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Abstract 

Much attention has recently been focussed on the lysosome as a signalling hub. Following the initial 

discovery that localisation of the nutrient sensitive kinase, mTORC1, to the lysosome was essential 

for mTORC1 activation, the field has rapidly expanded to reveal the role of the lysosome as a 

platform permitting the coordination of several homeostatic signalling pathways. Much is now 

understood about how the lysosome contributes to amino acid sensing by mTORC1, the involvement 

of the energy sensing kinase, AMPK, at the lysosome and how both AMPK and mTORC1 feedback to 

lysosomal biogenesis and regeneration following autophagy. This review will cover the classical role 

of the lysosome in autophagy, the dynamic signalling interactions which take place on the lysosomal 

surface and the multiple levels of cross-talk which exist between lysosomes, AMPK and mTORC1. 
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1. What is the lysosome? 

The lysosome was first identified from tissue fractionation studies which aimed to analyse the 

intracellular distribution of rat liver enzymes [1]. Following the realisation that five acid hydrolase 

enzymes all were present in the same membrane-limited structure, it was proposed that these 

organelles were involved in intracellular digestion and hence termed lysosomes (Greek for digesti e 
od  [2]. 

Lysosomes are classically associated with the process of autophagy. Macroautophagy (hereafter 

referred to as autophagy) is a highly conserved process used to clear long-lived proteins and 

orga elles fro  the ell, i  hi h the l soso e for s the ulti ate a eptor  of the aterial to e 
degraded (reviewed in [3]). Cargo can also be delivered to lysosomes from the endocytic pathway 

and phagocytosis. Upon reaching the lysosome, the acid hydrolases it contains function to degrade 

the cargo. This releases breakdown products which can be recycled into new biomolecules. The 

lysosome itself must also be reformed, through the maturation of endolysosomes or 

reformation/budding from autolysosomes [4,5]. 

Lysosome biosynthesis requires the coordinated transcription of many genes encoding lysosomal 

proteins. These genes have a common palindromic motif, called the Coordinated Lysosomal 

Expression and Regulation (CLEAR) element, which is a target of transcription factor EB (TFEB) [6].  

More than 100 proteins are contained in the lysosome membrane, including the vacuolar H+-ATPase 

(v-ATPase). This is a multimeric protein pump which is required to pump H+ ions and thus provide 

the acidic environment required by lysosomal hydrolases (reviewed in [7]). 

It is becoming clear that the lysosome does not solely function as a recycling centre. There is now 

evidence that lysosomes can undergo secretion, which appears to be important for plasma 

membrane repair and defence from parasites (reviewed in [8]). The lysosome is also gaining 

prominence as a nutrient signalling hub, with the v-ATPase playing an important role in sensing 

amino acid availability. This review will focus on the expanded cellular role of the lysosome, 

describing both its well-known role in autophagy as well as new research linking it to nutrient 

signalling more broadly (Figure 1). 

2. The role of the lysosome in autophagy 

The autophagic process begins with the formation of an isolation membrane (phagophore). This 

membrane expands through the coordinated action of autophagy related (ATG) proteins to form an 

autophagosome and engulf the cytoplasmic cargo requiring degradation (reviewed in [9]). 

The Unc51 like kinase, ULK1 (known in yeast as Atg1), forms part of a complex which is key to early 

autophagy signalling (recently reviewed in [10]). The ULK1 complex becomes active under starved 

conditions and coordinates with parallel signals from the Beclin1 complex to initiate autophagosome 

formation. Following the generation of phosphatidylinositol-3-phosphate (PtdIns(3)P) via ULK1 and 

Beclin1 signalling, further ATG proteins are recruited to the nascent autophagosome.  Microtubule-

associated protein 1A/1B-light chain 3 (LC3), a member of the ATG8 family of ubiquitin-like proteins, 

becomes lipidated, allowing LC3 to associate with the autophagosomal membrane and drive 

autophagosomal maturation [11]. The expanded membrane loses association with ATG proteins 

prior to closure around its cargo, but retains LC3 on the inner surface (reviewed in [12]). 

Once sequestered, the cargo within the autophagosome is degraded through autophagosome-

lysosome fusion. The exact mechanism which ensures timely fusion is not fully eludicated, but it was 

hypothesised that soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor 



(SNARE) proteins were likely to be involved due to their known role in vesicle fusion [13]. Two 

studies then showed that the SNARE protein, syntaxin 17 (STX17), was important for 

autophagosome-lysosome fusion [14,15]. The proposed mechanism is that STX17 becomes tethered 

onto the outer surface of an autophagosome, where it recruits synaptosomal-associated protein 29 

(SNAP29) [15]. ATG14 associates with STX17 and SNAP29 to stabilise this complex on 

autophagosomes, priming it for interaction with vesicle associated membrane protein (VAMP) 8 

[16]. VAMP8 is localised on endosomes and lysosomes, thus the formation of a STX17-SNAP29-

VAMP8 complex allows autophagosome-lysosome fusion [15]. Furthermore, lysosomal-associated 

membrane protein (LAMP) 2, a commonly used marker of lysosomes, has recently been shown to be 

essential for STX17 expression on autophagosomes and the absence of LAMP2 also alters the 

recruitment of accessory proteins required for tethering and fusion [17]. 

Interestingly, autophagosome-lysosome fusion has been revealed as important for activating 

lysosomal function, as chemical inhibitors of the fusion process lead to a reduction in cathepsin B 

activity (as a read-out of lysosomal function) under starved conditions [18]. Additionally, cathepsin B 

activity fails to increase under starvation in cells with constitutively active mammalian target of 

rapamycin complex 1 (mTORC1) signalling [18]. mTORC1 signalling (covered in detail in Section 3 

below) drives anabolic activities within the cell, and so functions in contrast to catabolic processes 

such as autophagy. There are several layers of cross-talk between these pathways in which the 

lysosome plays a role, which will be covered in Section 4. 

3.1 mTORC1 regulates protein homeostasis and cell growth 

The mammalian target of rapamycin complex 1 (mTORC1) plays a fundamental role in the 

integration of metabolic, energy, hormonal and nutritional signals to promote biosynthetic pathways 

and suppress the catabolic process of autophagy. mTORC1 is a major regulator of protein 

homeostasis and thus cell growth. It exerts its effects by phosphorylating and controlling the activity 

of key ribosomal proteins such as ribosomal protein S6 (rpS6) and inhibiting the translation 

repressor, eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1). In addition, mTORC1 

controls lipogenesis, glycolysis and mitochondrial biogenesis [19]. mTORC1 is a multi-protein 

complex consisting of mTOR protein kinase, regulatory-associated protein of mTOR (Raptor) (a 

scaffold protein involved in substrate recruitment), mammalian lethal with SEC13 protein 8 

(mLST8)/GβL hi h sta ilises TO‘-Raptor interaction) [20] and the negative regulators proline-

rich Akt substrate of 40 kDa (PRAS40) [21] and DEP Domain Containing MTOR-Interacting Protein 

(DEPTOR) [22]. The ore ki ase protei  TO‘ as ell as LST /GβL a d DEPTO‘  also e ists alo g 
with rapamycin insensitive companion of mTOR (Rictor) and Sin1 as part of a second complex called 

mTORC2 [23]. The function and regulation of this complex is less well understood but has been 

demonstrated to influence the actin cytoskeleton. TO‘C s activity is under the influence of 

growth factors and it can phosphorylate Akt [23].  

 

The signals controlling mTORC1 originate from various sources in the cell including the plasma 

membrane (growth factors, hormones and cytokines via receptor tyrosine kinases and G-protein 

coupled receptors), cytoplasm (energy status via AMP-activated protein kinase (AMPK)), 

mitochondria (glutaminolysis, reactive oxygen species and energy status) and the lysosome 

(following degradation and liberation of nutrients). Well described phosphorylation signalling 

cascades, including phosphoinositide 3-kinase (PI3K)/Akt and Ras/extracellular signal–regulated 

kinase (ERK) can transduce these signals to mTORC1. In addition and downstream of these events, it 



is becoming increasingly clear that mTORC1 is further controlled by the differential localisation of a 

range of proteins and organelles, including itself, in response to mitogenic signals. Indeed the cell 

biology of mTORC1 signalling is expanding rapidly and at the very centre of this is the lysosome.  

 

3.2 mTORC1 at the lysosome 

The central role of the lysosome in regulating mTORC1 activity emerged from the identification that 

TO‘C s localisation to Rab7-positive vesicles is required for its activation [24]. Due to the lack of 

highly specific markers, the distinction between, and the relative importance of, the late endosome 

versus the lysosome for mTORC1 activity is currently not clear. However, as the literature has 

primarily focussed on the lysosome as the site of mTORC1 activation, for simplicity we will refer to 

the site of mTORC1 activation as the lysosome for the remainder of the review. mTORC1 localisation 

to lysosomes is dependent on a group of small GTPases called Rag GTPases and a pentameric 

complex called Ragulator (made up of late endosomal/lysosomal adaptor, MAPK and MTOR 

activator (LAMTOR) 1-5) [24–26]. Mammalian Rag GTPases are atypical members of the Ras 

superfamily of small GTPases and function via cycling between GTP and GDP states to control their 

function. They are larger in size (30-50kDa vs 20-25kDa) and lack post-translational prenylation 

modifications required for membrane localisation that are characteristic of typical small GTPases. 

Instead, they are anchored to the lysosomal membrane via the resident Ragulator complex that 

further acts as a guanine nucleotide exchange factor (GEF) for RagA/B [26,27] 

The ‘ag GTPases for  a heterodi er A or B ith C or D  here the a ti e  o for atio  o sists of 
RagA/B·GTP with RagC/D·GDP which can bind to Raptor and sequester mTORC1 to the lysosomal 

membrane [24–26]. Activation of Rag GTPases and mTORC1 localisation to the lysosome is regulated 

predominantly by amino acid sufficiency [24,25] but also glucose availability [28]. Indeed, 

overexpression of GTP-locked RagA/B renders mTORC1 constitutively active and insensitive to 

removal of amino acids [24,25]. The nucleotide status of Rag GTPases is regulated by a range of GEF 

and GTPase activating proteins (GAPs), with the most notable GEF being the Ragulator [26,27] and 

with GAPs including the GAP activity toward Rags (GATOR) 1 complex (towards RagA/B) [29], the 

tumour suppressor folliculin (FLCN) in complex with FLCN interacting protein (FNIP) 1/2 (towards 

RagC/D) [30] and leucyl tRNA synthetase (towards RagD) [31,32]. 

The recruitment of mTORC1 to the lysosomal membrane is generally considered to bring it into close 

proximity to its master regulator, Ras homolog enriched in brain (Rheb) which resides on the 

lysosome, as well as a number of other endomembranes. Although the exact mechanism of how 

Rheb activates mTOR kinase activity is unknown, the direct interaction between the two is sufficient 

in vitro and in vivo to promote the phosphorylation of mTORC1 substrates [33,34]. The most 

proximal regulator of Rheb is tuberous sclerosis complex (TSC) which consists of TSC1, TSC2 and 

TBC1D7, where TSC2 has GAP activity towards Rheb and enhances the intrinsic hydrolysis of GTP to 

GDP, thus inactivating Rheb and inhibiting mTORC1 [35–39]. TSC is a signalling node that integrates 

inputs from a range of pathways including Ras/ERK, AMPK and PI3K/Akt pathways and is heavily 

regulated by phosphorylation events [36,40,41]. Thus by providing a platform for both Rags and 

Rheb small G proteins, the lysosome creates a signalling hub that tightly controls mTORC1 activity.  

3.3.1 Sensing of amino acids: inside or out? 



Increasing evidence suggests that amino acids can signal to mTORC1 both from the cytoplasm and 

from within the lumen of the lysosome. The first evidence that amino acid sensing may propagate 

from within lysosomes came from the identification that the v-ATPase forms a signalling complex 

with the Ragulator-Rag GTPase.  The mechanism via which the v-ATPase may signal amino acid 

sufficiency is currently not understood; in particular the role of ATPase activity for mTORC1 

activation is not clear. While pharmacological inhibition of ATP hydrolysis activity can inhibit 

mTORC1 [42], others have demonstrated that amino acid starvation may increase ATPase activity 

[43]. Specifically, amino acid deprivation enhances the interaction between Rag GTPases, Ragulator 

and v-ATPase which may be a result of conformational changes [42] and potentially increased v-

ATPase assembly [43]. Furthermore, others have demonstrated that intraluminal pH of the lysosome 

is important to support mTORC1 activity [44]. It is unclear at present whether amino acid sensing via 

the lysosomal lumen involves the direct trafficking of amino acids from the cytoplasm into the 

lysosome or whether the amino acids sensed here are liberated via the degradative nature of the 

lysosome. For example, supplementation of methyl esters [45] or radio-labelled amino acids shows 

they rapidly accumulate in the lysosome [42], while over-expression of the proton-assisted amino 

acid transporter, PAT1, inhibits mTORC1, presumably by leaching amino acids from the lysosomal 

lumen [42]. However, other studies in cells and in vivo in Drosophila, show PAT1 actually supports 

amino acid-dependent mTORC1 activation [46,47] indicating a careful balance in amino acid 

distribution or transport is required for proper mTORC1 activity.  

3.3.2 Sensing of specific amino acids 

Leucine, arginine and glutamine have been widely shown to be the main amino acids contributing to 

mTORC1 activation [26,31,48–51]. A number of mechanisms via which these amino acids can 

influence mTORC1 have now been elucidated, demonstrating the complex control of amino acid 

sensing (Figure 2).  

Glutamine contributes to mTORC1 activation via the process of glutaminolysis which produces 

alpha-ketoglutarate α-KG) and is supported by leucine availability as a co-factor for glutamate 

dehydrogenase (GDH) that participates in deamination of glutamine [50]. Interestingly, cell 

per ea le α-KG is sufficient to activate mTORC1 [50] and involves prolyl hydroxylases via a currently 

unknown mechanism [52]. Another mechanism of glutamine sensing has been identified, 

interestingly, in Rag knock-out cells via a mechanism dependent on the v-ATPase and involving the 

Golgi-localised GTPase Arf1 [51]. 

Recently, cytoplasmic sensors of leucine and arginine have been identified to work via very similar 

mechanisms. Sestrin (SESN) 2 has long been known to influence cellular growth and metabolism. 

Recent work has revealed that SESN2 can bind leucine and this is required for leucine-dependent 

mTORC1 activation [53–56]. (Further crosstalk mechanisms between the sestrin proteins, mTORC1 

and AMPK are detailed in Section 5.3). Via a similar mechanism, arginine has recently been shown to 

bind to a protein called CASTOR1.  This interaction prevents CASTOR1-GATOR2 interaction, freeing 

GATOR2 to inactivate GATOR1, leading to increased Rag-dependent mTORC1 signalling [57]. 

In addition to sensing via CASTOR1/2 in the cytoplasm and SLC38A9 [58] (see below) via the 

lysosomal lumen, arginine sensing has also been attributed to controlling the interaction of TSC2 

with Rheb at the lysosome [49]. TSC2 recruitment to lysosomes has been linked to various mitogenic 

signals, including growth factors, amino acids (most notably arginine), intracellular pH, osmotic 



stress and mechanical stimulation [49,59–63]. Growth factor and amino acid regulation of TSC2 

localisation occurs via a mechanism that involves Rheb [49,59], although Rag GTPases have also 

been implicated [61]. Interestingly the two reports that focus on Rheb as the main regulator of TSC2 

on lysosomes show that TSC interacts most strongly with Rheb in the absence of growth factors and 

amino acids (arginine) [49], specifically in its GDP-bound state [60] and prevents the interaction of 

Rheb with mTORC1. This is intriguing as classically, most GAP-substrate interactions are transient 

and the GAP quickly dissociates from its substrate upon GTP hydrolysis. This raises the very 

interesting possibility that TSC2 may have additional regulatory roles to that of a GAP. We noted for 

example that overexpression of GAP-deficient mutants of TSC2 can still inhibit Rheb-dependent 

mTORC1 activity and conversely wild-type TSC2 is able to inhibit constitutively active Rheb-

dependent mTORC1 [49]. It remains to be clarified whether perhaps TSC2 can function as a guanine 

nucleotide dissociation inhibitor (GDI) as well as GAP towards Rheb. This is a real possibility as no 

GEF has been identified to activate Rheb but it is generally considered to be highly loaded with GTP.  

3.3.3 Amino acid transporters 

If amino acids are transported directly into the lysosome, it is currently not clear which transporters 

may be involved. It is equally not clear whether specific, individual amino acids are sensed within the 

lysosome or overall amino acid concentration. At present, the only transporter that has been 

implicated in sensing of a specific amino acid from within the lysosome is SLC38A9 which 

participates in sensing arginine following starvation and re-feeding. SLC38A9 has been placed as part 

of the larger sensing platform on lysosomes, by interacting with Ragulator-Rag complex [58,64,65]. 

Interestingly, knock-down of SLC38A9 prevented starvation-induced re-localisation of mTOR to the 

cytoplasm [65] however the mechanism of this retention is unknown.  

The amino acid transporters, SLC7A5 and SLC3A2 (also known as LAT1 and 4F2hc, respectively) can 

be recruited to the lysosomal membrane via a protein called LAPTM4b which helps load the 

lysosome with leucine and activate mTORC1 [66]. These same transporters are important at the 

plasma membrane in controlling uptake of amino acids. Similarly, SLC1A5 transports glutamine into 

the cell, effectively loading the cell with glutamine which can then be used by SLC7A5/SLC3A2 to 

exchange with leucine [67].  

As mentioned above, the proton-assisted transporter, PAT1 has been implicated in controlling amino 

acid-dependent mTORC1 activity and it does this through an interaction with Rag GTPases on 

lysosomal membranes [46,47]. Interestingly, PAT1 transports amino acids including glycine, proline 

and alanine which are not potent mTORC1 activators so it not necessarily clear exactly how PAT1 

may influence mTORC1. More recently, the localisation of PAT1 to the lysosome has been shown to 

be negatively regulated by FLCN levels. Overexpressed FLCN leads to decreased PAT1 localisation to 

the l soso e, thus trappi g  i tra-lysosomal amino acids such as leucine and supporting mTORC1 

activity even in amino acid limiting conditions [68]. This is an interesting concept as FLCN is normally 

recruited to lysosomes during amino acid deprivation however perhaps at endogenous levels, FLCN 

concentrations are not sufficient to affect PAT1 and intracellular amino acid levels, thus mTORC1 is 

switched off [69]. Another member of the PAT family, PAT4, localises to the Golgi where it can 

interact with a complex including mTORC1 and the small GTPase, Rab1 to control serine and 

glutamine-dependent activation of mTORC1 [70] possibly by promoting the Rheb-mTORC1 

interaction [71].  



Future perspectives are likely to identify additional amino acid transporters both on the lysosome 

and plasma membrane that contribute to controlling intracellular concentrations of amino acids and 

subsequently mTORC1. One interesting avenue for this research is the idea that amino acid 

transporters can further act as transceptors, functioning via sensing and signalling amino acid 

availability rather than their transport. For example, the non-hydrolysable amino acid substrate, Me-

AIB can activate mTORC1 in cells expressing SLC38A2/SNAT2 [72]. This may also help to explain 

discrepancies including why SLC38A9 specifically senses arginine [58] when it has a higher transport 

affinity for other amino acids, such as glutamine [64] and why PAT1 transports amino acids that are 

not potent mTORC1 activators. It is likely that in addition to specific amino acids, a basal 

concentration of other amino acids is also required to activate mTORC1 [47]. Indeed we have seen 

previously that while leucine, arginine and glutamine together can minimally activate mTORC1, a full 

complement of the other amino acids is required to induce the maximal amino acid-dependent 

mTORC1 signal [49].   

4. Cross-talk between autophagy and mTORC1 

Autophagy is tightly regulated in an inverse manner to anabolic processes mediated by mTORC1 

activity. This regulation is maintained through several points of cross-talk between the two 

pathways. Direct cross-talk occurs through phosphorylation events mediated by the key kinase 

complexes, ULK1 and mTORC1. The ULK1 complex can phosphorylate Raptor within mTORC1 to 

inhibit mTORC1 activity when autophagy is active [73,74]. Conversely, mTORC1 can phosphorylate 

several components within the ULK1 complex in order to downregulate autophagy when nutrients 

are plentiful [75–77]. Additionally, mTORC1 has been shown to regulate the regeneration of 

lysosomes following activation of autophagy. Although mTORC1 is downregulated during the initial 

stages of autophagy, it becomes reactivated several hours later, with the reactivation dependent on 

the release of intracellular nutrients during the autophagic process [5]. This increased mTORC1 

activity inhibits further autophagy and permits the generation of proto-lysosomal tubules which 

extend from autolysosomes before maturing into functional lysosomes [5]. Lysosomal regeneration 

is dependent on phosphorylation of UV irradiation resistance-associated gene (UVRAG) by mTORC1. 

This phosphorylation of UVRAG enhances VPS34 lipid kinase activity, which appears to be critical for 

tubule scission [4]. These feedback mechanisms between mTORC1 and autophagy prevent excessive 

autophagy and keep anabolic and catabolic processes in check. 

Interestingly, feedback from the lysosome itself to mTORC1 signalling has also been documented. In 

addition to the generation of amino acids during autophagy which permit the reactivation of 

mTORC1 as described above [5], it is observed that in chondrocytes, pharmacological inhibition of 

lysosomal function activates mTORC1 signalling independently of autophagy [78]. Similarly, this 

cross-talk operates in reverse, where inappropriate mTORC1 activity prevents lysosomal activation 

under starvation [18]. 

Other interesting nodes of crosstalk between mTORC1 and autophagy are the adaptor protein p62 

(also known as SQSTM1) and microphthalmia-associated transcription factor (MITF). p62 is an 

important mediator of selective autophagy of ubiquitinated proteins [79]. p62 also interacts with the 

mTORC1 component, Raptor, as well as RagC/D [80], thus providing a signalling nexus for mTORC1 

activation on the lysosome.  These multiple roles of p62 have recently been reviewed elsewhere 

[81]. MITF, a basic helix-loop-helix leucine zipper transcription factor, drives transcription of all the 

subunits of the v-ATPase, thus regulating lysosomal metabolism [82]. A conserved regulatory loop 

was reported, whereby activation of mTORC1 at the lysosome (which requires the v-ATPase) 



functions to negatively regulate MITF activity by sequestering MITF in the cytoplasm. Therefore, 

mTORC1, v-ATPase and MITF provide a feedback mechanism to maintain cellular homeostasis [82]. 

In addition to nutrients and mitogenic signals controlling the localisation of mTORC1 and its 

regulators, they also control the subcellular distribution of lysosomes themselves [83]. In nutrient 

replete conditions, lysosomes are distributed to the cell periphery, while starvation leads to the 

perinuclear clustering of lysosomes. Some of the proteins involved in cellular lysosomal positioning 

have recently come to light. For example, the multisubunit complex, BORC, has been shown to 

associate with the cytosolic face of lysosomes, where it recruits the small GTPase, Arl8, to promote 

peripheral movement of lysosomes [84]. Functioning in reverse to mediate the transport of 

lysosomes towards the perinuclear region upon autophagy induction is the PI(3,5)P2—TRPML1—
ALG-2 pathway [85]. 

This lysosomal localisation directly impacts on mTORC1 activity and genetic manipulation of 

lysosomal localisation to the periphery activates mTORC1 while perinuclear clustering inhibits it [83]. 

It is currently not clear however exactly why or how lysosomal positioning can impact on mTORC1 

activity. Recently it was shown that maintenance of perinuclear lysosomes may be mediated by the 

starvation-induced recruitment of FLCN to the lysosome which recruits RILP and interacts with Golgi 

resident Rab34 to tether lysosomes in this region [86]. Furthermore, it is generally considered that in 

the presence of nutrients, being in close proximity to the cell periphery promotes activation of 

mTORC1 via signalling cascades originating from the membrane, however the mechanisms 

controlling the sequestration of lysosomes in these regions are not known. Amino acid and insulin-

dependent increases in PI(3,5)P2 may recruit mTORC1 via Raptor to the plasma membrane [87]. It 

would be interesting to investigate whether this interaction could also control mTORC1-positive 

lysosome localisation. Intriguingly, mTOR has been reported to suppress the calcium efflux function 

of TRPML1 via phosphorylation [88], revealing an additional level of signalling complexity between 

mTOR and lysosomes. 

A further link between autophagy and mTORC1 signalling is AMPK signalling. This functions to inhibit 

anabolic processes and activate autophagy when cellular energy levels are low, as discussed below. 

5.1. AMPK signalling and energy homeostasis 

AMPK is central to the cellular response to low energy levels. It functions as a heterotrimeric protein, 

consisting of a catalytic  subunit, a  subunit and an adenosyl nucleotide binding  subunit (for 

review, see [89]). This complex is sensitive to changes in the cellular AMP/ATP and ADP/ATP ratios, 

where binding of AMP to the  subunit modulates phosphorylation of Thr172 by the LKB1-STRAD-

MO25 complex [90,91]. Once active, AMPK drives processes which will enhance cellular energy 

stores, such as increasing glucose uptake and promoting autophagy while inhibiting biogenic 

synthesis [89]. 

As it is essential for cells to maintain energy and nutrient homeostasis, it has long been appreciated 

that the mTORC1 and AMPK signalling pathways must be coordinated. Over a decade ago, it was 

shown that AMPK could inhibit mTORC1 signalling though the phosphorylation of TSC2, the tumour 

suppressor which functions upstream of mTORC1 [92]. Subsequently, a second level of regulation 

was uncovered when it was found that AMPK could also directly phosphorylate the mTORC1 

component, Raptor, on Ser722 and Ser792. This permits 14-3-3 binding to Raptor, and inhibition of 

mTORC1 signalling [93]. Treatment with biguanides (such as metformin and phenformin) is closely 



associated with AMPK activation [94], so it was interesting that a later report indicated that mTORC1 

can also be inhibited by biguanides in a TSC2- or AMPK-independent manner. Intriguingly, 

biguanides were found to require the Rag GTPases in order to abolish mTORC1 activation [95]. 

Additionally, AMPK coordinates with the ULK1 complex to regulate autophagy. AMPK 

phosphorylates ULK1 on multiple residues to positively regulate autophagy [96–99], but 

interestingly, under starvation, ULK1 can phosphorylate all three AMPK subunits to downregulate 

AMPK activity [100]. This indicates a finely balanced regulatory signalling network.  

New research to better understand the complex crosstalk between the mTORC1 and AMPK signalling 

pathways and their coordinated control of metabolic homeostasis has revealed that the lysosome 

may function as a crucial hub for integration of signalling in response to both nutrients and energy. 

5.2 AMPK at the lysosome 

AMPK was known to be found in both the nucleus and cytoplasm, with its localisation regulated by 

several factors including environmental stress, cell density and MEK-ERK signalling [101]. Although 

both AMPK and lysosomes are intrinsically linked to autophagy, no direct association had been 

reported. The first indication that AMPK may have a specific late endosomal/lysosomal function was 

when its binding partner, AXIN, was found to interact with LAMTOR1 [102]. Although initially linked 

to Wnt signalling [103], AXIN was later identified as a scaffold protein for AMPK and its upstream 

regulator, LKB1, displaying a weak constitutive interaction with both AMPK and LKB1, which is 

enhanced upon glucose starvation or in the presence of AMP. Through this complex, AXIN mediates 

AMP-triggered AMPK activation by LKB1 [104]. LAMTOR1, a lysosome localising protein [26] 

(previously described in Section 3.2) was then subsequently identified through a yeast two-hybrid 

screen as an AXIN interactor [102]. Starvation was found to enhance AXIN/LKB1-AMPK complex 

binding to LAMTOR1 and the other members of the Ragulator, while loss of LAMTOR1 expression 

inhibited AMPK activation. Interestingly, a significant proportion of cellular AMPK was found 

constitutively localised on the late endosome/lysosome membrane and under starvation, phospho-

AMPK was found exclusively on this membrane, indicating that this membrane surface is where LKB1 

phosphorylates AMPK [102]. It was then investigated how the AXIN/LKB1 complex was recruited to 

the Ragulator on the late endosome/lysosome membrane during starvation. It was shown that the 

energy sensor, v-ATPase, which was already known to regulate the Ragulator in response to glucose 

starvation [28], was also required for the enhanced AXIN/LKB1-LAMTOR interaction under starvation 

[102]. 

The involvement of several mTOR activating factors in AMPK localisation and signalling further 

highlights the intrinsic crosstalk between these two pathways. Therefore, Zhang et al elucidated the 

precise mechanisms whereby the v-ATPase/Ragulator could govern both AXIN/LKB1 and mTORC1 

localisation on the lysosome. Their study showed that AXIN is a key component in this regulatory 

mechanism. Not only does it translocate with LKB1 to the lysosome to activate AMPK and thus turn 

on catabolic processes, but it also is important for turning off anabolic processes through facilitating 

starvation-induced lysosomal dissociation and inhibition of mTORC1. AXIN regulates mTORC1 activity 

through its ability to impair the GEF activity of Ragulator, leading to dissociation of mTORC1 from the 

lysosome and the downregulation of mTORC1 signalling [102]. Interestingly, AXIN was found to 

specifically mediate this effect under energy stress and did not regulate mTORC1 activity under 

amino acid deprivation. This suggests that although several core components of amino acid 

signalling and energy sensing are shared, cells can still exquisitely fine-tune their signalling pathways 

through auxiliary proteins, such as AXIN, to respond appropriately to specific environmental cues. 



The key role of the AXIN-Ragulator-v-ATPase axis in controlling both AMPK and mTORC1 is further 

demonstrated by studies assessing the mechanistic action of metformin (N,N-dimethylbiguanide). 

Metformin is widely used to treat type 2 diabetes due to its ability to decrease cellular energy levels. 

A recent study revealed that both AXIN and LAMTOR1 are required for metformin-mediated AMPK 

activation, with evidence that metformin operates to promote the formation of the v-ATPase-

Ragulator-AXIN/LKB1-AMPK complex, thus activating AMPK [105]. In parallel, metformin treatment 

results in dissociation of mTORC1 from v-ATPase-Ragulator [105]. Two further mechanisms of 

mTORC1 downregulation by metformin have also been proposed. In hepatocytes, low 

concentrations of metformin inhibit hepatic mTORC1 signalling, with this inhibition dependent on 

AMPK and the TSC complex [106]. Additionally, metformin treatment has been shown to prevent 

nucleocytoplasmic shuttling of RagC. This means RagC remains predominantly GTP bound and 

cannot activate mTORC1 [107]. The authors propose that disruption of this RagC-mediated mTORC1 

activation might be a mechanistic link between kinase activity and cellular energy levels [107]. 

These mechanistic studies are not the only new links between AMPK signalling and lysosomes. A 

recent study examining AMPK knockout embryonic stem cells (ESCs) surprisingly revealed that 

lysosomal gene expression was substantially decreased in the absence of AMPK, with TFEB, a 

member of the TFE family of transcription factors, the most consistently reduced lysosomal gene 

[108]. TFEB is known to be regulated at the protein level by energy status; in the presence of 

nutrients, mTORC1 can phosphorylate TFEB to inhibit TFEB activity, but TFEB becomes 

hypophosphorylated and localised to the nucleus when energy levels are low [109]. Cells with AMPK 

knockout did not effectively generate hypophosphorylated TFEB, so TFEB failed to shuttle to the 

nucleus. As a result, these cells exhibited diminished lysosome function [108]. 

5.3 Additional crosstalk mechanisms 

A further crosstalk mechanism between AMPK, mTORC1 and the lysosome occurs via the sestrin 

proteins. SESN1 was originally identified in a condition called heterotaxia [110], and the sestrin 

family was found to play a role in re-establishing cellular antioxidant defences [111]. Subsequently, 

sestrins were found to play a broader role in cellular growth repression through inhibition of 

mTORC1. SESN2 was reported to interact with TSC1, TSC2 and AMPK2. Through these interactions, 

sestrins were shown to stimulate AMPK activity, enhance TSC2 phosphorylation and decrease Rheb-

GTP loading, thus downregulating mTORC1 activity [112]. More recent work has indicated that TSC2 

is not essential for mTORC1 downregulation by sestrins [56,113] and sestrins can downregulate 

mTORC1 independently of AMPK via both the Rags and their upstream regulator, GATOR2 [55,113]. 

Several studies demonstrated that mTORC1 inhibition by sestrins is GATOR- and Rag-dependent 

under both normal cell culture conditions or upon amino acid refeeding and that sestrins inhibit 

mTORC1 activity by preventing localization of mTORC1 to the lysosome [55,56,113]. SESN2 was 

shown to bind to GATOR2 in an amino acid sensitive manner. Specifically, leucine binding to SESN2 

prevents SESN2 from interacting with the GATOR2 complex, thus promoting Rag-dependent 

activation of mTORC1 [53,54]. Furthermore, there is evidence that sestrins can interact directly with 

the Rag GTPases and function as a Rag GDI, thus inhibiting mTORC1 through stabilisation of RagA 

GDP binding [113].  

Clearly, elucidating the role of the sestrin family in mTORC1 regulation is still developing and sestrins 

function at multiple points to regulate the amino acid sensing arm of mTORC1 signalling (Figure 3). 

Further illustrating this, the SESN2-GATOR2 interaction can be disrupted in the absence of amino 

acids by inhibition of the v-ATPase which interacts with the Ragulator on the lysosomal surface [56]. 

Ongoing studies will help reveal the complexities of sestrin-mediated inhibition of mTORC1. 



 

6. Summary 

It is vital for cellular health that anabolic and catabolic processes are inversely controlled and tightly 

regulated. To this end, multiple levels of crosstalk occur between them. As highlighted in this review, 

recent publications have revealed that the lysosome forms an important integration point for 

multiple signalling pathways, thus providing a spatial hub for both anabolic and catabolic signalling. 

Further scrutiny of proteins such as the lysosomal v-ATPase which is already known to be important 

for mTORC1 signalling (via the Ragulator) and AMPK signalling (via AXIN), along with the 

identification of new components of mTORC1 and AMPK signalling, will deepen our understanding of 

the exquisite control of cellular metabolism. In turn this may reveal pathways which could be 

targeted in disease states where metabolism is dysregulated. 
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Figure Legends 

Figure 1: Overview of the role of the lysosome 

The lysosome is an integral platform in the control of cellular growth and homeostasis. mTORC1 

integrates intra- and extracellular signals of energy (via AMPK), oxygen, amino acid (via Rag GTPases, 

TSC2 and a variety of other proteins/complexes) and nutrient (via TSC2 complex) availability to 

regulate protein translation, gene transcription, glycolysis, lipogenesis, nucleotide synthesis and 

inhibit the catabolic process of autophagy. Thus mTORC1 and the lysosome manage the balance of 

anabolic vs catabolic cellular processes. The lysosome also functions as the ultimate acceptor of 

material to be degraded via autophagy. 

 

Figure 2: Amino acid sensing by mTORC1 

The presence of free amino acids is essential for mTORC1 activation. Leucine, glutamine and arginine 

are the most potent activators of mTORC1 and a number of different mechanisms have been 

identified via which they are sensed and signal to mTORC1. These include cytoplasmic sensors, 

amino acid transporters and v-ATPase on the lysosomal membrane. All mechanisms work to control 

to the nucleotide status of either Rag GTPases or Rheb, the most proximal regulators of mTORC1. 

 

Figure 3: Crosstalk between mTORC1 and AMPK: Sestrins 

Under amino acid starvation, sestrins have been proposed to inhibit mTORC1 signalling at 3 points 

(1) Interaction with AMPK/TSC1/TSC2 to activate AMPK, block TSC1/2 and reduce Rheb activity 

(although subsequent studies have not found evidence of sestrin/TSC2 interaction (2) Blocking 

GATOR2 function, thereby keeping the Rags inactive (3) Stabilising RagA-GDP to keep the Rags 

inactive. Both (2) and (3) maintain mTORC1 inactive in the cytoplasm. In both panels, dashed lines 

represent pathways which are switched off under the conditions described due to upstream 

inhibitory processes. 

 

 

 



 



 

 



 


