  al. [101]. We resampled 1000 

times for each generalized linear mixed-effects model. 

As we modeled each independent variable separately, our 

models took approximately 6–7 degrees of freedom (one 

independent variable of interest, covariates temperature, 

spatial autocovariate, random effect year of 4 categories). 

Thus, our sample size of 276 was adequate for general-

ized linear mixed-effects models and bootstrapping 

[102]. From the bootstrapping process, we generated 

the 95% confidence interval for land cover and income. 

If the 95% confidence interval did not overlap with 0, 

the independent variable had a significant relationship 

with bat activity. For post hoc modeling, we applied the 

same modeling method to the interaction term between 

income and each significant land cover type variable for 

each species where income was significant. We only con-

ducted post hoc modeling for land cover type variables 

that had the same direction of effect, positive or negative, 

as income. For example, if income was found positively 

correlated with a species’ activity, we conducted post hoc 

modeling for the interaction term between income and 

each land cover type that was also positively correlated 

to bat activity. In a post hoc model, income and a selected 

land cover type and their interaction term were included 

(Additional file 2).
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