The M-Homomorphism and M-Anti Homomorphism of an M-Fuzzy Subgroup and its Level M-Subgroups

R.Muthuraj Department of Mathematics PSNA CET, Dindigul. – 624 622 M.Rajinikannan Department of MCA PSNA CET, Dindigul. – 624 622 M.S.Muthuraman Department of Mathematics PSNA CET, Dindigul. – 624 622

Abstract

In this paper, we introduce the concept of an M-fuzzy subgroup of an M-group and discussed some of its properties. 2000 Mathematics Subject Classification: 22F05, 06F10.

Keywords

M-group, fuzzy set, fuzzy subgroup, M-fuzzy subgroup of an Mgroup , level subset , level M-subgroups , M-homomorphism , M-anti homomorphism.

Introduction

The concept of fuzzy sets was initiated by Zadeh. Then it has become a vigorous area of research in engineering, medical science, social science, graph theory etc. Rosenfeld gave the idea of fuzzy subgroups. Author N. Jacobson introduced the concept of M-group, M-subgroup.

1. Preliminaries

This section contains some definitions and results to be used in the sequel.

1.1 Definition

Let S be a set. A fuzzy subset A of S is a function A: $S \rightarrow [0,1]$.

1.2 Definition

Let G be a group. A fuzzy subset A of G is called a fuzzy subgroup if for x, $y \in G$,

- (i) $A(xy) \ge \min \{ A(x), A(y) \},\$
- (ii) $A(x^{-1}) = A(x)$.

1.3 Definition

A group with operators is an algebraic system consisting of a group G, a set M and a function defined in the product set $M \times G$ and having values in G such that, if ma denotes the element in G determined by the element a of G and the element m of M, then m(ab) = (ma)(mb) holds for all a, $b \in G$ and $m \in M$. We

shall use the phrases "G is an M-group" to a group with operators.

A subgroup H of an M-group G is said to be an Msubgroup if $mx \in H$ for all $m \in M$ and $x \in H$.

1.4 Definition

1.5 Definition

Let A be a fuzzy subset of S. For $t \in [0, 1]$, the level subset of A is the set, $A_t = \{ x \in S : A(x) \ge t \}$.

1.6 Definition

Let G be a finite group of order n and A be a fuzzy subgroup of G. Let Im (A) = { $t_i : A(x) = t_i$ for some $x \in G$ }. Then { A_{ti} } are the only level subgroups of A.

1.1 Example

Let A be a fuzzy subset of an M-group G, then A is

defined by

$$A(\mathbf{x}) = \begin{cases} 0.7 & \text{if } \mathbf{x} \in \mathbf{G} \\ 0.2 & \text{otherwise} \end{cases}$$

Then it is easy to verify that A is an M-fuzzy subgroup of G.

1.7 Definition

Let G and G' be any two M-groups. Then the function

f: $G \rightarrow G'$ is said to be an M-homomorphism if

(i)
$$f(xy) = f(x) f(y)$$
 for all x, y in G.

(ii) f(mx) = mf(x) for all m in M and x in G.

1.8 Definition

International Journal of Computer Applications (0975 – 8887) Volume 2 – No.1, May 2010

Let G and G' be any two M-groups (not necessarily commutative). Then the function $f: G \to G'$ is said to be an M-anti homomorphism if

- (i) f(xy) = f(y) f(x) for all $x, y \in G$.
- (ii) f(mx) = m f(x) for all m in M and x in G.

2. M-fuzzy subgroups of an M-group G under M-homomorphism and M-anti homomorphism

2.1 Theorem

Let f be a M-homomorphism from an M-group G onto an M-group G'. If A is an M- fuzzy subgroup of G and A is finvariant, then f(A), the image of A under f, is an M- fuzzy subgroup of G'.

Proof

Let $\alpha \in$ Image f(A).

Then for some $y \in G'$, $(f(A))(y) = \sup_{x \in f^{-1}(y)} A(x) = \alpha$, where $\alpha \leq A(e)$. Clearly A_{α} is an M-subgroup of G.

If $\alpha = 1$, then $(f(A))_{\alpha} = G'$.

If $0 < \alpha < 1$, then $(f(A))_{\alpha} = f(A_{\alpha})$, because,

$$\begin{array}{rcl} z \in \ (f(A))_{\,\alpha} & \Leftrightarrow \ (f(A)) \ (z) & \geq \, \alpha \ . \\ & \Leftrightarrow \ sup & A(x) \geq \, \alpha \ . \ (\ since \ 0 < \alpha < 1) \\ & & x \in f^{-1}(z) \\ & \Leftrightarrow \ there \ exists \ x \ in \ G \ such \ that \ f(x) = z \\ & & and \quad A(x) \geq \, \alpha \ . \\ & \Leftrightarrow \ z \in (f(A_{\alpha})). \end{array}$$

Hence, $(f(A))_{\alpha} = (f(A_{\alpha})).$

Since f is an M-homomorphism , $(f(A_\alpha))$ is an M-subgroup of G'. Hence $(f(A))_{\,\alpha}$ is an M-subgroup of G'.

Hence f(A) is an M- fuzzy subgroup of G'.

2.2 Theorem

The M-homomorphic pre-image of an M-fuzzy subgroup of an M-group G' is an M-fuzzy subgroup of an M-group G.

Proof

Let f: $G \to G'$ be an M-homomorphism. Let the fuzzy set V on G' be an M-fuzzy subgroup.

We have to prove that any fuzzy set A on G is an M-fuzzy subgroup, where V = f(A). Now, A(xy) = V(f(xy)).

INOW,	A(xy)	$= \mathbf{v}(\mathbf{I}(\mathbf{X}\mathbf{y})).$	
		= V(f(x)f(y)) as f is an M-homomorphism.	
		$\geq \min \{ V(f(x)), V(f(y)) \}$	
		as V is an M-fuzzy subgroup of G'.	
		$= \min \{ A(x), A(y) \}.$	
That is,	A(xy)	$\geq \min\{ A(x), A(y) \}.$	
For $x \in C$	Э,		
	$A(x^{-1})$	$= V(f(x^{-1}))$	
		= $V((f(x)^{-1}))$ as f is an M-homomorphism	
		= $V(f(x))$ as V is an M-fuzzy subgroup of G'	
		$= A(\mathbf{x}).$	
That is,	$A(x^{-1})$	$= A(\mathbf{x}).$	
Clearly, A	A(mx)	= V(f(mx))	
		= $V(mf(x))$, as f is an M-homomorphism	
		$\geq V(f(x))$ as V is an M-fuzzy subgroup of G'	
		$= A(\mathbf{x}).$	
That is, A	A(mx)	$\geq A(x).$	
Hance A is an M fuzzy subgroup of G			

Hence A is an M-fuzzy subgroup of G.

2.3 Theorem

Let f be an M-anti homomorphism from an M-group G onto an M-group G'. If A is an M- fuzzy subgroup of G and A is f-invariant, then f(A), the image of A under f, is an M-fuzzy subgroup of G'.

Proof

Let $\alpha \in \text{Image f}(A)$. Then for some $y \in G'$, $(f(A))(y) = \sup_{x \in f^{-1}(y)} A(x) = \alpha$, where $\alpha \leq A(e)$. Clearly A_{α} is an M-subgroup of G. If $\alpha = 1$, then $(f(A))_{\alpha} = G'$.

If $0 < \alpha < 1$, then $(f(A))_{\alpha} = f(A_{\alpha})$, because,

$$\begin{array}{rcl} z \in & (f(A))_{\,\alpha} & \Leftrightarrow & (f(A)) \ (z) & \geq \, \alpha \, . \\ & \Leftrightarrow & sup \quad A(x) \, \geq \, \alpha \, . \ (\ since \ 0 < \alpha < 1) \\ & & x \in f^{-1}(z) \\ & \Leftrightarrow \ there \ exists \ x \ in \ G \ such \ that \ f(x) = z \end{array}$$

International Journal of Computer Applications (0975 – 8887) Volume 2 – No.1, May 2010

and
$$A(x) \ge \alpha$$
.
 $\Leftrightarrow z \in (f(A_{\alpha})).$

Hence, $(f(A))_{\alpha} = (f(A_{\alpha})).$

Since f is an M- anti homomorphism , $(f(A_{\alpha}))$ is an M-subgroup of $G^{\prime}.$

Hence $(f(A))_{\alpha}$ is an M-subgroup of G'.

Hence f(A) is an M- fuzzy subgroup of G'.

2.4 Theorem

The M-anti homomorphic pre-image of an M-fuzzy subgroup of an M-group G' is an M-fuzzy subgroup of an M-group G.

Proof

Let f: $G \to G'$ be an M-anti homomorphism. Let the fuzzy set V on G' be an M-fuzzy subgroup.

We have to prove that any fuzzy set A on G is an M-fuzzy subgroup, where V = f(A).

Now, A(xy)	= V(f(xy)).		
	= V(f(x)f(y))		
	as f is an M-anti homomorphism.		
	$\geq \min \{ V(f(x)), V(f(y)) \}$		
	as V is an M- fuzzy subgroup of G'.		
	$= \min \{ A(x), A(y) \}.$		
That is, A(xy)	$\geq \min\{ A(x), A(y) \}.$		
For $x \in G$,			
$A(x^{-1})$	$= V(f(x^{-1}))$		
	$= V((f(x)^{-1}))$ as f is an M-anti homomorphism		
	= $V(f(x))$ as V is an M-fuzzy subgroup of G'		
	$= A(\mathbf{x}).$		
That is, $A(x^{-1})$	$= A(\mathbf{x}).$		
Clearly, A(mx)	= V(f(mx))		
	= V(mf(x)), as f is an M-anti homomorphism		
	$\geq V(f(x)) \ \text{ as } V \text{ is an } M \text{-fuzzy subgroup of } G'$		
	$= A(\mathbf{x}).$		
That is, A(mx)	$\geq A(x).$		
Hence A is an M-fuzzy subgroup of G.			

3. Properties of level subsets of an M-fuzzy subgroup of an M-group:

3.1 Theorem

Let A be a fuzzy subset of an M-group G. If A is an M-fuzzy subgroup of G, then the level subsets A_t , $t\in Im(A)$ are M-subgroups of G.

Proof

Let $t \in Im(A)$ and $x , y \in A_t$. Then A(x) = t and A(y) = t. Given that A is an M-fuzzy subgroup of G. Therefore, A is a fuzzy subgroup of G. Hence $A(xy) \ge min \{ A(x) , A(y) \} = t$. That is, $A(xy) \ge t$. That is, $xy \in A_t$. Moreover, if $x \in A_t$, then $A(x^{-1}) = A(x) \ge t$. Hence $x^{-1} \in A_t$. Hence A_t is a subgroup of G. Now, for any $x \in A_t$ and $m \in M$, then $A(mx) \ge A(x) \ge t$. Hence $mx \in A_t$.

3.2 Theorem

Let A be a fuzzy subset of an M-group G. If the level subsets A_t , $\ t\in Im(A)$ are M-subgroups of G, then A is an M-fuzzy subgroup of G.

Proof

Let the level subsets A_t , $t \in Im(A)$ are M-subgroups of G. If there exist x_0 , $y_0 \in G$ such that $A(x_0y_0) < \min\{A(x_0), A(y_0)\}$. Let $t_0 = (A(x_0y_0) + \min\{A(x_0), A(y_0)\})/2$, we have $A(x_0y_0) < t_0$ $< \min\{A(x_0), A(y_0)\}.$ It follows that x_0 , $y_0 \in A_{t0}$, but $x_0y_0 \notin A_{t0}$. Which is a contradiction. Hence $A(xy) \ge \min \{ A(x), A(y) \}$. Similarly, we have $A(x^{-1}) \ge A(x)$. Hence A is a fuzzy subgroup of G. Now, suppose, for $m \in M$ and $x \in G$, A(mx) < A(x). Let $t_0 = (A(mx) + A(x))/2$. Then, $A(mx) < t_0 < A(x)$. That is , for $m \in M$ and $x \in G$, then $x \in A_{t0}$, but $mx \notin A_{t0}$. Which is a contradiction to Ato is a M-subgroup of G. Hence $A(mx) \ge A(x)$. Hence A is an M-fuzzy subgroup of G. 3.1 Definition

Let A be an M- fuzzy subgroup of an M-group G. Then the M-subgroups A_t , for $t \in [0,1]$ and $t \ge A(e)$, are called level M-subgroups of A.

4. Level M-subgroups of M-fuzzy subgroups of an M-group G under M-homomorphism and M-anti homomorphism

4.1 Theorem

The M-homomorphic image of a level M-subgroup of an M-fuzzy subgroup A of an M-group G is a level M-subgroup of an M-fuzzy subgroup f(A) of an M-group G' where A is finvariant.

Proof

Let G and G' be any two M-groups.

Let f: $G \rightarrow G'$ be an M-homomorphism.

Let A be an M-fuzzy subgroup of G.

Clearly, f(A) is an M-fuzzy subgroup of G'.

Let A_{α} be a level M-subgroup of an M-fuzzy subgroup A of G.

Since f is an M-homomorphism , f (A_a) is an M-subgroup f(A) of G' and f (A_a) = (f(A))_a.

Hence $(f(A))_{\alpha}$ is a level M-subgroup f(A) of G'.

4.2 Theorem

The M-homomorphic pre-image of a level M-subgroup of an M-fuzzy subgroup V of an M-group G' is a level Msubgroup of an M-fuzzy subgroup $f^{-1}(V)$ of an M-group G.

Proof

Let G and G' be any two M-groups.

Let f: $G \rightarrow G'$ be an M-homomorphism.

Let V be an M-fuzzy subgroup of G'.

Clearly $f^{-1}(V)$ is an M-fuzzy subgroup of G .

Let V_t be a level M-subgroup of an M-fuzzy subgroup V of G'.

Since , f is an M-homomorphism , $f^{\,l}(V_t)$ is an M-subgroup $% f^{\,l}(V)$ of G

and $\ f^{-1}(\ V_t\)=(f^{-1}(\ V\)\)_t$, is an M-subgroup of an M-fuzzy subgroup $f^{-1}(V)$ of G.

International Journal of Computer Applications (0975 – 8887) Volume 2 – No.1, May 2010

That is , $(f^{-1}(V))_t$ is a level M-subgroup of an M-fuzzy subgroup $f^1(V)$ of G.

4.3 Theorem

The M-anti homomorphic image of a level M-subgroup of an M-fuzzy subgroup A of an M-group G is a level Msubgroup of an M-fuzzy subgroup f(A) of an M-group G' where A is f-invariant.

Proof

Let G and G' be any two M-groups.

Let $f: G \to G'$ be an M-anti homomorphism.

Let A be an M-fuzzy subgroup of G.

Clearly, f(A) is an M-fuzzy subgroup of G'.

Let A_{α} be a level M-subgroup of an M-fuzzy subgroup A of G.

Since f is an M-anti homomorphism , $f(A_\alpha)$ is an M-subgroup f(A) of G' and $f(A_\alpha)=(f(A))_\alpha$

Hence $(f(A))_{\alpha}$ is a level M-subgroup f(A) of G'.

4.4 Theorem

The M-anti homomorphic pre-image of a level Msubgroup of an M-fuzzy subgroup V of an M-group G' is a level M-subgroup of an M-fuzzy subgroup $f^{-1}(V)$ of an M-group G.

Proof

Let G and G' be any two M-groups.

Let f: $G \rightarrow G'$ be an M-anti homomorphism.

Let V be an M-fuzzy subgroup of G'.

Clearly $f^{1}(V)$ is an M-fuzzy subgroup of G.

Let V_t be a level M-subgroup of an M-fuzzy subgroup V of G'.

Since , f is an M-anti homomorphism , $f^{\,1}(V_t)$ is an M-subgroup of $\label{eq:generalized_formula} f^{\,1}(V) \text{ of } G$

and $f^{1}(V_{t}) = (f^{-1}(V))_{t}$, is an M-subgroup of an M-fuzzy subgroup $f^{1}(V)$ of G.

International Journal of Computer Applications (0975 – 8887) Volume 2 – No.1, May 2010

That is , (f $\ ^{-1}(\ V\))_t$ is a level M-subgroup of an M-fuzzy subgroup $f\ ^1(V)$ of G.

References

- Biswas .R, Fuzzy subgroups and Anti Fuzzy subgroups, Fuzzy sets and Systems, 35(1990) 121-124.
- [2] Das. P.S, Fuzzy groups and level subgroups, J.Math.Anal. Appl, 84 (1981) 264-269.

[3] Mohamed Asaad, Groups and Fuzzy subgroups Fuzzy sets and systems 39(1991) 323-328.

[4] Prabir Bhattacharya, Fuzzy Subgroups: Some Characterizations , J.Math. Anal. Appl.128 (1987) 241 – 252.

- [5] Rosenfeld, Fuzzy groups, J.Math.Anal.Appl, 35(1971) 512 - 517.
- [6] N. Jacobson , Lectures in Abstract Algebra , East – West Press , 1951.