
The MacGuflln Block Cipher Algorithm

Matt Blaze 1 and Bruce Schneier 2

1 AT&T Bell Laboratories
101 Crawfords Corner Road, Holmdel, N3 07733 USA

mab@research, att. com

2 Counterpane Systems
730 Fair Oaks Avenue, Oak Park, IL 70302 USA

schne ierechinet, com

A b s t r a c t . This paper introduces MacGuffin, a 64 bit "codebook" block
cipher. Many of its characteristics (block size, application domain, per-
formance and implementation structure) are similar to those of the U.S.
Data Encryption Standard (DES). It is based on a Feistel netwprk, in
which the cleartext is split into two sides with one side repeatedly mod-
ified according to a keyed function of the other. Previous block ciphers
of this design, such as DES, operate on equal length sides. MacGuffin is
unusual in that it is based on a generalized unbalanced Feistel network
(GUFN) in which each round of the cipher modifies only 16 bits accord-
ing to a function of the other 48. We describe the general characteristics
of MacGuffin architecture and implementation and give a complete spec-
ification for the 32-round, 128-bit key version of the cipher.

1 Introduct ion

Feistel ciphers [1] operate by alternately encrypttng the bits in one "side" of their
input based on a keyed non-linear function of tl{e bits in the other. This is done
repeatedly, for a fixed number of "rounds". It is believed that , when i terated over
sufficiently many rounds, even relatively simple non-linear functions can provide
high security. Traditionally, such ciphers split their input block evenly about the
middle; a 64 bit cipher would operate on two 32 bit internal blocks, swapping
the "left" (the target block) and "right" (the control block) sides with each round.
Several impor tan t block ciphers, including DES [3], are built upon this structure.
We say these ciphers are based on balanced Feistel networks (BFNs), since both
sides are of equal length.

This paper describes a block cipher, called MacGuJfin, tha t is based on a
variant of this structure, the generalized unbalanced Feistel network (GUFN),
in which the target and control blocks need not be of equal length a. GUFNs,
especially those in which the target block is smaller than the control block,

Several cryptographic hash functions, such as MD5 [6] and SHA [5], employ an
unbalanced structure similar in some respects to a GUFN.

98 M. Blaze and B. Schneier

appear to have a number of attractive properties for cipher design, particularly
with respect to the design of the non-linear function. The principles underlying
GUFNs are discussed in [7].

As its name suggests, MacGuffin is intended primarily as a catalyst for dis-
cussion and analysis. We believe it may also prove a practical, high security block
cipher suitable for general use as an alternative to DES. It operates on 64 bit
blocks of data, with an internal structure containing a 16 bit target block and
a 48 bit control block ("48 on 16", in the notation of [7]). In principle, almost
any length key and any number of rounds may be used, although we specify 32
rounds and a 128 bit key as "standard".

2 A r c h i t e c t u r e

We have been conservative in most aspects of MacGuffin's design, isolating most
of its novel features to those parts of the design related to its unbalanced struc-
ture. As such, much of our design is adapted directly from DES. We hope that
the many similarities between DES and MacGuffin will invite analysis of their
differences.

Basically, the input cipherblock is partitioned into four 16 bit words, from
left to right. In each round, the three rightmost words comprise the control
block and are bitwise exclusive-ORed (XORed) with three words derived from
the key. These 48 bits are then split eight ways according to a fixed permutation
to provide input to eight functions of six bits (the "S-boxes"), each producing
two bits of output. The 16 S-box output bits are then XORed, according to
another fixed permutation, with the bits in the leftmost (target) word. Finally,
the leftmost word is rotated into the rightmost position. The cipher can be
reversed by a similar process, with the key derived bits applied in reverse order.

2.1 Design Principles

Because each round operates on only half as many bits as in a BFN (16 as
opposed to 32), we use 32 rounds, twice as many as in DES, in our standard
version. Because there are twice as many rounds, however, there are also a total of
twice as many key bits XORed with the control blocks. These bits are obtained
from the 128 bit key with the key expansion function described in the next
section.

We adapt our S-boxes directly from those of DES. The eight DES S-boxes
each produce four bits of output. Since we require only two bits from each (for
a total of 16 bits), we use only the "outer" two output bits from each S-box.

In each round, each control block bit is XORed with one derived key bit and
provides one input to exactly one S-box. There is no "expansion" permutation,
since the number of control bits equals the number of S-box inputs. The control
bits are mapped 1 : 1 to S-box inputs according to a fixed permutation. This
permutation was designed so that each S-box receives two of its six inputs from
each of the three registers in the control block.

The MacGuffin Block Cipher Algorithm 99

S-box outputs are distributed across the 16 target bits. No S-box output goes
to a bit position that is used as a direct input to itself in the next four rounds.

Observe that each of the three control registers contains bits produced in a
different round of the cipher, and that each encrypted bit provides input to three
different S-boxes (in the next three rounds), before it is encrypted again.

The cipher is designed for implementation in either hardware or software.
Permutations were chosen to minimize the number of shift and mask operations
and to allow t ime/memory optimizations in a software implementation.

3 Algorithm Description

3.1 D a t a S t r u c t u r e s and N o t a t i o n

We use the following notation:

G represents a 16 bit bitwise exclusive-OR (XOR) operation.
~-- is the conventional assignment operator, except as noted below.
w, x , y, z ~- i copies the data from 64 bit interface i, from lowest to highest bit

position, into 16 bit registers w, x, y and z, respectively.
i ~-- w , x , y, z copies the bits from 16 bit registers w, x, y and z, respectively into

interface i, from lowest to highest bit position.
s, t, u, v ~-- w, x, y, z copies w, x, y and z to s, t , u and v, respectively, in parallel

(e.g., x, y ~-- y, x swaps x and y).
w ~ F (x , y, z) selects, according to a fixed permutation, bits from a, y and z

as input to function F , storing the function output in bits of w, selected
according to a fixed permutation.

The cipher employs the following internal structures:

~r0...63, 00.. .63 are the 64 bit external input and output interfaces.
left, a, b, c, t are 16 bit registers on which all cryptographic operations are per-

formed, r0 represents the least significant bit of r, r15 the most significant.
k0...127 is a 128 bit secret key parameter.
K[0...31, 0...2] is a 32 x 3 table of 16 bit words containing an expansion of k, as

explained below.

3.2 S - b o x e s a n d P e r m u t a t i o n s

Nonlinearity in the encryption and key setup processes is provided primarily
through eight functions, or "S-boxes", denoted S1...Ss, each taking six bits of
input selected from the a, b and c registers and producing two bits of output
(which are XORed into the left register).

Inputs to each S-box are selected uniquely from the a, b and c registers, as
specified in Table 1. (In this table, input bit 0 is the least significant bit.) Outputs
from each S-box are distributed across the 16 bit target block as specified in
Table 2. Each S-box is defined as a 64 x 2 bit mapping of input values to outputs,
as given in Table 3.

100 M. Blaze and B. Schneier

Input Bit
S-box 0 1 2 3 4 5

$1 a2 a5 be b9 c11cl,
$2 al a4 b~ b10c8 c14
$3 as a6 bs blz co cls
$4 a12a1461 b2 c4 c10
$5 a0 al0 b3 b14 c6 c12
$6 a7 as b12blscl c5
ST a9 a15b~ b11c2 cT
Ss all al~ b9 b4 c3 c9

Table 1. S-Box Input Permutation

O u t p u t Bit
S-box 0 1

$1 to tl
$2 t2 t3
S~ t4 t5
$4 t~ tT
$5 ts t9
$6 h0 tll
ST t12 t13
$8 !t14 t15

Table 2. S-Box Output Permutation

3.3 K e y Setup

Each round of the cipher uses the secret key parameter to per turb the S-boxes
by bitwise XOR against the S-box inputs. Each round thus requires 48 key bits.
To convert the 128 bit k parameter to a sequence of 48 b i tva lues for each round
(the K table), MacGuffin uses an i terated version of its own block encryption
function. See Figure 1.

3.4 B l o c k E n c r y p t i o n

Block encryption is defined in Figure 2.

3.5 Block Decryptlon

Block decryption is similar to block encryption, and is defined in Figure 3.

T h e MacGuff in Block Cipher A lgor i thm 101

K ~ 0
left, a, b, c ~ ko...6a
fo r h = O t o 31 do

f o r i = O t o 31 do
f o r j = l t o 8 d o

t r S j (a @ K[i ,O] ,b@ It'll , 1],c @ K[i, 2])
left ~ l e# @ t
left, a, b, c ,-- a, b, c, le f t

if[h, 0] ~- ae#
K [h , 1] ~-- a
K[h, 21 ~- b

left, a, b, c *-- k64...127
fo r h = O t o 31 do

for i = O t o 31 do
f o r j = l t o 8 d o

t ~ S j (a | K[i , 0], b | K[i , 1],c @ K[i , 2])
le f t ~ lef t | t
left, a, b, e ~ a, b, c, le f t

K[h, 0] ~- Sqh, 01 ~ left
l ([h , 1] ~- K [h , 1] | a
K[h, 2] ~ ~:[h, 2] | b

Fig. 1. MacGuffin Key Setup

left, a, b, c ~-- I
fo r i = O to 31 do

f o r j = l t o 8 d o
t ~ & (a ~ K[i , 0], b ~ K[i, 1],c �9 KF, 2])

le f t ,--- le f t G t
left, a, b, c ,-- a, b, c, lef t

0 *-- left, a , b , c

Fig. 2. MacGuffin Block Encryption

c, left, a, b ~ I
for i = 31 d o w n t o 0 do

fo r j = 1 to 8 do
t ~ S~ (a �9 K[i , 0], b e Zr[i, 1], c �9 K[i, 2])

left+-- lef t ~ t
left, a, b, c ,-- c, left, a, b

0 ~-- l e f ' t ,a ,b ,c

Fig. 3. MacGuffin Block Decryption

102 M. Blaze and B. Schneier

S1
2 0 0 3 3 1 1 0 0 2 3 0 3 3 2 1 1 2 2 0 0 2 2 3 1 3 3 1 0 1 1 2
0 3 1 2 2 2 2 0 3 0 0 3 0 1 3 1 3 1 2 3 3 1 1 2 1 2 2 0 1 0 0 3

&
3 1 1 3 2 0 2 1 0 3 3 0 1 2 0 2 3 2 1 0 0 1 3 2 2 0 0 3 1 3 2 1
0 3 2 2 1 2 3 1 2 1 0 3 3 0 1 0 1 3 2 0 2 1 0 2 3 0 1 1 0 2 3 3

&
2 3 0 1 3 0 2 3 0 1 1 0 3 0 1 2 1 0 3 2 2 1 1 2 3 2 0 3 0 3 2 1
3 1 0 2 0 3 3 0 2 0 3 3 1 2 0 1 3 0 1 3 0 2 2 1 1 3 2 1 2 0 1 2

&
1 3 3 2 2 3 1 1 0 0 0 3 3 0 2 1 1 0 0 1 2 0 1 2 3 1 2 2 0 2 3 3
2 1 0 3 3 0 0 0 2 2 3 1 1 3 3 2 3 3 1 0 1 1 2 3 1 2 0 1 2 0 0 2

0 2 2 3 0 0 1 2 1 0 2 1 3 3 0 1 2 1 1 0 1 3 3 2 3 1 0 3 2 2 3 0
0 3 0 2 1 2 3 1 2 1 3 2 1 0 2 3 3 0 3 3 2 0 1 3 0 2 1 0 0 1 2 1

&
2 2 1 3 2 0 3 0 3 1 0 2 0 3 2 1 0 0 3 1 1 3 0 2 2 0 1 3 1 1 3 2
3 0 2 1 3 0 1 2 0 3 2 1 2 3 1 2 1 3 0 2 0 1 2 1 1 0 3 0 3 2 0 3

0 3 3 0 0 3 2 1 3 0 0 3 2 1 3 2 1 2 2 1 3 1 1 2 1 0 2 3 0 2 1 0
1 0 0 3 3 3 3 2 2 1 1 0 1 2 2 1 2 3 3 1 0 0 2 3 0 2 1 0 3 1 0 2

&
3 1 0 3 2 3 0 2 0 2 3 1 3 1 1 0 2 2 3 1 1 0 2 3 1 0 0 2 2 3 1 0
1 0 3 1 0 2 1 1 3 0 2 2 2 2 0 3 0 3 0 2 2 3 3 0 3 1 1 1 1 0 2 3

Table 3. MacGuffin S-Boxes

4 Implementation, Performance and Applications

Feistel ciphers, with their many permutat ion operations and table lookups, are
particularly well suited to hardware implementation. Because permutat ions in
hardware are "free" (they are implemented with simple connections), and be-
cause S-box lookups can occur in parallel, each round can be implemented with
conventionM modern hardware in two clock cycles.

Software implementations of Feistel ciphers on general-purpose computers
are typically much slower than their hardware counterparts, since the S-boxes
must be evaluated in sequence and bit permutations must be simulated with

The MacGuffin Block Cipher Algorithm 103

shifts, ANDs, ORs and other operators. Depending on the specific permutations
and S-box structures, however, many of these operations can be made faster
with table lookups and by combining several operations into one.

The permutations in MacGuffin have been designed explicitly to permit soft-
ware optimization. First, the six inputs to each S-box are from different bits from
each of the a, b and c registers, allowing the three registers to be masked and
ORed together (without individual shifting) for a single lookup for each S-box.
Furthermore, for each S-box there is a unique "mate" S-box with which it shares
no common inputs. This allows the eight S-boxes to be "paired off" and looked
up two at a time with a single 216 entry table containing the combined outputs
of both S-boxes. (The pairs are $1S2, $3S4, $5S7 and S6Ss).

An optimized software implementation (given in the Appendix) of 32 round
MacGuffin runs at close to the speed of optimized 16 round DES in software.
An implementation on a 486/66 processor has a bandwidth of about 1.5Mbps;
a reasonable DES implementation [2] on the same processor runs at 2.1Mbps.

The MacGuffin interface is similar to that of DES (except for the larger
keyspace). It can be used with the standard "FIPS-81" modes of operation[4].
Note that key setup is an explicitly time consuming process. This is intended to
discourage exhaustive search of poorly chosen keys. In an implementation where
rapid selection among many keys is required (such as a packet-based network
security protocol) the 1536 bit expanded key may be passed directly as the
cryptovariable.

Experiments with MacGuffin are detailed in [7].
While we believe the GUFN structure is superior to the conventional BFN

cipher structure, much more discussion and analysis is required before we can
recommend its use for protecting sensitive data. We encourage attacks against
MacGuffin in particular and the GUFN structure in general.

R e f e r e n c e s

1. H. Feistel. Cryptography and Computer Privacy. Scientific American, May 1973.
2. J. Lacy, D.P. Mitchell, and W.M. Schell. CryptoLib: Cryptography in Software.

Proceedings of USENIX Security Symposium IV, October 1993.
3. National Bureau of Standards. Data Encryption Standard, Federal Information

Processing Standards Publication 46, US Government Printing Office, Washington,
D.C., 1977.

4. National Bureau of Standards. Data Encryption Standard Modes of Operation,
Federal Information Processing Standards Publication 81, US Government Printing
Office, Washington, D.C., 1980.

5. National Institute for Standards and Technology. Secure Hash Standard. Federal
Information Processing Standard Publication 180, US Government Printing Office,
April 1993.

6. R. Rivest. The MD5 Message Digest Algorithm. RFC 1321, IETF, April 1992.
7. B. Schneier and M. Blaze. Unbalanced Feistel Network Bloc k Ciphers. To appear,

1994.

104 M. Blaze and B. Schneier

Appendix: Optimized C Language Implementat ion

/*

* MacGuffin Cipher
* 1 0 / 3 / 9 4 - Matt.Blaze
* (fast, unrolled version)
*/

#define ROUNDS 32
#define KSIZE (ROUNDS*3)

/* expanded key structure */
typedef struct mcg_key {

unsigned short val[KSIZE];
} mcg_key;

#define TSIZE (1<<16)

/* the 8 s-boxes, expanded to put the output bits in the right
* places, note that these are the des s-boxes (in left-right,
* not canonical, order), but with only the "outer" two output
* bits. */

unsigned short sboxes[8][64] = {
/ , o (s1) , /
{OxO002 OxO000, OxO000, OxO00S OxO003, OxO001 OxO001, OxO000,

OxO000.

OxO00i,

OxO001,

OxO000,

OxO003

OxO003
OxO001

OxO002, OxO003 OxO000
OxO002, OxO002
OxO003, OxO003
OxO003, OxO001
OxO000, OxO000
OxO001, OxO002
OxO002, OxO002

OxO000

OxO001

OxO002
OxO003

OxO008
OxO000

/* 1 (s2) */

OxO003, OxO003
OxO000, OxO002
OxO000, OxO001,
OxO002, OxO002
OxO000, OxO001,

OxOOOg, OxO001
OxO001, OxO000,

OxO002,
OxO002,

OxO001,

OxO002,
OxO003,
OxO00i,
OxO000,

OxO001,
OxO003,
OxO002,

OxO000,
OxO001,

OxO002,
OxO003},

{OxO00c OxO004, OxO004 OxO00c OxO008 OxO000 OxO008, OxO004,
OxO000
OxO00c,
OxO008

OxO000,

OxO008

OxO004
OxO00c

OxO00c OxO00c
OxO008 OxO004
OxO000 OxO000

OxO00c OxO008

OxO004 OxO000
OxO00c OxO008
OxO000 OxO004

/* 2 (SS) */

OxO000
OxO000
OxO00c

OxO008

OxO00c

OxO000
OxO004

OxO004,
OxO000
OxO004

OxO004

OxO00c,

OxO008,
OxO000

OxO008,
OxO004
OxO00c,

OxO008,
OxO000,

OxO004,
OxO008

OxO000, OxO008,
OxO00c, OxO008,
OxO008, OxO004,
OxO00c, OxO004,
OxO004, OxO000,
OxO000, OxO008,
OxO00c, OxO00c},

{OxO020, OxO030, OxO000, OxO010, OxOO30, OxO000, OxO020, OxO030,
OxO000, OxO010, OxOOiO, OxO000, OxOO30, OxO000, OxO010, OxO020,
OxO010, OxO000, OxO030, OxO020, OxO020, OxO010, OxO010, OxO020,
OxO030, OxO020, OxO000, OxO030, OxO000, OxO030, OxO020, OxO010,

The MacGuffin Block Cipher Algor i thm 105

OxO030, OxO010, OxO000, OxO020, OxO000, OxO030, OxO030, OxO000,

OxO020, OxO000, OxO030, OxO030, OxO010, OxO020, OxO000, OxO010,
OxO030, OxO000, OxO010, OxO030, OxO000, OxO020, OxO020, OxO010,
OxO010, OxO030, OxO020, OxO010, OxO020, OxO000, OxO010, OxO020},

/ , 3 (s4) , /
{OxO040 OxOOcO, OxOOcO, OxO080, OxO080 OxOOcO OxO040 OxO040

OxO000 OxO000.
OxO040 OxO000.

OxOOcO OxO040.
OxO080 OxO040.

OxO080 0x0080.
OxOOcO Ox00cO.
OxO040 OxO080,

/ , 4 (ss) , /

OxO000, OxOOcO OxOOcO
OxO000, OxO040, OxO080
OxO080, OxO080 OxO000

OxO000, OxOOcO, OxOOcO
OxOOcO, OxO040 OxO040
OxO040, OxO000, OxO040
OxO000, OxO040 OxO080

OxO00O
OxO000
OxO080

OxO000
OxOOcO
OxO040
OxO000

OxO080

OxO040
OxOOcO

OxO000
OxOOcO
OxO080

OxO000

OxO040
OxO080
OxOOcO

OxO000

OxO080
OxOOcO

OxO080},

{OxO000 Ox0200, Ox0200, Ox0300 OxO000 OxO000 OxOlO0, Ox0200

OxOlO0 OxO000.
Ox0200 Ox0100
Ox0300 Ox0100.
OxO000 Ox0300

Ox0200 OxOlO0,
OxO300 OxO000.

OxO000 Ox0200.
/ , s (s6) , /

Ox0200. OxOlO0, Ox0300

OxOlO0
OxO000.
OxO000

Ox0300
Ox0300

OxO000 Ox0100

Ox0300, Ox0200
Ox0200, OxOlO0

Ox0200, Ox0100
Ox0300, 0x0200

OxOiO0, OxO000, OxO000

Ox0300
Ox0300

Ox0200
Ox0200

OxO000
OxO000
Ox0100

OxO000, OxOlO0
Ox0300, Ox0200

OxO3OO, OxO000
Ox0300, OxOlO0
Ox0200, Ox0300

OxOlO0, Ox0300
Ox0200, OxOlO0},

{Ox0800 Ox0800. Ox0400. OxOcO0, Ox0800 OxO000 OxOcO0 OxO000

OxOcO0 Ox0400
OxO000 OxO000.
Ox0800 OxO000

OxOcO0 OxO000.
OxO000 OxOcO0
OxO~O0 OxOcO0.
Ox0400 OxO000

/ , e (sT) , /

OxO000
OxOcO0
Ox0400

Ox0800
OxO800
OxO000

OxOcO0

Ox0800 OxO000
Ox0400 Ox0400
OxOcO0 Ox0400

Ox0400 OxOcO0
Ox0400 Ox0800
Ox0800 Ox0000

OxOOOO OxOc~6

OxOcO0

OxOcO0
Ox0400

OxO000
OxOcO0
Ox0400

Ox0800

Ox0800

OxO000
OxOcO0

Ox0400
Ox0400
Ox0800

OxO000,

Ox0400

Ox0800
Ox0800

Ox0800
Ox0800
Ox0400

OxOcO0},

{OxO000 Ox3000 Ox3000 OxO000 OxO000 Ox3000 Ox2000, OxlO00
Ox3000 OxO000.
OxlO00 Ox2000
OxlO00 OxO000
OxlO00 OxO000

Ox2000 OxlO00
Ox2000 Ox3000
OxO000 Ox2000

/ , 7 (s8) , /

OxO000
Ox2000
Ox2000
OxO000
OxlO00
Ox3000
OxlO00

Ox3000
OxiO00
Ox3000
Ox3000
OxO000
OxlO00
OxO000

Ox2000
Ox3000
OxO000
Ox3000

OxlO00
OxO000
Ox3000

OxlO00
OxlO00
Ox2000
Ox3000
Ox2000
OxO000
OxlO00

Ox3000
OxlO00,
OxlO00,
Ox3000,
Ox2000
Ox2000,
OxO000

Ox2000
Ox2000
OxO000
Ox2000
OxlO00
Ox3000
Ox2000},

{OxcO00, Ox4000, OxO000, OxcO00, Ox8000, OxcO00, OxO000, Ox8000,
OxO000, Ox8000, OxcO00, Ox4000, OxcO00, Ox4000, Ox4000, OxO000,

OxSO00, Ox8000, OxcO00, Ox4000, Ox4000, OxO000, Ox8000, OxcO00,
Ox4000, OxO000, OxO000, Ox8000, Ox8000, OxcO00, Ox4000, OxO000,

106 M. Blaze and B. Schneier

Ox4000, OxO000, OxcOO0, Ox4000, OxO000, OxSO00, Ox4000, Ox4000,
OxcO00, OxO000, Ox8000, Ox8000, Ox8000, OxSO00, OxO000, OxcO00,
OxO000, OxcO00, OxO000, Ox8000, Ox8000, OxcO00, OxcO00, OxO000,
OxcO00, Ox4000, Ox4000, Ox4000, Ox4000, OxO000, Ox8000, OxcO00}

};

/* table of s-box outputs, expanded for 16 bit input.
* this one table includes all 8 sboxes - just mask off

* the output bits not in use. */

unsigned short stable[TSIZE];

/* we exploit two features of the s-box input ~ output perms -

* first, each s-box uses as input two different bits from each
* of the three registers in the right side, and, second,

* for each s-box there is another-sbox with no common input bits

* between them. therefore we can lookup two s-box outputs in one

* probe of the table, just mask off the approprate input bits

* in the table below for each of the three registers and OK

* together for the table lookup index.

* these masks are also available below in #defines, for better

* lookup speed in unrolled loops. */

unsigned short lookupmasks[4][3] = {

/ * a , b , c */
{0x0036, Ox06cO, 0x6900}, / * sl+s2 * /
{0x5048, 0x2106, 0x8411~, / * s3+s4 * /
{0x8601, 0x4828, 0x10c4}, / * sS+s7 * /
{0x2980, 0x9011, OxO22a}}; / * s6+s8 * /

/* this table contains the corresponding output masks for the
* lookup procedure mentioned above.

* (similarly available below in #defines). */

unsigned short outputmasks[4] = {
OxOOOf /*sl+s2*/, OxOOfO /*s3+s4*/,

0x3300 /*sS+s7*/, OxccO0 /*s6+s8*/};

/* input
/ * sl+s2 * /
#define INO0 0x0036
#define IN01 Ox06cO
#define IN02 0x6900
#define OUTO OxOOOf
/* s3+s4 */
#define INIO 0x5048
#define IN11 0x2106
#define IN12 0x8411

and output lookup masks (see above) */

The MacGuffin Block Cipher Algorithm 107

#define OUTI OxOOfO

I* sS+s7 *I
#define IN20 0x8601
#define IN21 0x4828
#define IN22 OxlOc4
#define OUT2 0x3300

/* s6+s8 */
#define IN30 0x2980
#define IN31 0x9011
#define IN32 OxO22a
#define OUT3 OxccO0

/*

* initialize the macguffin s-box tables.

* this takes a while, but is only done once.
*/

mcg_init()
{

unsigned int i,j,k;
int b;
/*

* input permutation for the 8 s-boxes.

* each row entry is a bit position from
* one of the three right hand registers,

* as follows:

* a,a,b,b,c,c
*/

static int sbits[8][6] = {

{2,5,6,9,11,13}, {1,4,7,10,S, 14},
{3,6,8,13,0,15}, {12,14,1,2,4,10},
{0,10,3,14,6,12}, {7,8,12,15,1,5},

{9,15,5,11,2,7}, {11,13,0,4,3,9}};

for (i=O; i<TSIZE; i++) {
stable [i] =0 ;
for (j=O; j<8; j++)

stable [i] i =

sboxes [j] [((i>>sbits [j] [0])~I)
I (((i>>sbits [j] [I])~I)<<I)
I (((i>>sbits[j] [2])~I)<<2)
I (((i>>sbits [j] [3])~I)<<3)
I (((i>>sbits [j] [4])~1)<<4)
l(((i>>sbits[j] [5])~1)<<5)];

108 M. Blaze and B. Schneier

/*

* expand key to ek
*/

mcg_keyset(key,ek)
unsigned char *key;
mcg_key *ek;

{

int i,j;
unsigned char k[2][8];

mcg_init () ;
bcopy(&key [0] ,k[O] ,8) ;
bcopy(&key [8] ,k [I], 8) ;
for (i=O; i<KSIZE; i++)

ek->val [i] =0;
for (i=O; i<2; i++)

for (j:O; j<32; j++) {
mcg_block_encrypt (k[i] , ek) ;
ek->val [j *3] ^= k[i][O] I (k[i][1]<<8);
ek->val [j *3+1] ^= k[i][2] I (k[i][3]<<8);
ek->val [j *3+2] ^= k[i][4] I (k[i][5]<<8);

}

/*

* codeboo~ encrypt one block with given expanded key
*/

mcg_blockencrypt(blk,key)
unsigned char *blk;
mcg_key *key;

unsigned short rO, rl, r2, r3, a, b, c;
int i;
unsigned short *ek;

/* copy cleartext into local words */
rO=blk [0] I (blk [i] <<8) ;
rl=blk [2] I (blk [3] <<8) ;
r2=blk [4] I (blk [5] <<8) ;
rS=blk [6] I (blk [7] <<8) ;

ek = ~(key->val[O]);
/* round loop, unrolled 4x */
for (i=O; i<(ROUNDS/4); i++) {

The M~cGuffin Block Cipher Algorithm 109

a = rl " *(ek++); b = r2 " *(ek++);

rO ^=((OUTO ~ stable[(a ~ INOO) l(b

I (OUTI ~ stable[(& & IN10) i(b

I (OUT2 & stable[(a ~ IN20) l (b
I (OUT3 ~ stableC(a ~ IN30) l(b

a = r2 " *(ek++); b = r3 ^ *(ek++);

rl ^=((OUTO ~ stable[(a ~ INOO) l(b

I (OUTI ~ stable[(a ~ INlO) l(b

I (OUT2 ~ stable[(a ~ IN20)l(b

I (OUT3 ~ stable[(a a INSO) l(b

a = r3 " *(ek++); b = rO " *(ek++);

r2 "=((OUTO ~ stable[(a ~ INOO) l(b

I (OUTI & stable[(a ~ INlO) l(b
I (OUT2 ~ stable[(a~ IN20) l(b

I (OUT3 ~ stable[(&'~ INBO)[(b

a = rO " *(ek++); b = rl ~ *(ek++);
r3 "=((OUTO ~ stable[(a ~ INOO) l(b

I (OUTi ~ stable[(a ~ IN10)l(b
I (OUT2 ~ stable[(a ~ IN20) l(b

I (OUT3 ~ stable[(a ~ IN30) l(b

c = r3 " *(ek++);
INOl)l(c ~ IN02)])

IN11)l(c ~ I~12)])
IN21)i(c ~ IN22)])

IN31)l(c ~ IN32)]));

c = rO ^ *(ek++);

zNol) l (c m IN02)])
I~11)I(c ~ IN12)])

IN21)l(c ~ IN22)])

IN31)i(c ~ IN32)]));

C = rl ^ *(ek++);

INOl)l(c ~ IN02)])

I N l l) l (c ~ IN12)])
IN21) l (c ~ IN22)])
IN31) l (c ~ IN32)])) ;

c = r2 ^ *(ek++);
IN01) l (c ~ IN02)])
IN11) l (c ~ IN12)])
IN21) l (c ~ IN22)])
IN31) l (c ~ I N 3 2)])) ;

/* copy 4 encrypted words back to output */

blk[O] = rO; blk[1] = rO>>8;
blk[2] = rl; blk[3] = ri>>8;

blk[4] = r2; blk[5] = r2>>8;

blk[6] = rS; blk[7] = r3>>8;

/*

* codebook decrypt one block with given expanded key
*/

mcg blockdecrypt(blk,key)

unsigned char *blk;
mcg_key *key;

unsigned short rO, rl, r2, r3, a, b, c;
int i;

unsigned short *#k;

/* copy ciphertext to 4 local words */
rO=blk [0] I (blk[l] <<8) ;
rl=blk [2] I (blk [3] <<8) ;
r2=blk [4] I (blk [5] <<8) ;

r3=blk[6] I (blk[7] <<8) ;

110 M. Blaze and B. Schneier

}

ek = ~(key->val[KSIZE]);

/* round loop, unrolled 4x */
for (i=O; i<(ROUNDS/4); ++i) {

c = r2 " *(--ek); b = rl " *(--ek); a = rO ~ *(--ek);

r3 "=((OUTO �9 stable[(a ~ INOO) l(b ~ IN01)l(c ~ IN02)])

I (OUTl ~ stable[(a ~ INlO) l(b ~ INll)[(c ~ INI2)])

I (OUT2 ~ stable[(a & IN20) l(b ~ IN21)l(c ~ IN22)3)
[(OUTS �9 stable[(a ~ INSO) l(b ~ IN31)l(c ~ INS2)]));

C = rl ^ *(--ek); b = rO " *(--ek); a = r3 ^ *(--ek);

r2 "=((OUTO ~ stable[(a ~ INOO) l(b & IN01)l(c ~ IN02)])

I (OUTI ~ stable[(a ~ INlO) l(b & IN11)l(c ~ IN12)])

I (OUT2 ~ stable[(a ~ IN20)l(b ~ IN21)l(c & IN22)])

I (OUTS ~ stable[(a ~ INSO) l(b ~ IN31)l(c ~ INS2)]));
c = rO ~ *(--ek); b = r3 " *(--ek); a = r2 ^ *(--ek);

rl "=((OUTO ~ stable[(a ~ INOO) l(b ~ INOl) l(c ~ IN02)])

I (OUTI ~ stable[(a ~ INlO) l(b ~ IN11)l(c ~ INI2)])

] (OUT2 ~ stable[(a ~ IN20) l(b ~ IN21)](c ~ IN22)])

l (OUTS ~ stable[(a ~ INSO)l(b ~ IN31)l(c �9 INS2)]));
c = r3 ^ *(--ek); b = r2 " *(--ek); a = rl - *(--ek);

rO ^=((OUTO ~ stable[(a ~ INOO) l(b ~ IN01)l(c �9 IN02)])

I (OUTI ~ stable[(a ~ IN10) l(b ~ IN11)l(c ~ IN12)])

l (OUT2 ~ stable[(a ~ IN20) l(b ~ IN21)l(c ~ IN22)])

I (OUTS ~ stable[(a ~ INSO) l(b ~ IN31)l(c ~ INS2)]));
}
/* copy decrypted bits back to output */

blk[O] = tO; blk[1] = rO>>8;

blk[2] = rl; blk[3] = ri>>8;

blk[4] = r2; blk[5] = r2>>8;

blk[6] = r3; blk[7] = r3>>8;

