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Abstract

In this paper, we give a survey of the use of information theoretic techniques for the estimation of
the main performance characteristics of the M/G/1 retrial queue. We focus on the limiting distribution
of the system state, the length of a busy period and the waiting time. Numerical examples are given
to illustrate the accuracy of the maximum entropy estimations when they are compared versus the
classical solutions.
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1 Introduction

In classical queueing theory it is usually assumed that any customer who cannot get
service automatically upon arrival either joins a waiting line or leaves the system
forever. However, the consideration of loss queueing models is just a first approximation
to a more sophisticated situation. Usually the real behaviour of a blocked customer
consists of leaving the service area temporarily but he returns to repeat his demand
after some random time. This queueing behaviour is studied in the so-called retrial
queues (see Falin and Templeton (1987) and Artalejo (1999a, 1999b) for a survey and
bibliographical information).
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This paper gives a survey on the application of information theoretic techniques for
the estimation of the performance descriptors of the M/G/1 queue with retrials. More
concretely, we use the principle of maximum entropy (PME) which provides an elegant
methodology for computing a unique estimate for an unknown probability distribution
based on information expressed in terms of some given mean value constraints.
Although we focus on the M/G/1 queue, the methodology can be easily extended
to other queueing models with retrials (see Artalejo and Martin (1994), Artalejo and
Gomez-Corral (1995) and Aissani and Smail (2003)) and without retrials (see Kouvatsos
(1994), Tadj and Hamdi (2001) and Wang et al. (2002)). For a review of other (non-
queueing) applications of the information theoretic methods, we refer the reader to the
book by Kapur (1989). As examples of more recent applications we mention the papers
by Smolders and Urbach (2002) in the context of x-ray fluorescence spectroscopy and
the paper by Oganian and Domingo-Ferrer (2003) published recently in this journal
where the reciprocal of Shannon’s entropy is used to measure disclosure risk in tabular
data.

The paper will be organized as follows. In Section 2 we describe the mathematical
model and summarize its main characteristics in terms of generating functions (discrete
characteristics) or Laplace transforms (continuous characteristics). A brief overview of
the maximum entropy formalism is given in Section 3. Then, the general theory is used
to get maximum entropy estimations of the limiting distribution of the system state
(Section 4), the length of a busy period (Section 5) and the waiting time (Section 6)
(see Falin et al (1994), Lopez-Herrero (2004) and Artalejo et al. (2002)). The numerical
experiments show the goodness of the maximum entropy solutions based on the first two
moments and the value of the generating function (respectively the Laplace transform)
at a given point.

2 The mathematical model

Primary customers arrive to a single server queueing system following a Poisson process
of rate λ. Any customer finding the server busy is blocked and leaves temporarily the
service area. Such customers join a group of unsatisfied customers called orbit. We
assume that the access from the retrial group to the service facility is governed by
the classical linear policy, i.e., the probability of a repeated attempt during the interval
(t, t + ∆t), given that j customers were in orbit at time t, is jµ∆t + o∆(t). The service
times follow a common distribution function B(x) (B(0) = 0), with kth moment βk and
Laplace transform β(s). The input flow of primary arrivals, intervals between repeated
attempts and service times are mutually independent.

The system state at time t can be described by means of the process X =

{(C(t),N(t), ξ(t)); t ≥ 0}, where C(t) denotes the state of the server, 0 or 1 according
to whether the server is free or busy, N(t) is the number of customers in orbit at time
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t and, if C(t) = 1, then ξ(t) represents the elapsed time of the customer being served.
In what follows, we neglect the component ξ(t) and consider only the pair (C(t),N(t))
which takes values on the state space S = {0, 1} × N. We assume that ρ = λβ1 < 1
so our queueing model is stable and the limiting probabilities Pi j = limt→∞ P{C(t) =
i,N(t) = j}, (i, j) ∈ S , exist and are positive. Then, their corresponding partial generating
functions Pi(z) =

∑∞
j=0 z jPi j, i ∈ {0, 1}, are given by (see Falin and Templeton (1997)):

P0(z) = (1 − ρ) exp

{
−λ
µ

∫ 1

z

1 − β(λ − λu)
β(λ − λu) − u

du

}
, (1)

P1(z) =
1 − β(λ − λz)
β(λ − λz) − z

P0(z). (2)

By routine differentiation of formulas (1)-(2) we get after some algebra the following
expressions for the partial moments mk

i =
∑∞

j=0 jkPi j, for i ∈ {0, 1} and k = 0, 1, 2 :

m0
0 = 1 − ρ, m0

1 = ρ (3)

m1
0 =
λρ

µ
, m1

1 =
λ2β2

2(1 − ρ) +
λρ2

µ(1 − ρ) , (4)

m2
0 = m1

0 +
λ

µ
m1

1, (5)

m2
1 =

λ3β3

3(1 − ρ) +
λ4β2

2

4(1 − ρ)2
+
λ2β2

2(1 − ρ) +
λ3β2

2µ(1 − ρ)2
+

λρ

µ(1 − ρ)
+
λ4

(1 − ρ)2

(
β1

µ
+
β2

2

)2
− m2

0. (6)

The busy period of the M/G/1 retrial queue, L, starts with the arrival of a primary
customer who finds the system empty and ends at the first departure epoch in which the
system becomes empty again. The analysis of L in terms of Laplace transforms leads to
the following expression

L∗(s) =

∫ L∗∞(s)

0

β(s + λ − λu)
e(s, u)(β(s + λ − λu) − u)

du

∫ L∗∞(s)

0

du
e(s, u)(β(s + λ − λu) − u)

, s > 0, (7)

where L∗∞(s) represents the Laplace transform for the busy period in the standard retrial
queue without retrials given by L∗∞(s) = β(s + λ − λL∗∞(s)) and e(s, u) is

e(s, u) = exp

{
1
µ

∫ u

0

s + λ − λβ(s + λ − λv)
β(s + λ − λv) − v

dv

}
, 0 ≤ u < L∗∞(s).
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The above expression provides a theoretical solution but it has serious limitations in
practice. In particular, the moments of L cannot be obtained by direct differentiation.
From the theory of regenerative processes, it is easy to get the following formula for the
expectation:

E[L] =
1
λ

(
1

P0(0)
− 1

)
. (8)

A direct method of calculation (see Artalejo and Lopez-Herrero (2000)) for the
second moment yields

E[L2] =
1

P0(0)

(
1

(1 − ρ)2

(
β2 +

2ρβ1

µ

)
−
∫ 1

0

2
λµ(β(λ − λt) − t)

(1)

×
(
1 − λ(1 − t)β′(λ − λt)

β(λ − λt) − t
− 1

1 − ρ exp

{
λ

µ

∫ 1

t

1 − β(λ − λu)
β(λ − λu) − u

du

})
dt

)
. (9)

Unfortunately it does not seem possible to numerically invert the density function
of L by applying well-known algorithms (see Press et al. (1992)) because the above
solution (7) is derived when s is a real value, and such algorithmic methods require to
evaluate the Laplace transform at any desired complex s. In this sense, the maximum
entropy estimation developed in Section 5 provides an elegant alternative to solve this
drawback.

Let us assume that a primary customer arrives to the system at time t. His virtual
waiting time W(t) is defined as the time that the customer spends in the orbit waiting
for service. According to the definition, W(t) excludes the service time. We consider
the system at steady state so, in what follows, we simply denote W(t) by W. The
analysis of W is intricate because customers in the orbit operate under a random order
discipline. Following the book by Falin and Templeton (1997) we observe that the
Laplace transform of W is given by

W∗(s) = 1 − ρ + λ(1 − ρ)
s

∫ 1

L∗∞(s)

(1 − u)(β(λ − λu) − β(s + λ − λu))
(β(λ − λu) − u)(u − β(s + λ − λu))

(2)

× exp

{∫ 1

u

s + µ + λ − λv
µ(β(s + λ − λv) − v)

dv

}
exp

{∫ u

1

λ − λv
µ(β(λ − λv) − v)

dv

}
du. (10)

An appeal to Little’s formula gives

E[W] =
λβ2

2(1 − ρ) +
ρ

µ(1 − ρ) . (11)
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Recently, Artalejo et al. (2002) obtained the following explicit expression for the
second moment:

E[W2] =
2λβ3

3(1 − ρ)(2 − ρ) +
λ2β2

2

(1 − ρ)2(2 − ρ)
+
λβ2

µ

(
2

(1 − ρ)2(2 − ρ) +
ρ

(1 − ρ)2

)
+

2ρ
µ2(1 − ρ)2

. (12)

Since s is real, we notice again that the most typical techniques for the numerical
inversion of W do not apply. However, the above formulas (11)-(12) will be helpful in
the sequel. In fact, they constitute the basis for the main value constraints needed to
construct maximum entropy estimations.

3 The maximum entropy formalism

Some “classical” queueing techniques include the general framework of birth-and-death
processes and methods of solution for non-Markovian stochastic processes (such as
embedded Markov chains, supplementary variables, matrix-analytic techniques, etc.).
One elegant alternative for this is given by information theoretic methods that use the
principles of maximum entropy and minimum cross-entropy (if a prior distribution is
available) to estimate probability distributions given information in the form of known
mean values. We refer the reader to the survey paper by Kouvatsos (1994) and the
references therein.

A novel reader having a first approach to the literature could feed the idea that
maximum entropy solutions only provide a reasonable approximation to the true (but
complex) queueing system modelled by “classical” techniques. Such interpretation of
the information theoretic techniques is poor and trivial. The aim of the PME is to provide
a self-contained method of inference for estimating uniquely an unknown probability
distribution. The maximum entropy distribution gives the most random solution; i.e., it
introduces the minimum additional information beyond what is implied in the original
available mean constraints. It should be pointed out that information theoretic analysis
neither pretends to replace the “classical” queueing solutions not to be an approximation
to that “classical” results. The idea is just to apply the maximum entropy formalism
in order to get the widest probability distribution subject to the known constraints.
Hence, when in what follows we present “classical” queueing results versus maximum
entropy solutions, we only pretend to display two alternative tools for analyzing an
unique real underlying queueing phenomenon. It is so far of our intention to suggest a
possible (philosophical or numerical) superiority of the “classical” methodology over
the maximum entropy approach or vice versa.

We next summarize the maximum entropy formalism (see Shore and Johnson
(1981) and Kouvatsos (1994)). The general theory is common for both the discrete and
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continuous cases. Thus, we simply denote by f (x) the corresponding mass probability
function or density function associated with the queueing performance measure under
study. We assume that f (x) takes values in a state space χ, so we have the normalization
condition ∫

χ

f (x)dx = 1. (13)

The known information about f (x) can be expressed in terms of mean value
constraints of the form ∫

χ

Fk(x) f (x)dx = Fk, 1 ≤ k ≤ m, (14)

for known functions Fk(x) and known values Fk. We note that the structural form of the
constraints (14) covers important special cases such as:

(a) Fk(x) = xk (central moments of order k).

(b) Fk(x) = I(−∞,xk](x) (value of the distribution function at the point xk).

(c) Fk(x) = e−sk x (value of the Laplace transform or the moment generating function
at the point sk).

The PME states that, of all the distributions satisfying the mean value constraints
(13) and (14), the minimal prejudiced is the one maximizing the Shannon’s entropy
functional

H( f ) = −
∫
χ

f (x) ln f (x)dx. (15)

Suppose that a prior distribution g(x) is given as current estimate, then the principle
of minimum cross-entropy generalizes the PME by stating that, of all the distributions
satisfying the mean constraints, the minimum cross-entropy solution is chosen by
minimizing the functional

H( f , g) =
∫
χ

f (x) ln
f (x)
g(x)

dx. (16)

In fact, the PME corresponds to the particular case when the prior distribution g(x)
in (16) is uniformly distributed on the state space χ.

The maximization of H( f ) can be carried out with the help of the method of
Lagrange’s multipliers. If there exists a distribution that maximizes the entropy (15)
and satisfies the constraints (13) and (14), then it has the following form

f̂ (x) = exp

⎧⎪⎪⎨⎪⎪⎩−α̂0 −
m∑

k=1

α̂kFk(x)

⎫⎪⎪⎬⎪⎪⎭ , x ∈ χ, (17)
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where α̂k, for 0 ≤ k ≤ m, are the Lagrangian multipliers. α̂0 is determined from the
normalization condition (13), so we obtain

exp {α̂0} =
∫
χ

exp

⎧⎪⎪⎨⎪⎪⎩−
m∑

k=1

α̂kFk(x)

⎫⎪⎪⎬⎪⎪⎭ dx. (18)

The rest of Lagrangian multipliers satisfy the relations

−∂α̂0

∂α̂k
= Fk, 1 ≤ k ≤ m. (19)

In general, it is impossible to solve (19) for α̂k explicitly. As an exception, we
mention the special case where m = 1 and F1(x) = x, which yields the explicit
distribution

f̂1(x) =
1

F1
e−x/F1 , x ∈ χ. (20)

Suppose that we add the second moment as an additional constraint, then the pair
(α̂1, α̂2) must be computed numerically. By combining (14) and (17) we observe that a
standard method for finding the optimal αk is to solve the system

∫
χ

(Fi(x) − Fi) exp

⎧⎪⎪⎨⎪⎪⎩−
m∑

k=1

αk(Fk(x) − Fk)

⎫⎪⎪⎬⎪⎪⎭ dx = 0, 1 ≤ i ≤ m. (21)

The above equations (21) for the Lagrangian multipliers are implicit and non-linear.
It can be proved then that the problem of solving (21) is equivalent to minimizing the
potential function

F(α1, ..., αm) = ln
∫
χ

exp

⎧⎪⎪⎨⎪⎪⎩−
m∑

k=1

αk(Fk(x) − Fk)

⎫⎪⎪⎬⎪⎪⎭ dx, (22)

or, alternatively, the balanced function

G(α1, ..., αm) =
m∑

i=1

pi

⎛⎜⎜⎜⎜⎜⎝
∫
χ

(Fi(x) − Fi) exp

⎧⎪⎪⎨⎪⎪⎩−
m∑

k=1

αk(Fk(x) − Fk)

⎫⎪⎪⎬⎪⎪⎭ dx

⎞⎟⎟⎟⎟⎟⎠
2

, (23)

where 0 < pi < 1 and
∑m

i=1 pi = 1.
The balanced function G(α1, ...αm) in (23) takes the value 0 at the optimal solution

(α̂1, ..., α̂m) which provides a computational advantage over the potential function F in
(22). For computing the minimum in (23) we will employ a method of direct search (see
Nelder and Mead (1964)) which does not involve derivatives, avoiding problems arising
when the Hessian of G is algorithmically almost singular. A complete discussion of this
technical problem can be found in Agmon et al. (1979).
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4 Maximum entropy estimation of the system state

After the preceding preliminaries we are ready to apply the maximum entropy
methodology to the distribution of the system state in the M/G/1 retrial queue. Firstly,
we assume that the available information consists of the marginal distribution of the
server state and the partial expectations of the number of customers in orbit, so we
know expressions (3) and (4).

Distinguishing the server state is important in order to provide a more detailed
information. Then, the constraints (3) play the role of the normalization condition
(13). According to (20), we expect to find a first order maximum entropy solution
{P̂1

i j; i ∈ {0, 1}, j ≥ 0} of geometric type. This is formalized in the following result.

Proposition 1 If the available information is given by mk
i , for i ∈ {0, 1} and k ∈ {0, 1},

then according to the PME the estimation of the probability distribution of the system
state is

P̂1
0 j =

(m0
0)2

m0
0 + m1

0

⎛⎜⎜⎜⎜⎝ m1
0

m0
0 + m1

0

⎞⎟⎟⎟⎟⎠ j

, j ≥ 0, (24)

P̂1
1 j =

(m0
1)2

m0
1 + m1

1

⎛⎜⎜⎜⎜⎝ m1
1

m0
1 + m1

1

⎞⎟⎟⎟⎟⎠ j

, j ≥ 0. (25)

Proof. It is sufficient to consider the case i = 0. Applying the method of Lagrangian
multipliers we get a solution P̂1

0 j of the form

P̂1
0 j = uv j, j ≥ 0.

Since {P̂1
0 j; j ≥ 0} satisfies the constraints m0

0 and m1
0, we find that

u =
(m0

0)2

m0
0 + m1

0

, v =
m1

0

m0
0 + m1

0

.

This proves the desired expression (24). �

According to the geometric structural form, the first order estimations (24) and (25)
are decreasing sequences. Nevertheless, the limiting probabilities {Pi j; j ≥ 0} may have
a mode at any arbitrary level of the orbit, we say j∗i , for i ∈ {0, 1}. In particular, in the
case of the M/M/1 retrial queue, the distribution is unimodal and the modes are given
by
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j∗0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if λρ < µ,[
(λ − µ)ρ
µ(1 − ρ)

]
, if λρ ≥ µ,

j∗1 =

[
λρ

µ(1 − ρ)
]
,

where [x] is the integer part of x. We observe that if (λ − µ)ρ/µ(1 − ρ) (respectively
λρ/µ(1 − ρ)) is integer, then j∗0 − 1 (respectively j∗1 − 1) is also a mode.

In the light of the information about the modes, it is clear that the first order
estimation will be accurate only when j∗0 = j∗1 = 0, which is equivalent to the inequality
λρ < µ(1 − ρ).

To illustrate the above comments, in Table 1 we consider an M/M/1 retrial queue
with a small retrial rate µ = 0.05, so that the distribution is sparse and j∗0 = j∗1 = 6.
Hence, the maximum entropy solution P̂1

i j gives a bad estimation of the probabilities
Pi j. Hence, the necessity of deriving new estimations of the system state is clear.

Two initial reasons justify the use of two moment estimations. Firstly, in Falin and
Templeton (1997) is mentioned that the number of customers in orbit is asymptotically
Gaussian, as µ→ 0. This fact agrees with the structural form (17)-(18) of the maximum
entropy distribution. Furthermore, by treating j as a continuous variable, we easily see
that the k-moment estimation has at most k − 1 relative extremes.

By adapting the maximum entropy formalism to the case under consideration, we see
that the Lagrangian multipliers can be obtained by minimizing the potential functions

Fi(α
i
1, α

i
2) = ln

∞∑
j=0

exp

⎧⎪⎪⎨⎪⎪⎩−
2∑

k=1

αi
k

⎛⎜⎜⎜⎜⎝ jk − mk
i

m0
i

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ , i ∈ {0, 1}. (26)

The computation of the infinite series on the right-hand side of (26) implies the
consideration of a truncation threshold K which can be determined with the help of
Tchebychev’s inequality.

The second order estimations P̂2
i j in Table 1 have modes at the seventh level of the

orbit. The last row of the table gives the value of the Shannon entropy (15) for the
classical distribution and the maximum entropy estimations. As expected, we observe
that the entropy decreases when we increase the number of known moments.

It should be noted that the moments mk
i are obtained by taking derivatives of the

partial generating function Pi(z), for i ∈ {0, 1}, at the point z = 1. Hence, it should
be interesting to improve the estimation by considering any other constraint providing
information related to another different point z0. To this end, we consider Pi(z0) which
satisfies the structural form described in (14). Now the maximum entropy solution has
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Table 1: M/M/1 retrial queue with (λ, µ) = (1.0, 0.05) and ρ = 0.25

j P0 j P1 j P̂1
0 j P̂1

1 j P̂2
0 j P̂2

1 j P̂2,1
0 j P̂2,1

1 j

0 0.00237 0.00059 0.09782 0.03125 0.01010 0.00285 0.00186 0.00043
1 0.01189 0.00312 0.08506 0.02734 0.01912 0.00545 0.01141 0.00294
2 0.03121 0.00858 0.07397 0.02392 0.03260 0.00941 0.03265 0.00899
3 0.05723 0.01645 0.06432 0.02093 0.05002 0.01471 0.05984 0.01734
4 0.08226 0.02468 0.05593 0.01831 0.06911 0.02077 0.08341 0.02520
5 0.09872 0.03085 0.04863 0.01602 0.08597 0.02652 0.09719 0.03048
6 0.10283 0.03342 0.04229 0.01402 0.09628 0.03061 0.09975 0.03240
7 0.09549 0.03222 0.03677 0.01227 0.09707 0.03194 0.09277 0.03119
8 0.08057 0.02819 0.03197 0.01073 0.08812 0.03013 0.07944 0.02763
9 0.06266 0.02271 0.02780 0.00939 0.07203 0.02570 0.06317 0.02274

10 0.04543 0.01703 0.02418 0.00822 0.05300 0.01982 0.04687 0.01747
11 0.03097 0.01200 0.02102 0.00719 0.03511 0.01382 0.03253 0.01257
12 0.02000 0.00800 0.01828 0.00629 0.02094 0.00871 0.02116 0.00847
13 0.01231 0.00507 0.01589 0.00550 0.01124 0.00496 0.01290 0.00536
14 0.00725 0.00308 0.01382 0.00481 0.00543 0.00255 0.00738 0.00318
15 0.00411 0.00179 0.01202 0.00421 0.00236 0.00119 0.00396 0.00177

SE 3.05175 3.51236 3.07099 3.05262

the form

P̂2,1
i j = exp

{
−
(
α̂i

0 + ĵαi
1 + j2α̂i

2 + z j
0α̂

i
2,1

)}
, i ∈ {0, 1}, j ≥ 0.

The Lagrangian coefficients (α̂i
0, α̂

i
1, α̂

i
2, α̂

i
2,1) can be computed after a new appeal to

the use of Nelder and Mead’s algorithm.
The entries in Table 1 show that the estimation improves when we employ P̂2,1

i j , with

z0 = 0.55, instead of P̂2
i j. In particular, the estimations P̂2,1

i j fit the modes of the classical
probabilities Pi j.

Another different possibility is to employ as constraints the relationships λP1 j =

( j+ 1)µP0, j+1, for j ≥ 0, which express the conservation of flow across the level j of the
orbit. The details and some numerical examples can be found in Falin et al. (1994).

In Table 2 we consider a second numerical example in which the system parameters
are chosen to fix the traffic intensity ρ = 0.9. As a consequence of increasing the value
of ρ, the limiting probabilities Pi j become sparse. Thus, a good estimation typically
demands the use of higher truncation thresholds. For example, to calculate {P̂2,1

1 j ; j ≥ 0}
we take K = 80. The maximum entropy solution P̂2,1

i j based on the values Pi(0.55), for
i ∈ {0, 1}, seems to be an accurate estimation. In particular, it fits the modes j∗0 = 0 and
j∗1 = 1 of the classical distribution Pi j.

The preceding numerical examples deal with a model with exponential service times.
However, this assumption is not restrictive and similar conclusions can be obtained for
other service time distributions. In fact, once the mean value constraints are fixed, the
formalism is independent of the service time distribution.
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Table 2: M/M/1 retrial queue with (λ, µ) = (0.9, 5.0) and ρ = 0.9

j P0 j P1 j P̂1
0 j P̂1

1 j P̂2
0 j P̂2

1 j P̂2,1
0 j P̂2,1

1 j

0 0.06606 0.05946 0.03816 0.07745 0.04492 0.07163 0.06453 0.05889
1 0.01070 0.06314 0.02360 0.07078 0.02383 0.06647 0.01386 0.06307
2 0.00568 0.06194 0.01459 0.06469 0.01294 0.06162 0.00556 0.06289
3 0.00371 0.05909 0.00902 0.05912 0.00719 0.05709 0.00315 0.06030
4 0.00265 0.05558 0.00557 0.05403 0.00408 0.05285 0.00215 0.05657
5 0.00200 0.05182 0.00344 0.04938 0.00237 0.04889 0.00163 0.05243
6 0.00155 0.04804 0.00213 0.04513 0.00141 0.04519 0.00131 0.04827
7 0.00123 0.04435 0.00131 0.04125 0.00086 0.04174 0.00109 0.04427
8 0.00099 0.04081 0.00081 0.03770 0.00053 0.03852 0.00092 0.04051
9 0.00081 0.03746 0.00050 0.03445 0.00034 0.03553 0.00078 0.03702

10 0.00067 0.03432 0.00031 0.03149 0.00022 0.03274 0.00067 0.03381
11 0.00056 0.03139 0.00019 0.02878 0.00014 0.03014 0.00058 0.03085
12 0.00047 0.02868 0.00011 0.02630 0.00010 0.02774 0.00050 0.02814
13 0.00039 0.02617 0.00007 0.02404 0.00007 0.02550 0.00043 0.02566
14 0.00033 0.02385 0.00004 0.02197 0.00005 0.02343 0.00037 0.02339
15 0.00028 0.02173 0.00002 0.02008 0.00003 0.02151 0.00032 0.02132

SE 3.52914 3.56020 3.55273 3.53329

Table 3: Sensitivity analysis of the function G on the Lagrangian multipliers

(λ, ν, µ) = (1.0, 4.0, 0.05) (λ, ν, µ) = (0.9, 1.0, 5.0)
i = 0 i = 1 i = 0 i = 1(

α̂i
1 + ε/2, α̂

i
2 + ε/2

)
68.9365 94.6871 911.1997 1884403.5(

α̂i
1 − ε/2, α̂i

2 + ε/2
)

52.7580 73.2812 857.8347 1745129.8(
α̂i

1 − ε/2, α̂i
2 − ε/2

)
72.9542 100.4483 6224.688 14647723.4(

α̂i
1 + ε/2, α̂

i
2 − ε/2

)
55.6646 77.5092 5413.781 12915677.3(

α̂i
1 + ε, α̂

i
2, α̂

i
2,1

)
0.7506 0.9492 0.5796 4596.297(

α̂i
1 − ε, α̂i

2, α̂
i
2,1

)
0.7545 0.9542 0.6063 4843.183(

α̂i
1, α̂

i
2 + ε, α̂

i
2,1

)
177.7164 242.7601 184.5680 2869660.8(

α̂i
1, α̂

i
2 − ε, α̂i

2,1

)
207.7439 285.3387 1189.341 65279520.6(

α̂i
1, α̂

i
2, α̂

i
2,1 + ε

)
0.0002 0.0002 0.0010 0.2752(

α̂i
1, α̂

i
2, α̂

i
2,1 − ε

)
0.0002 0.0002 0.0010 0.2754

We conclude this section with some practical tips for the computation of Lagrangian
multipliers. Some numerical results for sensitivity analysis are also presented in Table
3. Although the potential function F is a strictly convex function and therefore a
Newton-Raphson method should converge for any initial guess (α1, ..., αm), there are
some practical problems. Due to the exponential structure of the maximum entropy
solution (17), F becomes asymptotically linear along some directions. Thus, its Hessian
eventually becomes algorithmically singular when the initial guess for the multiplier is
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chosen close to the asymptotic region. It is also typical that F has a long valley in some
direction, then the gradient of F is in the direction of the valley, but not necessarily in
the direction of the optimal solution.

The discussion for the balanced function G is analogous but we recall that
G(α̂1, ..., α̂m) = 0. Thus, in Table 3 we deal with G and discuss the sensitivity of the
Lagrangian multipliers based on small changes in some determined directions. For the
scenarios in Tables 1 and 2, we allow the optimal solutions (α̂i

1, α̂
i
2) and (α̂i

1, α̂
i
2, α̂

i
2,1)

to change along ten directions described in the first column of the table. Then, the
entries give the value of G for the choice ε = 10−3. This sensitivity analysis shows
the very strong incidence of the initial guess. The effect is stronger when we perturb the
Lagrangian multiplier α̂i

2 associated with the second order moment, and also when the
distribution is very sparse (see the case i = 1 for the example with ρ = 0.9).

5 Maximum entropy estimation of the busy period

In this section we illustrate numerically the use of the PME to get an estimation
for the density of L. Although the mathematical formalism and numerical techniques
are common for both discrete and continuous distributions, the numerical effort to
carry out the latter is considerably superior. More precisely, numerical implementation
in a discrete case implies the estimation of a finite set of probabilities which can
be done in a personal computer after a few minutes run. However, in a continuous
situation is necessary to estimate a density function maybe defined over (0,+∞). It
typically demands several hours of running time, and so often the program stops without
converging to the optimal Lagrangian multipliers.

Initially we assume that the available information consists of the first and second
moments of L, which are provided by formulas (8) and (9). After that, we add one more
constraint by using the value of the Laplace transform L∗(s) at a given real point s = s0

(see equation (7)). The methodology described in Section 3 yields maximum entropy
densities f̂2(x) and f̂2,1(x), respectively. Their corresponding functional forms look as
follows

f̂2(x) = exp
{
−
(
α̂0 + xα̂1 + x2α̂2

)}
, x ∈ (0,T ),

f̂2,1(x) = exp
{
−
(
α̂0 + xα̂1 + x2α̂2 + e−s0 xα̂2,1

)}
, x ∈ (0,T ).

As a practical remark, we observe that the potential function F and the balanced
function G, given in formulas (22) and (23) respectively, involve integrals defined
over (0,+∞). Thus, solving the minimization problem implies firstly the consideration
of a truncated interval (0,T ). The upper bound T may be chosen with the help of
Tchebychev’s inequality, such as P{L > T } ≤ 10−2.

Note that the maximum entropy densities satisfy the given constraints, in particular
the first two moments of f̂2(x) and f̂2,1(x) coincide with the ones of fL(x), and so does
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the Laplace transform associated with f̂2,1(x), at s = s0, with L∗(s). Thus, we propose to
check the accuracy of the maximum entropy estimation by measuring the relative errors
associated with their estimates for the Laplace transforms; i.e., we consider

E2(s) =

∣∣∣∣∣∣L
∗
2(s)

L∗(s)
− 1

∣∣∣∣∣∣ and E2,1(s) =

∣∣∣∣∣∣L
∗
2,1(s)

L∗(s)
− 1

∣∣∣∣∣∣ ,
where L∗2(s) =

∫ T

0
e−sx f̂2(x)dx and L∗2,1(s) =

∫ T

0
e−sx f̂2,1(x)dx.

Table 4: Comparing Laplace transforms in an M/E3/1 retrial queue

ρ = 0.25 ρ = 0.5 ρ = 0.75
s L∗(s) L∗2(s) L∗(s) L∗2(s) L∗(s) L∗2(s)

0.05 0.89166 0.90632 0.84622 0.85323 0.76778 0.70380
0.1 0.83598 0.83324 0.76951 0.75077 0.67777 0.54867
0.25 0.69107 0.67587 0.61400 0.55568 0.53178 0.33193
0.5 0.53792 0.51711 0.46800 0.38979 0.40388 0.20069
1.0 0.35856 0.35355 0.30994 0.24492 0.26869 0.11219
1.5 0.25426 0.26907 0.22107 0.17874 0.19324 0.07787
3.0 0.11078 0.15700 0.09882 0.09880 0.08854 0.04061
4.5 0.05802 0.11090 0.05282 0.06828 0.04822 0.02747
6.0 0.03409 0.08574 0.03150 0.05217 0.02916 0.02075
10.0 0.01159 0.05343 0.01095 0.03202 0.01038 0.01256

We next analyze the length of a busy period in an M/G/1 retrial queue with Erlang
service times; i.e., we have

B(x) =
∫ x

0

νm

(m − 1)!
e−νxxm−1dx, x ≥ 0,

where m ∈ {1, 2, ...} and ν > 0. In particular, we take m = 3 phases and β1 = m/ν = 1.
Then, the arrival rate is chosen as λ = 0.25, 0.5 and 0.75. For a given λ, we assume that
the retrial rate is µ = 2λ. Table 4 presents a comparison between the classical Laplace
transform L∗(s) and the maximum entropy solution based on two moments L∗2(s). For
most fixed s > 0, we observe that the classical and maximum entropy solutions are
closer when the traffic intensity decreases.

We next improve the estimation by considering the maximum entropy solution
f̂2,1(x). For practical purposes, the choice of s0 can be done by taking into account that
the behaviour of fL(x) and L∗(s) near the boundaries of their domains is determined by
the Tauberian relations

lim
s→0

sL∗(s) = lim
x→+∞ fL(x) and lim

s→+∞ sL∗(s) = lim
x→0

fL(x). (27)
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Consequently, small values of s0 provide a better description of the tail behaviour of
fL(x), while a large value of s0 describes better the behaviour near the origin.

Figure 1: ME estimations in an M/E3/1 retrial queue with ρ = 0.25.

In Table 5 and Figure 1 we consider and M/E3/1 retrial queue with β1 = 1 and
ρ = 0.25, and we use as constraint the value of L∗(s) at point s0 = 4.5.We can observe
in Table 5 that the relative errors are moderately small as s is close to zero. On the other
hand, they are notably diminished when we compare large values of s and we employ
f̂2,1(x) rather than f̂2(x). This fact and the boundary behaviour given in (27) indicate that,
near the origin, the classical density function is much better described by f̂2,1(x) than by
f̂2(x).

Table 5: Relative errors in the M/E3/1 retrial queue for ρ = 0.25

s L∗(s) L∗2(s) E2(s) L∗2,1(s) E2,1(s)

0.05 0.89166 0.90632 0.01644 0.90586 0.01593
0.1 0.83598 0.83324 0.00327 0.83101 0.00593
0.25 0.69107 0.67587 0.02200 0.66439 0.03861
0.5 0.53792 0.51711 0.03868 0.48998 0.08912
1.0 0.35856 0.35355 0.01395 0.30709 0.14352
1.5 0.25426 0.26907 0.05823 0.21404 0.15821
3.0 0.11078 0.15700 0.41719 0.09887 0.10750
4.5 0.05802 0.11090 0.91138 0.05802 0.00000
6.0 0.03409 0.08574 1.51504 0.03871 0.13564
10.0 0.01159 0.05343 3.60810 0.01841 0.58837

Figure 1 shows different shapes of the maximum entropy densities f̂2(x) and f̂2,1(x).
Previous discussion permits to assert that the classical distribution near the origin
should be better represented by f̂2,1(x); i.e., a bell-shaped function. Moreover, the figure
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illustrates the importance of including information about the Laplace transform, because
the mode of L is not reproduced unless a constraint on L∗(s) is specified.

Figure 2: The balanced function G(α1, α2).

In a second numerical example, see Table 6 and Figure 2, we consider an M/H2/1
retrial queue so B(x) is given by

B(x) =
2∑

i=1

pi
(
1 − e−νi x

)
, x ≥ 0,

where 0 ≤ p1, p2 ≤ 1, p1 + p2 = 1 and ν1, ν2 > 0. We consider that the mean service
time is β1 = 1 and the coefficient of variation (β2 − β2

1)1/2/β1 is 1.25. The parameters of
the H2 distribution cannot uniquely determined fitting the above values unless we add
another additional condition. Thus, we assume that the distribution has balanced means;
i.e., p1/ν1 = p2/ν2. The retrial rate is chosen as µ = λ/2.

In Table 6 we compare the Laplace transforms associated with the maximum entropy
densities based on two moments and two moments plus the value of L∗(s) at the point
s0 = 4.5. The entries for the relative errors E2,1(s) are smaller than the errors E2(s),
showing the superiority of the estimation f̂2,1(x).

In Figure 2, we plot the balanced function G(α1, α2) in a neighbourhood of the
Lagrangian multipliers (α̂1, α̂2). In agreement with the comments expressed in Section
4, the surface shows a rapid growth of G along some directions. The existence of a valley
is also observed.

For a numerical analysis of the number of customers served during a busy period,
we refer to the paper by Lopez-Herrero (2002).
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Table 6: Relative errors in the M/H2/1 retrial queue for ρ = 0.25

s L∗(s) L∗2(s) E2(s) L∗2,1(s) E2,1(s)

0.05 0.86545 0.82936 0.04170 0.83688 0.03301
0.1 0.80664 0.71491 0.11371 0.73749 0.08573
0.25 0.70620 0.50750 0.28135 0.57245 0.18939
0.5 0.60442 0.34316 0.43224 0.45084 0.25410
1.0 0.47820 0.20868 0.56361 0.35129 0.26539
1.5 0.39784 0.15000 0.62294 0.30388 0.23617
3.0 0.26601 0.08140 0.69398 0.23558 0.11438
4.5 0.20016 0.05586 0.72090 0.20016 0.00000
6.0 0.16049 0.04252 0.73503 0.17635 0.09887
10.0 0.10486 0.02598 0.75224 0.13675 0.30408

6 Maximum entropy estimation of the waiting time

We now present a maximum entropy analysis of the waiting time W based on the
knowledge of E[W], E[W2] and W∗(s) at a given positive real point s = s0 (see formulas
(10)-(12)). Since the definition of W excludes the service time, we notice that the
distribution function of W, FW(x), has a jump at x = 0 and is absolutely continuous
in the interval (0,+∞). Thus, we have

dFW(x)
dx

= (1 − ρ)u0(x) + fW(x), x ≥ 0,

where u0(x) is the unit impulse at the origin defined by

u0(x) =

{
+∞, if x = 0,
0, if x � 0.

Hence, the estimation of the distribution of W reduces to the density fW(x) of the
continuous contribution. We first assume that the available information consists of the
first two moments E[W] and E[W2]. In a second step, we add the knowledge of W∗(s)
at the point s = 0.25.We denote both estimations by f̂2(x) and f̂2,1(x) respectively.

In Table 7 we consider the M/M/1 retrial queue with λ = 0.5, ν = 1.0 and µ = 2.0,
so the traffic intensity is ρ = 0.5. We evaluate the accuracy of the maximum entropy
solutions by comparing the classical Laplace transform W∗(s) versus the maximum
entropy versions W∗2(s) and W∗2,1(s), which are given by W∗2(s) = 1 − ρ + ∫ T

0
e−sx f̂2(x)dx

and W∗2,1(s) = 1 − ρ + ∫ T

0
e−sx f̂2,1(x)dx.

The entries E2(s) and E2,1(s) correspond to the relative errors which are defined
analogously to those given in Section 5 for the busy period. We observe that the relative
errors decrease when we employ f̂2,1(x) rather than f̂2(x). The upper bound T is 29.5.
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Table 7: Relative errors in the M/M/1 retrial queue for ρ = 0.5

s W∗(s) W∗
2 (s) E2(s) W∗

2,1(s) E2,1(s)

0.01 0.98548 0.98548 1.27×10−6 0.98548 7.58×10−8

0.05 0.93549 0.93559 0.00010 0.93548 9.56×10−6

0.1 0.88632 0.88682 0.00057 0.88627 5.98×10−5

0.25 0.78842 0.79120 0.00325 0.78842 0.00000
0.3 0.76562 0.76928 0.00478 0.76579 0.00022
0.6 0.67751 0.68605 0.01261 0.67987 0.00407
0.9 0.63035 0.64237 0.05078 0.63532 0.00788
1.2 0.60109 0.61536 0.02374 0.60823 0.01187
1.5 0.58130 0.59699 0.02699 0.59007 0.01508

10.0 0.50633 0.51763 0.02232 0.51545 0.01801
20.0 0.50193 0.50898 0.01405 0.50781 0.01171

Figure 3: ME estimations in an M/M/1 retrial queue with ρ = 0.5.

For the same numerical example, in Figure 3 we display the maximum entropy
densities f̂1(x), f̂2(x) and f̂2,1(x). In the light of the decreasing shape of the three
densities, we conclude that all these solutions are enough close. However, at this point
we remember the Tauberian relations (27), which give some light about the effect of the
auxiliary point s0. Accordingly, in Figure 4 we allow s0 to take values 0.25, 0.5, 1.0 and
2.0. As far as s0 increases we expect to get a better description of the behaviour of fW(x)
near the origin x = 0. In fact, we observe that the densities associated with the values
0.25 and 0.5 are decreasing functions whereas the densities based on the values 1.0 and
2.0 exhibit a bell-shaped form.

Finally, in Figure 5 we plot the potential function F(α1, α2). The resulting surface is
complementary to Figure 2, where we consider the busy period and plot the balanced
function G. Once more we observe the existence of a long valley and asymptotic
linearity when we leave a neighbourhood of the Lagrangian multipliers.
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The numerical results show that the use of the first two moments and the value
of the Laplace transform in a given point is, in general, sufficient to obtain accurate
estimations.

Figure 4: The effect of the point s0.

Figure 5: The potential function F(α1, α2).
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