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Abstract We examine the effect that the magnetic part of the Weyl tensor has on the

large-scale expansion of space. This is done within the context of a class of cosmolog-

ical models that contain regularly arranged discrete masses, rather than a continuous

perfect fluid. The natural set of geodesic curves that one should use to consider the

cosmological expansion of these models requires the existence of a non-zero mag-

netic part of the Weyl tensor. We include this object in the evolution equations of

these models by performing a Taylor series expansion about a hypersurface where it

initially vanishes. At the same cosmological time, measured as a fraction of the age

of the universe, we find that the influence of the magnetic part of the Weyl tensor

increases as the number of masses in the universe is increased. We also find that the

influence of the magnetic part of the Weyl tensor increases with time, relative to the

leading-order electric part, so that its contribution to the scale of the universe can reach

values of ∼1%, before the Taylor series approximation starts to break down.

Keywords Black holes · Cosmology · Silent universes

1 Introduction

The large-scale expansion of the Universe is usually taken to be dominated by the

Newtonian part of the gravitational field. This idea probably originates from the

close correspondence between the Friedmann equations of general relativity and the
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equations that govern Newtonian cosmologies [1], but also has strong support from

rigourous constructions that are based on perturbative expansions of Einstein’s field

equations [2,3]. Nevertheless, there are good reasons to be interested in relativistic

effects in cosmology. These include the apparent existence of Dark Energy, as well as

the dawn of the age of precision cosmology. Put bluntly, relativistic effects need to be

understood in order to have faith in the cosmological models that we use to interpret

observational data.

Geometrically, the electric part of the Weyl tensor is sufficient to determine the

Newtonian part of the free gravitational field. The magnetic part of the Weyl tensor,

on the other hand, describes other aspects of the relativistic gravitational field [4]

(both of these objects are defined in Sect. 3, below). Well known relativistic effects

such as frame-dragging and gravitational radiation require a non-vanishing magnetic

Weyl tensor in order to exist, but the effects of the magnetic part of the Weyl tensor

on the large-scale expansion of the Universe are still largely unknown. This is partly

due to an absence of realistic cosmological models that have non-zero magnetic Weyl

curvature, and that could therefore be considered to be non-silent [5]. This situation

is, however, changing.

It has recently been demonstrated that cosmological models that contain regularly-

arranged discrete masses can generate a non-zero magnetic Weyl tensor, even if no

such curvature existed in their initial data [6]. The authors of this study considered the

effect that this tensor has on the large-scale expansion of a universe that contains eight

black holes, using both the leading-order term in a Taylor series expansion, and by

numerically integrating the evolution equations of the initially silent space. We extend

their study by calculating both the leading-order and next-to-leading-order parts of

the relevant series expansion, and by using these results to determine the effect of

the magnetic part of the Weyl tensor on the large-scale expansion of all cosmological

models that contain regularly arranged discrete masses in a closed cosmology. The

phenomenology of such models is interesting, as they can be considered a first approx-

imation to the type of universe within which we actually live. More mathematically,

they provide a tractable way to formulate n-body cosmology as a relativistic initial

value problem. They therefore provide an ideal arena within which to study relativistic

gravitational effects in cosmology.

Of course, the magnetic part of the Weyl tensor is a frame-dependent object, and its

magnitude will change when different sets of observers are considered. However, in

cosmology it is natural to consider sets of time-like curves that are both geodesic, and

(in some sense) comoving with the objects that exist within the space–time. It is with

respect to observers following such a set of curves that one can talk about “cosmolog-

ical expansion”, and it is with respect to the same set of curves that we will talk about

“the magnetic part of the Weyl tensor”. The influence of the magnetic part of the Weyl

tensor on the cosmological expansion is of special interest because virtually all cos-

mological solutions of Einstein’s equations are derived under assumptions that force

it to be zero (for cosmologically interesting congruences of curves). Such situations

are, however, highly unrealistic, as observers that follow the geodesic set of time-like

curves that describe the world-lines of real galaxies will certainly experience the con-

sequences of this part of the curvature of space–time, which is in general non-zero. We

must therefore precisely quantify the effects of the magnetic part of the Weyl tensor
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on the large-scale expansion of space, if we are to fully understand the recessional

velocity of galaxies in the real Universe (and all of its associated consequences).

In Sect. 2 we describe in detail the cosmological models that we will be using in

this study. They consist of regularly-arranged discrete masses in a closed space, and

are formulated as a relativistic initial value problem. In Sect. 3 we then introduce the

compact formalism that will be used in the rest of the paper. This starts by using a

1 + 3 decomposition of the geometric and kinematic quantities involved, and finishes

with a 1 + 1 + 2 decomposition that can be efficiently used to exploit the symmetries

of the problem. The explicit form of the symmetry restrictions are then determined in

Sect. 4, where it is shown that the influence of the magnetic part of the Weyl tensor on

the relevant evolution equations does not necessarily vanish. Section 5 then contains

some lengthy calculations to determine the coefficients of a Taylor series expansion

that can be used to include the effect of the magnetic Weyl tensor on the large-scale

expansion of space. In Sect. 6 we present the numerical results for each of the lattice

universes that we will be considering, before concluding in Sect. 7.

Throughout the paper we use the first half of the Latin alphabet to denote space–

time coordinate indices, and the second half to denote spatial coordinate indices. Greek

letters are reserved to denote spatial frame indices, where they are required.

2 Lattice models of the universe

The space–times we wish to consider are those that have come to be known as “lattice

models”, in some parts of the cosmology literature. These models have a periodic

structure, and are constructed from a number of regularly arranged cells, each of

which are identical to one another. Such models have been studied in a number of

different contexts over the past few years, as they offer a simple enough setting to

provide concrete answers to questions of direct physical interest.

The particular type of lattices we wish to consider are those in which the topology of

the cosmological region is a hypersphere. Furthermore, we want to consider situations

where the only mass present is in the form of black holes, without angular momentum

or electric charge. We position one single black hole at the centre of every lattice cell,

so that the cosmological region as a whole contains a regular array of these objects.

The geometry of the space–time can then be treated as a vacuum solution of Einstein’s

equations, with its scale and expansion being prescribed accordingly.

In the rest of this section we will describe the specifics of the six different lattice

configurations that we will be studying, as well as the solutions to the constraint equa-

tions, and the existence of curves within the space–time that display special rotational

symmetries. This recaps results from previous work [7–9].

2.1 The six closed lattices

Before solving for the geometry of space–time, we need to understand how to divide

a hyperspherical universe into n identical cells. If we choose each cell to be one of the

five possible Platonic solids (i.e. one of the five possible regular convex polyhedra),

then there are six different ways that we can arrange these cells to form a closed
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lattice. Each of these configurations corresponds directly to one of the six regular,

convex polychora that exist in four dimensions. They are [10]:

– 5-cell. This lattice consists of five tetrahedral cells. Three cells meet along every

cell edge, and there are a total of five vertices (the points where cell corners meet).

This is the smallest lattice that can be constructed from regular convex polyhedra.

– 8-cell. This structure is composed of eight cubes, arranged so that three cells

meet along every cell edge, giving a total of sixteen vertices. It corresponds to the

space–time studied numerically in [6,11].

– 16-cell. This lattice is made from sixteen tetrahedral cells, with four cells meeting

at every cell edge. It is dual to the 8-cell (meaning that interchanging vertices and

cell centres gives an 8-cell lattice).

– 24-cell. The 24-cell is constructed from twenty four octahedral cells. Three of

these cells meet along every cell edge, and there are a total of twenty four vertices.

The 24-cell is self-dual, as it has the same number of cells and vertices.

– 120-cell. This structure contains one hundred and twenty dodecahedral cells, with

three cells meeting at every edge. There are six hundred vertices in this structure,

meaning that it is dual to the 600-cell, described below.

– 600-cell. This is the largest of all lattices that fits our specifications. It is built from

six hundred tetrahedral cells, with five of these meeting along every edge.

In the rest of this section we will outline how Einstein’s constraint equations can be

solved for these lattices, as well as how curves that exhibit local rotational symmetry

can be identified.

2.2 Initial data

If we treat general relativity as an initial value problem, then we can split Einstein’s

equations into constraint and evolution equations. The former of these can then be

written as a Hamiltonian constraint and a momentum contraint, such that, in vacuum,

(3) R + K 2 − Ki j K i j = 0 (1)

D j K
j

i − Di K = 0, (2)

where (3) R is the Ricci scalar of the geometry on the initial hypersurface, Σ , and Ki j

is its extrinsic curvature in the embedding space–time. The Di derivative is used here

to denote a covariant derivative within Σ , and K is the trace of Ki j .

Equations (1) and (2) are, in general, very difficult to solve. However, we can

simplify the problem dramatically if we choose our initial hypersurface carefully. For

example, if we choose it to be symmetric under time reversal then we automatically

have Ki j = 0. The Hamiltonian constraint then reduces to

(3) R = 0, (3)

while the momentum constraint is identically satisfied. This equation is much easier

to solve, and is the basis of the study of geometrostatics (the gravitational analogue of
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the field of electrostatics [12]). We will assume initial data of exactly this type in what

follows, and find solutions to the constraint equation (3) that describe the maximum

of expansion of our lattices. These results were presented for the first time in [7].

A metric ansatz for the initial geometry can be chosen as follows:

dl2 = ψ4
(

dχ2 + sin2 χdΩ2
)

, (4)

where dΩ2 = dθ2 + sin2 θdφ2 is the line-element of a 2-sphere, and where ψ =
ψ(χ, θ, φ) acts as the square root of the scale factor. The time-symmetric Hamiltonian

constraint then reduces to

∇̄2ψ =
3

4
ψ, (5)

where ∇̄2 is the Laplacian operator on the conformal 3-sphere. This equation is now

linear in ψ , meaning that if a solution can be found for a single black hole, then we

can simply super-impose this with other solutions of the same form to find multi-black

hole solutions. This is exactly what we need to form our lattice models of the Universe.

A simple solution to Eq. (5) is given by ψ =
√

m̃/(2 sin
(

χ
2

)

), where m̃ is a constant.

This function has a pole at χ = 0, and looks very much like the gravitational field

one might expect for a point-like particle located at that position. Of course, there is

nothing special about the point χ = 0, and we can generate any number of similar

functions by rotating the coordinate system so that {χ, θ, φ} → {χi , θi , φi }, and then

replacing χ by χi in the denominator. This gives the solution for N such particles as

ψ =
N

∑

i=1

√
m̃i

2 sin
(

χi

2

) , (6)

where χi should be understood as the value of χ in a coordinate system that has been

rotated so that the i th particle appears at χi = 0. This is just what we need to construct

our lattice cosmologies, as it is a solution that corresponds to N arbitrarily located

black holes, in a universe that is at its maximum of expansion.

In the sections that follow, we will use the solution given by Eqs. (4) and (6) as

initial data for our cosmology. This initial data is exact, but has some subtleties to its

interpetation. The parameter m̃i that appears in Eq. (6) looks like it corresponds to

the mass of a particle positioned at χi = 0, but it is not the proper mass of the i th

black hole. This must be found by looking at the geometry of the space in the limit

χi → 0, and comparing this to a time-symmetric slice through the Schwarzschild

solution. One then finds that the proper mass of each of the black holes is a function

of the location and m̃i of each of the other black holes. The parameter m̃i can then be

interpreted as an “effective mass”, which includes information about the gravitational

field of the gravitational potential energy, as well as that from the proper mass of each

of the individual black holes [7,13]. As we want all of the black holes in our lattice

models to have the same mass, we choose mi = m for all values of i .
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2.3 Curves with a rotationally symmetric tangent space

There exists a number of curves, within our lattices, that display local rotational sym-

metry (LRS) [8,9]. Perhaps the simplest of these curves to visualize is the example

of a cell edge. In each of the lattice structures listed above there were between three

and five identical cells meeting along every cell edge. This means that the geometry

of space–time in the vicinity of these curves must be invariant under a rotation that

interchanges the cells. If we pick a set of orthonormal frame vectors for our 3-space

{e1, e2, e3}, and align e1 with this special curve, then the rotational symmetry implies

[8]

V2 = V3 = 0 = T23 and T22 = T33, (7)

where Vα and Tαβ are the spatial frame components of any vector V, and any symmetric

tensor T. Furthermore, the commutators of the basis vectors are restricted by [8]

γ 1
21 = γ 1

31 = 0, γ 2
12 = γ 3

13 and γ 3
12 = γ 2

13, (8)

where [eα, eβ ] = γ ǫ
αβeǫ . The results in Eqs. (7) and (8) are only valid in the tangent

spaces of the points that make up these LRS curves, but they are significant restrictions.

As well as cell edges, there are other curves in our lattices that also exhibit rotational

symmetry [9]. They are given by the lines that connect the horizon of the black hole

at the cell centre with the cell corner, and the line that connects this horizon with the

centre of a cell face. Such curves are illustrated in Fig. 1, for the particular case of a

cubic cell. They will be the curves that we solve for in Sect. 6. The curves that connect

the centre of the cell with the cell corner, and the centre of a cell face, are formally

infinitely long in the initial data, which is why we have chosen to cut them off at the

black hole horizon. They then have finite proper length.

Fig. 1 An illustration of the

curves that connect the centre of

the cell with the centre of a cell

face (green), and the centre of a

cell with a cell corner (blue).

Also displayed is a curve that

connects the centre of a cell

edge with a cell corner (red).

These are the three curves whose

evolution will be solved for in

Sect. 6 (colour figure online)

123



The magnetic part of the Weyl tensor, and the expansion of… Page 7 of 40 30

The location of the horizon will be determined by assuming the horizon to be

initially non-expanding. In this case, the location of the horizon along LRS curves is

found by looking for solutions to the following Eq. [8]:

De1 E11 = 0, (9)

where e1 is again aligned with the direction of the LRS curves, and E11 is the frame

component of the electric part of the Weyl tensor. The location of the horizon at

subsequent times is found by propagating null geodesics along the LRS curves, from

the initial location (as can be seen to be required by the null Raychaudhuri equation

[8]).

3 Covariant formalism and field equations

In order to exploit the symmetries of a space–time it is often convenient to decompose

the geometric objects that exist within it. This can be achieved by picking out vector

fields that are either aligned with, or orthogonal to, certain invariantly defined sub-

spaces, and then by defining projection operators associated with these vectors. Within

the field of cosmology, the most widely applied decomposition of this type is the 1+3-

decomposition pioneered by Ehlers [14], and developed by Ellis and others (see e.g.

[15,16]). If there also exists a preferred space-like direction within the space, as in

LRS space–times [17], then the 1+1+2 decomposition of Clarkson becomes a useful

tool [18]. Going further, and decomposing using a full set of four mutually orthogonal

unit vectors, one is then led to the orthonormal frame approach [19]. In this section

we will outline the 1 + 3 and 1 + 1 + 2 approaches, as relevant for our study.

3.1 The 1 + 3 decomposition

If there exists a time-like unit vector field, u, then we can define tensors that project

parallel and othogonal to this vector, respectively, as

U a
b := −uaub and ha

b := δa
b + uaub, (10)

where δa
b indicates the Kronecker delta. We can also project all derivatives along and

orthogonal to ua , respectively, by defining

Ṡa...b
c...d := ue∇e Sa...b

c...d (11)

Da Sb...c
d...e := h

f
a hb

g . . . hc
hh i

d . . . h
j

e ∇ f S
g...h

i ... j , (12)

where Sa...b
c...d is any tensor. It can immediately be seen that ḣab = 2u̇(aub) and

Dahbc = 0, which can be considered the evolution and constraint equations for hab.

The covariant derivative of ua can then be decomposed into its irreducible compo-

nents, such that

∇aub = −ua u̇b +
1

3
Θhab + σab + ωab, (13)
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where u̇a = ub∇bua is the acceleration vector, Θ := ua
;a is the expansion scalar,

σab := u̇(aub) +∇(aub) − 1
3
Θhab is the symmetric trace-free shear tensor, and ωab :=

u[a u̇b] + ∇[aub] is the skew-symmetric vorticity tensor. These last three quantities

describe the rate at which the integral curves of ua expand, squash and twist around

each other. It is straightforward to verify that U abσbc = U abωbc = 0 = U abu̇b,

meaning that all of these quantities are already projected orthogonal to ua .

The fundamental object of interest for describing the free gravitational field, and

which is required to complete a description of the vacuum scenario, is the Weyl tensor,

Cabcd . The existence of the time-like vector field u can be used to split the Weyl tensor

into “electric” and “magnetic” parts, defined respectively by

Eab := Cacbducud and Hab :=
1

2
ǫacdCcd

beue, (14)

where ǫabc = ηabcdud is the spatial skew symmetric permutation tensor (defined such

that η0123 = −
√

|g|). The electric part of the Weyl tensor contains all information

about the tidal forces due to gravity. The magnetic part, on the other hand, contains

all other information about the Weyl curvature. We also have ǫ̇abc = ηabcd u̇d and

Daǫabc = 0, which can be thought of as the evolution and constraint equations for

ǫabc.

3.2 The vacuum field equations

In order to write the field equations in the most concise form possible, it is convenient

to introduce the definitions of the covariant divergence and curl, which when operating

on rank-2 tensors are given by

(divS)a := Db Sab and curlSab := ǫcd(a Dc Sb)
d . (15)

It is also convenient to introduce the projected, symmetric, trace-free part of a rank-2

tensor by using angular brackets, such that

S〈ab〉 := ha
chb

d S(cd) −
1

3
Scd hcd hab. (16)

Note that this means σ〈ab〉 = σab, E〈ab〉 = Eab, and H〈ab〉 = Hab, as these tensors are

already projected, symmetric and tracefree.

With the definitions of all of these quantities and operators in hand, it is now possible

to write the vacuum evolution equations for a geodesic (u̇a = 0), irrotational (ωab = 0)

flow as [20]

Θ̇ = −
1

3
Θ2 − σabσ

ab (17)

σ̇ab = −
2

3
Θσab − 〈σ, σ 〉ab − Eab (18)

Ėab = −Θ Eab + 3〈σ, E〉ab + curlHab (19)
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Ḣab = −Θ Hab + 3〈σ, H〉ab − curlEab, (20)

with the constraint equations taking the form

(divσ)a =
2

3
DaΘ (21)

curlσab = Hab (22)

(div E)a = [σ, H ]a (23)

(div H)a = −[σ, E]a . (24)

The bracket operators in these equations are defined as [S, T ]a := ǫabc Sb
d T cd , and

〈S, T 〉ab := Sc〈aTb〉c. This extremely compact way of writing the field equations will

greatly aid the manipulations we perform in Sect. 5. It also has the distinct advantage

that all quantities involved have a direct physical interpretation, allowing for a better

intuitive understanding of the physical set-up.

3.3 The 1 + 1 + 2 decomposition

Just as in the previous sections, and following Clarkson [18], if there exists a space-like

unit vector field, n, then we can decompose all geometric objects into parts that are

parallel and orthogonal to this field. The goal here is to first perform the decomposition

with respect to ua , and then to take the tensors projected into the space orthogonal

to ua and decompose them further with respect to na . To this end, we introduce the

following projection tensors:

N a
b := nanb and f a

b := ha
b − nanb, (25)

where hab is the projection tensor from above. The tensor N a
b can operate on any

geometric object, and projects it along na . The tensor f a
b, on the other hand, only

makes sense as a projection tensor when it operates on objects that have already been

projected using ha
b. If na is surface forming, then f a

b projects such objects onto the

2-dimensional “sheets” orthogonal to na .

Under these definitions, we can irreducibly decompose any spatially projected

vector, V a = ha
bV b, into a scalar part ‖V := V ana , and a transverse vector part

⊥Va := fa
b Vb. The projected vector can then be written as

Va = ‖Va + ⊥Va (26)

where ‖Va = N b
a Vb. These definitions mean that f a

b
‖Va = N a

b
⊥Va = 0, which

shows that ‖Va has no parts in the sheet, and ⊥Va has no part parallel to na .

The other geometric objects we wish to decompose with respect to na are the

symmetric trace-free tensors defined above. Any such tensor can be irreducibly decom-

posed into a scalar ◦S := N ab Sab, a transverse vector †Sa := fa
bnc Sbc, and a

transverse and tracefree tensor ‡Sab := ( f(a
c fb)

d − 1
2

fab f cd)Scd . The full symmetric

and trace-free tensor can then be written in terms of these fundamental objects as

123



30 Page 10 of 40 T. Clifton et al.

Sab = ◦Sab + †Sab + ‡Sab, (27)

where ◦Sab = ◦S(Nab − 1
2

fab),
†Sab = 2n(a

†Sb), and ‡Sab = ( f(a
c fb)

d −
1
2

fab f cd)Scd . These three objects are each symmetric, and trace-free with respect

to hab. They are the only three such objects that can be constructed from a single

power of ◦S, †Sa and ‡Sab, and as such they specify a unique decomposition of Sab.

In the next section we will consider the restrictions that reflection symmetry imposes

upon these objects, and why this means that Hab can have an effect on the large-scale

expansion of space.

4 Reflection symmetric surfaces

The presence of reflection symmetric surfaces can greatly simplify the formulation

of problems in general relativity. Indeed, it is the presence of a reflection symmetry

in the time-like direction that allowed the constraint equations to be solved for a lat-

tice universe [7]. Reflection symmetry in the space-like directions normal to certain

2+1-dimensional surfaces within the space–time also lead to the notion of “piecewise

silence”, as gravitational waves are forbidden from travelling between lattice cells, or

the various chambers within cells [9]. In this section we will investigate the proper-

ties of reflection symmetric surfaces further, by formulating their consequences for

geometric objects in the 1 + 1 + 2 decomposition, and by considering the situation

where multiple reflection symmetric surfaces intersect (as often occurs in our lattice

universe construction).

4.1 Polar tensors and axial tensors

When determining the consequences of reflection symmetry for tensorial quantities it

is important to distinguish between polar and axial tensors. If a tensorial object can

be defined without reference to a specific frame, then that object is said to be a “polar

tensor”. By contrast, if such an object is defined with respect to some fixed direction

or combination of directions, then that object is said to be an “axial tensor”.

The 3-dimensional Levi-Civita tensor, ǫabc, is the archetypical axial tensor. If

{e1, e2, e3} constitute a set of orthonormal spatial frame vectors, then the frame com-

ponents of this tensor are given by ǫ123 = 1, and all permutations. In other words, the

Levi-Civita tensor defines a preferred orientation of the spatial frame. A reflection, or

any other improper orthonormal transformation, changes the orientation of the spatial

frame. Reflections therefore change the sign of ǫabc, meaning that it should be prop-

erly identified as a pseudotensor, rather than as a tensor. This distinction is extremely

important when determining the consequences of reflection symmetry on geometric

quantities.

To illustrate this in a formal way, we note that an inversion can be represented by

the orthonormal transformation matrix I = −1, where 1 denotes the 3-dimensional

unit matrix. Applying the standard tensor transformation formula for an orthogonal

transformation matrix Oa
b would then give
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O(Sabc...) = O
d

a O
e

b O
f

c . . . Sde f .... (28)

If we take Sabc... = ǫabc and O = I then this law would give us O(ǫabc) = −ǫabc.

The sign change indicates that the transformed object, O(ǫabc), has opposite parity to

the untransformed object, ǫabc. This is an unwanted feature if we require the parity of

the Levi-Civita tensor (right or left-handedness) to be invariant under any orthogonal

transformation. The standard way around this is to modify the transformation rule for

pseudotensors, so that it becomes [21]

O(Sabc . . . ) = det(O)Od
a O

e
b O

f
c . . . Sde f .... (29)

We can then transform tensors according to Eq. (28), whilst transforming pseudoten-

sors according to the expression in Eq. (29). The extra factor of det(O) in this latter

equation means that any quantity that contains an odd number of Levi-Civita tensors

picks up an extra minus sign under any improper orthogonal transformation, such as

a reflection.

4.2 Implementing reflection symmetries

Consider a reflection symmetry in a spatial hypersurface. Such a symmetry has fixed

points that form an invariant symmetry surface, S . Let {n, k, l} be an orthonormal

frame adapted to the symmetry in such a way that n is orthogonal to S , and conse-

quently that k and l are parallel to S . The reflection symmetry in the tangent space of

a point in S can then be represented by the orthonormal frame transformation matrix

R
a

b = diag(−1, 1, 1) for a polar tensor, and by R̃ = −R for an axial tensor. The

restrictions on a tensor Q, imposed by invariance under a reflection symmetry, is then

determined by the equations

RQ = Q or R̃Q = Q, (30)

depending on whether Q is a polar or an axial tensor, respectively. We note that, for the

specific fields that appear in Eqs. (17)–(24), the set {Θ, σab, Eab} are polar, while Hab

is axial (as it involves the Levi-Civita pseudotensor). The only operation in the field

equations that changes the parity of an object is the curl, which means that curlHab is

polar, while curlσab and curlEab are axial tensors. Decomposed tensor parts, such as
†Eab, always have the same parity as the full tensor from which they are derived.

To calculate the action of the reflection R, let us first consider the case of scalars.

We note that the only change possible for a scalar is the change of sign that affects

pseudoscalars under an improper transformation, according to the pseudoscalar ver-

sion of Eq. (29). This implies that all pseudoscalars must vanish on S , leading to the

restrictions ◦(curlσ) = ◦(curlE) = ◦H = 0. To see the effect on vectorial and tenso-

rial objects we can express the transformation matrix in the form R
a

b = f a
b − N a

b.
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The action on the vector part of a tensor, Sab, is then given by1

R(†Sab) = R
c

aR
d

b
†Scd = 2( f c

a − N c
a)( f d

b − N d
b)N

e
(c fd)

f Se f = −†Sab.

(31)

Therefore, in order to fulfil the symmetry condition given in Eq. (30), the vectorial

part, †Sa , of a polar tensor, Sa , must vanish on S . It then follows that †σa = †Ea =
†(curlH)a = 0 on S . Applying the reflection transformation in an analogous way

to the tensor part of Sab gives R(‡Sab) = ‡Sab. Hence, the polar tensor part is not

affected by the reflection, and is therefore unrestricted. The axial tensor part, on the

other hand, is required to vanish, due to the determinant appearing in Eq. (29). This

implies that ‡(curlE)ab = ‡Hab = 0.

In summary, the tensor parts remaining on a reflection-symmetric surface, after

the symmetry restrictions imposed by Eq. (30), are Θ, ◦σ , ‡σab,
†(curlσ)a, ◦E, ‡Eab,

†(curlE)a, †Ha, ◦(curlH), and ‡(curlH)ab.

4.3 Intersection of two symmetry surfaces

We now consider the symmetry restrictions imposed at points where two reflection

invariant surfaces meet. Let us call these two surfaces Sk and Sl , where the subscripts

k and l indicate their normals. The intersection of these two surfaces forms a curve, C ,

and reflection symmetry about each surface ensures that they meet at right angles to

each other. In this case we can choose to adapt the frame in such a way that n is parallel

to C . The quantities ◦(curlσ), ◦(curlE) and ◦H now have a different interpretation, but

they are again pseudoscalars. We therefore have that ◦(curlσ) = ◦(curlE) = ◦H = 0.

To analyze the restrictions on vectorial and tensorial objects, we note that the

reflection transformations associated with k and l can be expressed in the forms

Rk : γ a
b = ha

b − 2kakb , Rl : γ̃ a
b = ha

b − 2lalb. (32)

Applying Rk to the vectorial part of the 1 + 1 + 2 decomposition gives

Rk(
†Sab) = 2γ c

aγ d
bn(c f e

d)n
f Se f = †Sab − 4n(akb)kc

†Sc. (33)

Applying the symmetry condition from Eq. (30), for a polar tensor, then leads to

ka
†Sa = 0 on Sk . A similar argument for the reflection symmetry Rl gives la

†Sa = 0

on Sl . It follows that †Sa = 0 on C , as both of its components must vanish. This

implies the restrictions †σa = †Ea = †(curlH)a = 0.

For the vector part of an axial vector we get

R̃k(
†Sab) = −†Sab + 4n(akb)kc

†Sc . (34)

1 As a technical note, it can be remarked that na , when regarded as a fixed vector, will be an axial vector.

This has the effect that †Sa and †Sab have opposite parity, as their definitions include one and two factors

of na , respectively. This issue is irrelevant for the scalars ◦S and ◦Sab as both contain an even number of

factors of na (2 and 0, respectively).
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In this case, the symmetry condition from Eq. (30) takes the traceless symmetric form

Cab := n(a
†Sb) − n(akb)kc

†Sc = 0. (35)

Only the vectorial component of Cab is non-zero, which means the symmetry condition

in Eq. (35) then reduces to

†Ca =
1

2
(†Sa − ka kb

†Sb) = 0. (36)

This tells us that the component of †Sa in the l-direction vanishes on Sk . Similarly,

the symmetry Rl implies that the component of †Sa in the k-direction vanishes on Sl ,

and consequently that the vectorial parts of all axial tensors vanish on S . This gives

the restrictions †(curlσ)a = †(curlE)a = †Ha = 0.

Let us now consider the consequences of the symmetry conditions, from Eq. (30),

on the tensorial part of a polar tensor. We find that the reflection operation gives

Rk(
‡Sab) = ‡Sab − 4(‡Scd kcld)k(alb), (37)

where we have used the relation ‡Sab kb = (‡Sbc kbkc)ka + (‡Sbc kblc)la . The sym-

metry condition in Eq. (30) then implies ‡Sab kalb = 0. The tensorial parts ‡σab,
‡Eab

and ‡(curlH)ab are therefore diagonal, with ‡Sab kakb as their only independent com-

ponent. As the right-hand side of Eq. (37) is symmetric in k and l, there are no further

restrictions implied by the symmetry action of Rl .

Finally, we consider the action of the reflection symmetries on axial tensors. They

give

R̃k(
‡Sab) = R̃l(

‡Sab) = −‡Sab + 4(‡Scd kcld)k(alb), (38)

so that the symmetry conditions in Eq. (30) then become

‡Sab = 2(‡Scd kcld)k(alb). (39)

This is the condition that ‡Sab kalb is the only nonvanishing independent component

of ‡Sab. This restriction applies to ‡(curlσ)ab,
‡Hab and ‡(curlE)ab.

In summary, at the intersection of two reflection symmetric surfaces we have that

the only non-vanishing tensor parts are given by Θ, ◦σ , ◦E and ◦(curlH), the single

independent component of the diagonals of ‡σab,
‡Eab and ‡(curlH)ab, and the single

independent off-diagonal components of ‡(curlσ)ab,
‡(curlE)ab and ‡Hab

2.

4.4 Intersection of three or more symmetry surfaces

When three or more reflection symmetric surfaces meet the restrictions on geometric

objects are much stricter. Such situations arise along LRS curves when the symmetry

2 This corrects statements made in [8].
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along the intersecting surfaces is threefold or higher, as was studied in some detail

in [8]. Here we adapt our frame to the symmetry curve in the same manner as in

the twofold symmetry case, considered above. As we know that all the vectorial and

tensorial parts of every geometric object must vanish in this case [8], we only need to

consider the scalars. As before, the axial scalars must once again vanish, implying that
◦(curlσ) = ◦(curlE) = ◦H = 0 . It then follows that curlσab = curlEab = Hab = 0.

The only remaining parts are therefore given by ◦σ , ◦E and ◦(curlH).

If we now re-cast Eqs. (17)–(19), in terms of the quantities that remain after sym-

metry restrictions, then we find

Θ̇ = −
1

3
Θ2 −

3

2
(◦σ)2 (40)

◦σ̇ = −
1

3
◦σ

(

2Θ +
3

2
◦σ

)

− ◦E (41)

◦Ė = −◦E

(

Θ −
3

2
◦σ

)

+ ◦(curlH). (42)

These equations can be further simplified by defining the expansion scalars parallel

and perpendicular to na : H‖ := 1
3
Θ + ◦σ and H⊥ := 1

3
Θ − 1

2
◦σ , respectively. The

evolution equations for these two quantities are then given by

Ḣ‖ + (H‖)
2 = −◦E (43)

Ḣ⊥ + (H⊥)2 =
1

2
◦E, (44)

while the evolution equation for the source term, ◦E , is given by

◦Ė + 3H⊥
◦E = ◦(curlH). (45)

The scalar ◦(curlH) therefore acts as a source for ◦E , which is itself the source of the

expansion along S . This completes our study of the restrictions imposed at reflection-

symmetric surfaces. In the following sections we will study the evolution of the non-

vanishing parts of the covariant scalars, and in particular the effect that ◦(curlH) has

on the expansion of LRS curves with threefold, or higher, reflective symmetries.

5 Taylor series expansion of curl(H)

We want to solve the evolution equations (43)–(45), with the initial conditions specified

in Sect. 2. In terms of the variables that result from the 1 + 3 decomposition, these

initial conditions can be specified as

Θ = 0 = σab = Hab and Θ̇ = 0 = Ḣab (46)
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together with the following conditions on Eab:

(divE)a = 0 = (curlE)ab. (47)

The first set of initial conditions in Eq. (46) all follow immediately from the require-

ment of time-reversal symmetry in the initial data [8]. The second set, involving time

derivatives, follows from Eq. (17), and from the fact that the Cotton-York tensor on

the initial hypersurface is given by ∗Cab = −Ḣab [19]. The conditions in Eq. (47)

then follow from the evolution equation (20), and from the constraint equation (23).

If one were to take ◦(curlH) = 0 along LRS curves, as was done in [8], then

Eqs. (43)–(45) form a closed system, and the initial data specified in Sect. 2 is sufficient

to determine H‖,H⊥ and ◦E at all future times (up to singularities). If ◦(curlH) �= 0,

however, then this is no longer true. The value of ◦(curlH) must be determined at future

times, in order to evolve the system of evolution equations (43)–(45). This can be done

by either numerically solving the full set of Einstein equations, or by performing a

Taylor series expansion of ◦(curlH) at the initial hypersurface [6]. In this paper we opt

for the latter of these two methods, and in the remainder of this section we determine

the coefficients of such an expansion using the compact notation from Sect. 3.

In order to perform such an expansion, we first note that the time derivative of any

spatial unit vector can be written as

ėa
1 = e1

bu̇bua − Ω3e2
a + Ω2e3

a, (48)

where Ωα := 1
2
ǫαβγ eβ

a ėγ a is the angular velocity of the spatial unit vectors, with

respect to a set that are Fermi propagated along ua . If we choose our flow so that it is

geodesic (u̇a = 0), and take our unit vector na to belong to a set of basis vectors that

are Fermi-propagated (Ωα = 0), then we have ṅa = 0 at all points along the evolution

of all of our LRS curves.

Letting (curlHab)
(n) stand for the nth covariant derivative of curlHab along ua , this

means, in particular, that

◦(curlH)(n) = nana(curlHab)
(n), (49)

for any number of time derivatives. We can therefore Taylor expand curlHab, and

simply contract the result with n twice, in order to find the series expansion of ◦(curlH).

5.1 First order

The Taylor series expansion we wish to investigate is given by

curlHab =
∞
∑

n=0

(curlHab)
(n)|t=0

n!
tn, (50)
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where (curlHab)
(n) should be understood to be evaluated on the initial hypersurface.

The time parameter, t , is the proper time that would be measured by an observer

following the integral curves of ua .

The n = 0 term in Eq. (50) is zero, as Hab must vanish at all points in the initial

hypersurface. In fact, we can immediately see that every term that corresponds to

an even value of n must vanish from this equation. This follows directly from the

requirement of time-reversal symmetry. It now remains to evaluate the odd values of

n. At first order we get

(curlHab)
� = −curl(Θ Hab) + 3curl(σc〈a Hb〉

c) − curl(curl(Eab))

+3Hc〈a Hb〉
c −

1

3
Θ curl(Hab) − σe

cǫcd(a De Hb)
d , (51)

where we used the commutation relation between the curl operator and time derivatives

(Eq. (A18) from [20]):

(curlSab)
� = curlṠab −

1

3
Θ curlSab − σe

cǫcd(a De Sb)
d + 3Hc〈a Sb〉

c, (52)

where Sab is any projected symmetric tracefree tensor, Sab = S〈ab〉. The initial condi-

tions in Eqs. (46) and (47) can then be seen to imply

(curlHab)
�|t=0 = 0, (53)

at all points on the initial hypersurface. This means that the leading-order term in

Eq. (50) cannot occur at any lower value than n = 3.

5.2 Third order

In order to find the third-order term in the Taylor series expansion, from Eq. (50), we

must differentiate each term in Eq. (51) twice. For the first term we get

− (curl(Θ Hab))
�� = −(Θ curlHab + ǫcd(a Hb)

d DcΘ)�� , (54)

where we have again used the commutation rule from Eq. (52), as well as the following

identity (Eq. (A16) from [20]):

curl( f Sab) = f curl(Sab) + ǫcd(a Sb)
d Dc f, (55)

where f is any scalar function. Applying the Leibniz rule, and plugging in the initial

conditions, we then get −(curl(Θ Hab))
��|t=0 = 0.

For the second term in Eq. (51) we get

3(curl(σc〈a Hb〉
c))�� = 3

[

curl(σc〈a Hb〉
c)� −

1

3
Θ curl(σc〈a Hb〉

c)

−σe
cǫc

d
(a Deσ|g|〈b)Hd〉

g + 3H c
〈aσ|d|〈b〉Hc〉

d
]

�

(56)
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where we twice applied the identity from Eq. (52), and where we have also used

vertical bars around indices to exclude them from symmetrization operations. The

initial conditions stated in Eq. (46) then imply that (curl(σc〈a Hb〉c))��|t=0 = 0, as all

terms contain quantities that vanish at t = 0. The second time derivative of the fourth,

fifth and sixth terms in Eq. (51) can also be seen to vanish, using similar logic.

It is therefore only the third term on the right-hand side of Eq. (51) that can be non-

zero, which means (curl(Hab))
���|t=0 = −(curl curl(Eab))

��. Commuting the curl

operator with the time derivatives, using Eq. (52) and the initial conditions from

Eqs. (46) and (47), then gives

− (curl curl(Eab))
��|t=0 = −curl curlËab − curl(ǫcd(a De(Eb)

c Ee
d)). (57)

This can be simplified further by using the following identity (Eq. (A4) from [20]):

curl(S2)ab = ǫcd(a De(Sb)
c Se

d), (58)

where (S2)ab := S c
a Sbc. We then have, after using Eqs. (57)–(58) and the evolution

equations (18)–(19), that −(curl curl(Eab))
��|t=0 = 4curl curl(E2)ab. This is the only

term that is non-zero, after twice differentiating the right-hand side of Eq. (51).

The final result, for the third derivative of curlHab on the initial hypersurface, can

therefore be written as

(curlHab)
���|t=0 = 4curl curl

(

E2
)

ab
. (59)

This is the first non-zero coefficient in the Taylor series from Eq. (50). Explicitly

evaluating (curlHab)
���, in terms of functions that appear in the metric, is likely to

result in a very long expression, for all but the most trivial geometries. It is therefore

remarkable that the same quantity can be written down in such a simple way in Eq. (59).

This is a result of the compact notation that we have used, which hides an enourmous

amount of underlying complexity.

5.3 Fifth order

The third-order coefficient, found in the previous section, is expected to be the leading-

order term in the Taylor series expansion from Eq. (50), as it is the first one that does

not vanish. In order to determine the regime in which the Taylor series provides a

good approximation to the full geometry, however, it is necessary to find the next-to-

leading order term (when the leading-order and next-to-leading-order terms become

the same size, then we expect the series expansion to break down). We therefore need

to calculate the fifth-order term in the series expansion from Eq. (50).

The fifth-order term will be given by performing four differentiations on each term

in Eq. (51). We will do this by following the same procedure used in the previous

section, where simplifications were obtained using the identities in Eqs. (52), (55) and

(58), and the initial conditions in Eqs. (46) and (47). Each of the six terms in Eq. (51)

will be considered separately, and then summed to give out final result.
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5.3.1 First term

To find the fourth derivative of the first term in Eq. (51), it is useful to first determine

the second derivative without applying the initial conditions. This is given by

− (curl(Θ Hab))
��

= −Θ̈curlHab − 2Θ̇curlḢab +
1

3
ΘΘ̇curlHab + Θ̇σe

cǫcd(a De Hb)
d

−3Θ̇ Hc〈a Hb〉
c − ΘcurlḦab +

1

3
Θ2curlḢab + Θσe

cǫcd(a De Ḣb)
d

−3Θ Hc〈a Ḣb〉
c +

2

3
ΘΘ̇curlHab +

1

3
Θ2curlḢab −

1

9
Θ3curlHab

−
1

3
Θ2σe

cǫcd(a De Hb)
d + Θ2 Hc〈a Hb〉

c + Θ̇σe
cǫcd(a De Hb)

d

+Θσe
cǫcd(a(De Ḣb)

d −
1

3
Θ De Hb)

d − σ ed D|d|Hb)
d + 2H ecǫa

|e|〈b)Hd〉
e)

+Θσ̇e
cǫcd(a De Hb)

d − 3Θ̇ Hc〈a Hb〉
c − 6Θ Hc〈a Ḣb〉

c, (60)

where we first expanded curl(Θ Hab) using Eq. (55), and then applied the commutation

relation from Eq. (52) twice. It can be seen from this equation that, if we differentiate

twice more, then each term will contain at least one factor of a quantity that vanishes

on the initial hypersurface. We therefore have

− curl(Θ Hab)
����|t=0 = 0, (61)

so that the first term of Eq. (51) does not contribute to the fifth derivative of curlHab.

5.3.2 Second term

Applying Eq. (52), it can be seen that the second derivative of the second term in

Eq. (51) is given by

3[curl(σc〈a Hb〉
c)]�� = [3curl((σc〈a Hb〉

c)�) − Θcurl(σc〈a Hb〉
c)

−3σe
gǫgd(a De(σ|c|〈b Hd〉c) + 9Hd〈aσ|c|〈b〉Hd〉c]�. (62)

This allows us to see, by inspection, that it is only the first term in this equation that will

survive two further differentiations. After commuting these derivatives with the curl

operator, and disregarding terms that vanish on the initial hypersurface, we then arrive

at 3[curl(σc〈a Hb〉c)]����|t=0 = 3curl((σc〈a Hb〉c)����). The only part of (σc〈a Hb〉c)����

that does not vanish in the initial data is given by σ̇c〈a(Hb〉c)���. Using the evolution

equations for σab and Hab, and the result of the previous section, in Eq. (59), then

gives

3[curl(σc〈a Hb〉
c)]����|t=0 = −48curl[Ec〈acurl(E2)b〉

c]. (63)

This is the simplest expression we can find for this term.
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5.3.3 Third term

This is the most lengthy term to evaluate. We find, by repeated application of the

commutation relation (52), that

−[curl(curlEab)]��

= −curl((curlEab)
��) +

1

3
Θ curl((curlEab)

�) + σe
cǫcd(a De((curlEb)

d)�)

−3Hc〈a(curlEb〉
c)� +

1

3
(Θcurl(curlEab))

�

+(σe
cǫcd(a De(curlEb)

d))� − 3(Hc〈acurlEb〉
c)�. (64)

The complete evaluation of the third term requires two further derivatives, and we can

see that the only terms that survive this operation are given by

− [curl(curlEab)]����|t=0 = −curl((curlEab)
����) + 6σ̇e

cǫcd(a De((curlEb)
d)��),

(65)

where we have made use of the initial conditions. In order to evaluate this term we

note that, after some manipulation, we can write

(curlEab)
����|t=0 = −8curl(E2 Eab) + 30curl(E3)ab + 4curl curl curl(E2)ab

−9Ee
cǫcd(a De(E2)b)

d + 2(E2)e
cǫcd(a De Eb)

d

−9Ee
cǫcd(a De(E2)b)

d + 12Ec
〈acurl(E2)b〉c, (66)

where we have again made repeated use of Eq. (52), as well as the following identity

(Eq. (A12) from [20]):

(Da Sbc)
� = Da Ṡbc −

1

3
Θ Da Sbc − σ d

a Dd Sbc + 2H d
a ǫde(b S

e
c) . (67)

We have also made the definition (S3)ab := Sac Scd Sdb. Substituing Eq. (66) into

Eq. (65), and performing some further manipulations, then gives

−[curl(curlEab)]����

= 8curl curl(E2 Eab) − 30curl curl(E3)ab + 18ǫcd(acurl(De(E|e|
c(E2)b)

d)

−2ǫcd(acurl((E2)|e|
c De Eb)

d) − 12curl(Ec
〈acurl(E2)b〉c)

−4curl curl curl curl(E2)ab + 24ǫcd(a De(Ee
ccurl(E2)b)

d) . (68)

This is the lengthiest of the six terms being evaluated.
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5.3.4 Fourth and fifth terms

The fourth and fifth terms, from Eq. (51), can both be seen to give

3(Hc〈a Hb〉
c)����|t=0 = 0 , (69)

and

−
1

3
(Θcurl(Hab))

����|t=0 = 0. (70)

This is because Hab and Θ , together with both their first and second derivatives, must

vanish on the initial hypersurface. Two further time derivatives would therefore be

required before either of these terms become non-zero at t = 0.

5.3.5 Sixth term

The final term evaluates to

− [σe
cǫcd(a De Hb)

d ]����|t=0 = 16Ee
cǫcd(a De[curl(E2)b)

d ] , (71)

where we have used the commutation rules from Eqs. (52) and (55), as well as the

evolution equations (18), (19) and (20).

Putting all of these results together leads us to our final expression for the fifth order

term in our Taylor series expansion of curlHab:

(curl(H)ab)
�����

= 8curl curl
(

E2 Eab

)

− 30curl curl
(

(E3)ab

)

− 60curl
(

Ec
〈acurl(E2)b〉c

)

+18curl
(

ǫcd(a De
(

(E2)
d

b)
E c

e

))

− 2curl
(

(E2) c
e ǫcd(a De E

d
b)

)

+40ǫcd(a De
(

curl(E2)
d

b)
E c

e

)

− 4curl curl curl curl(E2)ab. (72)

This equation is considerably less compact than the result for the third-order derivative,

presented in Eq. (59), but is still remarkably short, given the complexity it conceals.

In what follows, we will use the expressions calculated in Eqs. (59) and (72) to

evaluate the first two non-vanishing terms in the Taylor series from Eq. (50). This will

allow us to not only determine the leading-order effect that Hab has on the expansion

of LRS curves, but also to estimate when the series expansion approach breaks down.

We will perform this analysis for all three classes of LRS curves, and in all six of the

lattices that were described in Sect. 2.
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6 The effect of curl(H) on cosmology

The effect that Hab has on the expansion of space can be estimated by considering its

consequences on the scale factors, a‖ and a⊥, defined implicitly by

H‖ =
ȧ‖
a‖

and H⊥ =
ȧ⊥
a⊥

. (73)

The function a‖ is then the scale factor along our LRS curves, and a⊥ is the scale

factor in all perpendicular directions. Both are a function of proper time, along the

integral curves of u, as well as position in space.

Following the method used in [6], and extending it to higher order, we can use

Eqs. (43)–(45) to write the correction to the scale factors, from including the curlHab

term in Eq. (45), as

Δa‖ = −
a‖ ◦(curlH)���|t=0

6!
t6

+
a‖
8!

[

25 ◦(curlH)��� ◦E − ◦(curlH)�����
]

∣

∣

∣

t=0
t8 + O(t10) (74)

and

Δa⊥ =
a⊥ ◦(curlH)���|t=0

2 × 6!
t6

−
a⊥

2 × 8!
[◦(curlH)��� ◦E − ◦(curlH)�����

]

∣

∣

∣

t=0
t8 + O(t10), (75)

where all quantities on the right-hand side of these equations should be taken to be

evaluated at t = 0. These expressions result from simultaneously Taylor expanding

a‖, a⊥ and ◦(curlH) about the initial hypersurface, and substituting the results into

Eqs. (43)–(45). The value of ◦E is then given by noting that on a time-symmetric

hypersurface, and in vacuum, the electric part of the Weyl tensor is equal to the Ricci

tensor of the 3-space, Eab = (3) Rab. The quantities involving derivatives of curlHab

are given, in terms of Eab and its derivatives, by Eqs. (59) and (72). We therefore have

all the information required to evaluate all of the terms present in Eqs. (74) and (75).

The LRS curves that we will consider in this section are those displayed in Fig.1.

The red curve in this figure extends halfway along a cell edge, from the centre of an

edge to a vertex. The green curve connects the horizon of the mass at the centre with the

centre of a cell face, and the blue curve connects the horizon and a cell vertex. These

curves are depicted in Fig. 1 for the special case of a cubic cell, which is the basic

constituent of the 8-cell. However, similar curves also exist for the case of tetrahedral,

octahedral and dodecahedral cells. We will not present specific diagrams of these cells,

but instead rely on the reader to visualize the corresponding curves in each of these

cases.
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The proper length of each of our LRS curves, in a hypersurface of constant proper

time, is then given by the integral

L(t) =
∫ χ2

χ1

a‖(t, χ)dχ, (76)

where χ is the coordinate from Eq. (4), and where we have rotated the configuration

so that the LRS curve under consideration is at constant θ and φ. In what follows, we

will present the intial values of the functions ◦E , as well as the derivatives ◦(curlH)���

and ◦(curlH)�����, at every point along the three LRS curves depicted in Fig. 1. We

will then calculate the proper length of each of these curves, as a function of proper

time along the integral curves of u, until the Taylor expansion given in Eq. (50) breaks

down. In calculating these results, we have substituted the expansion from Eq. (50)

directly into the evolution equations (43)–(45).

The indicator that we use to determine when the Taylor series approximation breaks

down is when the first two non-vanishing terms on the right-hand side of Eq. (50)

become equal. This happens at different times along each of the curves, depending on

the spatial position that one considers. We choose the two endpoints of each of the

curves, as depicted in Fig. 1, in order to follow the magnitude of the ratio of these two

terms. This is a convenient choice as the endpoints of the curve are uniquely picked out

by the geometry of the problem. We also expect these points to give a fair reflection

of the validity of the Taylor expansion at intermediate points, as they are in the two

most extreme environments available along each curve (in the case of the green and

blue curves, one end touches a black hole while the other is equidistant from black

holes). If the value of ◦(curlH)��� or ◦(curlH)����� vanishes at any one of these points,

then we simply take the ratio of the relevant terms a very small distance away (1% of

the distance along the curve, where all quantities are non-zero).

6.1 Curves along cell edges

The first set of curves we wish to consider are those that lie along the edges of our cells,

as depicted by the red line in Fig. 1. In this study we will take the curve in question to

begin at the cell vertex, and extend halfway along the length of the edge. We will then

calculate the length of this curve, using the method described above, until the Taylor

series approximation has broken down at both of its ends (i.e. at both a point near the

cell vertex, and at the centre of a cell edge).

First let us present the relevant information about the electric and magnetic parts

of the Weyl tensor along these curves, and on the initial hypersurface. The form of

the electric part of the Weyl tensor, contracted twice with the space-like unit vector

tangent to the edge, is displayed in Figs. 2 and 3. In these plots we have chosen the

cell vertex to be located at χ = χ1, and the centre of the cell edge to be located at

χ = χ2. This information is presented in two different plots, as there are two different

functional forms for ◦E ; those that have a non-zero derivative at χ = χ1, and those

that have a vanishing derivative at χ = χ1. These two cases correspond to lattices in

which the cell edges are non-contiguous and contiguous, respectively. The former of
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Fig. 2 The value of ◦E at t = 0 along a cell edge for the 5-cell (red), the 8-cell (orange), and the 120-cell

(blue). The proper mass within each cell is denoted m (colour figure online)

Fig. 3 The value of ◦E at t = 0 along a cell edge for the 16-cell (yellow), the 24-cell (green), and the

600-cell (purple). The proper mass within each cell is m (colour figure online)

these two cases contains the 5-cell, the 8-cell and the 120-cell lattices, while the latter

contains the 16-cell, the 24-cell and the 600-cell lattices.

123



30 Page 24 of 40 T. Clifton et al.

Fig. 4 The value of ◦(curlH)��� at t = 0 along a cell edge for the 5-cell (red), the 8-cell (orange), and the

120-cell (blue). The proper mass within each cell is m. The blue curve in this plot is positive valued (colour

figure online)

Fig. 5 The value of ◦(curlH)��� at t = 0 along a cell edge for the 16-cell (yellow), the 24-cell (green), and

the 600-cell (purple). The proper mass within each cell is m. The purple curve is negative valued (colour

figure online)

As well as the electric part of the Weyl tensor, we also need to know about the

magnetic part of the Weyl tensor. This tensor vanishes on the initial hypersurface, but

its derivatives do not. In Figs. 4, 5, 6, 7 we present information about the value of the
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Fig. 6 The value of ◦(curlH)����� at t = 0 along a cell edge for the 5-cell (red), the 8-cell (orange), and

the 120-cell (blue). The proper mass within each cell is m. The blue line is negative valued (colour figure

online)

Fig. 7 The value of ◦(curlH)����� at t = 0 along a cell edge for the 16-cell (yellow), the 24-cell (green),

and the 600-cell (purple). The proper mass within each cell is m. The purple line is negative valued (colour

figure online)

these derivatives, evaluated on the initial hypersurface at each point along the curves

under consideration. Figures 4 and 5 were produced by twice contracting the result

from Eq. (59) with the space-like tangent vector n. Figures 6 and 7 were produced
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Fig. 8 The length of the cell edge, normalized by the maximum value of a corresponding curve in an

FLRW universe that is filled with dust, and has positive spatial curvature. The six different lattice models

are displayed using the same colours as in Figs. 2, 3 4, 5, 6 and 7, and the FLRW solution with the same

total mass is displayed as a black dotted line (colour figure online)

using Eq. (72). We again display these results for the lattices with contiguous and non-

contiguous edges separately, as they have different functional forms. Interestingly,

although the curves have similar shapes to those of ◦E , they do not all have the same

sign (the curve for the 16-cell can be seen to be negative in Fig. 5, and positive in

Fig. 7). One may also note that the magnitude of ◦(curlH)��� and ◦(curlH)����� are both

much smaller than ◦E , in the cases where the lattices have contiguous edges (and in

the chosen units).

Next, we use the information presented in Figs. 2, 3, 4, 5, 6 and 7 to evolve Eqs. (43)–

(45). The lengths of the curves being considered in this section can then be calculated

by finding the scale factors defined in Eq. (73), and integrating them as prescribed

in Eq. (76). If the scale factor becomes zero at any point along the curve, we simply

remove this point from the integral, as described in [8]. The result of all of this is

shown in Fig. 8. The proper length of the curve is evolved in time, in this plot, and

displayed using units of the total proper mass in the cosmology (i.e. the proper mass of

each cell, multipled by the number of cells in the lattice). This choice of units allows

us to display all six lattices together with just a single FLRW solution that has the

same total mass as each of the lattices. The particular FLRW solution we choose to

compare with our models is a dust-filled cosmology with positive spatial curvature.

Also indicated in Fig. 8 is the region where the Taylor series expansion of ◦(curlH)

breaks down. We indicate this on the plot by the solid line turning into a dashed line. We

start the dashing when one end of the curve fails our convergence criterion (i.e. when

the second non-zero term in Eq. (50) becomes as large as the first). We end the dashing

when the other end of the curve also fails this condition. The dashed region therefore
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Fig. 9 The difference between including ◦(curlH) in Eq. (45) and neglecting it. This is displayed by

showing the effect it has on the length of the cell edge, again normalized by the maximum value of a

corresponding curve in an FLRW universe. The six different lattice models are displayed using the same

colours as in Figs. 2, 3, 4, 5, 6, 7 (colour figure online)

corresponds to a domain where some of the points on the curve obey the convergence

criterion, but not all. In this region the Taylor series approximation is breaking down.

It can be seen that the length of the solid and dashed region, for each line on the plot,

is different from the others. Roughly speaking, the Taylor series expansion seems to

break down more quickly as the number of cells in the lattice increases.

As well as considering the evolutions of the overall length of the cell edge, which

are quite similar to those found in [8], it is also interesting to consider the magnitude

of the effect of including ◦(curlH) in Eq. (45). This effect is displayed graphically

in Fig. 10, where we plot the difference between the curves shown in Fig. 8 and the

curves that would have existed if we had neglected ◦(curlH) (as was done in [8]). Once

again, we used solid and dashed lines to indicate where the Taylor series expansion

starts to break down. The effect of including ◦(curlH) is most dramatic in the smallest

lattices. In the 5-cell and 8-cell the difference can reach values of |δL| ≃ 0.01. In the

larger lattices this difference is much less, although the Taylor series expansion breaks

down much sooner. One may also note, however, that at the same cosmological time

(measured in units of n × m) the value of δL is larger in the bigger lattices.

As the curves in Fig. 9 are difficult to distinguish, we have read off particular values

for each of the lattices, and displayed these separately in a log-log-plot in Fig. 9. The

three curves in this plot show the value of δL at t = m (black points), at t = 2m (red

points), and at t = 3m (blue points), where m is the proper mass in any given cell.

We have excluded points that correspond to locations on the lines in Figs. 8 and 9

that become dashed, so as to exclude regions where the series expansion of ◦(curlH)

breaks down. Although the black curve dips in the middle, the general trend seems to

show that the effect of ◦(curlH) becomes smaller as the number of cells in the lattice

is increased (at least, when comparing the lengths of the curves at these values of t).

The effect of ◦(curlH) does, however, increase with time, reaching levels of ∼1%, in

the smaller lattices at t = 3m.

6.2 Curves through face centres

Let us now set aside the curves at the edges of cells, and instead consider those that

extend from the horizon of a black hole to the centre of a cell face. These are the
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Fig. 10 The difference between

including ◦(curlH) in Eq. (45)

and neglecting it, as inferred

from the length of a cell edge,

and as a function of the number

of cells in the lattice, n. This is

shown at t = m (black points),

t = 2m (red points), and t = 3m

(blue points), where m is the

proper mass contained within

any one cell in the lattice. Points

are excluded when the curves

shown in Figs. 8 and 9 become

dashed, rather than solid (colour

figure online)

Fig. 11 The value of ◦E at t = 0 along a curve that goes from the cell centre to the centre of a cell face,

for the 5-cell (red), the 8-cell (orange), the 16-cell (yellow), the 24-cell (green), the 120-cell (blue), and the

600-cell (purple) (colour figure online)

type of curves depicted by the green line in Fig. 1, for the particular case of a cubic

cell. Such curves exhibit local rotational symmetry, in exactly the same way as a cell

edge. Once again, we will evaluate ◦E and the derivatives of ◦(curlH) along these

curves. The former of these quantities is shown in Fig. 11, while the latter are shown

in Figs. 12, 13, 14, 15.
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Fig. 12 The value of ◦(curlH)��� at t = 0 along a curve that goes from the cell centre to the centre of a cell

face, for the 5-cell (red), the 8-cell (orange), the 16-cell (yellow), the 24-cell (green), the 120-cell (blue),

and the 600-cell (purple) (colour figure online)

Fig. 13 As in Fig. 12, but only showing the 120-cell (blue) and the 600-cell (purple). Again, m is the

proper mass of the black hole at the centre of the cell (colour figure online)

In these plots we have taken χ1 to correspond to the centre of the cell (rather than

the location of the horizon). The curves then extend through the horizon, which is

initially located at the minimum of ◦E [8], and out to the edge of the cell, where they
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Fig. 14 The value of ◦(curlH)����� at t = 0 along a curve that goes from the cell centre to the centre of

a cell face, for the 5-cell (red), the 8-cell (orange), the 16-cell (yellow), the 24-cell (green), the 120-cell

(blue), and the 600-cell (purple) (colour figure online)

Fig. 15 As in Fig. 14, but only showing the 120-cell (blue) and the 600-cell (purple). Once more, m is the

proper mass of the black hole at the centre of the cell (colour figure online)

meet the centre of a cell face at χ = χ2. If the proper lengths of these curves were to

be calculated from χ1 to χ2, in the initial hypersurface, then we would find the result

to be divergent. We therefore restrict our calculations of the proper length to the region

of space exterior to the horizon (a finite quantity). To find the location of the horizon
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Fig. 16 The length of the curve that goes from the cell centre to the centre of a cell face, normalized by

the maximum value of a corresponding curve in an FLRW universe that is filled with dust, and has positive

spatial curvature. The six different lattice models displayed as before, black dotted line is the corresponding

FLRW solution (colour figure online)

at all times after t = 0 we simply propagate a null geodesic outwards from the initial

location, along the LRS curve [8].

The form of ◦(curlH)��� along each of these curves is shown in Fig. 12. The larger

lattices are difficult to make out on this scale, so we also show them separately in

Fig. 13. The form of these curves in more complicated than was the case for the cell

edges. In the two smallest lattices it is apparent that there is a single maximum in the

function, located at the centre of the cell face. For the larger lattices, the maximum

is located somewhere between the horizon and the cell face centre, with the cell face

centre itself becoming a local minimum. The behaviour of ◦(curlH)����� is even more

complicated, and is shown in Fig. 14 for all lattices, and in Fig. 15 for the 120-cell

and 600-cell alone. It can be seen that both maxima and minima of this function exist,

along the curves under consideration.

Using these data, we can again integrate Eqs. (43)–(45), and calculate the length

of the curve (from the black hole horizon to the centre of the cell face) using Eq. (76).

The results of doing this are shown in Fig. 16, for each of the six lattices. In this case

the effect of the ◦(curlH) term in Eq. (45) is again small, and the curves look very

similar to their counterparts when this term is neglected [8]. Once more, we make

the lines in Fig. 16 dashed when one end fails our convergence criterion, and we stop

plotting the line once both ends fail. Somewhat surprisingly, the curves in this case

extend slightly further than was the case with the cell edges. This means the Taylor

series approximation is slightly better along these curves, and for the 5-cell it appears
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Fig. 17 The difference between including ◦(curlH) in Eq. (45) and neglecting it. This is displayed by

showing the effect it has on the length of the curve that connects the horizon with the centre of a cell face.

Colours denote lattices, as in Fig. 11 (colour figure online)

Fig. 18 The difference between including ◦(curlH) in Eq. (45) and neglecting it, for the curve that connects

the horizon to the centre of a cell face, presented as a function of the number of cells in the lattice, n. This

is shown at t = m (black points), t = 2m (red points), and t = 3m (blue points), where m is the proper

mass contained within any one cell in the lattice. Points are excluded when the curves shown in Figs. 16

and 17 become dashed, rather than solid (colour figure online)

to be good enough to evolve the curve all the way until its proper length vanishes

(when the horizon makes its way to the centre of the cell face).

In order to visualize the effect of the ◦(curlH) term on the evolution of this curve,

we plot the difference from its inclusion in Fig. 17. In this case, the difference in the

proper length of the curve can be as much as ∼6% of its initial length (in the case

of the 8-cell), and ∼3% for the 16-cell. This larger difference is, to some extent, a

consequence of the Taylor series approximation lasting longer in this case, meaning
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that the cumulative effect of integrating Eq. (45) with an extra term is larger. Again,

however, the value of δL for the larger lattices is too small to be seen in Fig. 17. We

therefore read off its value at t = m, at t = 2m, and at t = 3m (where m is the proper

mass of each of the black holes). This information is displayed graphically in Fig. 18.

As before, when presenting the values of δL in the log-log-plot shown in Fig. 18,

we do not present points that would correspond to locations along the curve where

the Taylor series approximtation has started to break down. There are, however, more

points in the plot shown in Fig. 18 than there are in the one shown in Fig. 10. This is

again due to the Taylor series approximation lasting longer in the present case than it

did along the cell edges. On the other hand, the broad trends in the two plots are largely

similar: The value of δL decreases as the number of cells in the lattice is increased,

and increases as the time from the initial hypersurface is increased. The largest values

of δL in this plot are again at the level of ∼1%, for the smallest lattices at t = 3m.

6.3 Curves through vertices

Finally, let us consider the remaining curves depicted in Fig. 1: these are the blue

curves that connect the black hole at the centre of the cell to one of the vertices. In the

absence of any better terminology, we will call these curves ‘diagonals’ (although this

is probably only really a fitting description for the case of cubic cells). The location of

the horizons will be determined in the same way as in the previous subsection. We find

their initial position by looking for the minimum in the function ◦E , along our LRS

curves, and then at subsequent times by propagating a null geodesic outwards from

this location. In all of Figs. 19, 20, 21, 22, 23, 24 we take the cell centre to correspond

to the point χ = χ1, and the cell vertex to correspond to the point χ = χ2. We remind

the reader that these curves are formally infinitely long, so we restrict our integrations

to the regions of space exterior to the black hole horizons.

The values of ◦E along the diagonals, for the six different lattices we are consid-

ering, are shown in Figs. 19 and 20. The values of ◦(curlH)��� are shown in Figs. 21

and 22, and the values of ◦(curlH)����� are shown in Figs. 23 and 24. Just as with the cell

edges, there are two different types of behaviour in this case, depending on whether

or not the diagonal curve from one cell are contiguous with those of its neighbours,

or not. It is still the case that the curves in the 5-cell, the 8-cell and the 120-cell are

non-contiguous, while those of the 16-cell, the 24-cell and the 600-cell are contiguous.

In the contiguous case one could image holding a mirror up to the right-hand side of

the plots to determine the continuing form of the function in question, as the curve

extends directly into the next cell. In the non-contiguous case the diagonal curve from

one cell joins onto the end of the cell edge of its neighbours. One could therefore join

the plots in Figs. 19, 21 and 23 with those shown in Figs. 2, 4 and 6 to see the form of

the functions in question if the diagonal curve were to be extended beyond the vertex.

While the functional form of ◦(curlH)��� along the diagonal curves is relatively

simple, as can be seen from Figs. 21 and 22, the form of ◦(curlH)����� is rather more

complicated. Neverthelss, the evolutions equations (43)–(45) can again be integrated,

and used to calculate the proper length of the curves, as prescribed by Eq. (76). The

results of this are shown in Fig. 25, and the difference plot showing the effect of
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Fig. 19 The value of ◦E at t = 0 along a diagonal curve for the 5-cell (red), the 8-cell (orange), and the

120-cell (blue) (colour figure online)

Fig. 20 The value of ◦E at t = 0 along a diagonal curve for the 16-cell (yellow), the 24-cell (green), and

the 600-cell (purple) (colour figure online)

including ◦(curlH) are shown in Fig. 26. The magnitude of the effect is again most

pronounced for the smaller lattices, as in these cases it takes longer for the Taylor

series approximation to break down. Again, it is hard to see the effect of ◦(curlH)
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Fig. 21 The value of ◦(curlH)��� at t = 0 along a diagonal curve for the 5-cell (red), the 8-cell (orange),

and the 120-cell (blue) (colour figure online)

Fig. 22 The value of ◦(curlH)��� at t = 0 along a diagonal curve for the 16-cell (yellow), the 24-cell

(green), and the 600-cell (purple) (colour figure online)

on the larger lattices, so we have read off values of δL at t = m, at t = 2m and at

t = 3m. These are shown in Fig. 27, and can be seen to show the same broad trends

as the other two sets of LRS curves, considered above. The magnitude of the effect

of including ◦(curlH) is largest for the smallest lattices (when compared at the same
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Fig. 23 The value of ◦(curlH)����� at t = 0 along a diagonal curve for the 5-cell (red), the 8-cell (orange),

and the 120-cell (blue) (colour figure online)

Fig. 24 The value of ◦(curlH)����� at t = 0 along a diagonal curve for the 16-cell (yellow), the 24-cell

(green), and the 600-cell (purple) (colour figure online)

time, as measured in units of m). It also grows as time goes on, and can reach the level

of ∼1% by the time t = 3m.
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Fig. 25 The length of a diagonal curve, normalized by the maximum value of a corresponding curve in an

FLRW universe. The six different lattice models are displayed using the same colours as before, and the

FLRW solution with the same total mass is displayed as a black dotted line (colour figure online)

Fig. 26 The difference between including ◦(curlH) in Eq. (45) and neglecting it. This is displayed by

showing the effect it has on the length of a diagonal curve, again normalized by the maximum value of a

corresponding curve in an FLRW universe. The six different lattice models are displayed as before

7 Discussion

We have considered the effect of Hab on the evolution of LRS curves in lattice models

of the universe. These models treat the matter in the Universe as a collection of point-

like sources, and allow the formulation of cosmology as an initial value problem. They

are therefore particularly well suited to the study of relativistic effects in cosmology,

including the study of the evolution and effects of the magnetic part of the Weyl tensor.

We find that although the initial data of our models is silent (with Hab = 0), the

evolution of the space is not silent. In particular, a curlHab term appears in the evolu-
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Fig. 27 The difference between including ◦(curlH) in Eq. (45) and neglecting it, as inferred from the

length of a diagonal curve, and as a function of the number of cells in the lattice, n. This is shown at t = m

(black points), t = 2m (red points), and t = 3m (blue points), where m is the proper mass contained within

any one cell in the lattice. Points are excluded when the curves shown in Figs. 25 and 26 become dashed,

rather than solid (colour figure online)

tion equation for the electric part of the Weyl tensor, which in turn acts as the source

for the evolution of LRS curves. This result was identified and studied numerically

by Korzyński, Hinder and Bentivegna for the particular case of a universe that con-

tains eight black holes [6]. We extend their study by calculating the leading-order

and next-to-leading order terms in a Taylor series approximation that can be used

to incorporate the effects of Hab on LRS curves, and by applying it to all possible

regular arrangements of black holes in a closed cosmological model. The inclusion

of the next-to-leading order term, in our study, allows us to estimate when the series

expansion stops converging, and when numerical techniques need to be employed

instead.

We find that the effect of Hab is small, while the series expansion remains valid,

but grows with time. In particular, we find that while the effect of the Hab on the

expansion of LRS curves can be at the level of 1% when the number of masses in the

Universe is small (as in [6]), but that this number decreases as the number of masses

in the universe is increased (when comparing at the same time, measured in terms

of m). While the effect on the expansion rate is small for larger lattices, however, it

does appear that the effect of Hab on the expansion is, in some sense, cumulative.

That is, the difference in the curve length that results from including the effect of Hab

tends to increase over time, as the magnitude of the magnetic Weyl tensor increases

over time. When comparing lattices at the same cosmological time (i.e. at the same
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time, as measured in units of n × m), it therefore appears that the effect of curlHab

on the evolution of the LRS curve increases as the number of masses in the universe

is increased. Whether or not similar result holds in cosmological models that expand

for all time, rather than re-collapsing, remains to be seen.

It should be noted, however, that while the effects we find are always small (less than

1%, in most cases), the Taylor series approximation used to derive them usually breaks

down on time scales that are shorter than the age of the universe. This is especially

true in the larger lattices, where it can be seen that increasing the number of masses in

the universe results in the series approximation breaking down at earlier cosmological

times. This result holds for all of the LRS curves that we studied, but seems to be

especially true of the cell edges (which, unfortunately, are probably the best indicators

of the scale of the cosmology as a whole). To reliably follow the evolution of these

curves any further will require more advanced techniques.

It is interesting to see that the effect of higher-order terms in Einstein’s equations can

lead to non-negligible effects in the large-scale expansion of space. One may note, for

example, that it is not until we get to order t6 in the Taylor series expansion in Eq. (74)

that the influence of curlHab becomes non-zero at all. In a weak-field expansion

of the gravitational field, about a suitably chosen background, this would probably

correspond to quite a high order in perturbations. Nevertheless, the terms involved

grow rapidly over cosmological time-scales, until they come close in magnitude to the

leading-order terms represented by Eab. This is remiscent of the gravitational wave

memory effect [22], where the small effects of non-linear gravity accumulate over

time until (in the case of gravitational waves from astrophysical sources) they are

comparable with the magnitude of the linear, leading-order terms.
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