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 These last years, the amount of data generated by information systems has exploded. It is 
not only the quantities of information that are now estimated in Exabyte, but also the variety 
of these data which is more and more structurally heterogeneous and the velocity of 
generation of these data which can be compared in many cases to endless flows. Now days, 
Big Data science offers many opportunities to analyze and explore these quantities of data. 
Therefore, we can collect and parse data, make many distributed operations, aggregate 
results, make reports and synthesis. To allow all these operations, Big Data Science relies 
on the use of "Distributed File Systems (DFS)" technologies to store data more efficiently. 
Distributed File Systems were designed to address a set of technological challenges like 
consistency and availability of data, scalability of environments, competitive access to data 
or even more the cost of their maintenance and extension. In this paper, we attempt to 
highlight some of these systems. Some are proprietary such as Google GFS and IBM GPFS, 
and others are open source such as HDFS, Blobseer and AFS. Our goal is to make a 
comparative analysis of the main technological bricks that often form the backbone of any 
DFS system. 
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1. Introduction   

Todays, the amount of data generated during a single day may 
exceed the amount of information contained in all printed materials 
all over the world. This quantity far exceeds what scientists have 
imagined there are just a few decades. Internet Data Center (IDC) 
estimated that between 2005 and 2020, the digital universe will be 
multiplied by a factor of 300, this means that we will pass from 
130 Exabyte to 40,000 Exabyte, which is the equivalent of 40 
billion gigabytes (more than 5,200 gigabytes for each man, woman 
and child in 2020) [1].  

Therefore, the variety and the complexity of this deluge of data, 
which is often unstructured, are revolutionizing the methods of 
data management and exploitation of the large quantity of 
information they convey [2,3]. 

Traditional data processing technologies have rapidly reached 
their limits and are being replaced by new systems which allow big 

data storage and analysis, taking on consideration what is currently 
known as the four V: Volume (to handle the huge amount of 
generated data), Velocity (to store, analyze and retrieve huge 
dataset as quickly as possible), Variety (to process mostly 
unstructured data, from multiple sources), and Value (to ask the 
right questions to generate maximum value) [4]. 

The typical schema of Big Data architecture (e.g. MapReduce) 
requires partitioning and distributing the processing across as 
many resources as possible. Otherwise many issues relative to the 
quantity of processed data can emerge like:  

• Big data are slow to move over any network,  

• Scaling up vertically (more memory, more powerful 
hardware) has limitations.  

• A single hard drive cannot handle the size of big data.  

• Failures in computing devices are inevitable 

Move the “processing” into data instead of the opposite can 
become an obligation rather than a choice. Cloud platforms for 
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example, seem to offer countless benefits to such architecture, 
among the most important between those advantages is the 
scalability of the infrastructure that is managed by a fully 
outsourced service [5].  

Distributed storage systems take also the same orientation.  

Although the traditional systems such as centralized network-
based storage systems (client-server) or the traditional distributed 
systems such as NFS, managed to meet the requirements of 
performance, reliability and safety of the data until a certain limit, 
they are no longer able to respond to the new requirements in terms 
of volume of data, high performance, and evolution capacities. 
And besides their constraints of cost, a variety of technical 
constraints are also added, such as data replication, continuity of 
services etc… [6,7]. 

    In this paper, we try to discuss a set of the main 
characteristics of technologies used in the market and we think 
they are the most relevant and representative of the state of the art 
in the field of distributed storage. In section II, we start by 
explaining what Distributed File System (DFS) is. In section III, 
we discuss some architecture of some DFS systems while 
presenting the strengths and weaknesses of each of them. In section 
IV, we present the logic of storage as Blob. In section V, we 
discuss the technique of data stripping. In section VI,   we discuss 
the issues of concurrency and some technologies used in this field. 
In section VII we present the tiered storage. We conclude this 
paper by a benchmark table of five major systems on the market: 
Andrew File System (AFS), Google File System (GFS), Blobseer, 
Hadoop Distributed File System (HDFS) and General Parallel File 
System (GPFS). The comparison focuses on a set of characteristics 
discussed and explained throughout this paper. 

More specifically, our main objective in this paper is to 
contribute to determine the main characteristics that a Distributed 
File System must integrate to respond to the multiple requirements 
of a BIG DATA ecosystem. This study will allow us to well target 
the part on which we are going to conduct our research to improve 
the performance of a DFS. 

2. What is “Distributed File system (DFS)” 

A distributed file system (DFS) is a system that allows multiple 
users to access, through the network, a file structure residing on 
one or more remote machines (File Servers) using a similar 
semantics to that used to access the local file system. It is a client / 
server architecture where data is distributed across multiple storage 
spaces, often called nodes. These nodes consist of a single or a 
small number of physical storage disks. 

The nodes generally consist of basic equipment, configured to 
just provide storage services. As such, the material can be 
relatively inexpensive. 

The disk of each machine may be divided into several 
segments, and each segment is stored repeatedly (often three 
times) on different storage spaces, each copy of each segment is a 
replica. 

As the material used is generally inexpensive and by large 
quantities, failures become inevitable. However, these systems are 
designed to be tolerant to failure by using the replication technique 

which makes the loss of one node an event "of low emergency and 
impact" as the data is always recoverable, often automatically, 
without any performance degradation. 

The architecture of a distributed storage system varies 
depending on the technological choices driven by the use case. 
Nevertheless, it must generally observe some basic rules, which 
are required for the survival of such ecosystem and which can be 
summarized in the following points [8]: 

• Access transparency: The remote file systems are exposed 
on the client machine like any local file system. 

• Localization transparency: The client has no indication -by 
the file name- about the location of the file space neither if 
it is a local or remote space file.  

• Concurrent access transparency: The file system state is the 
same for all the clients. This means that if a process is 
modifying a file, all other processes on the same system or 
remote systems that access the files see the changes in a 
consistent way.  

• Failure Transparency: Client programs should not be 
affected by any loss of any node or a server.  

• Heterogeneity: The File service needs to be supported by 
different hardware platforms and operating systems.  

• Scalability: The file system should work in small 
environments (one to a dozen machines) as well as in large 
environments (hundreds or even tens of thousands of 
systems).  

• Replication transparency: To support scalability, files must 
be replicated on multiple servers; transparently to clients 
(the system is on charge to create and maintain a designed 
number of replicas automatically).   

• Migration transparency: any file movement in the system 
for management purposes should be transparent to the 
clients.  

• Support fine-grained distribution of data: To optimize 
performance, the individual objects need to be located near 
the processes that use them.   

• Tolerance for network partitioning: The file system should 
be tolerant to the fact that the entire network or certain 
segments of it may be unavailable during certain periods.  

In this paper, we compare five distributed file systems: AFS, 
GFS, Blobseer, HDFS and GPFS. The choice to compare only 
those specific systems, despite of the fact that the market includes 
dozens of technologies, is particularly led by two reasons: 

1. Our main objective is to study by focusing on the main 
features of the most Data File Systems required for a Big Data 
context. It is technically difficult to study all systems in the market 
in order to know their technical specifications, especially as lots of 
them are proprietary and closed systems. Even more, the 
techniques are similar in several cases and are comparable to those 
of the five we compare in this paper. The best known and not 
included in our paper because of that are: Amazon S3 File System, 
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OCFS (Oracle Cluster File System), GFS2 (Red Hat), VMFS 
(Virtual Machine File System by VMware). 

2. These five systems allowed us to make a clear idea about the 
state of the art of this domain, thanks to the following 
particularities: 

• AFS (Andrew File System) is a system that can be 
considered as a bridge between conventional systems such 
as NFS and advanced distributed storage systems. His big 
advantage is that it is available on a wide range of 
platforms: AIX, Mac OS X, Darwin, HP-UX, Irix, Solaris, 
Linux, Microsoft Windows, FreeBSD, NetBSD and 
OpenBSD. 

• GFS (Google File System) is a proprietary system used 
internally by Google, which is one of the leading 
innovating companies. Google aims to manage huge 
quantities of data because of its activities.  

• Blobseer is an open source initiative, particularly driven by 
research as it is maintained by INRIA Rennes. Blobseer 
choices, especially in the area of concurrency, are very 
interesting as discussed hereafter. 

• HDFS (Hadoop Distributed File System), which is a 
subproject of HADOOP, a very popular Big Data system, 
is considered as a reference in this domain. It is therefore 
interesting to review its mechanisms and compare them to 
the other DFS systems. 

• GPFS (General Parallel File System) is a system developed 
by IBM, a global leader in the field of Big Data. IBM 
commercializes this system as a product. 

By choosing those five systems, we tried to make sure to have 
an illustration of these specific initiatives: 

• Open source initiatives (BlobSeer, AFS, HDFS),  

• Academic initiatives (BlobSeer) 

• Big Data leader’s initiatives (IBM GPFS, Google GFS) 

• Business market initiatives (IBM GPS) 

We think that considering these four initiatives can help to 
make a clear idea about the main orientations in the market of 
distributed storage today. 

3. DFS architectures 

In the following, we study the architecture of each of the five 
systems in order to explore the mechanisms and architectural 
choices of each of them and thus understand the reasons which 
justify these choices. 

3.1. Andrew File System (AFS) architecture 

A standard system that supports some characteristics of this 
kind of architecture is AFS. 

AFS (or Open AFS currently) is a distributed file system 
originally developed by Carnegie Mellon University (as part of the 
Andrew Project. Originally named "Vice", AFS is named after 

Andrew Carnegie and Andrew Mellon). It is supported and 
developed as a product by Transarc Corporation (now IBM 
Pittsburgh Labs). It offers client-server architecture for federated 
file sharing and distribution of replicated read-only content [9]. 

AFS offers many improvements over traditional systems. In 
particular, it provides the independence of the storage from 
location, guarantees system scalability and transparent migration 
capabilities. AFS can be deployed on a wide range of 
heterogeneous systems, including UNIX, Linux, MacOS X and 
Microsoft Windows. 

 
Figure 1 : AFS Design 

As shown in Figure 1, the distribution of processes in AFS can 
be summarized as follows: 

•  A process called “Vice” is the backbone of the system; it is 
composed by a set of dedicated file servers and a complex LAN. 

• A process called “Venus” runs on each client workstation; it 
mediates access to shared files. Venus gets the requested files from 
the vice process and keep them in the local cache of the client. 
Venus also emulates a “UNIX like” file system access semantic on 
the client station. “Vice” and “Venus” processes work in the back 
ground of the client workstation process, so the client sees a normal 
UNIX file system [10]. 

To better manage the transfer of files between servers and 
clients, AFS assumes the following hypothesis [11]: 

• Concerned files remain unchanged for long periods; 

• Those files will be updated only by their owners; 

• A large local cache is enough to contain all the client files; 

• Generally concerned files are of small size, less than 10 
Kbytes; 

• Read operations are more common than write operation; 

• The sequential access is usually more common than 
random access;  

• Most of the files are used by a single user, their owner; 
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• Once the file has been used, it will likely be used again in 
the near future. 

These assumptions led AFS to adopt a fairly simple caching 
mechanism based on these two main elements: 

• The whole content of directories and files are transferred 
from the server to the client (in AFS-3 by pieces of 64 
kilobytes) 

• Caching whole file: when the file is transferred to the client, 
it will be stored on the local client disk (client cache) 

Using the client cache may actually be a good compromise to 
improve system performances, but it will only be effective if the 
assumptions that the AFS designers have adopted are respected. 
Otherwise, this massive use of the cache may compromise the data 
integrity. 

3.2. Google File System (GFS) architecture 

Another interesting approach is that adopted by GFS, which 
does not use cache at all. 

GFS is a distributed file system developed by Google for its 
own applications. Google GFS system (GFS cluster) consists of a 
single master and multiple Chunkservers (nodes) and can be 
accessed by multiple clients, as shown in Figure 2 [12]. 

Each of these nodes is typically a Linux machine running a 
server process at a user level. It is possible to run both a 
Chunkserver and a client on the same machine if its resources 
allow it. 

 
Figure 2 : GFS Design 

The files to be stored are divided into pieces of fixed size called 
"chunks". Each "chunk" is identified by an immutable and unique 
“Chunk Handle” of 64 bits, assigned by the Master at its creation. 
The Chunkservers store chunks on local disks as Linux files, and 
manage to read or write a chunk using her Chunk Handle 
associated with a byte range. 

The chunks are replicated on several Chunkservers. By default 
three replicas are stored, although users can designate a different 
number of replications if needed. 

The "master" server maintains all metadata of the file system. 
This includes the namespace, access control information, the 
mapping from files to chunks and locations of existing chunks. It 
also controls the operations of the entire system, such as the 
selection and management of the master copy of a chunk (chunk 
lease), garbage collection (orphan chunks) and the migration of 
chunks between Chunkservers. The master communicates 
periodically with each Chunkserver to give instructions and collect 
its state. 

The GFS client code uses the API of the file system. It 
communicates with the master and Chunkservers to read or write 
data. Clients interact with the master regarding transactions related 
to metadata, but all communications relating to the data themselves 
goes directly to Chunkservers. 

Unlike AFS, neither the client nor the Chunkserver use a 
dedicated cache. Caches, according to Google, offer little benefit 
because most applications use large files or large work spaces 
which are too big to be cached. Not using the cache can simplify 
the work of the client and also the entire system by eliminating the 
cache coherence issues. The only exception to this rule is the 
metadata which can be cached on the client station. The 
Chunkservers does not need to use cache because the chunks are 
stored as local files and thus benefit from the "cache" of the Linux 
buffer that "cache" frequently accessed data in memory.  

GFS was able to manage the failure possibility related to the 
cache coherence that can be noticed on AFS. But using a single 
master in the architecture of GFS is a real challenge; its 
involvement in read and write operations should absolutely be 
controlled so that it does not become a bottleneck. Google has tried 
to reduce the impact of this weak point by replicating the master 
on multiple copies called "shadows". These replicas are a backup 
of the master and better yet they can be accessed in read-only and 
so allowing access even when the master is down. 

Google measured performance on a GFS cluster consisting of 
one master, two master replicas, 16 chunkservers, and 16 clients. 
All the machines are configured with dual 1.4 GHz processors, 2 
GB of memory, two 80 GB 5400 rpm disks, and a 100 Mbps full-
duplex Ethernet connection to an HP 2524 switch.  

The test conditions was for 15 concurrent client accessing 
simultaneously N distinct files to read or write 1 GB of data 

Read Average throughput: 90 MB/s 

Write Average throughput: 34 MB/s 

3.3. Blobseer architecture 

Blobseer is a project of KerData team, INRIA Rennes, 
Brittany, France. The main features of Blobseer are:  

• Storage of data in BLOBs,  
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• Data segmentation,  

• Management of distributed metadata  

• Control of concurrency based on a versioning mechanism.  

The data stored by Blobseer is wrapped in a level of abstraction 
that is a long sequence of bytes called BLOB (Binary Large 
Object) [13]. 

Blobseer has focused on the problems posed by the master in 
GFS and HDFS, but also on competitive access to data. 

The Blobseer system consists of distributed processes (Figure 
3), which communicate through remote procedure calls (RPC). A 
physical node can run one or more processes and can play several 
roles at the same time. 

 
Figure 1 : Blobseer Design 

 

The bricks of Blobseer are: 

• Data providers: The data providers physically store the 
chunks. Each data provider is simply a local key-value 
store, which supports accesses to a particular chunk given 
a chunk ID. New data providers may dynamically join and 
leave the system. 

• Provider manager: The provider manager keeps 
information about the available storage space and 
schedules the placement of newly generated chunks. It 
employs a configurable chunk distribution strategy to 
maximize the data distribution benefits with respect to the 
needs of the application. The default strategy implemented 
in Blobseer simply assigns new chunks to available data 
providers in a round-robin fashion. 

• Metadata providers: The metadata providers physically 
store the metadata that allow identifying the chunks that 
make up a snapshot version of a particular BLOB. Blobseer 
employs a distributed metadata management organized as 

a Distributed Hash Table (DHT) to enhance concurrent 
access to metadata. 

• Version manager: The version manager is in charge of 
assigning new snapshot version numbers to writers and to 
unveil these new snapshots to readers. 

• The version manager is the key component of Blobseer, the 
only serialization point, but is designed to not involve in 
actual metadata and data Input/output. This approach keeps 
the version manager lightweight and minimizes 
synchronization. 

• Clients: Blobseer exposes a client interface to make 
available its data-management service to high-level 
applications. When linked to Blobseer’s client library, 
application can perform the following operations: 
CREATE a BLOB, READ, WRITE, and APPEND 
contiguous ranges of bytes on a specific BLOB. 

Unlike Google GFS, Blobseer does not centralize access to 
metadata on a single machine, so that the risk of bottleneck 
situation of this type of node is eliminated. Also, this feature 
allows load balancing the workload across multiple nodes in 
parallel. 

Since each BLOB can be stored as fragments over a large 
number of storage space providers, some additional metadata are 
needed to map sequences of BLOB. Although these additional 
metadata seem to be insignificant compared to the size of the data 
itself, on a large scale it represents a significant overhead. In those 
conditions, traditional approaches which centralize metadata 
management reach their limits. 

Therefore, Blobseer argues for a distributed metadata 
management system, which brings several advantages:  

• Scalability: A distributed metadata management system is 
potentially more scalable and open to concurrent accesses, 
This scalability can also cover the increase of the size of 
metadata.  

• Data availability: Since metadata can be reproduced and 
distributed to multiple metadata providers, this avoids 
having a single centralized metadata server which then 
provides a single point of failure. 

In addition, the implementation of the versioning mechanism 
via the «version manager» improves significantly the processing 
of concurrent access (as seen in Concurrent access paragraph). 

A set of experiments was carried out on the Rennes cluster of 
the Grid’5000 platform [14,15]. The used nodes are 
interconnected through a 1 Gbps Ethernet network, each node 
being equipped with at least 4 GB of memory. The BlobSeer 
deployment consists of one version manager, one provider 
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manager, one node for the namespace manager. A BlobSeer 
chunk size of 32 MB was fixed, as previous evaluations of 
BlobSeer have shown this value enables the system to sustain a 
high-throughput for multiple concurrent data transfers. The test 
concerns the writing and reading of 2 GB and the Average 
throughput was measured:  

Read Average throughput: 52 MB/s 

Write Average throughput: 62 MB/s 

The installation of a platform under Blobseer is of moderate 
difficulty. The preparation of the packages and their deployment is 
not very complicated but optimizations and tuning (snapshots, 
versioning, and concurrent accesses) require several tests. 

3.4. Hadoop Distributed File System (HDFS) 

A standard system that supports some characteristics of this 
kind of architecture is AFS. Hadoop Distributed File System 
(HDFS) is a distributed file system component of the Hadoop 
ecosystem. The Apache Hadoop software library is a framework 
that allows distributing the processing of large data sets across 
clusters of computers using simple programming models[16]. 

HDFS is designed to run on commodity hardware, it is highly 
fault-tolerant and is designed to be deployed on low-cost 
hardware. HDFS also provides high throughput access to 
application data and is suitable for applications that have large 
data sets. It relaxes a few POSIX requirements to enable 
streaming access to file system data[17]. 

As shown in figure 4, HDFS stores file system metadata and 
application data separately. Like other distributed file systems, 
HDFS stores metadata on a dedicated server, called the 
NameNode. Application data are stored on other servers called 
DataNodes. All servers are fully connected and communicate with 
each other using TCP-based protocols. The DataNodes in HDFS 
do not use data protection mechanisms such as RAID to make the 
data durable. Instead of that, the file content is replicated on 
multiple DataNodes for reliability. While ensuring data durability, 
this strategy has the added advantage that data transfer bandwidth 
is multiplied, and there are more opportunities for locating 
computation near the needed data [18]. 

HDFS is designed to reliably store very large files across 
machines in a large cluster. It stores each file as a sequence of 
blocks; which are the same size except the last one. The blocks of 
a file are replicated for fault tolerance. Files in HDFS are write-
once and have strictly one writer at any time [19].  

 
Figure 4: HDFS Design 

An HDFS client wanting to read a file first contacts the 
NameNode for the locations of data blocks comprising the file and 
then reads block contents from the DataNode closest to the client. 
When writing data, the client requests the NameNode to nominate 
a suite of three DataNodes to host the block replicas. The client 
then writes data to the DataNodes in a pipeline fashion. The 
current design has a single NameNode for each cluster. The 
cluster can have thousands of DataNodes and tens of thousands of 
HDFS clients per cluster, as each DataNode may execute multiple 
application tasks concurrently. 

Since the NameNode is unique in the cluster, saving a 
transaction to disk becomes a bottleneck for all other threads 
which have to wait until the synchronous operations initiated by 
one of them are complete [21]. In order to optimize this process 
the NameNode batches multiple transactions initiated by different 
clients. When one of the NameNodes threads initiates a flush-and-
sync operation, all transactions batched at that time are committed 
together. Remaining threads only need to check that their 
transactions have been saved and do not need to initiate a flush-
and-sync operation. 

Regarding the performance, a basic test was performed on a 
test cluster composed by 8-nodes. The first 5 nodes of this Hadoop 
cluster provided both computation and storage resources (as Data 
Node servers). One node served as Job Tracker (Resource-
Manager) and one node served as NameNode storage manager. 
Each node is running at 3.10 GHz CPU, 4GB RAM and a gigabit 
Ethernet. All nodes used Hadoop framework 2.4.0. 

The test concerns the writing and reading of 10 GB of data and 
the average i/o rate was measured by TestDfsIO tool 

“Write” Average i/o rate = 65 mb/s 

“Read” Average i/o rate = 75 mb/s 
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The HDFS system remains simple enough to set up and 
manage, to add or to delete a node it needs the preparation of the 
post concerned and the change of some configuration files. Web 
interfaces make it possible to easily monitor the general condition 
of the nodes and even the distribution of the storage or the size of 
the chunks used. 

Recompile the code on a particular machine can be more 
complicated but remains relatively simple for a system 
administrator. 

3.5. General Parallel File System (GPFS) 

A standard system that supports some characteristics of this 
kind of architecture is AFS. The General Parallel File System 
(GPFS) is a cluster developed by IBM which provides concurrent 
access to a single or set of file systems from multiple Storage Area 
Network (SAN) or network attached nodes [22]. 

GPFS is highly scalable and enables very high performances 
and availability thanks to a variety of features like data replication, 
policy based storage management, and multi-site operations. 
GPFS cluster can be deployed under AIX (Advanced IBM Unix), 
Linux or Windows server nodes. It can also be deployed on a mix 
of some or all those operating systems. In addition, multiple GPFS 
clusters can share data locally or across wide area network (WAN) 
connections [23]. 

 
Figure 5: GPFS Design 

GPFS uses the Network Shared Disk (NSD) protocol over any 
TCP/IP capable network fabric to transfer data to the client file 
system. 

On the other side, GPFS server architecture is based on four 
modules as illustrated in Figure 5, which manage the shared disks  

System resource controller (src): The main purpose of the 
System Resource Controller is to give to the system manager or a 
developer a set of commands and subroutines by which he can 
control and interact with the subsystems of the GPFS cluster. 

GPFS daemon (mmfsd): The GPFS daemon is charged of all I/O 
and buffers for GPFS, this include all read/write synchronous 
/asynchronous operations. To grant data consistency of the system, 
the daemon uses a token management system. On the other hand, 
the Daemon manages multi threads to ensure the priority to some 
critical processes and protect the whole system from lagging 
because of some intensive routines. 

The daemons running on all the nodes of one cluster keep 
communicating with each other to insure that any configuration 
changes, recovery or parallel updates of the same data structures 
is shared between all of them. 

RSCT daemons: GPFS uses Two RSCT daemons: 

- The Group Service RSCT daemon (hagsd) ensures a distributed 
coordination and synchronization with the other subsystems. 

- The Topology Service RSCT daemon (hatsd) insures providing 
other subsystems with network adapter status, node connectivity 
information, and a reliable messaging service. 

Linux Operating system : Under Linux, GPFS need to run two 
modules: 

- Portability layer module (mmfslinux): This module enables 
communication between Linux Kernel and GPFS kernel, based on 
hardware platform particularity and Linux distribution 
specifications. 

- Kernel extension (mmfs): which provides mechanisms to access 
a file system where data is physically stored from the client 
operating system transparently. In fact, GPFS appear to the client 
like any other local file system. When any application makes a 
call to any file system, this call is transmitted by the client 
Operating system into GPFS kernel extension. The kernel 
extension can respond to any file system call, by using the local 
resources if exists, or make a request to GPFS daemon if not. 

GPFS have many specific features that make it very scalable 
and efficient: 

- A GPFS cluster can integrate and optimize the use of different 
disk drives with different performances;   

- GPFS use data striping across disks therefore the spreading of 
any processing over the cluster is possible; 

- Metadata management is optimized to avoid the unnecessarily 
access to the server; 
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- GPFS uses caches on the client side to increase throughput of 
random reads; 

- GPFS allows access to files from multiple programs on read and 
write mode;  

- GPFS improves query languages such as Pig and Jaql by 
providing sequential access that enables fast sorts. 

On the other hand, GPFS eliminates the risk of a single point 
of failure because the architecture is based on the following 
attributes: 

- Distributed metadata; 

- Replication of both metadata and data; 

- Minimum number of nodes (quorum);  

- The recovery and reassignment of failed node is automatic; 

- GPFS provides a fully POSIX semantic; 

- Workload isolation; 

- Enhanced Security thanks to a native encryption, stronger 
cryptographic keys and more robust algorithms (NIST SP800-
131a); 

- Provides cluster-to-cluster replication over a wide area network. 

All those features make GPFS a very scalable and high available 
system, but it does not seem to be designed for low cost hardware 
platforms unlike the GFS or Blobseer for example. Nevertheless, 
it remains proposing interesting mechanisms for data caching or 
parallel access to files. 

4. Data Storage as Binary Large Object (blob) 

The architecture of a distributed storage system can predict 
and improve the accessibility of files on storage spaces. It also 
enables the system design scalability and resilience to the risk of 
failures that amplify with the quality of equipment in use. 
However, among the main criteria that a distributed storage 
system must take into consideration is how files are stored on the 
disks. 

In fact, we are talking about applications that process large 
quantities of data, distributed on a very large scale. To facilitate 
the management of data in such conditions, one approach is to 
organize these data as objects of considerable size. Such objects, 
called Binary Large Objects (BLOBs), consist of long sequences 
of bytes representing unstructured data and can provide the basis 
for a transparent data sharing of large-scale. A BLOB can usually 
reach sizes of up to 1 Tera Byte. 

Using BLOBs offers two main advantages:  

• The Scalability: Applications which deal with data sets that 
grow rapidly to easily reach around terabytes or more, can 

evolve more easily. In fact, maintaining a small set of huge 
BLOBs including billions of small items in the order of a few 
Kbytes is much easier than directly managing billions of small 
files of a few kilobytes. In this case, the simple mapping 
between the application data and file names can be a big 
problem compared to the case where the data are stored in the 
same BLOB and that only their offsets must be maintained.  

• The Transparency: A data management system based on shared 
BLOBs, uniquely identifiable through ids, relieves application 
developers of the burden of codifying explicitly management 
and transfer of their locations. The system thus offers an 
intermediate layer that masks the complicity of access to data 
wherever it is stored physically [24]. 

5. Data striping 

Data striping is a well-known technique for increasing the data 
access performance. Each stored object is divided into small 
pieces that are distributed across multiple machines over the 
storage system. Thus, requests for access to data may be 
distributed over multiple machines in parallel, allowing achieving 
high performances. Two factors must be considered in order to 
maximize the benefits of access to the distributed data:  

• A configurable Strategy of distribution of chunks: Distribution 
strategy specifies where to store the chunks to achieve a 
predefined goal. For example, load balancing is one of the 
goals that such strategy can allow. By storing the chunks on 
different machines, we can parallelize the concurrent access to 
the same object and therefore improve performances. More 
complex scenarios are conceivable, for example optimizing 
access by geographical location or by the characteristics of 
storage machines (place the most requested chunks on the most 
powerful machines  ...)[25,26] 

• Dynamic configuration of the size of the chunks: The 
performance of distributed data processing is highly dependent 
on how the calculation is distributed and planned on the 
system. Indeed, if the chunks size is too small, applications 
must then retrieve the data to be processed from several chunks 
because of increasing probability of that the size of these data 
requires a high number of chunks. On the other hand, the use 
of too large chunks will complicate simultaneous access to data 
because of the increasing probability that two applications 
require access to two different data but both stored on the same 
chunk. A compromise will have to be made regarding the size 
of chunks to enable a balance between performance and 
efficiency of such system. 

The majority of systems that use this type of architecture, such 
as Google GFS, HDFS or Blobseer use a chunk size of 64 MB 
that seems to be the most optimized for those two criteria. 
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6. Concurrency 

Processing concurrency is very dependent on the nature of the 
desired data processing and the nature of data changes. It’s clear 
that the Haystack system which manages Facebook pictures that 
do not changes during their lives [27], will be different from 
Google GFS or IBM GPFS which are intended to manage more 
dynamic data. 

The “lock” is a known method to solve this type of problems, 
which is used by many DFS including GPFS. 

The General Parallel File System (GPFS) propose a parallel 
access mechanism using block level locking based on a very 
sophisticated scalable token management system. This 
mechanism provides data consistency while allowing concurrent 
access to the files by multiple application nodes. A token server 
manages the lock acquisition and the lock revocation, and 
between these too operations only the system that has the lock can 
modify the file. 

It is clear that in case of very large file, the lock operation can 
cause a considerable loss of time. Fortunately, IBM has developed 
a sophisticated mechanism that allows locking byte ranges instead 
of whole files/blocks (Byte Range Locking) [28] 

GFS meanwhile, offers a relaxed consistency model that 
supports Google highly distributed applications, but is still 
relatively simple to implement. Practically all Google 
applications mutate files by appending rather than overwriting. 
The mutation operations on GFS are atomic. They are treated 
exclusively by the "master". The namespace locks guarantee its 
atomicity and accuracy. The status of a file region (a region of 
storage space which contains a part or the entire file) after a data 
transfer depends on the type of mutation, the success or failure of 
the mutation, and the existence or not of simultaneous mutations. 

Table 1 summarizes the states of a file region after a transfer. 
A file region is "consistent" if all clients see the same data 
regardless of the replicas they are reading. A region is called 
"defined" after a change if it is consistent and clients will see all 
of what this mutation wrote. 

When a mutation succeeds without simultaneous write 
interference, the affected region is defined (and coherent by 
consequence): All customers will see all what the mutation wrote. 

Successful simultaneous mutations leave the region undefined 
but consistent: all clients see the same data, but the data may not 
reflect what any one mutation wrote, it will be composed of mixed 
fragments from multiple mutations. Failed mutation makes the 
region inconsistent (hence also undefined): different clients may 
see different data at different times. GFS makes the difference 
subsequently between the defined regions and undefined regions. 

Table 1 : File region state after mutation 

 Write Record Append 

Serial success Defined Defined interspersed with 
inconsistent 

Concurrent successes Consistent but 
undefined 

Failure Inconsistent 

 

On GFS, Data mutations may be a record write or a record 
append. A "record append" in GFS is different from a standard 
"append" in which the customer writes at the end of file. Indeed, 
a "record append" in GFS consists of writing a record in a block 
at least once even in the case of competitive changes, but at an 
offset that GFS itself chooses. The offset is returned to the client 
and marks the beginning of a defined region that contains the 
record. 

After a sequence of successful mutations, the mutated region 
of the file is guaranteed to be "defined" and contains data written 
by the last mutation. GFS achieves this by applying chunk 
mutations in the same order on all replicas, but also using chunks 
version numbers to detect any replica that has become obsolete 
because it missed mutations. Obsolete replicas will never be used 
and will be destroyed by a garbage collector at the first 
opportunity. 

Blobseer developed a more sophisticated technique, which 
theoretically gives much better results. The basic needs can be 
defined as following: the BLOB access interface must allow users 
to create a BLOB, read / write a sequence of bytes (of a known 
size starting from an offset) from or to the BLOB, and add a byte 
sequence of a certain size at the end of the BLOB. 

However, given the requirements regarding competitive 
access to data, Blobseer developers claim that BLOB access 
interface should be able to:  
- Manage Asynchronous operations; 
- Have access to previous versions of the BLOB; 
- Ensure the atomic generation of snapshots whenever the BLOB 
is updated. 

Each of these points is covered by the following capabilities: 

1. The explicit versioning: Applications that process large 
quantities of data must often manage the acquisition and 
processing of data in parallel. Versioning can be an effective 
solution to this situation. While the acquisition of data can lead to 
the generation of new snapshot of the BLOB, the data processing 
can continue quietly on its own snapshot that is immutable and 
therefore never leads to potential inconsistencies. This can be 
achieved by exposing data access interface based on versioning, 
which allows the user to directly express these workflow 
templates, without the need to explicitly manage synchronization. 
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2. Atomic snapshots generation: Snapshots can be used to 
protect the file system contents against any error by preserving at 
a point in time a version of the file system or a sub-tree of a file 
system called a fileset. In Blobseer, a snapshot of the blob is 
generated atomically each time the Blob is updated. Readers 
should not be able to access transiently inconsistent snapshots that 
are being generated. This greatly simplifies development of 
applications because it reduces the need for complex 
synchronization schemes at the application level. 

The "snapshot" approach using versioning that Blobseer 
brings is an effective way to meet the main objectives of 
maximizing competitive access. Data and metadata are always 
created, but never overwritten. This will parallelize concurrency 
as much as possible, in terms of data and also metadata, in all 
possible combinations: simultaneous reads, simultaneous writes 
and concurrent reads and writes [29]. 

The disadvantage of such a mechanism based on snapshots, is 
that it can easily explode the storage space required to maintain 
the system. However, although each write or append generates a 
new version of the blob snapshot, only the differential updates 
from previous versions are physically stored. This eliminates 
unnecessary duplication of data and metadata and greatly 
optimizes storage space. 

7. Tiered storage 

Despite the high scalability of DFSs existing on the market 
and their ability to manage a very large number of nodes, they still 
dealing with managed nodes in a similar way. 

 Indeed, a node network in a DFS can technically be composed 
of several types of machines with heterogeneous storage units, 
managing these nodes similarly would often prevent DFS from 
taking advantage of the most powerful storage spaces or otherwise 
imposing many constraints on rudimentary storage spaces. 
A simple way to avoid this situation is to equip the DFS with a 
single type of node, therefore the management will be linear and 
the performance will not be impacted by the identity of the storage 
node. In this case the DFS is indifferent to the I/O characteristics 
of each node and will have to keep the same category of devices 
even if the technology is outdated (the case of the HDD disks), 
otherwise pro-actively opt for advanced technologies (the SSD for 
example) and undergo costs of maintenance and evolution. 

Another way to address this problem is to allow DFSs to 
manage different device categories while equipping them with 
technology that enables them to intelligently manage storage 
policies on heterogeneous storage resources. 

The "tiered storage" allows to create groups of "devices" (tiers) 
that have the same I / O characteristics and to manage the 
distribution of the storage on these groups according to the degree 
of solicitation of data. 

 
Figure 6: Tiered storage concept 

Hadoop, since version 2.3.0, had introduced a major evolution 
that allowed the management of heterogeneous storage spaces; by 
using this option combined with a storage policy management 
API, the user can specify on which storage type this data should 
be stored.  

Other works on Hadoop has made it possible to automate the 
choice of the storage space for specific data, for example based on 
the temperature of the data (hot data for the very demanded and 
cold data for those less solicited for example)[30] or even improve 
the architecture of HDFS as has been proposed by hatS [31] which 
logically groups all storage devices of the same type across the 
nodes into an associated “tier.” Or yet by TS-Hadoop [32] which 
utilizes tiered storage infrastructure, besides HDFS, to improve 
map reduce operations. TS-Hadoop automatically distinguish hot 
and cold data based on current workload, and move hot data into 
a specific shared disk (hcache) and cold data into HDFS 
respectively, so that the hot data in HCache could be processed 
efficiently. 

The same concept is assured by other DFS like GPFS by 
"Spectrum Scale ILM toolkit" which allows the management of 
groups of storage spaces but also to automate the management of 
the files within these spaces. It allows to create hierarchized and 
optimized storage sets by grouping, in separate storage pools, 
discs that have close performances, similar budget characteristics 
or even hosted in the same physical location. Thereafter, a storage 
strategy tells the system what rules should be followed when 
storing each file. 

 
Figure 7: GPFS Storage spools as Tiered storage 
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The performance of a tired-storage compared to a traditional 
DFS can be very remarkable, allowing improvements up to 36% 
on the reading times on hatS for example. However, an automatic 
analysis must be associated to the architecture to allow automatic 
determination of the best storage location. This analysis can be 
done at the time of data storing via a specific algorithm based on 
the information of storage areas, or by analyzing the situation of 
the response time and redistribute data according to the results of 
the analysis (log analysis for example) 

8. DFS Benchmark 

As we have detailed in this article, often there is no better or 
worse methods for technical or technological choices to be 
adopted to make the best of a DFS, but rather compromises that 
have to be managed to meet very specific objectives. 

In Table 3, we compare the implementation of some key 
technologies that meet the requirements listed in the paragraph 
"What is a Distributed File system", and that can be summarized 
as follows: 

• Data Storage Scalability: the system can be scalable 
natively on the data storage capability.  

• Meta Data Storage Scalability: the system can be scalable 
natively on the Meta data storage capability.  

• Fault tolerance: the system is fault tolerant transparently to 
the user.  

• Data Access Concurrency: how the system manages 
competitive access to data.  

• Meta Data Access Concurrency: how the system manages 
competitive access to Meta data.  

• Snapshots: does the system keep snapshots of files to 
recover from errors or crashes.  

• Versioning: does the system records versions of changed 
files and data.  

• Data Striping: does the system uses data striping over his 
nodes.   

• Storage as Blobs:  does the system store data as blobs.  

• Data replication: does the system automatically replicate 
data. 

• Supported OS: which operating systems can be used by the 
DFS.  

• Dedicated cash: does the system support the using of 
dedicated cash. 

Analysis of the results of Table 3 leads to the following 
conclusions:  
- The five systems are expandable in data storage. Thus they cover 
one of the principal issues that lead to the emergence of Distribute 
File System: the capacity to extend the system to absorb more 
volumes, transparently to the user. 

- Only Blobseer and GPFS offers the extensibility of metadata 
management to overcome the bottleneck problem of the master 
machine which manage the access to metadata; while AFS 
architecture does not provide metadata supporting to access to the 
file, GFS and HDFS has not considered necessary to extend the 
metadata management feature. Google considers that having a 
single master vastly simplifies the design of GFS and enables the 
master to make sophisticated chunk placement and replication 
decisions using global knowledge. 

- Except AFS, all studied systems are natively tolerant to crash, 
relying essentially on multiple replications of data. 
- The competitive access to the data and metadata is an important 
point in all big data systems. All systems use locks to enable 
exclusive data mutation. To minimize the slowing effect caused 
by locks on the whole file, GPFS manage locks on specific areas 
of the file (Byte range locks). Nevertheless, the most innovative 
method is the use of versioning and snapshots by Blobseer to 
allow simultaneous changes without exclusivity. 

- Except AFS, all systems are using the striping of data. As 
discussed earlier, this technique provides a higher input/output 
performance by "striping" blocks of data from individual files 
over multiple disks, and reading and writing these blocks in 
parallel way. 

- Blobseer seems to be the only one among the systems studied 
that implements the storage on blobs technique, despite the 
apparent advantages of such technique. 

- To allow a better scalability, a DFS system must support as much 
operating systems as possible. However, despite that, the studied 
technologies remain discorded on this point. While AFS, HDFS 
and GPFS  supports multiple platforms, GFS and Blobseer run 
exclusively on Linux. This can be partly explained by the 
popularity of AFS, HDFS and GPFS which are used in many 
professional contexts. 

- Use of dedicated cache is also a point of discord between studied 
systems, GFS and Blobseer are categorical and consider that the 
cache has no real benefits, but rather causes many consistency 
problems. AFS and GPFS use dedicated cache on both client 
computers and servers. HDFS seems to use dedicated cache only 
at client level. 
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Table 3: Comparative table of most important characteristics of distributed file storage 

 

  Data 
Scalability  

Meta Data 
Scalability Fault tolerance Data access 

Concurrency 

Meta Data 
access 
Concurrency 

Snapshots Versioning Data Striping Storage as 
Blobs Supported OS Dedicated cache 

HDFS YES NO 
Block Replication. 
Secondary 
Namenode. 

Files have strictly 
one writer at any 
time 

NO  YES NO 
YES (Data 
blocks of 64 
MB) 

NO 

Linux and 
Windows are the 
supported , but 
BSD, Mac OS/X, 
and Open Solaris 
are known to work 

YES (Client) 

Blobseer YES YES 
Chunk Replication 
Meta data 
replication 

YES YES YES YES 64 MB Chunks YES LINUX NO 

GFS by 
Google YES NO 

Fast Recovery. 
Chunk Replication. 
Master Replication. 

Optimized for 
concurrent 
"appends" 

Master 
shadows on 
read only 

YES YES 64 MB Chunks NO LINUX NO 

AFS  
(OPEN FS) YES NO NO Byte-range file 

locking NO NO NO NO NO 

AIX, Mac OS X, 
Darwin, HP-UX, 
Irix, Solaris, 
Linux, Microsoft 
Windows, 
FreeBSD, 
NetBSD and 
OpenBSD 

YES 

GPFS IBM YES YES 

Clustering features.  
Synchronous and 
asynchronous data 
replication. 

Distributed 
byte range locking 

Centralized 
management YES unknown YES NO 

AIX, Red Hat, 
SUSE , Debian 
Linux 
distributions, 
Windows Server 
2008 

YES by AFM 
technology 
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9. Conclusion 

In this paper, we made a comparative study of the main 
characteristics of five distributed file storage systems. Firstly, we 
introduced the general objective of this kind of systems and 
reviewed related technologies, such as architectures, Blob use, 
data striping and concurrent access. At the end, we provide a table 
(Table 3) whose each column's header is a main characteristic of 
a DFS system and each line's header corresponds to one of the five 
DFS systems compared. At the intersection of each row and 
column, we specify whether the characteristic is implemented by 
the system as well as the particularities of the implementation. 

It is clear from this analysis that the major common concern 
of such systems is scalability. Those systems are designed to 
manage the amount of data that extends day after day. Centralized 
storage systems have many limitations and their maintenance is 
complicated and raises major concerns about cost. A DFS should 
therefore be extended with a minimum cost and effort. 

Also data availability and fault tolerance remain among the 
major concerns of DFS. Many systems tend to use non expensive 
hardware for storage. Such condition will expose those systems to 
frequent or usual breakdowns. This issue is remedied by 
replication mechanisms, versioning, snapshots… that aim 
restoring the system state, often automatically, after a fault or total 
loss of any nodes. 

To these mechanisms, data striping and lock mechanisms are 
added to manage and optimize concurrent access to the data. 
Systems that manage large files in large quantities need to have a 
developed parallel access. Locking an entire file to change a part 
of it can halt the access to this file for an indeterminate duration. 
It was therefore important to adopt solutions that will just lock the 
byte range concerned by the change, or even like what Blobseer 
implements, continue editing in a new version without blocking 
other clients who continue to use the current version transparently. 

Working on multiples operating systems can bring big 
advantages to DFS. AFS is the one offering the largest variety of 
operating systems that can support its implementation, but as seen 
above AFS have some serious limitations. In perspective, we can 
think to improve AFS with some mechanisms of data striping and 
concurrency management that we think the most important 
features to add to this DFS.  

Furthermore, saving data as BLOB combined with a 
mechanism of data striping and cache, which is already proposed 
by AFS, can ameliorate considerably the efficiency of such 
system and allow it to manage larger files. 
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