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A b s t r a c t .  This paper introduces MacGuffin, a 64 bit "codebook" block 
cipher. Many of its characteristics (block size, application domain, per- 
formance and implementation structure) are similar to those of the U.S. 
Data Encryption Standard (DES). It is based on a Feistel netwprk, in 
which the cleartext is split into two sides with one side repeatedly mod- 
ified according to a keyed function of the other. Previous block ciphers 
of this design, such as DES, operate on equal length sides. MacGuffin is 
unusual in that it is based on a generalized unbalanced Feistel network 
(GUFN) in which each round of the cipher modifies only 16 bits accord- 
ing to a function of the other 48. We describe the general characteristics 
of MacGuffin architecture and implementation and give a complete spec- 
ification for the 32-round, 128-bit key version of the cipher. 

1 Introduct ion 

Feistel ciphers [1] operate by alternately encrypttng the bits in one "side" of their 
input  based on a keyed non-linear function of tl{e bits in the other. This is done 
repeatedly, for a fixed number  of "rounds". It  is believed that ,  when i terated over 
sufficiently many  rounds, even relatively simple non-linear functions can provide 
high security. Traditionally, such ciphers split their input block evenly about  the 
middle; a 64 bit cipher would operate on two 32 bit internal blocks, swapping 
the "left" (the target block) and "right" (the control block) sides with each round. 
Several impor tan t  block ciphers, including DES [3], are built upon this structure. 
We say these ciphers are based on balanced Feistel networks (BFNs), since both  
sides are of equal length. 

This  paper  describes a block cipher, called MacGuJfin, tha t  is based on a 
variant  of this structure, the generalized unbalanced Feistel network (GUFN), 
in which the target  and control blocks need not be of equal length a. GUFNs,  
especially those in which the target  block is smaller than the control block, 

Several cryptographic hash functions, such as MD5 [6] and SHA [5], employ an 
unbalanced structure similar in some respects to a GUFN. 
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appear to have a number of attractive properties for cipher design, particularly 
with respect to the design of the non-linear function. The principles underlying 
GUFNs are discussed in [7]. 

As its name suggests, MacGuffin is intended primarily as a catalyst for dis- 
cussion and analysis. We believe it may also prove a practical, high security block 
cipher suitable for general use as an alternative to DES. It operates on 64 bit 
blocks of data, with an internal structure containing a 16 bit target block and 
a 48 bit control block ("48 on 16", in the notation of [7]). In principle, almost 
any length key and any number of rounds may be used, although we specify 32 
rounds and a 128 bit key as "standard". 

2 A r c h i t e c t u r e  

We have been conservative in most aspects of MacGuffin's design, isolating most 
of its novel features to those parts of the design related to its unbalanced struc- 
ture. As such, much of our design is adapted directly from DES. We hope that 
the many similarities between DES and MacGuffin will invite analysis of their 
differences. 

Basically, the input cipherblock is partitioned into four 16 bit words, from 
left to right. In each round, the three rightmost words comprise the control 
block and are bitwise exclusive-ORed (XORed) with three words derived from 
the key. These 48 bits are then split eight ways according to a fixed permutation 
to provide input to eight functions of six bits (the "S-boxes"), each producing 
two bits of output. The 16 S-box output bits are then XORed, according to 
another fixed permutation, with the bits in the leftmost (target) word. Finally, 
the leftmost word is rotated into the rightmost position. The cipher can be 
reversed by a similar process, with the key derived bits applied in reverse order. 

2.1 Design Principles 

Because each round operates on only half as many bits as in a BFN (16 as 
opposed to 32), we use 32 rounds, twice as many as in DES, in our standard 
version. Because there are twice as many rounds, however, there are also a total of 
twice as many key bits XORed with the control blocks. These bits are obtained 
from the 128 bit key with the key expansion function described in the next 
section. 

We adapt our S-boxes directly from those of DES. The eight DES S-boxes 
each produce four bits of output. Since we require only two bits from each (for 
a total of 16 bits), we use only the "outer" two output bits from each S-box. 

In each round, each control block bit is XORed with one derived key bit and 
provides one input to exactly one S-box. There is no "expansion" permutation, 
since the number of control bits equals the number of S-box inputs. The control 
bits are mapped 1 : 1 to S-box inputs according to a fixed permutation. This 
permutation was designed so that each S-box receives two of its six inputs from 
each of the three registers in the control block. 



The MacGuffin Block Cipher Algorithm 99 

S-box outputs are distributed across the 16 target bits. No S-box output  goes 
to a bit position that  is used as a direct input to itself in the next four rounds. 

Observe that  each of the three control registers contains bits produced in a 
different round of the cipher, and that  each encrypted bit provides input to three 
different S-boxes (in the next three rounds), before it is encrypted again. 

The cipher is designed for implementation in either hardware or software. 
Permutations were chosen to minimize the number of shift and mask operations 
and to allow t ime/memory optimizations in a software implementation. 

3 Algorithm Description 

3.1 D a t a  S t r u c t u r e s  and  N o t a t i o n  

We use the following notation: 

G represents a 16 bit bitwise exclusive-OR (XOR) operation. 
~-- is the conventional assignment operator, except as noted below. 
w,  x ,  y,  z ~-  i copies the data  from 64 bit interface i, from lowest to highest bit 

position, into 16 bit registers w, x, y and z, respectively. 
i ~-- w ,  x ,  y, z copies the bits from 16 bit registers w, x, y and z, respectively into 

interface i, from lowest to highest bit position. 
s, t, u, v ~-- w, x, y, z copies w, x, y and z to s, t ,  u and v, respectively, in parallel 

(e.g., x, y ~-- y, x swaps x and y). 
w ~ F ( x ,  y,  z)  selects, according to a fixed permutation, bits from a, y and z 

as input to function F ,  storing the function output in bits of w, selected 
according to a fixed permutation. 

The cipher employs the following internal structures: 

~r0...63, 00.. .63 are the 64 bit external input and output interfaces. 
left,  a, b, c, t are 16 bit registers on which all cryptographic operations are per- 

formed, r0 represents the least significant bit of r, r15 the most significant. 
k0...127 is a 128 bit secret key parameter. 
K[0...31, 0...2] is a 32 x 3 table of 16 bit words containing an expansion of k, as 

explained below. 

3.2 S - b o x e s  a n d  P e r m u t a t i o n s  

Nonlinearity in the encryption and key setup processes is provided primarily 
through eight functions, or "S-boxes", denoted S1...Ss, each taking six bits of 
input selected from the a, b and c registers and producing two bits of output  
(which are XORed into the left  register). 

Inputs to each S-box are selected uniquely from the a, b and c registers, as 
specified in Table 1. (In this table, input bit 0 is the least significant bit.) Outputs 
from each S-box are distributed across the 16 bit target block as specified in 
Table 2. Each S-box is defined as a 64 x 2 bit mapping of input values to outputs, 
as given in Table 3. 
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Input Bit 
S-box 0 1 2 3 4 5 

$1 a2 a5 be b9 c11cl, 
$2 al a4 b~ b10c8 c14 
$3 as a6 bs blz co cls 
$4 a12a1461 b2 c4 c10 
$5 a0 al0 b3 b14 c6 c12 
$6 a7 as b12blscl c5 
ST a9 a15b~ b11c2 cT 
Ss all al~ b9 b4 c3 c9 

Table  1. S-Box Input Permutation 

O u t p u t  Bit 
S-box 0 1 

$1 to tl 
$2 t2 t3 
S~ t4 t5 
$4 t~ tT 
$5 ts t9 
$6 h0 tll 
ST t12 t13 
$8 !t14 t15 

Table  2. S-Box Output Permutation 

3.3 K e y  Setup 

Each round of the cipher uses the secret key parameter  to per turb the S-boxes 
by bitwise XOR against the S-box inputs. Each round thus requires 48 key bits. 
To convert the 128 bit k parameter  to a sequence of 48 b i tva lues  for each round 
(the K table), MacGuffin uses an i terated version of its own block encryption 
function. See Figure 1. 

3.4 B l o c k  E n c r y p t i o n  

Block encryption is defined in Figure 2. 

3.5 Block Decryptlon 

Block decryption is similar to block encryption, and is defined in Figure 3. 
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K ~ 0  
left, a, b, c ~ ko...6a 
fo r  h = O t o  31 do  

f o r i = O t o  31 do  
f o r j = l t o  8 d o  

t r S j ( a  @ K[ i ,O] ,b@ It'll ,  1],c @ K[i, 2]) 
left ~ l e#  @ t 
left, a, b, c ,-- a, b, c, le f t  

if[h, 0] ~- ae# 
K [ h ,  1] ~-- a 
K[h,  21 ~- b 

left, a, b, c *-- k64...127 
fo r  h = O t o  31 do  

for  i = O t o  31 do  
f o r j = l t o  8 d o  

t ~ S j  (a | K[ i ,  0], b | K[i ,  1],c @ K[i ,  2]) 
le f t  ~ lef t  | t 
left, a, b, e ~ a, b, c, le f t  

K[h,  0] ~- Sqh,  01 ~ left 
l ( [h ,  1] ~- K [ h ,  1] | a 
K[h, 2] ~ ~:[h, 2] | b 

Fig.  1. MacGuffin Key Setup 

left, a, b, c ~-- I 
fo r  i = O  to  31 do  

f o r j = l t o 8 d o  
t ~ & (a ~ K[ i ,  0], b ~ K[i, 1],c �9 KF,  2]) 

le f t  ,--- le f t  G t 
left, a, b, c ,-- a, b, c, lef t  

0 *-- left, a , b , c  

Fig.  2. MacGuffin Block Encryption 

c, left, a, b ~ I 
for  i = 31 d o w n t o  0 do  

fo r  j = 1 to  8 do  
t ~ S~ (a �9 K[i ,  0], b e Zr[i, 1], c �9 K[i, 2]) 

left+-- lef t  ~ t 
left, a, b, c ,-- c, left, a, b 

0 ~-- l e f ' t ,a ,b ,c  

Fig.  3. MacGuffin Block Decryption 
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S1 
2 0 0 3 3 1 1 0 0 2 3 0 3 3 2 1 1 2 2 0 0 2 2 3 1 3 3 1 0 1 1 2  
0 3 1 2 2 2 2 0 3 0 0 3 0 1 3 1 3 1 2 3 3 1 1 2 1 2 2 0 1 0 0 3  

& 
3 1 1 3 2 0 2 1 0 3 3 0 1 2 0 2 3 2 1 0 0 1 3 2 2 0 0 3 1 3 2 1  
0 3 2 2 1 2 3 1 2 1 0 3 3 0 1 0 1 3 2 0 2 1 0 2 3 0 1 1 0 2 3 3  

& 
2 3 0 1 3 0 2 3 0 1 1 0 3 0 1 2 1 0 3 2 2 1 1 2 3 2 0 3 0 3 2 1  
3 1 0 2 0 3 3 0 2 0 3 3 1 2 0 1 3 0 1 3 0 2 2 1 1 3 2 1 2 0 1 2  

& 
1 3 3 2 2 3 1 1 0 0 0 3 3 0 2 1 1 0 0 1 2 0 1 2 3 1 2 2 0 2 3 3  
2 1 0 3 3 0 0 0 2 2 3 1 1 3 3 2 3 3 1 0 1 1 2 3 1 2 0 1 2 0 0 2  

0 2 2 3 0 0 1 2 1 0 2 1 3 3 0 1 2 1 1 0 1 3 3 2 3 1 0 3 2 2 3 0  
0 3 0 2 1 2 3 1 2 1 3 2 1 0 2 3 3 0 3 3 2 0 1 3 0 2 1 0 0 1 2 1  

& 
2 2 1 3 2 0 3 0 3 1 0 2 0 3 2 1 0 0 3 1 1 3 0 2 2 0 1 3 1 1 3 2  
3 0 2 1 3 0 1 2 0 3 2 1 2 3 1 2 1 3 0 2 0 1 2 1 1 0 3 0 3 2 0 3  

0 3 3 0 0 3 2 1 3 0 0 3 2 1 3 2 1 2 2 1 3 1 1 2 1 0 2 3 0 2 1 0  
1 0 0 3 3 3 3 2 2 1 1 0 1 2 2 1 2 3 3 1 0 0 2 3 0 2 1 0 3 1 0 2  

& 
3 1 0 3 2 3 0 2 0 2 3 1 3 1 1 0 2 2 3 1 1 0 2 3 1 0 0 2 2 3 1 0  
1 0 3 1 0 2 1 1 3 0 2 2 2 2 0 3 0 3 0 2 2 3 3 0 3 1 1 1 1 0 2 3  

Table 3. MacGuffin S-Boxes 

4 Implementation, Performance and Applications 

Feistel ciphers, with their many permutat ion operations and table lookups, are 
particularly well suited to hardware implementation. Because permutat ions in 
hardware are "free" (they are implemented with simple connections), and be- 
cause S-box lookups can occur in parallel, each round can be implemented with 
conventionM modern hardware in two clock cycles. 

Software implementations of Feistel ciphers on general-purpose computers 
are typically much slower than their hardware counterparts, since the S-boxes 
must be evaluated in sequence and bit permutations must be simulated with 
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shifts, ANDs, ORs and other operators. Depending on the specific permutations 
and S-box structures, however, many of these operations can be made faster 
with table lookups and by combining several operations into one. 

The permutations in MacGuffin have been designed explicitly to permit soft- 
ware optimization. First, the six inputs to each S-box are from different bits from 
each of the a, b and c registers, allowing the three registers to be masked and 
ORed together (without individual shifting) for a single lookup for each S-box. 
Furthermore, for each S-box there is a unique "mate" S-box with which it shares 
no common inputs. This allows the eight S-boxes to be "paired off" and looked 
up two at a time with a single 216 entry table containing the combined outputs 
of both S-boxes. (The pairs are $1S2, $3S4, $5S7 and S6Ss). 

An optimized software implementation (given in the Appendix) of 32 round 
MacGuffin runs at close to the speed of optimized 16 round DES in software. 
An implementation on a 486/66 processor has a bandwidth of about 1.5Mbps; 
a reasonable DES implementation [2] on the same processor runs at 2.1Mbps. 

The MacGuffin interface is similar to that of DES (except for the larger 
keyspace). It can be used with the standard "FIPS-81" modes of operation[4]. 
Note that key setup is an explicitly time consuming process. This is intended to 
discourage exhaustive search of poorly chosen keys. In an implementation where 
rapid selection among many keys is required (such as a packet-based network 
security protocol) the 1536 bit expanded key may be passed directly as the 
cryptovariable. 

Experiments with MacGuffin are detailed in [7]. 
While we believe the GUFN structure is superior to the conventional BFN 

cipher structure, much more discussion and analysis is required before we can 
recommend its use for protecting sensitive data. We encourage attacks against 
MacGuffin in particular and the GUFN structure in general. 
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Appendix:  Optimized C Language Implementat ion 

/* 

* MacGuffin Cipher 
* 1 0 / 3 / 9 4  - Matt.Blaze 
* (fast, unrolled version) 
*/ 

#define ROUNDS 32 
#define KSIZE (ROUNDS*3) 

/* expanded key structure */ 
typedef struct mcg_key { 

unsigned short val[KSIZE]; 
} mcg_key; 

#define TSIZE (1<<16) 

/* the 8 s-boxes, expanded to put the output bits in the right 
* places, note that these are the des s-boxes (in left-right, 
* not canonical, order), but with only the "outer" two output 
* bits. */ 

unsigned short sboxes[8][64] = { 
/ ,  o (s1) , /  
{OxO002 OxO000, OxO000, OxO00S OxO003, OxO001 OxO001, OxO000, 

OxO000. 

OxO00i, 

OxO001, 

OxO000, 

OxO003 

OxO003 
OxO001 

OxO002, OxO003 OxO000 
OxO002, OxO002 
OxO003, OxO003 
OxO003, OxO001 
OxO000, OxO000 
OxO001, OxO002 
OxO002, OxO002 

OxO000 

OxO001 

OxO002 
OxO003 

OxO008 
OxO000 

/* 1 (s2) */ 

OxO003, OxO003 
OxO000, OxO002 
OxO000, OxO001, 
OxO002, OxO002 
OxO000, OxO001, 

OxOOOg, OxO001 
OxO001, OxO000, 

OxO002, 
OxO002, 

OxO001, 

OxO002, 
OxO003, 
OxO00i, 
OxO000, 

OxO001, 
OxO003, 
OxO002, 

OxO000, 
OxO001, 

OxO002, 
OxO003}, 

{OxO00c OxO004, OxO004 OxO00c OxO008 OxO000 OxO008, OxO004, 
OxO000 
OxO00c, 
OxO008 

OxO000, 

OxO008 

OxO004 
OxO00c 

OxO00c OxO00c 
OxO008 OxO004 
OxO000 OxO000 

OxO00c OxO008 

OxO004 OxO000 
OxO00c OxO008 
OxO000 OxO004 

/* 2 (SS) */ 

OxO000 
OxO000 
OxO00c 

OxO008 

OxO00c 

OxO000 
OxO004 

OxO004, 
OxO000 
OxO004 

OxO004 

OxO00c, 

OxO008, 
OxO000 

OxO008, 
OxO004 
OxO00c, 

OxO008, 
OxO000, 

OxO004, 
OxO008 

OxO000, OxO008, 
OxO00c, OxO008, 
OxO008, OxO004, 
OxO00c, OxO004, 
OxO004, OxO000, 
OxO000, OxO008, 
OxO00c, OxO00c}, 

{OxO020, OxO030, OxO000, OxO010, OxOO30, OxO000, OxO020, OxO030, 
OxO000, OxO010, OxOOiO, OxO000, OxOO30, OxO000, OxO010, OxO020, 
OxO010, OxO000, OxO030, OxO020, OxO020, OxO010, OxO010, OxO020, 
OxO030, OxO020, OxO000, OxO030, OxO000, OxO030, OxO020, OxO010, 
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OxO030, OxO010, OxO000, OxO020, OxO000, OxO030, OxO030, OxO000, 

OxO020, OxO000, OxO030, OxO030, OxO010, OxO020, OxO000, OxO010, 
OxO030, OxO000, OxO010, OxO030, OxO000, OxO020, OxO020, OxO010, 
OxO010, OxO030, OxO020, OxO010, OxO020, OxO000, OxO010, OxO020}, 

/ ,  3 (s4)  , /  
{OxO040 OxOOcO, OxOOcO, OxO080, OxO080 OxOOcO OxO040 OxO040 

OxO000 OxO000. 
OxO040 OxO000. 

OxOOcO OxO040. 
OxO080 OxO040. 

OxO080 0x0080. 
OxOOcO Ox00cO. 
OxO040 OxO080, 

/ ,  4 (ss) , /  

OxO000, OxOOcO OxOOcO 
OxO000, OxO040, OxO080 
OxO080, OxO080 OxO000 

OxO000, OxOOcO, OxOOcO 
OxOOcO, OxO040 OxO040 
OxO040, OxO000, OxO040 
OxO000, OxO040 OxO080 

OxO00O 
OxO000 
OxO080 

OxO000 
OxOOcO 
OxO040 
OxO000 

OxO080 

OxO040 
OxOOcO 

OxO000 
OxOOcO 
OxO080 

OxO000 

OxO040 
OxO080 
OxOOcO 

OxO000 

OxO080 
OxOOcO 

OxO080}, 

{OxO000 Ox0200, Ox0200, Ox0300 OxO000 OxO000 OxOlO0, Ox0200 

OxOlO0 OxO000. 
Ox0200 Ox0100 
Ox0300 Ox0100. 
OxO000 Ox0300 

Ox0200 OxOlO0, 
OxO300 OxO000. 

OxO000 Ox0200. 
/ ,  s (s6) , /  

Ox0200. OxOlO0, Ox0300 

OxOlO0 
OxO000. 
OxO000 

Ox0300 
Ox0300 

OxO000 Ox0100 

Ox0300, Ox0200 
Ox0200, OxOlO0 

Ox0200, Ox0100 
Ox0300, 0x0200 

OxOiO0, OxO000, OxO000 

Ox0300 
Ox0300 

Ox0200 
Ox0200 

OxO000 
OxO000 
Ox0100 

OxO000, OxOlO0 
Ox0300, Ox0200 

OxO3OO, OxO000 
Ox0300, OxOlO0 
Ox0200, Ox0300 

OxOlO0, Ox0300 
Ox0200, OxOlO0}, 

{Ox0800 Ox0800. Ox0400. OxOcO0, Ox0800 OxO000 OxOcO0 OxO000 

OxOcO0 Ox0400 
OxO000 OxO000. 
Ox0800 OxO000 

OxOcO0 OxO000. 
OxO000 OxOcO0 
OxO~O0 OxOcO0. 
Ox0400 OxO000 

/ ,  e (sT) , /  

OxO000 
OxOcO0 
Ox0400 

Ox0800 
OxO800 
OxO000 

OxOcO0 

Ox0800 OxO000 
Ox0400 Ox0400 
OxOcO0 Ox0400 

Ox0400 OxOcO0 
Ox0400 Ox0800 
Ox0800 Ox0000 

OxOOOO OxOc~6 

OxOcO0 

OxOcO0 
Ox0400 

OxO000 
OxOcO0 
Ox0400 

Ox0800 

Ox0800 

OxO000 
OxOcO0 

Ox0400 
Ox0400 
Ox0800 

OxO000, 

Ox0400 

Ox0800 
Ox0800 

Ox0800 
Ox0800 
Ox0400 

OxOcO0}, 

{OxO000 Ox3000 Ox3000 OxO000 OxO000 Ox3000 Ox2000, OxlO00 
Ox3000 OxO000. 
OxlO00 Ox2000 
OxlO00 OxO000 
OxlO00 OxO000 

Ox2000 OxlO00 
Ox2000 Ox3000 
OxO000 Ox2000 

/ ,  7 (s8)  , /  

OxO000 
Ox2000 
Ox2000 
OxO000 
OxlO00 
Ox3000 
OxlO00 

Ox3000 
OxiO00 
Ox3000 
Ox3000 
OxO000 
OxlO00 
OxO000 

Ox2000 
Ox3000 
OxO000 
Ox3000 

OxlO00 
OxO000 
Ox3000 

OxlO00 
OxlO00 
Ox2000 
Ox3000 
Ox2000 
OxO000 
OxlO00 

Ox3000 
OxlO00, 
OxlO00, 
Ox3000, 
Ox2000 
Ox2000, 
OxO000 

Ox2000 
Ox2000 
OxO000 
Ox2000 
OxlO00 
Ox3000 
Ox2000}, 

{OxcO00, Ox4000, OxO000, OxcO00, Ox8000, OxcO00, OxO000, Ox8000, 
OxO000, Ox8000, OxcO00, Ox4000, OxcO00, Ox4000, Ox4000, OxO000, 

OxSO00, Ox8000, OxcO00, Ox4000, Ox4000, OxO000, Ox8000, OxcO00, 
Ox4000, OxO000, OxO000, Ox8000, Ox8000, OxcO00, Ox4000, OxO000, 
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Ox4000, OxO000, OxcOO0, Ox4000, OxO000, OxSO00, Ox4000, Ox4000, 
OxcO00, OxO000, Ox8000, Ox8000, Ox8000, OxSO00, OxO000, OxcO00, 
OxO000, OxcO00, OxO000, Ox8000, Ox8000, OxcO00, OxcO00, OxO000, 
OxcO00, Ox4000, Ox4000, Ox4000, Ox4000, OxO000, Ox8000, OxcO00} 

}; 

/* table of s-box outputs, expanded for 16 bit input. 
* this one table includes all 8 sboxes - just mask off 

* the output bits not in use. */ 

unsigned short stable[TSIZE]; 

/* we exploit two features of the s-box input ~ output perms - 

* first, each s-box uses as input two different bits from each 
* of the three registers in the right side, and, second, 

* for each s-box there is another-sbox with no common input bits 

* between them. therefore we can lookup two s-box outputs in one 

* probe of the table, just mask off the approprate input bits 

* in the table below for each of the three registers and OK 

* together for the table lookup index. 

* these masks are also available below in #defines, for better 

* lookup speed in unrolled loops. */ 

unsigned short lookupmasks[4][3] = { 

/ *  a , b , c */  
{0x0036, Ox06cO, 0x6900}, / *  sl+s2 * /  
{0x5048, 0x2106, 0x8411~, / *  s3+s4 * /  
{0x8601, 0x4828, 0x10c4}, / *  sS+s7 * /  
{0x2980, 0x9011, OxO22a}}; / *  s6+s8 * /  

/* this table contains the corresponding output masks for the 
* lookup procedure mentioned above. 

* (similarly available below in #defines). */ 

unsigned short outputmasks[4] = { 
OxOOOf /*sl+s2*/, OxOOfO /*s3+s4*/, 

0x3300 /*sS+s7*/, OxccO0 /*s6+s8*/};  

/* input 
/ *  sl+s2 * /  
#define INO0 0x0036 
#define IN01 Ox06cO 
#define IN02 0x6900 
#define OUTO OxOOOf 
/* s3+s4 */ 
#define INIO 0x5048 
#define IN11 0x2106 
#define IN12 0x8411 

and output lookup masks (see above) */ 
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#define OUTI OxOOfO 

I* sS+s7 *I 
#define IN20 0x8601 
#define IN21 0x4828 
#define IN22 OxlOc4 
#define OUT2 0x3300 

/* s6+s8 */ 
#define IN30 0x2980 
#define IN31 0x9011 
#define IN32 OxO22a 
#define OUT3 OxccO0 

/* 

* initialize the macguffin s-box tables. 

* this takes a while, but is only done once. 
*/ 

mcg_init() 
{ 

unsigned int i,j,k; 
int b; 
/* 

* input permutation for the 8 s-boxes. 

* each row entry is a bit position from 
* one of the three right hand registers, 

* as follows: 

* a,a,b,b,c,c 
*/ 

static int sbits[8][6] = { 

{2,5,6,9,11,13}, {1,4,7,10,S, 14}, 
{3,6,8,13,0,15}, {12,14,1,2,4,10}, 
{0,10,3,14,6,12}, {7,8,12,15,1,5}, 

{9,15,5,11,2,7}, {11,13,0,4,3,9}}; 

for (i=O; i<TSIZE; i++) { 
stable [i] =0 ; 
for (j=O; j<8; j++) 

stable [i] i = 

sboxes [j] [( (i>>sbits [j] [0] )~I) 
I (((i>>sbits [j] [I])~I)<<I) 
I (((i>>sbits[j] [2])~I)<<2) 
I (((i>>sbits [j] [3])~I)<<3) 
I (((i>>sbits [j] [4])~1)<<4) 
l(((i>>sbits[j] [5])~1)<<5)]; 
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/* 

* expand key to ek 
*/ 

mcg_keyset(key,ek) 
unsigned char *key; 
mcg_key *ek; 

{ 

int i,j; 
unsigned char k[2][8]; 

mcg_init ( ) ; 
bcopy(&key [0] ,k[O] ,8) ; 
bcopy(&key [8] ,k [I], 8) ; 
for (i=O; i<KSIZE; i++) 

ek->val [i] =0; 
for (i=O; i<2; i++) 

for (j:O; j<32; j++) { 
mcg_block_encrypt (k[i] , ek) ; 
ek->val [j *3] ^= k[i][O] I (k[i][1]<<8); 
ek->val [j *3+1] ^= k[i][2] I (k[i][3]<<8); 
ek->val [j *3+2] ^= k[i][4] I (k[i][5]<<8); 

} 

/* 

* codeboo~ encrypt one block with given expanded key 
*/ 

mcg_blockencrypt(blk,key) 
unsigned char *blk; 
mcg_key *key; 

unsigned short rO, rl, r2, r3, a, b, c; 
int i; 
unsigned short *ek; 

/* copy cleartext into local words */ 
rO=blk [0] I (blk [i] <<8) ; 
rl=blk [2] I (blk [3] <<8) ; 
r2=blk [4] I (blk [5] <<8) ; 
rS=blk [6] I (blk [7] <<8) ; 

ek = ~(key->val[O]); 
/* round loop, unrolled 4x */ 
for (i=O; i<(ROUNDS/4); i++) { 
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a = rl " *(ek++); b = r2 " *(ek++); 

rO ^=((OUTO ~ stable[(a ~ INOO) l(b 

I (OUTI ~ stable[(& & IN10) i(b 

I (OUT2 & stable[(a ~ IN20) l (b  
I (OUT3 ~ stableC(a ~ IN30) l(b 

a = r2 " *(ek++); b = r3 ^ *(ek++); 

rl ^=((OUTO ~ stable[(a ~ INOO) l(b 

I (OUTI ~ stable[(a ~ INlO) l(b 

I (OUT2 ~ stable[(a ~ IN20)l(b 

I (OUT3 ~ stable[(a a INSO) l(b 

a = r3 " *(ek++); b = rO " *(ek++); 

r2 "=((OUTO ~ stable[(a ~ INOO) l(b 

I (OUTI & stable[(a ~ INlO) l(b 
I (OUT2 ~ stable[(a~ IN20) l(b 

I (OUT3 ~ stable[(&'~ INBO)[(b 

a = rO " *(ek++); b = rl ~ *(ek++); 
r3 "=((OUTO ~ stable[(a ~ INOO) l(b 

I (OUTi ~ stable[(a ~ IN10)l(b 
I (OUT2 ~ stable[(a ~ IN20) l(b 

I (OUT3 ~ stable[(a ~ IN30) l(b 

c = r3 " *(ek++); 
INOl)l(c ~ IN02)]) 

IN11)l(c ~ I~12)]) 
IN21)i(c ~ IN22)]) 

IN31)l(c ~ IN32)])); 

c = rO ^ *(ek++); 

zNol ) l (c  m IN02)]) 
I~11)I(c ~ IN12)]) 

IN21)l(c ~ IN22)]) 

IN31)i(c ~ IN32)])); 

C = rl ^ *(ek++); 

INOl)l(c ~ IN02)]) 

I N l l ) l ( c  ~ IN12)]) 
IN21) l ( c  ~ IN22) ] )  
IN31) l ( c  ~ IN32 ) ] ) ) ;  

c = r2 ^ *(ek++);  
IN01) l ( c  ~ IN02) ] )  
IN11) l ( c  ~ IN12) ] )  
IN21) l ( c  ~ IN22) ] )  
IN31) l ( c  ~ I N 3 2 ) ] ) ) ;  

/* copy 4 encrypted words back to output */ 

blk[O] = rO; blk[1] = rO>>8; 
blk[2] = rl; blk[3] = ri>>8; 

blk[4] = r2; blk[5] = r2>>8; 

blk[6] = rS; blk[7] = r3>>8; 

/* 

* codebook decrypt one block with given expanded key 
*/ 

mcg blockdecrypt(blk,key) 

unsigned char *blk; 
mcg_key *key; 

unsigned short rO, rl, r2, r3, a, b, c; 
int i; 

unsigned short *#k; 

/* copy ciphertext to 4 local words */ 
rO=blk [0] I (blk[l] <<8) ; 
rl=blk [2] I (blk [3] <<8) ; 
r2=blk [4] I (blk [5] <<8) ; 

r3=blk[6] I (blk[7] <<8) ; 



110 M. Blaze and B. Schneier 

} 

ek = ~(key->val[KSIZE]); 

/* round loop, unrolled 4x */ 
for (i=O; i<(ROUNDS/4); ++i) { 

c = r2 " *(--ek); b = rl " *(--ek); a = rO ~ *(--ek); 

r3 "=((OUTO �9 stable[(a ~ INOO) l(b ~ IN01)l(c ~ IN02)]) 

I (OUTl ~ stable[(a ~ INlO) l(b ~ INll)[(c ~ INI2)]) 

I (OUT2 ~ stable[(a & IN20) l(b ~ IN21)l(c ~ IN22)3) 
[ (OUTS �9 stable[(a ~ INSO) l(b ~ IN31)l(c ~ INS2)])); 

C = rl ^ *(--ek); b = rO " *(--ek); a = r3 ^ *(--ek); 

r2 "=((OUTO ~ stable[(a ~ INOO) l(b & IN01)l(c ~ IN02)]) 

I (OUTI ~ stable[(a ~ INlO) l(b & IN11)l(c ~ IN12)]) 

I (OUT2 ~ stable[(a ~ IN20)l(b ~ IN21)l(c & IN22)]) 

I (OUTS ~ stable[(a ~ INSO) l(b ~ IN31)l(c ~ INS2)])); 
c = rO ~ *(--ek); b = r3 " *(--ek); a = r2 ^ *(--ek); 

rl "=((OUTO ~ stable[(a ~ INOO) l(b ~ INOl) l(c ~ IN02)]) 

I (OUTI ~ stable[(a ~ INlO) l(b ~ IN11)l(c ~ INI2)]) 

] (OUT2 ~ stable[(a ~ IN20) l(b ~ IN21)](c ~ IN22)]) 

l (OUTS ~ stable[(a ~ INSO)l(b ~ IN31)l(c �9 INS2)])); 
c = r3 ^ *(--ek); b = r2 " *(--ek); a = rl - *(--ek); 

rO ^=((OUTO ~ stable[(a ~ INOO) l(b ~ IN01)l(c �9 IN02)]) 

I (OUTI ~ stable[(a ~ IN10) l(b ~ IN11)l(c ~ IN12)]) 

l (OUT2 ~ stable[(a ~ IN20) l(b ~ IN21)l(c ~ IN22)]) 

I (OUTS ~ stable[(a ~ INSO) l(b ~ IN31)l(c ~ INS2)])); 
} 
/* copy decrypted bits back to output */ 

blk[O] = tO; blk[1] = rO>>8; 

blk[2] = rl; blk[3] = ri>>8; 

blk[4] = r2; blk[5] = r2>>8; 

blk[6] = r3; blk[7] = r3>>8; 


