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The magnetotelluric phase tensor

T. Grant Caldwell,1,2 Hugh M. Bibby1 and Colin Brown2

1Institute of Geological and Nuclear Sciences, PO Box 30368, Lower Hutt, New Zealand. E-mail: g.caldwell@gns.cri.nz
2Applied Geophysics Unit, National University of Ireland, Galway, Ireland

Accepted 2004 February 10. Received 2004 February 10; in original form 2003 February 20

S U M M A R Y
The phase relationships contained in the magnetotelluric (MT) impedance tensor are shown
to be a second-rank tensor. This tensor expresses how the phase relationships change with
polarization in the general case where the conductivity structure is 3-D. Where galvanic effects
produced by heterogeneities in near-surface conductivity distort the regional MT response the
phase tensor preserves the regional phase information. Calculation of the phase tensor requires
no assumption about the dimensionality of the underlying conductivity distribution and is
applicable where both the heterogeneity and regional structure are 3-D.

For 1-D regional conductivity structures, the phase tensor is characterized by a single coor-
dinate invariant phase equal to the 1-D impedance tensor phase. If the regional conductivity
structure is 2-D, the phase tensor is symmetric with one of its principal axes aligned parallel
to the strike axis of the regional structure. In the 2-D case, the principal values (coordinate
invariants) of the phase tensor are the transverse electric and magnetic polarization phases. The
orientation of the phase tensor’s principal axes can be determined directly from the impedance
tensor components in both 2-D and 3-D situations. In the 3-D case, the phase tensor is non-
symmetric and has a third coordinate invariant that is a distortion-free measure of the asymmetry
of the regional MT response. The phase tensor can be depicted graphically as an ellipse, the
major and minor axes representing the principal axes of the tensor. 3-D model studies show
that the orientations of the phase tensor principal axes reflect lateral variations (gradients) in
the underlying regional conductivity structure. Maps of the phase tensor ellipses provide a
method of visualizing this variation.
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I N T RO D U C T I O N

In magnetotelluric (MT) surveys localized heterogeneities in con-
ductivity near the Earth’s surface distort the electromagnetic (EM)
response produced by the underlying or ‘regional’ conductivity
structure under investigation. As the period of the MT signal
increases, inductive (i.e. period- or frequency-dependent) effects
produced by the (localized) near-surface structures decrease and
eventually become negligible compared with the inductive response
produced by the regional conductivity structure (e.g. Jiracek 1990).
Thus for periods greater than some minimum value, which de-
pends on the length scale, geometry and conductivities involved,
the distortion produced in the regional EM field is virtually inde-
pendent of period. Except in unusual cases where the distortion
of the regional current density is very severe, the horizontal mag-
netic field components are not significantly affected and the dis-
tortion in the EM field is almost entirely confined to the electric
field. Under these conditions, the horizontal components of the ob-
served magnetic field are to a good approximation the same as the
corresponding (unperturbed) components of the regional magnetic
field.

The distortion of the electric field is caused by the charge formed
at the boundaries of the near-surface conductivity heterogeneity by
the flux of regional current through the heterogeneity or by the topog-
raphy near the measurement location (Jiracek 1990). The secondary
or scattered electric field produced by the charge distorts the pattern
of regional current flow in a localized area encompassing the het-
erogeneity. For this reason, the frequency-independent distortions of
the electric field that are the subject of this paper are termed galvanic
distortions. Galvanic distortions are commonly observed in MT sur-
veys and also occur in direct current (DC) resistivity and active-
source EM methods that use measurements of the electric field to
probe the subsurface (e.g. Caldwell & Bibby 1998; Caldwell et al.
2002).

Although the amplitude of the observed electric field may be
drastically distorted by a near-surface heterogeneity, the phase rela-
tionship between the electric and (horizontal) magnetic field vectors
will be virtually unaffected if the distortion is galvanic. That is, the
phase relationship will be the same as would be observed in the
absence of the distortion. In essence, MT distortion analysis seeks
to recover the regional phase relationship from a set of distorted
measurements.
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The amplitude and phase relationships between the horizontal
components of the electric and magnetic fields are represented by
a frequency-dependent impedance tensor; a second-rank, two di-
mensional (2-D) tensor with four complex components. Each com-
ponent of the impedance tensor can be associated with a phase.
However, only where the conductivity distribution has a high de-
gree of symmetry and the impedance tensor has a simple form will
the component phases be simply related to the phase difference be-
tween linearly polarized components of the horizontal electric and
magnetic fields. In situations where the regional response has been
distorted, the amplitude and phase of the individual components of
the regional impedance tensor will be mixed among the components
of the observed impedance tensor complicating the phase relation-
ship between the fields. In this case, or if the regional conductivity
structure is 3-D, the electric field response will (in general) be el-
liptically polarized for a linearly polarized magnetic field.

Previous approaches to MT distortion analysis have all assumed
that the regional conductivity structure is either 1-D or 2-D. With
this assumption, the amplitude and phase relationships between the
horizontal components of the regional EM field can be represented
by an impedance tensor with two non-zero components. Reviews
of previous approaches to MT distortion analysis can be found
in Jiracek (1990), Bruton (1994), Smith (1995), Ritter (1996) and
McNeice & Jones (2001). In this paper we will demonstrate how the
regional phase information can be recovered directly from the ob-
served impedance tensor where both the near-surface heterogeneity
and regional conductivity structures are 3-D.

T H E O R E T I C A L B A C KG RO U N D

Galvanic distortion

The distortion produced by a localized conductivity heterogeneity
on the regional electric field ER (i.e. the field that would be observed
at the surface in the absence of the heterogeneity) can be represented
by the equation

E(ω) = ER(ω) + ES(ω), (1)

where E is the observed electric field, ES is the scattered or sec-
ondary electric field produced by the action of the regional field on
the conductivity heterogeneity and ω is the angular frequency. As-
suming that inductive effects are negligible and that ER does not vary
significantly over the lateral extent of the conductivity heterogene-
ity (Groom & Bahr 1992; Chave & Smith 1994) the scattered field
ES is to a good approximation linearly proportional to the regional
electric field ER. With these assumptions eq. (1) may be rewritten in
terms of a frequency-independent linear operator or distortion ma-
trix (D) that maps the regional electric field vector into the distorted
field E observed at the surface. That is

E(ω) = DER(ω), (2)

where the 2 × 2 matrix D (a second rank, 2-D tensor) is real. This
is equivalent to saying that the observed electric field is a linear
superposition of the regional field and a scattered electric field (ES)
that is in-phase with the regional field (e.g. Bahr 1988, 1991). Note
that since D is real, if the regional electric field is linearly polarized
the distorted electric field is also linearly polarized although not
usually in the same direction.

In a Cartesian coordinate system (x1, x2) the distortion tensor can
be written as the matrix

D =
[

d11 d12

d21 d22

]
, (3)

where the components dij depend on the position of the observation
point, the shape of the heterogeneity and its conductivity; all of
which are unknown.

In situations where eq. (2) is valid, the horizontal components of
the observed magnetic field, denoted by H throughout this paper, are
(to a good approximation) equal to the corresponding components
of the regional field HR and

H(ω) = HR(ω). (4)

The conditions under which eqs (2) and (4) are good approximations
are discussed in Groom & Bahr (1992), Singer (1992), Chave &
Smith (1994) and Utada & Munekane (2000).

Impedance tensor

The amplitude and phase relationships between the horizontal com-
ponents of the EM field observed at the surface are represented by
the impedance tensor Z defined by the relationship

E(ω) = Z(ω)H(ω). (5)

In general (i.e. where the conductivity distribution is 3-D), Z is a
non-symmetric tensor and can be thought of as a (complex) linear
operator that transforms a linearly polarized magnetic field into an
elliptically polarized electric field. The regional impedance tensor
is similarly defined i.e.

ER(ω) = ZR(ω)HR(ω). (6)

Galvanic distortion of the impedance tensor

Assuming that a galvanic distortion is present then (from eqs 2, 3,
5 and 6)

E = DER = D(ZRHR) = (DZR)H (7)

and thus the relationship between the observed (distorted) and re-
gional impedance tensors is

Z = DZR. (8)

Separating the complex impedance tensors into their real (X) and
imaginary (Y) parts, we can write:

Z = X + iY (9)

and

ZR = XR + iYR. (10)

Thus, from eq. (8):

X = DXR (11)

and

Y = DYR. (12)

Since D is unknown the amplitude information contained in ZR can-
not be recovered from Z without other independent information (e.g.
Smith 1995). However, since D is real the essential phase relation-
ship between the horizontal components of the regional electric and
magnetic fields must be unaffected by the distortion. It is the nature
and determination of the phase relationship in a situation where the
conductivity structure is 3-D that is addressed below.
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P H A S E T E N S O R

Definition

The phase of a complex number is defined from the ratio of its
real and imaginary parts. This relationship can be generalized to a
complex matrix or tensor. Hence, we define the phase tensor by the
relation

Φ = X−1Y, (13)

where X−1 (a tensor) is the inverse of X and Φ is real. (Formally,
eq. (13) is a particular contraction of the tensor product of X−1 and
Y.) The relationship between the phase tensors of the observed and
regional impedance tensors can be derived directly from eqs (11)
and (12), i.e.

Φ = X−1Y

= (DXR)−1(DYR)

= X−1
R D−1DYR = X−1

R YR

= ΦR. (14)

Thus the observed and regional phase tensors are identical and are
independent of the distortion tensor, consistent with the behaviour
expected for the phase on physical grounds. Note, no assumption
about the nature or dimensionality of the regional conductivity struc-
ture is required and eq. (14) is applicable where the conductivity
structure is 3-D.

Written in terms of the real and imaginary components of Z in
a Cartesian coordinate system (x1, x2), the phase tensor Φ can be
written as the matrix[
�11 �12

�21 �22

]
= 1

det(X)


X22Y11 − X12Y21 X22Y12 − X12Y22

X11Y21 − X21Y11 X11Y22 − X21Y12


 ,

(15)

where det(X) = X 11 X 22 − X 21 X 12 is the determinant of X. Note
that, in general, Φ will be non-symmetric and that, the components
of Φ are not functions of the impedance tensor arguments (compo-
nent phases) alone, i.e. �i j �= f (arg[Zkl]).

Properties in 1-D

If the regional conductivity structure is both isotropic and 1-D (i.e.
the conductivity varies only with depth), the impedance tensor in a
Cartesian coordinate system (x1, x2) has the form

Z =
[

0 Z12

Z21 0

]
=

[
0 Z1D

−Z1D 0

]
, (16)

where Z 1D = X 1D + iY 1D = |Z 1D| eiφ and

φ = tan−1(Y1D/X1D). (17)

Thus (from eq. 15)

Φ1D =
[

Y1D/X1D 0

0 Y1D/X1D

]
= (Y1D/X1D)I = tan(φ)I (18)

where I is the identity matrix, and Φ is characterized by a single
scalar quantity equal to the tangent of the conventional MT phase
for a 1-D structure. Note that the tensor form in eq. (18) is invari-
ant under rotation; i.e. the regional electric and magnetic fields are
perpendicular and independent of the direction of polarization.

Coordinate invariants

Just as a vector is characterized by its direction and magnitude, a
real second-rank, 2-D tensor is characterized (in the general case)
by a direction and three independent scalar quantities that are in-
dependent of the coordinate system used to express the tensor, i.e.
by three coordinate invariants. Since any function of the invariants
is also coordinate invariant many different ways of expressing the
invariants are possible. In this paper we will adopt one of the repre-
sentations used by Bibby (1986) in his analysis of the DC apparent
resistivity tensor. The coordinate invariants that we will use are the
maximum (�max) and minimum (�min) tensor values, simple func-
tions of the tensor components given in the Appendix, and the skew
angle β given by the expression

β = 1

2
tan−1

(
�12 − �21

�11 + �22

)
. (19)

This angle can be thought of as a rotation and is a measure of
the tensor’s asymmetry. Note that β depends on the tensor’s skew
(�12 − �21), which is invariant under rotation but changes sign if
the coordinate system is reflected.

Principal or singular value decomposition

Expressed in terms of these quantities, the phase tensor can be writ-
ten in the form:

Φ = R
T(α − β)

[
�max 0

0 �min

]
R(α + β), (20)

where R(α + β) is the rotation matrix

R(α + β) =
[

cos(α + β) sin(α + β)

− sin(α + β) cos(α + β)

]
, (21)

RT is the transposed or inverse rotation matrix, i.e. RT(θ ) =
R−1(θ ) = R(−θ ), and

α = 1

2
tan−1

(
�12 + �21

�11 − �22

)
. (22)

This angle expresses the tensor’s dependence on the coordinate sys-
tem and with the three coordinate invariants completely defines the
tensor. Note that eq. (20) has the same form as the singular value de-
composition (SVD) of a square matrix (e.g. Press et al. 1986). Thus,
the maximum and minimum values �max and �min are the principal
or singular values of Φ. Since the SVD parameters have explicit
forms (eqs 19, 22, A8 and A9) their standard errors can be deter-
mined explicitly if the variances and covariances of the impedance
tensor components are known.

The invariance of the principal values and skew angle can be
demonstrated by rotating the Cartesian coordinate system used to
express the tensor. Rotating by an angle θ ,

R(θ )ΦR
T(θ ) = R(θ )RT(α − β)

[
�max 0

0 �min

]
R(α + β)RT(θ )

= R
T(α − θ − β)

[
�max 0

0 �min

]
R(α − θ + β)

= R
T(α′ − β)

[
�max 0

0 �min

]
R(α′ + β) (23)
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where α′ = (α − θ ). The net effect of the rotation is to change
the angle α to the angle α′, all other parameters are unchanged i.e.
coordinate invariant.

If the phase tensor is symmetric (β = 0) the principal values of the
tensor are equal to its eigenvalues. This situation occurs where the
regional conductivity distribution is mirror symmetric, e.g. where
the regional conductivity distribution is 1-D or 2-D. Where Φ is
symmetric and has equal principal values, such as is the case if
the conductivity distribution is uniform or 1-D, the electric field
will be linearly polarized if the magnetic field is linearly polarized.
In the 2-D case, the principal values will usually be distinct (i.e.
�max �= �min) and there will be two directions for which a linearly
polarized magnetic field will give rise to a linearly polarized electric
field. If the 2-D response is not distorted these two directions will be
orthogonal. In all other directions the electric field will be elliptically
polarized.

Graphical representation

Any second-rank, non-symmetric 2-D tensor can be represented
graphically by an ellipse (e.g. Bibby 1986) and the quantities in eq.
(20) have simple interpretations in terms of the properties of the
tensor ellipse illustrated in Fig. 1. In particular, the major and minor
axes of the ellipse depict the principal axes and values of the tensor
with the orientation of the major axis specified by the angle α −
β. Note that where the phase tensor is symmetric (i.e. β = 0) the
orientation of the major axis is given by α. In the general (3-D)
case, the skew angle (β) is non-zero and represents the rotation of
the major axis of the phase tensor ellipse away from an identically
shaped ellipse represented by a symmetric tensor. A simple method
of constructing the tensor ellipse is described in the Appendix.

α

β

Φmin

Φmax

x1

x2

Figure 1. Graphical representation of the phase tensor. The lengths of the
ellipse axes, which represent the principal axes of the tensor, are proportional
to the principal (or singular) values of the tensor. If the phase tensor is non-
symmetric, a third coordinate invariant represented by the angle β is needed
to characterize the tensor. The direction of the major axis of the ellipse, given
by the angle α − β, defines the relationship of the tensor to the observer’s
reference frame or coordinate system (x1, x2).

Tensor ellipse in 1-D

The simplest example of this representation is the tensor ellipse for
a uniform conductivity half-space. In this case, a circle of unit ra-
dius represents the phase tensor at all periods. More generally, if
the conductivity is both isotropic and 1-D, the radius of the circle
will vary with period according to the variation of the conductivity
with depth. For example, the radius will increase if the conductivity
increases with depth. In the 1-D case, or in a situation where the
conductivity distribution is cylindrically symmetric about the mea-
surement point, α is undefined. In practice this means that if the
conductivity is 1-D the value of α will be unstable due to noise in
the observed data. Whether or not α is significant within the uncer-
tainties of the observed (and perhaps distorted) data may be tested
using the expected properties of the phase tensor invariants as sig-
nificance criteria. In particular, if the difference in the lengths of the
major and minor axes (�max − �min) is less than the correspond-
ing standard error then α is insignificant and the tensor ellipse is
indistinguishable from a circle.

Anisotropic half-space

Where a half-space has a uniform but horizontally anisotropic con-
ductivity (i.e. where one of the principal axes of the conductivity
tensor is aligned vertically) the conductivity is mirror symmetric
about the horizontal principal axes and the phase tensor skew an-
gle β = 0. In a Cartesian coordinate system with axes aligned with
the principal axes of the conductivity tensor, the impedance tensor
has an antidiagonal form. However, in contrast to an isotropic half-
space (eq. 16), the magnitudes of the off-diagonal components of
the impedance tensor for the anisotropic case are different. Conse-
quently, the amplitude of the electric field will vary as the direction
of the magnetic field polarization changes but the phase difference
between the electric and magnetic fields will not. Thus, the phase
tensor is also represented by a unit circle (Φ = I) in the case of
a uniform horizontally anisotropic half-space. This means that if
the magnetic field is linearly polarized, the electric field is also lin-
early polarized but will be perpendicular to the magnetic field only
where the polarization directions coincide with the directions of the
principal axes of the conductivity tensor.

In a horizontally layered situation where an isotropic layer (or
layers) overlies an anisotropic half-space, any difference (or split)
between the principal phases is a consequence of the conductivity
contrast at the boundary between the isotropic and anisotropic mate-
rial and is not directly indicative of the underlying anisotropy of the
half-space. Thus information pertaining directly to the anisotropy
can only be obtained from the amplitude of the MT response. In
practice, the difficulty is that the amplitude response may have been
distorted by structure at length scales less than the depth of the
anisotropic layer. More generally, the observation of a phase split
between the principal phase values indicates that a conductivity gra-
dient (lateral or vertical) exists, nothing more.

Properties in 2-D

In the 2-D case (the assumption made in previous approaches to
MT distortion analysis) the strike of the regional conductivity dis-
tribution defines a natural orientation for the coordinate system. In
a Cartesian coordinate system (x ′

1, x ′
2) aligned with x ′

1 parallel to
the (unknown) strike direction, at say an angle θ with respect to the
observation coordinate system, the regional impedance tensor Z′

R
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has the antidiagonal form:

Z′
R =

[
0 Z ′

12

Z ′
21 0

]
=

[
0 Z‖

−Z⊥ 0

]
, (24)

where quantities in the rotated coordinate system are denoted by a
prime (′) and Z ‖ and Z⊥, are the transverse electric (TE) and trans-
verse magnetic (TM) impedance respectively. That is, Z ‖ and Z⊥ are
the impedances measured when the electric field is linearly polarized
parallel or perpendicular to the strike of the conductivity distribu-
tion. The antidiagonal form of the impedance tensor expresses the
orthogonality of the electric and magnetic fields where the fields are
polarized parallel or perpendicular to the strike of the conductivity
structure.

Rotating the observed phase tensor Φ by the unknown angle θ ,
the phase tensor in the rotated coordinate system is given by

Φ′ = R(θ )ΦR
T(θ )

= [
R(θ )X−1

R R
T(θ )

][
R(θ )YRR

T(θ )
]

= (X′
R)−1Y′

R.

(25)

Since Z′
R is antidiagonal so are X′

R and Y′
R. Thus, the inverse tensor

(X′
R)−1 is also antidiagonal. Hence, the matrix product (X′

R)−1 Y′
R is

diagonal and the phase tensor in the rotated coordinate system has
the diagonal form:

Φ′ =
[

Y⊥/X⊥ 0

0 Y‖/X‖

]
or

[
Y‖/X‖ 0

0 Y⊥/X⊥

]
. (26)

Comparing Φ′ (eq. 26) with the SVD form in eq. (20), it can be seen
that the phase tensor coordinate invariants are Y ⊥/X ⊥, Y ‖/X ‖ and
β = 0. The principal values of the phase tensor for 2-D conductivity
distribution are thus the tangents of the corresponding conventional
TM and TE polarization phases. Note that the condition β = 0 is
a necessary but not sufficient condition for a 2-D regional conduc-
tivity structure. For a 2-D structure, β must be zero at all periods
greater than the minimum value for which the galvanic approxi-
mation applies. In practice, what we seek is a range of frequencies
where β is zero (within the observational errors) and the direction
of the phase tensor major axis is constant.

Since β = 0 in the 2-D case, the orientation of the major axis of
the phase tensor ellipse in the rotated coordinate system is given by
the angle α′. Thus from eqs (22) and (26), α′ = 0◦ and the major
axis of the phase tensor ellipse is aligned parallel or perpendicu-
lar to the strike of the (regional) conductivity distribution. In the
observer’s frame of reference (i.e. in the unrotated coordinate sys-
tem) the orientation of strike axis is α = θ or α = θ + 90◦. The
90◦ ambiguity remains since (a priori) we have no knowledge as
to which of the maximum or minimum phases corresponds to the
TE or TM polarization. (In practice, the ambiguity is resolved using
vertical magnetic field data.) Note that, if the regional conductivity
structure is 2-D, eq. (22) is an explicit expression for the direction
(α) of the strike axis (or its normal), irrespective of whether or not
the response has been galvanically distorted.

Galvanic distortion of a 2-D response

If the regional conductivity structure is 2-D there are two direc-
tions for which a linearly polarized magnetic field will give rise
to a linearly polarized electric field. A galvanic distortion will not
change the polarization state of the EM field so that there are also
two directions where the observed (distorted) electric and magnetic

fields are both linearly polarized. Although the distortion will usu-
ally change the direction of regional electric field polarization, the
corresponding direction of the magnetic field will be virtually un-
affected provided that the distortion of the regional current density
does not significantly distort the magnetic field components (i.e.
eq. 4 is a good approximation). The problem of determining the
2-D strike direction from the distorted data is thus equivalent to
identifying the direction of a linearly polarized magnetic field for
which the electric field is also linearly polarized. This direction de-
fines the strike direction of the regional conductivity structure or its
normal.

The effect of a galvanic distortion on the response of a regional
2-D conductivity distribution is illustrated in Fig. 2 using ellipses
to represent all of the tensors involved. The case illustrated is a
synthetic example taken from McNeice & Jones (2001). Note that
rotating Fig. 2 leaves the configuration of the ellipses unchanged;
only the angle specifying the orientation of the diagram with respect
to the observer changes. The lengths of the ellipse axes, their relative
orientation with respect to each other and their orientation with
respect to the conductivity distribution (i.e. with respect to the Earth)
do not depend on the particular frame of reference chosen. It is
these quantities (the coordinate invariants) that express the essential
physical relationship between the conductivity distribution and the
EM field observations.

Fig. 2(a) shows the phase tensor derived from the real (solid) and
imaginary (dotted) parts of distorted impedance tensor (Fig. 2b).
Note that the orientations of the principal axes of the phase tensor are
the same as the major and minor axes of the ellipses that represent the
real and imaginary parts of the regional impedance tensor (Fig. 2d).
This set of axes defines the strike axes of the regional conductivity
structure, i.e. the directions in which a linearly polarized regional
magnetic field give rise to a linearly polarized electric field. These
ellipses, and the ones used in Fig. 2(b) to represent the observed
impedance, are (polar) plots of the electric field magnitudes |E|
and |�E| produced by a unit-magnitude linearly polarized magnetic
field drawn in the direction of the corresponding electric field vector
(e.g. Bibby 1986; Caldwell et al. 2002; Appendix A).

This method of graphically representing the impedance tensor has
the advantage that the two sets of principal axes that characterize the
(complex) impedance tensor can be simply and directly depicted.
For example, if the regional conductivity structure is 2-D the major
axes of both XR and YR must be parallel or perpendicular to the
conductivity structure as is illustrated in Fig. 2(d). This requirement
can also be expressed as a condition on the skew angles (βX and
βY) and on the angle between the major axes of the two ellipses
representing the regional impedance tensor. All of these quantities
are coordinate invariant. Since the traces (another coordinate invari-
ant form) of XR and YR are zero in 2-D (eq. 24), the skew angles
βX and βY have values of ±45◦. In the Cartesian coordinate sys-
tem with axes parallel to the strike axes, the diagonal terms of the
impedance tensor are both zero and α′

X = ± 45◦ and α′
Y = ± 45◦.

Thus the condition on the angle between the major axes of the real
and imaginary parts reduces to the condition that α′

X = α′
Y or α′

X =
α′

Y ± 90◦.
The ellipse representing the distortion tensor in Fig. 2(c) is a polar

plot of the magnitude ratio |E|/|ER| in the direction of the observed
electric field E. The effect of the distortion tensor on the regional
impedance tensor (Fig. 2d) is to amplify or attenuate the principal
values of XR and YR by different amounts and to reorient the prin-
cipal axes. Thus two distinct sets of principal axes are needed to
characterize the observed impedance tensor as shown in Fig. 2(b).
This characteristic is indicative of a 3-D conductivity distribution,
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=

Distortion
   tensor

X=

2D regional impedance 
             tensor

Observed (distorted)
  impedance tensor

Phase tensor

D ZRZ
Φ

<
XR  

YR

X  

Y

(a) (b) (c) (d)

Figure 2. Graphical representation of the tensors involved in the galvanic distortion of a 2-D impedance tensor. The coordinate axes shown are aligned parallel
and perpendicular to the strike of the 2-D conductivity structure. The phase tensor, represented by the ellipse shown in (a), is derived from the real (solid line)
and imaginary (dotted line) parts of the distorted impedance tensor shown in (b). These ellipses (b) represent the distortion of the 2-D regional impedance
tensor (d), characterized by a single set of principal axes aligned with conductivity structure, by the distortion tensor represented by the ellipse shown in (c).

either in the neighbourhood of the measurement site or regionally.
Only where further analysis shows that the phase tensor skew an-
gle (β) is insignificant for all periods greater than some minimum
value can we infer that the regional conductivity structure is 2-D,
and thus that the observed response has been distorted by a localized
conductivity heterogeneity.

Properties in 3-D

We will demonstrate the properties of the phase tensor in 3-D us-
ing synthetic data calculated with the modelling code described in
Xiong (1992) and Xiong & Tripp (1995). The model used for this
demonstration (Fig. 3) consists of a small conductive (10 � m) cube
situated near the surface and a much larger (regional) conductive
(1 � m) body at depth both embedded in a 100 � m half-space. The
cube is situated near the corner of the rectangular body in the area
where 3-D effects are expected to be large. Maps of the phase tensor
ellipses at three different periods (0.0316, 0.316 and 3.16 s) with
contours showing the direction of the major axes and skew angle
(β) are shown in Figs 4 and 5, respectively.

Where the difference in the lengths of ellipse axes (�max and�min)
is less than 2 per cent of their corresponding geometric mean (i.e. of
the radius of a circle with the same area as the ellipse), the ellipses
in Fig. 4 have been left unfilled. At these locations, where the phase
tensor is indistinguishable from a circle, the azimuth calculation is
potentially unreliable (unstable) because of the limitations in the
accuracy of the forward modelling code.

At short periods the MT response will be unaffected by the deep
conductor and the observed response will reflect the influence of
the near-surface body alone. This can be seen in the phase tensor
response (Fig. 4a) as a radial alignment of the major axes around
the conductive cube. If the cube is resistive (not shown) rather than
conductive the phase tensor ellipses are oriented tangentially. This
change in the orientation of the principal axes suggests that the
direction of the major axes indicates the preferred flow direction of
the induction current.

Support for this interpretation is provided by the induction arrows
(Parkinson 1962) also shown in Fig. 4. These arrows are graphical
representations of the real part of the vertical magnetic field transfer
function or tipper vector (K) defined by the equation

Hz = −K·H, (27)

where Hz is the vertical component of the total magnetic field and
H is the horizontal magnetic field vector. In situations where the
conductivity distribution varies laterally, the real part of the tipper
vector will point towards the region of highest conductance. At

10 Ωm

1 Ωm

100 Ωm

Figure 3. Map view of the conductivity model used to illustrate the prop-
erties of the phase tensor in a 3-D situation. The model consists of a small
conductive (10 � m) cube, sides 0.250 km, with its top 50 m below the sur-
face and a much larger rectangular 1 � m body (7 × 3 × 3 km3) buried 1.5
km below the surface. Both bodies are embedded in a 100 � m half-space.
The grey area shows the region covered by the tensor ellipse maps in Figs 4
and 5.

short periods (Fig. 4a), outside the immediate vicinity of the cube,
where the conductance sensed by the EM field will be approximately
cylindrically symmetric, the induction arrows and major axes of the
phase tensor are parallel, consistent with the interpretation of the
principal axes of the phase tensor suggested above.

At intermediate periods (Fig. 4b) the alignments of the major axes
reflect a mixture of the effects of both the near-surface and deep
conductors. At long periods (Fig. 4c), inductive effects produced
by the cube are insignificant and the deep conductor dominates
the phase response, the alignment of the major axes indicating the
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Figure 5. Phase tensor ellipse map at three different periods for the model shown in Fig. 3. Contours and grey tone filling the ellipses show the phase tensor
skew angle β.

preferred flow direction of the inductive current associated with
the deep conductor. Note that the direction of the ellipse major
axes at long periods (Fig. 4c) changes rapidly (approximately 10◦ in
0.5 km) in a northwest–southeast direction. A rapid lateral change in
direction of the principal axes of the phase tensor is a clear indication
of a 3-D (regional) conductivity structure.

The corresponding maps of the phase tensor skew angle (β) are
shown in Fig. 5. At short periods (Fig. 5a) the skew angle is zero
on the cube’s axes of symmetry and greatest (although still small,
about 0.25◦) near the corners of the cube where the conductivity
distribution is asymmetrically distributed around the measurement
point. At intermediate periods, where the combined effects of both
bodies are significant, the variation of the skew angle is more com-
plicated (Fig. 5b) reflecting the asymmetric configuration of both
bodies with respect to the measurement point. At longer periods
(Fig. 5c) the influence of the near-surface body is insignificant and
the skew angle reflects the effect of the deep conductor alone.

Note that at longer periods the ellipse major axis and the induction
arrows (Figs 4b and c) are not as closely aligned as they are at short
periods (Fig. 4a). This misalignment reflects the asymmetry of the
3-D response at longer periods, which is expressed in the phase
tensor as a non-zero skew angle (Figs 5b and c).

Fig. 6 shows graphs of the phase tensor properties as a function
of period at the location marked by the cross in Fig. 4. To simulate

the effect of noise, an ensemble of 1000 impedance tensors was
created by adding 2 per cent Gaussian noise to each component
of the calculated impedance tensor. The error bars in Fig. 6 show
the standard deviation from the mean value (points) of the corre-
sponding tensor property derived from this ensemble. For periods
less than 0.1 s the maximum and minimum phases (Fig. 6a), i.e.
tan−1 (�max) and tan−1 (�min), are close to 45◦ indicating that the
effect of the conductive cube at this location is small. For periods
between about 0.1 and 3 s, the phase difference or split between the
principal phases increases rapidly as the influence of the inductive
currents in the deep conductor becomes dominant. At periods >3 s,
the phase split decreases as the induction currents associated with
the deep conductor weaken.

Note that the magnitude of the phase difference between the prin-
cipal phase values is reflected in the size of the error bars for the
direction of the major axis (Fig. 6b). In particular the uncertainties
are large for periods <0.3 s where the phase difference is small
(<3◦). Despite the large uncertainty, the direction of maximum in-
ductive current flow associated with each of the conducting bodies
at short (Fig. 4a) and long periods (Fig. 4c) can clearly be distin-
guished in Fig. 6(b). In particular, for periods between 0.3 s and
30 s (where the difference between the principal phases is large) the
azimuth of the major axis can be determined within ±5◦. At points
where the error bars of the principal phases overlap (enclosed by a
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Figure 6. Plots of the phase tensor properties versus period are shown for
the location marked by a cross in Fig. 4. The error bars show the standard
deviation caused by the addition of synthetic Gaussian noise to the calculated
impedance tensor. The periods corresponding to the ellipse maps shown
in Figs 4 and 5 are marked in grey. (a) Maximum and minimum phase
values. The grey rectangles enclose the points for which the error bar of the
maximum and minimum phase values overlap. (b) Azimuth of the tensor
ellipse major axis. Points for which the tensor ellipse is indistinguishable
from a circle and the azimuth is ill defined are not plotted. (c) Phase tensor
skew angle β.

small grey boxes in Fig. 6(a)) the tensor ellipse is indistinguishable
from a circle. At these points, omitted from Fig. 6(b), the azimuth
is ill-defined. Note that the large uncertainty in the direction (α −
β) of the major axis in Fig 6(b) at periods <0.1 s is a consequence
of the small phase difference and thus the uncertainty in the angle
α rather than the uncertainty in the skew angle (β), Fig. 6(c).

For the model used in this example β is small (< 3◦) at all periods
and at all locations (Fig. 5). Although small, β is well-determined
as shown by the small error bars in Fig. 6(c). Between 0.3 s and 1
s, where β (Fig. 6c) begins to increase and the direction (Fig. 6b)
of the major axis varies slightly with period, inductive effects pro-
duced by the deep conductor start to become significant. Note that
at longer periods (>3 s), where the skew angle begins to decrease,
the direction of the major axis (Fig. 6b) remains nearly constant.

D I S C U S S I O N

Geoelectric strike

If the regional conductivity structure is 3-D and the phase difference
between the principal values is large enough so that the orientation
of the phase tensor principal axes can be determined reliably, a sin-
gle (well-defined) direction can be associated with the MT phase
response at each period. As is illustrated in Fig. 4, the orientations
of the major axes of the phase tensor indicate the preferred flow di-
rection of the induction current in a similar fashion to the induction
arrows. In particular, if the regional conductivity structure is 2-D,
the principal axes of the phase tensor are aligned with the strike
axis of the regional conductivity structure. The orientation of the
principal axes of the phase tensor can thus be considered to be a
generalization of the concept of strike direction (the so-called geo-
electric strike) to a 3-D situation. In essence, the principal axes of
the phase tensor indicate the (horizontal) directions of the maxi-
mum and minimum induction current, which in turn reflect lateral
variations in the underlying regional conductivity.

2-D versus 3-D interpretation

In the example illustrated in Fig. 4(c), the direction of the principal
axes of the phase tensor at periods >3 s is nearly constant along lines
running northwest–southeast. For a single northwest–southeast line
of measurements, the MT response will appear to be nearly 2-D. That
is, two nearly perpendicular polarization directions of the magnetic
field can be found where the ellipticity of the resulting electric field
is small. Although the phase tensor skew angle β tells us that the
situation is 3-D, the value of β is small (< 3◦). This suggests that
a small value of β by itself is not necessarily a good indication of
the nearness of the regional conductivity structures to 2-D. A much
better indication of the inappropriateness of a 2-D analysis in this
example is the rapid (10◦ in 0.5 km) northeast–southwest variation
in the direction of the major axis of the tensor ellipse.

Relationship to Bahr’s method

If the regional structure is 2-D, the direction of the principal axes of
the phase tensor (α) will be the same as the strike direction given
by the two most commonly used approaches to distortion analysis,
Bahr (1988, 1991) and Groom & Bailey (1989, 1991). In particular,
the formula for the strike direction given by Bahr can be reduced to
eq. (22). Thus, in 3-D situations where β is small, Bahr’s expression
for the regional strike direction will be close to one of the principal
axes of the phase tensor.

Bahr (1988, 1991) also proposed a dimensionless, coordinate-
invariant measure of the dimensionality of the regional conductivity
structure similar toβ which he called the phase-sensitive skew (η). In
terms of the quantities used in this paper, η is given by the expression

η2 = 2 det(X)|�12 − �21|/|Z12 − Z21|2. (28)

Note that unlike β (eq. 19), η is a function of the coordinate invari-
ants of the observed impedance tensor and the phase tensor skew
(�12 − �21).

The condition η = 0 (or equivalently �12 − �21 = 0), represents
the requirement that the component phases of the impedance tensor
in each column of the impedance tensor matrix are equal, which is
true if the regional conductivity structure is 2-D (Bahr 1988, 1991).
However, if |�12 − �21| �= 0 the effect of a galvanic distortion
on eq. (28), contained in the det(X) and |Z 12 − Z 21|2 terms, will
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not cancel out. Thus, if the regional conductivity structure is not
2-D, the value of η will depend on whether or not the observed
response is distorted. For this reason it is questionable whether the
magnitude of η is a good indication of the dimensionality of the
regional conductivity structure.

Any distortion analysis based on the assumption that the regional
conductivity structure is 2-D cannot include the asymmetry in the
MT response represented by the phase tensor skew angle (β). In
what is, in essence, an attempt to represent this asymmetry, Bahr
(1991) introduced a complex parameter (the phase deviation) into
the distortion tensor while retaining the 2-D form for the regional
impedance tensor. This parametrization is inconsistent with the 3-D
source of the asymmetry and violates the basic physical assumption
that the distortion tensor is real for a galvanic distortion. One of the
advantages of the phase tensor analysis is that the asymmetry in the
phase response is represented explicitly and no assumption about
the form of regional impedance tensor is required.

Relationship to Groom–Bailey decomposition

In this (Groom & Bailey 1989, 1991) and other similar approaches
(Zhang et al. 1987; Chakridi et al. 1992; Chave & Smith 1994;
Smith 1995) to distortion analysis the observed impedance tensor is
decomposed into a 2-D regional impedance tensor Z′

R and a (real)
distortion tensor D′, which is parametrized in different ways by
different authors. The observed impedance tensor Z can therefore
be expressed by the relation

Z = R(θ )[D′Z′
R]RT(θ ), (29)

where Z′
R is the 2-D (anti-diagonal) impedance tensor (eq. 24) and θ

is the (unknown) strike of the conductivity structure. Eq. (29) has a
total of nine unknowns θ , X ⊥, Y ⊥, X ‖, Y ‖ and the four components
of D′. The number of measured quantities in Z is eight (i.e. the
components of X and Y) so eq. (29) is underdetermined. Groom
& Bailey (1989, 1991) factorize the distortion tensor into three,
linearly independent, 2 × 2 matrices and a scalar, i.e.

D = gTSA (30)

where

T = 1√
1 + t2

[
1 −t

t 1

]
, S = 1√

1 − e2

[
1 e

e 1

]
,

A = 1√
1 − s2

[
1 + s 0

0 1 − s

]
(31)

and g, the ‘site gain’, is a scalar. That is Groom & Bailey rewrite
eq. (29) as

Z = R(θ )[gTSAZ′
R]RT(θ ). (32)

In essence, the four unknown components of D′ have been rewritten
in terms of the (unknown) parameters: g, t, e and s. These parameters
cannot be determined from the observed impedance tensor without
independent information or assumptions.

Since the operation of g and A on Z′
R is equivalent to a non-

determinable scale change or gain (say g̃⊥ and g̃‖) for each of the
off-diagonal (non-zero) components of Z′

R, eq. (32) can be reduced
to the form

Z = R(θ )[TSZ̃′
R]RT(θ ), (33)

where Z̃′
R is the scaled version of Z′

R (Groom & Bailey 1989, 1991).
This reduction implicitly introduces a pair of constraint equations

(g = 1 and s = 0) for the components of D, which reduce the num-
ber of unknowns by two. The seven unknown parameters in eq. (33)
(i.e. g̃⊥Y⊥, g̃‖Y‖, t, e, and θ ) and thus the regional phases (Y ⊥/X ⊥
and Y ‖/X ‖) can then be determined at each period from what is
now an overdetermined problem. As emphasized by McNeice &
Jones (2001) one of the attractive features of the Groom–Bailey ap-
proach is that it allows a stable estimate of the strike direction to
be recovered from a distorted 2-D impedance tensor that contains
noise. However, as was first shown by Bahr (1988) and by the phase
tensor analysis, the strike direction of a 2-D conductivity distribu-
tion can be obtained directly from the observed impedance tensor
(eq. 22) without decomposition, i.e. without attempting to recover
information about the structure of the distortion tensor. In practice,
where the situation may only be approximately 2-D, the strike angle
recovered by Groom–Bailey decomposition will depend on how the
asymmetry in the regional response is distributed into the misfit.

Other parametrizations of the distortion tensor are equally plau-
sible. For example, the distortion tensor could be represented by its
SVD i.e.

D = R
T(αD − βD)

[
dmax 0

0 dmin

]
R(αD + βD), (34)

where βD and the principal values (dmax and dmin) are coordinate
invariant and αD is the coordinate dependent angle corresponding to
eq. (22). Like the Groom–Bailey parameters, the SVD parameters
of D are functions of the distortion tensor components and can-
not be determined from the observed impedance without auxiliary
information. By assuming a 2-D form for the regional impedance
tensor (with strike direction determined from the principal axes of
the phase tensor) and introducing constraints on the distortion ten-
sor we can solve for the SVD parameters of D in a similar way to
how Groom & Bailey (1989, 1991) solve for T and S.

One of the less satisfactory features of the Groom–Bailey ap-
proach is that only one of the two constraints used for the decompo-
sition is coordinate invariant. Other choices of constraint are possible
and equally plausible. In particular both constraints can be chosen
to be coordinate invariant. However, it is important to stress that the
choice of constraint partially determines the values of the distortion
parameters recovered and thus limits their physical significance.
We will discuss the analysis of the distortion tensor in more detail
elsewhere.

F I E L D E X A M P L E

To demonstrate the application of the phase tensor to a real data set
we have analysed data from a MT survey conducted in the Taupo
Volcanic Zone (TVZ) in the North Island of New Zealand. Phase
tensor ellipses from this survey are shown in Fig. 7 superimposed on
a gravity map of the region. Details of the collection and interpre-
tation of these data using conventional techniques (i.e. techniques
based on a 2-D model of the regional conductivity structure) are
given in Ogawa et al. (1999).

The central part of the TVZ shown in Fig. 7 is characterized
by northwest–southeast extension and late Pliocene to Quaternary
rhyolitic volcanism (Wilson et al. 1995). This has resulted in the
formation of a large volcano-tectonic depression filled with low-
density volcaniclastic sediments and the central part of the TVZ
can be identified with the area of low gravity (say <20 mGal) in
Fig 7 (Bibby et al. 1995). The volcaniclastic sediments are much
more conductive (∼3–30 � m) than the underlying basement rocks
(∼1000 � m) or the layer of recent volcanics (100–1000 � m) that
covers the entire region. Thus where the basement is close to the
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Figure 7. Phase tensor ellipses at T = 21.3 s superimposed on the regional gravity map of the Taupo Volcanic Zone (after Bibby et al. 1995). The ellipses
have been drawn so that the major axes are all the same length. Also shown are the corresponding induction arrows (real part).

surface (in the west and southeast) the conductivity structure of the
upper part of the crust will reflect the structure shown by the gravity
map (Fig. 7).

Estimates of the Groom–Bailey strike direction for the measure-
ment sites shown in Fig. 7 are concentrated between N40◦E and
N50◦E suggesting that the overall conductivity structure is approx-
imately 2-D (Ogawa et al. 1999). We have also analysed these data
using the multisite Groom–Bailey decomposition technique pub-
lished by McNeice & Jones (2001). This analysis gives an overall
apparent strike direction of N43.5◦E ± 1◦ in good agreement with
the N45◦E strike direction used by Ogawa et al. (1999).

As can be seen in Fig. 7, the southeastern margin of the TVZ is
marked by an almost linear northeast–southwest gravity gradient.

The major axes of the phase tensor ellipses near this margin are ori-
ented parallel and perpendicular to the strike of the gravity gradient
similar to the behaviour expected for a 2-D conductivity distribu-
tion. Independent evidence for the 2-D nature of the conductivity
structure along this margin is provided by detailed long-offset DC
resistivity surveys (Bibby et al. 1998) and by the behaviour of the
induction arrows shown in Fig. 7. In a 2-D situation, the induction
arrows will be perpendicular to the strike of the conductivity dis-
tribution and the agreement between the directions of the induction
arrows and ellipse axes near the southeastern margin of the TVZ is
good.

In Fig. 8 we have plotted the phase tensor properties as functions
of period for four of the measurement sites shown in Fig. 7. Also
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Figure 8. Apparent resistivity and phase tensor properties plotted as functions of period for measurement sites 250, 300, 400 and 550 (locations shown in
Fig. 7). The error bars show the standard error calculated from the variances of the measured impedance tensor components. (a) Nominal TE and TM mode
apparent resistivity sounding curves. (b) Phase tensor principal values [i.e. tan−1(�max) and tan−1(�min)] superimposed onto a plot of the TE and TM mode
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omitted. (d) Phase tensor skew angle β. Where the standard error of the skew angle is >5◦ the point has been omitted.

shown (Fig. 8a) are the ρ xy and ρ yx apparent resistivities (propor-
tional to |Zxy|2 and |Zyx|2) in a Cartesian coordinate system with
its x-axis aligned N45◦E. That is ρ xy and ρ yx are (respectively)
the nominal TE and TM apparent resistivities with respect to the
southeastern margin of the TVZ. At the three sites within the TVZ
(i.e. sites 300, 400 and 550) the apparent resistivity curves have a
well-developed minimum reflecting the underlying conductive sed-
iments. This minimum is absent at site 250 outside the TVZ where
the resistive basement rocks are close to the surface. For periods
<0.3 s, the TM and TE apparent resistivity curves (Fig. 8a) at sites
300 and 400 appear to be displaced by a constant factor with respect
to each other. This suggests that the data at these two sites have been
distorted.

In Fig. 8(b) we have superimposed the principal values of the
phase tensor (i.e. tan−1�min and tan−1�min) on plots of the (nominal)
TE and TM phases. For the two southeastern sites (250 and 300) the
differences between the principal phase values and the TE and TM
phases at periods <100 s are small, indicating that the conductivity
structure in this area is approximately 2-D with a strike of N45◦E.
However, significant differences between the principal phase values
and the TE and TM phases are present at sites 400 and 550. This
difference suggests that either 3-D effects are present or that the

strike direction has been chosen incorrectly. At sites 400 and 550,
the directions of the principal axes change with period, implying
that the regional conductivity structure in the neighbourhood of
these two sites is 3-D. Plots of the skew angle β (Fig. 8d) for these
sites support this inference.

For the two southeastern sites (250 and 300), the variation in the
direction of the major axis of the phase tensor (Fig. 8c) is <15◦ in
the period range between 1 and 100 s, consistent with a quasi 2-D
regional structure near the southeastern margin of the TVZ. The
variation is larger at site 300 where the skew angle also changes by
a total of about 7◦ over the same period range. At greater periods
>100 s, the principal direction at site 300 changes by about 45◦ so
that one interpretation of the response at this site is that the effect of
a distant, off-strike structure becomes significant at periods >100 s.
Indeed, the directions of the principal axes from all the sites within
the TVZ (not all shown in Fig. 8) vary significantly in this period
range. At the sites southeast of the TVZ (of which site 250 is one
example), the principal directions show much less variation and are
coherent between sites. It is clear from the phase tensor analysis
that the conductivity structure within the TVZ is 3-D and a 3-D
approach to data collection and analysis will be required to more
clearly resolve the conductivity structure.
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C O N C L U S I O N S

One of the difficulties of interpreting MT data is that the information
from deeper levels is distorted by the effect of near-surface conduc-
tivity heterogeneities. The traditional approach to this difficulty has
been to assume a simplified 2-D structure for the underlying regional
conductivity distribution. This assumption allows the regional phase
information and strike of a 2-D conductivity distribution to be de-
rived from a distorted set of observations, provided the distortion
is galvanic. We have shown that the 2-D assumption is unnecessary
and that the phase relationship between the horizontal components
of the electric and magnetic fields may be derived directly from the
observed impedance tensor in situations where the regional conduc-
tivity structure is 3-D. In essence we have generalized the represen-
tation of the MT phase so that it applies in the 3-D case, where the
electric field response to a linearly polarized magnetic field is (in
general) elliptically polarized. This representation takes the form of
a (second-rank) tensor that is unaffected by a galvanic distortion of
the electric field, consistent with the physical behaviour expected
for the MT phase.

The phase tensor components and their associated three coor-
dinate invariants are simple functions of the observed impedance
tensor components. Graphically, the tensor can be represented as an
ellipse where the principal axes of the tensor are represented by the
major and minor axes of the ellipse. The third coordinate invariant,
the skew angle, is a measure of the asymmetry in the regional MT
response. In 2-D the phase tensor is symmetric and the skew angle
is zero. While a large value of the skew angle necessarily implies a
3-D regional conductivity structure, our results suggest that a small
value of the skew angle is not necessarily a good indication of the
nearness of the conductivity structure to 2-D. Much more reliable
criteria for two-dimensionality are the constancy of the direction of
the principal axes of the phase tensor with period and with location
along strike.

Our modelling results suggest that the direction of the phase ten-
sor major axis indicates the preferred flow direction of the regional
induction current. Maps of the phase tensor ellipses at different
periods provide a simple way of depicting this direction and thus
(indirectly) of visualizing lateral changes in the regional conductiv-
ity structure at different depths. Such maps will not be influenced
by near-surface galvanic effects.

Spatial and temporal variations in the near-surface conductivity
distribution dominate the measured amplitudes in MT surveys de-
signed to monitor temporal conductivity changes at deeper levels.
Provided the effect of any temporal change in the near-surface con-
ductivity can be represented by a galvanic distortion of the electric
field, any change in the phase tensor will reflect only the conduc-
tivity variations at deeper levels. Detecting conductivity changes at
depth is potentially an important future application of this method
of analysis.

The calculation of the phase tensor requires no assumption about
the dimensionality of the underlying conductivity distribution and
is applicable where both the heterogeneity and the regional conduc-
tivity structures are 3-D. Although we have introduced the phase
tensor in the context of the galvanic distortion problem, the rep-
resentation of the MT phase as a tensor is not restricted to this
context. Rather, the phase tensor should be considered to be a
fundamental property of the impedance tensor expressing how the
phase relationship between the electric and magnetic field changes
with polarization in situations where the conductivity structure is
3-D.
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A P P E N D I X

PHASE TENSOR COORDINATE INVARIANTS

Expressions for the coordinate invariants of a (non-symmetric)
second-rank 2-D tensor can be found in Bibby (1986) and are sum-
marized here for completeness. Writing the phase tensor as the ma-
trix

Φ =
[
�11 �12

�21 �22

]
(A1)

the simplest algebraic representations of the tensor invariants are
the trace

tr(Φ) = �11 + �22, (A2)

the skew

sk(Φ) = �12 − �21 (A3)

and the determinant

det(Φ) = �11�22 − �12�21 (A4)

of the matrix. Note that the determinant is a quadratic function of
the tensor components.

It is convenient to re-express all the invariants as the first order
functions:

�1 = tr(Φ)/2 (A5)

�2 = [det(Φ)]1/2 (A6)

and

�3 = sk(Φ)/2. (A7)

In terms of these quantities the maximum, minimum and skew angle
(eq. 19) are given by the expressions:

�min = (
�2

1 + �2
3

)1/2 − (
�2

1 + �2
3 − �2

2

)1/2
(A8)

�max = (
�2

1 + �2
3

)1/2 + (
�2

1 + �2
3 − �2

2

)1/2
(A9)

β = 1

2
tan−1

(
�3

�1

)
. (A10)

The fourth SVD parameter α (eq. 22), which is needed to com-
plete the specification of the tensor, is not coordinate invariant
and cannot be expressed as a function of the coordinate invariants
alone.

Note that we have tacitly assumed in eq. (A6) that det(Φ) ≥ 0.
If the conductivity distribution is very unusual and 3-D it is pos-
sible that the det(Φ) may vanish or become negative. In the singu-
lar case (det(Φ) = 0) the expressions (eqs A8 and A9) for �max

and �min are well-defined and �min = 0. That is the phase ten-
sor ellipse has zero area and the tensor is represented by a line of
length 2�max. If det(Φ) < 0 then we can retain eq. (A8) by defining
�2 = |det(Φ)|1/2 and assign a negative sign to the value of �min.
The behaviour of the phase tensor in this unusual situation can be
envisaged graphically. Assume that the effect of the conductivity
distribution is insignificant at some period and that �max and �min

are >0. As the unusual 3-D effects become important, the minor
axis of the tensor ellipse shrinks. Eventually, the effect of the con-
ductivity structure causes the ellipse to shrink down to a line (length
2�max) where �min and det(Φ) are both zero. As these effects in-
crease the ellipse will re-expand, although now �min and det(Φ) are
negative.

Tensor ellipse

The angle α − β defines direction of the major axis of the tensor
ellipse in the Cartesian coordinate system used to express the tensor.
Knowing the orientation of the major axis the ellipse may then be
constructed from knowledge of the lengths of the major and minor
axes (i.e. from �max and �min). A more direct and simpler way of
drawing the tensor ellipse is to recall that the matrix representing the
tensor can be thought of as mapping of one vector into another. By
generating a set of unit vectors at say 1◦ intervals around a circle and
transforming each unit vector with the tensor matrix the resultant
(transformed) set of vectors define the tensor ellipse. This is easily
and compactly implemented in modern computer languages such as
MATLAB.
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