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Abstract 22 

The development and continuous improvement of high-throughput sequencing platforms has 23 

stimulated interest in the study of complex microbial communities.  Currently, the most 24 

popular sequencing approach to study microbial community composition and dynamics is 25 

targeted 16S rRNA gene metabarcoding.  To prepare samples for sequencing, there are a 26 

variety of processing steps, each with the potential to introduce bias at the data analysis stage.  27 

In this short review, key information from the literature pertaining to each processing step is 28 

described and consequently, general recommendations for future 16S rRNA gene 29 

metabarcoding experiments are made. 30 

 31 

Introduction 32 

In recent years, the emergence of high-throughput sequencing platforms has revolutionised 33 

the study of complex microbial communities.  Most commonly, marker genes (e.g. 16S 34 

rRNA and 18S rRNA genes) are amplified and sequenced, providing both qualitative and 35 

quantitative (i.e. relative abundance) data.  However, the variety of methodologies which can 36 

be used to carry out marker gene analysis can be overwhelming.  Each methodological stage, 37 

from sampling to data analysis, can introduce biases, and such biases can skew datasets by 38 

introducing changes in the relative abundances observed and can affect the perception of 39 

community diversity.  This short review includes key information from current literature on 40 

sample collection, sample storage and processing, and sequencing and data analysis; 41 

specifically for the study of bacterial communities using 16S rRNA gene metabarcoding.  By 42 

collating fundamental research from each of these areas, we aim to try to ensure that 43 

scientists entering this field are better informed to make decisions on experimental design for 44 

16S rRNA gene sequencing studies. 45 

 46 
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Sample collection 47 

Sampling method is obviously dependant on sample type and as such, the factors which may 48 

introduce bias will also vary between different types of microbiome studies.  Clearly, study-49 

specific concerns cannot be entirely covered in this review.  However, the overarching factors 50 

which should be taken into account will be briefly covered in this section. 51 

Firstly, it is important to consider the proposed sampling site.  Bacterial community 52 

composition varies even within a specific environment, for example at different sites within 53 

the gastrointestinal tract (1), the respiratory tract (2) and at different soil depths (3, 4).  Since 54 

the magnitude of inter-individual variation is very much dependant on sampling site (5), this 55 

can have implications for experimental design, specifically when considering the number of 56 

subjects and the number of samples to be taken.   57 

Secondly, there are conflicting results in the literature with regards to the variation introduced 58 

by different sample collection methodologies.  For example, there have been attempts to 59 

replace invasive sampling with less invasive methods; however, significant differences have 60 

been found in microbial populations when comparing swab and biopsy samples from human 61 

intestines (6), when comparing breath condensate and lung brushings (7) and when 62 

comparing rumen fluid samples obtained via oral stomach tubing and a fistula (8).  However, 63 

other work contradicts these findings, with two studies showing no statistically significant 64 

differences when studying the rumen microbiota in cattle using a variety of sampling 65 

methods (9, 10).   Additionally, no significant differences were evident in microbial 66 

composition when comparing sino-nasal swabs and biopsy samples (11) and rectal swabs and 67 

stool samples (12).  This kind of conflict in the literature is not uncommon, which leads to a 68 

lack of consensus and standardisation. 69 

A final consideration is whether samples should be homogenised, which appears to be most 70 

critical in studies on gut contents (8, 13) and on soil (14), since varying microbial 71 
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compositions have been observed in different stool fractions and in soils with varying particle 72 

size.   73 

Although the literature is generally conflicting with regards to sampling methodology, it 74 

is important to consider that comparing data obtained using different approaches 75 

should be avoided. 76 

 77 

Sample storage 78 

There is conflicting evidence on whether different storage conditions alone can have an 79 

impact on microbial community studies (15–18).  It is often not practical to extract DNA 80 

from fresh samples, therefore samples are generally stored for varying durations prior to 81 

DNA extraction.  Conventionally, it is assumed that rapid freezing to -80
o
C is best practice 82 

(18, 19) but this is not feasible for all study designs, for example, at remote sites where low 83 

temperature storage is unavailable (20).  Several studies have been carried out to assess the 84 

effects of storage conditions on study findings, which will be summarised in this section. 85 

 86 

Fresh versus frozen samples 87 

A couple of studies showed that freezing samples appeared to cause an increase in the 88 

Firmicutes to Bacteroidetes ratio in comparison with fresh samples (15, 19).  Conversely, in a 89 

study by Fouhy et al, the only bacterial groups differentially expressed between fresh and 90 

snap frozen faecal samples were the Faecalibacterium and Leuconostoc genera, with no 91 

significant differences being evident at phylum or family levels (18).  No significant effects 92 

on microbial composition or diversity were observed in faecal samples refrigerated for 24 93 

hours (21) or 72 hours (20) prior to DNA extraction.   94 
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The impact of storage duration has also been explored in various studies.  Lauber et al stored 95 

soil, faeces and skin samples at various temperatures and found that storage duration had no 96 

significant impact on overall bacterial community structure or diversity (17).  In samples 97 

which were stored at -80
o
C for 2 years, a small number of changes in the microbial 98 

communities were observed with increased abundances of lactobacilli and bacilli, and a 99 

reduction in the total number of operational taxonomic units (OTUs) (for a definition of 100 

OTUs, please see section entitled “operational taxonomic unit picking methods”).   101 

When considering the data presented in the literature, generally processing fresh 102 

samples is the best approach but when this is not possible, samples should be frozen for 103 

an unequal amount of time and processed in one batch or frozen for an equal amount of 104 

time and processed in multiple batches.  The decision on how to proceed will be 105 

dependent on the duration of the sample collection phase and on study design, but 106 

regardless of processing method, storage duration and DNA extraction batch should be 107 

recorded to enable this to be taken into account during analysis. 108 

 109 

Use of cryoprotectant 110 

McKain et al explored the effects of using a cryoprotectant (i.e. glycerol/phosphate buffered 111 

saline) to store ruminal digesta samples and found that freezing samples without 112 

cryoprotectant caused a significant loss in Bacteroidetes when measuring 16S rRNA gene 113 

copy number by quantitative PCR (15).  The authors consequently suggest that simply storing 114 

samples without a cryoprotectant and carrying out DNA extraction at a later date would 115 

impact downstream results when considering archaeal and bacterial community composition.  116 

Choo et al explored the effects of using several common preservative buffers (i.e. RNAlater, 117 

OMNIgene.GUT and Tris-EDTA) relative to samples stored dry at -80
o
C on faecal 118 
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microbiota composition (20).  Samples stored in the OMNIgene.GUT buffer diverged the 119 

least from the samples stored dry at -80
o
C and the results obtained from the samples stored in 120 

Tris-EDTA diverged the most, with associated changes in relative abundances of biologically 121 

important bacterial species such as Escherichia-Shigella, Citrobacter and Enterobacter.  122 

Additionally, RNAlater has previously been shown to be unsuitable for storage of samples 123 

subject to microbial community analysis, with samples stored in RNAlater being the least 124 

similar to fresh samples and samples immediately frozen at -80
o
C (22, 23).   125 

Consequently, when considering the use of a cryoprotectant for storage, it is important 126 

to ensure that all samples are stored in the same manner. 127 

   128 

DNA extraction 129 

During DNA extraction, it is important to consider that some microbial cells may be more 130 

resistant to lysis, such as bacterial endospores (24) and Gram-positive bacteria, which will 131 

have an impact on DNA extraction efficiency.  The presence of inhibitors has also been found 132 

to directly impact DNA extraction efficiency (e.g. debris in environmental samples, organic 133 

matter in soil and faeces) and can affect the efficiency of PCR downstream (reviewed in 134 

detail by Schrader et al (25)).  Common inhibitors include inorganic material (e.g. calcium 135 

ions), with the majority of inhibitors being organic matter such as humic acid, bile salts and 136 

polysaccharides.  These issues will vary according to sample type, therefore, matrix-specific 137 

DNA extraction protocols should be optimised as part of a 16S rRNA gene metabarcoding 138 

experiment. 139 

Besides phenol-chloroform DNA extraction methods, there are many commercial extraction 140 

kits available which incorporate mechanical and/or chemical/enzymatic lysis steps.  141 

Numerous authors have demonstrated that the abundances of specific bacterial groups vary 142 
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when comparing different DNA extraction methodologies (8, 26–31).  Specifically, variations 143 

in DNA yield and quality are obtained which can lead to different results in downstream 144 

analyses (28). 145 

One key DNA extraction step which can introduce bias is the presence or absence of a 146 

mechanical lysis step.  The inclusion of a bead-beating step has been linked to a higher DNA 147 

yield (8, 29, 32), higher bacterial diversity (29, 32) and more efficient extraction of DNA 148 

from Gram-positive and spore-forming bacteria (29, 33, 34).  Consequently, some authors 149 

suggest that samples subject to different DNA extraction methods are not comparable (8, 28, 150 

35).   151 

Ultimately, the best approach is to utilise a method which extracts the highest yield and 152 

quality of DNA as possible without biasing the method towards particular bacterial 153 

taxa. To achieve this, inclusion of a bead beating step and prior optimisation of the DNA 154 

extraction method to ensure optimal DNA yield and quality is recommended prior to 155 

carrying out 16S rRNA gene sequencing. 156 

  157 

Sequencing strategy 158 

Library preparation 159 

Since the entire 16S rRNA gene cannot be sequenced using short-read second-generation 160 

sequencing platforms, a short region of the gene must be selected for PCR amplification and 161 

sequencing.  There is currently no consensus on the most appropriate hypervariable region(s) 162 

and several studies have been carried out to determine the advantages and disadvantages of 163 

each.  Importantly, the choice of hypervariable region(s) and the design of the “universal” 164 

PCR primers have an effect on phylogenetic resolution  (36–40).  Indeed, no primer set is 165 

truly universal, with some commonly used 16S rRNA gene primers proving ineffective at 166 
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amplifying biologically relevant bacteria (34, 41).  Fouhy et al explored the effects of primer 167 

choice (as well as DNA extraction and sequencing platform) on microbial composition data 168 

using a mock bacterial community and three primer sets (42), with differences in relative 169 

abundances and richness being observed. 170 

Further biases can be introduced during PCR amplification due to the presence of PCR 171 

inhibitors (described in the DNA extraction section), with the number of PCR cycles and the 172 

use of a high-fidelity polymerase (43) also having an impact on results.  The formation of 173 

chimeras occurs in later PCR cycles when the highest concentration of incompletely extended 174 

primers compete with the original primers.  Consequently, the potential for chimera 175 

formation can be reduced by lowering the number of PCR cycles (44).  Previous work found 176 

that bacterial richness increased as the PCR cycle number increased (45, 46), but that cycle 177 

number had no significant effect on community structure (46).  A lower number of PCR 178 

artefacts were found when using a high-fidelity polymerase compared to a standard 179 

polymerase (43).  The use of different polymerases has also been found to significantly affect 180 

PCR efficiencies for particular bacterial groups and the overall bacterial community 181 

structures (46).  Finally, the quantity of input DNA into a PCR reaction has also been found 182 

to have a significant effect on observed bacterial community structure (31).   183 

In summary, there is not a “gold standard” hypervariable region for 16S sequencing 184 

but it is important to consider that PCR reagents and PCR conditions should be 185 

optimised and kept consistent across a study. 186 

   187 

Sequencing platforms 188 

D’Amore et al have studied the choice of sequencing platform most recently (47) and we 189 

would refer the reader to that manuscript for a more in depth analysis.  Illumina technology 190 
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(primarily the MiSeq) has become the most common sequencing platform for 16S rRNA 191 

gene metabarcoding.  This is because the MiSeq, in general, produces the most accurate, 192 

longest reads and has a much higher throughput than the other platforms, which enables more 193 

samples to be sequenced at higher depth or cheaper cost.  Indeed, whilst D’Amore et al 194 

caution that the choice of sequencer depends on the question being asked, they note that the 195 

MiSeq is likely to be the platform of choice in most cases.  The Roche 454 sequencer was, for 196 

a long time, the platform most used for 16S studies.  The potential longer reads of this 197 

technology have some advantages; however, it is now no longer available as Roche retired 198 

the product in 2013.  The 454 unfortunately suffered from an elevated error rate due to mis-199 

calling of homopolymers.  The Ion Torrent and Ion Proton platforms are often available at 200 

low capital cost, and produce data more quickly than the MiSeq.  However, the lower 201 

throughput and higher error rates mean that many researchers prefer to select the MiSeq.  202 

Whilst Illumina offers the highest quality data, there are some reported problems with the 203 

platform.  Illumina error rates are often thought to be around 0.01%, however Kozich et al 204 

showed the actual error rates can be as high as 10%, and recommend a complete overlap of 205 

250 bp reads to correct for this (48).  D’Amore et al similarly showed library-dependent error 206 

rates in either read 1 or read 2 (but not the overlap) in MiSeq data, albeit at a lower rate (2-207 

3%) (47).   An improvement has been suggested to this involving a heterogeneity spacer that 208 

improves sequence diversity in the library (49).     209 

PacBio and Oxford Nanopore technologies are able to sequence the full length of the 16S 210 

gene, which is of course very powerful.  However, again error rates are an issue, in the range 211 

of 5-15% for both technologies, which can cause subsequent errors in downstream analysis.   212 

Despite the high error rate of long-read single molecule sequencing systems (50–52), studies 213 

are beginning to appear to show their utility for 16S rRNA gene sequencing (53–56).  For 214 

example, Schloss et al were able to reduce the observed error rate for the V1–V9 region from 215 
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0.69 to 0.027% for PacBio data, which is comparable to Illumina, 454 and Ion Torrent 216 

systems (54).  One of the drawbacks of the PacBio technology is throughput, which means 217 

that the number of samples that can be run on the platform simultaneously and at reasonable 218 

cost is much lower than the MiSeq. 219 

When planning a 16S sequencing study, three key considerations are the quality of sequence 220 

data, the cost of sequencing and the length of generated reads, as detailed already in this 221 

section.  A final factor is the number of samples which can be analysed per sequencing run.  222 

When considering Illumina platforms specifically, it is possible to use multiplexing strategies 223 

by implementation of unique single-indexed (57) or dual-indexed (48) (or barcoded) primers 224 

for library preparation.  If the number of samples per run is increased, this is associated with 225 

a lower coverage (or number of sequences generated) per sample.  If the coverage per sample 226 

is too low, then the diversity of the microbial community being studied is likely to be under-227 

represented, as rarer members of the community are less likely to be detected.  Therefore, 228 

guidance on the number of samples to be included per run should be obtained from small 229 

pilot studies (and observation of the resultant rarefaction curves) or published literature. In 230 

larger studies, more than one sequencing run may be required and Caporaso et al showed that 231 

data were highly reproducible across sequencing lanes (57). 232 

The appropriate sequencing platform should be selected based upon the aims of the 233 

experiment and the error rates associated with the available platforms.  Another key 234 

consideration is sequencing coverage and its relation to the number of samples to be 235 

run. When studying core members of a microbial community, lowering the amount of 236 

coverage by increasing the number of samples in a sequencing run may be an effective 237 

way to decrease costs.  However, if rarer members of a community are of interest lower 238 

sample numbers leading to increase coverage may be more appropriate.  239 
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   240 

Mock bacterial communities 241 

As part of 16S microbiome studies, it is useful to include a mock community control 242 

composed of pre-determined ratios of DNA from a mixture of bacterial species.  This not 243 

only allows the quantification of sequencing error (58) but also allows bias introduced during 244 

the sampling and library preparation processes to be identified (42, 47, 59, 60).  For example, 245 

a mock community containing bacterial taxonomies which are of specific interest to the 246 

research group can be used to calculate whether these taxonomies are likely to be over or 247 

under represented in samples.  Similar to mock communities, spike-in standards can also be 248 

used to analyse bias and the reproducibility of methodologies (61).  However, unlike mock 249 

communities, these standards are added directly to samples and therefore quality control can 250 

be performed on a per sample basis.  However, there is a risk of crossover between the 16S 251 

rRNA gene sequences contained in the standards and those which may be found in samples.  252 

Consequently, care must be taken to select bacteria which are highly unlikely to occur in the 253 

samples of interest (62, 63) or which have been designed in silico and are dissimilar to 254 

sequences found in 16S databases (61). 255 

There are a variety of sources which provide mock bacterial communities for use in research; 256 

however some researchers choose to create their own mock communities in-house which 257 

more accurately reflect bacteria of interest and scientific importance.   Pre-prepared bacterial 258 

communities are available in two different formats – DNA mock communities and whole cell 259 

mock communities.  The latter is useful for establishing the efficiency of the DNA extraction 260 

step, whereas the former will only assess the efficiency of PCR, clean up, sequencing and 261 

analysis steps.  At the time of writing, mock communities are available from the American 262 

Type Culture Collection (ATCC) and Zymo Research. 263 
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When planning a 16S study, the inclusion of a mock community is strongly encouraged.   264 

 265 

Analysis strategy 266 

Comparing pipelines 267 

The analysis of large and complex 16S rRNA gene sequencing data sets requires the use of 268 

bioinformatic tools.  There are many pipelines available to process and analyse 16S rRNA 269 

gene sequencing data, including the commonly used QIIME (64), MG-RAST (65), UPARSE 270 

(66) (URL: https://www.drive5.com/usearch/manual/uparse_pipeline.html) and mothur (67).  271 

These packages contain sets of tools which facilitate the complete analysis of 16S rRNA gene 272 

data, from quality control to operational taxonomic unit (OTU) clustering.  Where they differ 273 

is predominantly in their accessibility to those with limited computational knowledge and in 274 

the availability of documentation.  275 

Nilakanta et al compared seven different packages (mothur, QIIME, WATERS, RDPipeline, 276 

VAMPS, Genboree, and SnoWMan) and concluded that while all of these packages provide 277 

effective pipelines for 16S rRNA gene analysis, the extensive documentation which 278 

accompanies mothur and QIIME provides them with an advantage over the other packages 279 

(68).  Plummer and Twin analysed a single data set using QIIME, mothur and MG-RAST and 280 

found that there were few differences in the results when considering taxonomic 281 

classification and diversity (69).  However, there were differences in the ease of use of each 282 

of these packages and the time required for analysis, with QIIME being the quickest analysis 283 

package (approximately 1 hour) and MG-RAST being the slowest (approximately 2 days, due 284 

to the need for manual quality control to remove multiple annotations of reads).  The authors 285 

do state that although MG-RAST is the slowest analysis method, it is perhaps the most 286 

suitable package for users with no command line experience.   287 
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Ultimately, the choice of analysis package will be made on the basis of the user’s level of 288 

experience in bioinformatics and on the available resources at the user’s host 289 

institution. 290 

 291 

Quality control, alignment and taxonomic assignment 292 

It is essential to carry out quality filtering to remove DNA sequences which are of 293 

unexpected length, have long homopolymers, contain ambiguous bases or do not align to the 294 

correct 16S rRNA gene region.  Critically, sequences should then be screened for chimeras, 295 

as the presence of chimeric sequences can affect the interpretation of the final dataset and 296 

could, for example, over-inflate perception of community diversity (70).   A variety of tools 297 

have been developed to remove chimeric sequences such as UCHIME (66) and Chimera 298 

Slayer (70).  By including a mock bacterial community in a sequencing run, since the true 299 

sequences in these are known, the number of chimeric sequences can be calculated (58). 300 

 Sequences should then be aligned to a reference alignment, or assigned to a suitable 301 

reference using a sequence classifier such as the RDP classifier which uses a naïve Bayesian 302 

approach based on 8-mers (71).  Schloss showed that alignment quality can significantly 303 

impact diversity and can artificially inflate the number of bacterial OTUs, and advised against 304 

using alignments which do not take into account the secondary structure of the 16S gene (72).  305 

Of the three most commonly used alignments which are guided by secondary structure (i.e. 306 

greengenes (73), RDP (74) and SILVA (75)), the greengenes alignment was observed to be of 307 

poor quality, leading to significantly greater richness and diversity estimates.  308 

Post-alignment, sequences and OTUs are assigned taxonomies based upon their similarity to 309 

training sets, most commonly constructed from the greengenes, RDP and SILVA databases.  310 

Errors within these databases, caused by sequencing/PCR errors (76) or by the incorrect 311 
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labelling of sequences (77), may lead to the misidentification of sequences.  Another issue 312 

when relying on databases for taxonomic assignment is their bias towards bacteria which are 313 

clinically relevant in humans, meaning that researchers investigating non-human hosts or 314 

environmental samples may struggle to assign taxonomy to their sequences.  For example, in 315 

a study of the honey bee gut microbiota, disagreement was found between the three databases 316 

listed above upon carrying out taxonomic assignments (78).  At genus level, the three 317 

databases concurred in their assignments for only 13% of sequences.  The classification of 318 

sequences was improved by including bee-specific full length 16S rRNA gene sequences in 319 

the training set, highlighting the need to include more representative sequences from a greater 320 

number of habitats.  321 

This has been highlighted by Werner et al who advised using the largest and most diverse 322 

database possible (79). This group also found that trimming the reference sequences to the 323 

primer region of interest improved classification depth.  However, in a more extensively 324 

studied environment such as the human intestine, Ritari et al found that making a 325 

personalised reference database containing only bacterial species which were known to 326 

inhabit that niche led to an increase in lower taxonomic level assignments, probably due to 327 

less competition among sequences compared to large databases (80).   328 

  329 

Operational taxonomic unit picking methods 330 

Operational taxonomic units, or OTUs, are the common currency of 16S or marker gene 331 

studies of microbiomes.  The term was originally coined by Sokal and Sneath (81), and in its 332 

more general usage refers simply to groups of organisms that are closely related.  There are 333 

two major methods for defining OTUs – reference-based and de novo.  In reference-based 334 

clustering, sequences from a community are clustered against a known reference database, 335 

and in de novo clustering, the sequences are clustered according to pairwise distance 336 
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measures.  Reference-based OTUs are sometimes referred to as “phylotypes” (82).  As with 337 

many areas of microbiome analysis, the evidence is mixed as to which of the two approaches 338 

is best.  It has been found that de novo methods perform better when considering the quality 339 

of OTU assignments  (83), with another study showing that de novo OTUs were unstable 340 

(84).  However, Westcott and Schloss argued that OTUs can be stable yet still incorrect, and 341 

in particular showed that some reference-based techniques were sensitive to the order of 342 

sequences in the database.  Sul et al found that reference-based techniques produced similar 343 

results to de novo, with the added benefit of low computational overheads and the ability to 344 

compare datasets from different variable regions (85).  Indeed, perhaps the major difference 345 

between reference- and de novo based methods is that the latter has a significantly greater 346 

computational overhead, with the need to compare every sequence to every other sequence in 347 

its most naïve form.   348 

Even within clustering tools, the choice of parameters has been shown to have a critical 349 

impact on the results.  Whilst a threshold of 97% has become standard,  Patin et al have 350 

shown that 16S rRNA gene sequences as similar as 99% can represent functionally distinct 351 

microorganisms, which means that functionally diverse species would be clustered at the 352 

97% threshold (86).  However, that may rely on accurate sequences, and if those don’t exist, 353 

the 97% threshold can help avoid over-estimation of biodiversity (87).  Susceptibility to 354 

differing parameters may also be pipeline-dependent (88).  Given the controversy and 355 

potential biases of clustering sequences, some have suggested methods and models for using 356 

individual sequences to represent OTUs (i.e. remove the clustering step entirely) (89–92). 357 

 358 

Correcting for gene copy number 359 

Different bacterial species also have varying copy numbers of the 16S rRNA gene (93, 94) 360 

which can lead to misinterpretations when comparing the abundance of bacterial OTUs or 361 
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attempting to construct a “true” description of the microbial community within a sample (95).  362 

It is unusual in 16S rRNA gene studies to accurately know the copy numbers for all identified 363 

OTUs.  Therefore, tools have been developed which seek to correct for copy number 364 

variation using sequence databases and phylogenetic information to give a more accurate 365 

picture of the relative abundances of these OTUs.  These include Copyrighter (96), rrNDB 366 

(93), functions in the picante R package and pplacer (97) and part of the PICRUSt package 367 

(98).  368 

As these techniques are reliant on databases the same problems are present as for taxonomic 369 

identification.  Principally, lesser studied bacterial taxonomies are less likely to be 370 

represented.  It is also important to note that when comparing OTUs between samples rather 371 

than within a sample (e.g. when comparing treatment effects), the impact of copy number 372 

variation is reduced as the under or over representation of OTUs would be consistent across 373 

samples as long as the same methodology had been used. 374 

 375 

Contamination issues 376 

Microbial DNA contamination arising from DNA extraction kits, PCR reagents and the lab 377 

environment may have a particularly large effect when studying low microbial biomass 378 

samples. Salter et al found that contamination in DNA extraction kits not only varied by 379 

manufacturer but by individual lot and that samples processed in separate laboratories 380 

contained different types of contaminating DNA (99).  This lack of predictability led the 381 

authors to suggest that “negative” (or reagent-only) controls should be run alongside samples 382 

in all 16S rRNA gene metabarcoding studies.  If reagent-only controls are not included, this 383 

can lead to the misinterpretation of results.  When Salter et al analysed a dataset comparing 384 

nasopharyngeal microbiota samples from children at two time-points they found that while 385 

the time-points appeared to cluster separately, this effect was mainly due to bias caused by 386 
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contamination from the extraction kits used.  Randomisation of samples prior to processing 387 

may help avoid the introduction of this type of bias.  Contamination could also lead to the 388 

false identification of microbial communities where they do not in fact exist (100) and could 389 

affect our understanding of which bacteria are relevant in clinical samples (101). 390 

The amplification of background contaminants from PCR reagents could perhaps be avoided 391 

via the use of primer-extension PCR (102) but this would have no effect on contamination 392 

originating from other sources.  Several methods have been suggested to remove 393 

contaminating DNA from reagents and the lab environment including: UV and γ radiation 394 

(103–107); DNA intercalation by 8-methoxypsoralen, ethidium monoazide and propidium 395 

monoazide (104, 106–108); enzymatic treatments (105–107, 109–111) silica-based 396 

membrane filtration (112); CsCl2 density gradient centrifugation (111) and bleach/CoPA 397 

solution treatment (105).  These methods have shown variable effects on contamination 398 

levels and PCR sensitivity and the inclusion of reagent-only controls alongside these 399 

decontamination measures is still recommended. 400 

What should be done with sequencing data from reagent-only controls is still under debate.  It 401 

is often not appropriate to simply remove all of the bacterial OTUs found in controls as these 402 

may overlap with OTUs which can genuinely be found in samples (108).  Other methods 403 

have been suggested which take into account the abundance of OTUs to predict the likelihood 404 

of sequence reads having originated from contamination.  These include an adaptation of the 405 

neutral community model (12) and combining qPCR data with OTU relative abundance data 406 

to compare the absolute abundance of contaminating OTUs in controls and samples (113).  407 

However, the field is rapidly reaching consensus that, due to contamination issues, not 408 

including reagent-only controls can negatively impact the quality control of sequence data. 409 

When planning a 16S study, the inclusion of reagent-only controls (i.e. DNA extraction 410 

kit and PCR controls) is advised. 411 
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 412 

Conclusions 413 

The study of complex microbial communities using high-throughput sequencing platforms 414 

has allowed better understanding of a variety of biological systems and the impact of various 415 

conditions (e.g. disease states) on the host microbiome.  When considering the literature, it is 416 

clear that bias can be introduced into microbiota studies at all methodological stages, from 417 

sampling to bioinformatic analysis.  While the variety of different 16S rRNA gene 418 

metabarcoding methodologies might seem overwhelming, the main factor to keep in mind 419 

when designing a microbiota study is consistency.  It is paramount to use consistent 420 

methodology throughout a study to minimise potential biases which could lead to spurious 421 

results. 422 

The volume of studies attempting to define best practice for various stages of the microbiome 423 

experimental process is large, and we cover only some of the literature in this review.  424 

Unfortunately, as can be seen, there is little consensus, and further studies are unlikely to find 425 

any.  The reality is that many of the biases described in this review are context- and 426 

environment- specific, and whilst individual studies may be true within their context, their 427 

conclusions may not be transferable to other studies.  Clearly, with biases possible at every 428 

step, a good experimental design is essential.  Recording and publication of all experimental 429 

metadata is essential for understanding microbiome studies, and unfortunately many currently 430 

published studies lack these data.  431 

Trying to find consensus in the literature is challenging, with many studies producing 432 

conflicting evidence about the effects of various steps in the experimental process.  It is 433 

therefore essential that consistency is maintained within a study, and there must be an 434 

acceptance that comparison between studies may not be possible.   435 
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In summary, we recommend extracting DNA from fresh samples if possible; if not, samples 436 

should be stored in a consistent manner (i.e. at the same temperature, for the same duration 437 

and with or without cryprotectant) with appropriate metadata being recorded.  The use of a 438 

mechanical lysis step is recommended to minimise potential biases due to some microbial 439 

cells being more resistant to lysis.  The selection of appropriate primers should be made after 440 

careful consideration of the literature, but it is important to note that even universal primers 441 

will not amplify all bacteria in a given sample.  Sequencing both mock bacterial communities 442 

and “negative”/reagent-only controls is important for determining background contamination 443 

and sequencing error rate, and should at least be included for each sequencing run and even 444 

better, for every batch of commercial reagents/kits.  To reduce the chance of OTU inflation 445 

caused by sequencing errors, consider complete overlap of MiSeq reads, which translates as 446 

targeting a single hypervariable region.  Finally, and to re-iterate – record every aspect of 447 

your experiment and report it in the methods section and remember that the critical 448 

consideration is consistency in methodology at each stage. 449 
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