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The main triangle projection in matrix spaces and its applications
. o
5. EWAPIEN and A. PELCZYNSKI (Warszawa)

Introduction. The origin of this paper are the following three, at
first appearance unrelated, problems:

1. Is the operator 8: I, > I, given by 8| a(n ) = Z’a(@) (p, g)-absolu-

tely summing for p > ¢ > 1% ([8], Problem 5).

2. Does thers exist an unconditional basis in the space of ail compact
linear operators in an infinite-dimensional Hilbert space?

3. Is every unconditionally convergent series in 1, of the form
%‘P“m, where P"(a(i)} = (a(i+n)), absolutely convergent? (S. Masur,
Scoftish Book, Problem 89).

It became clear that all these problems reduce to estimation of norms
of “the main friangle projections” in corresponding matrix spaces. Let
us consider, for example, the linear space of all matrices o = (alt, j))
with the norm

A (@) —susz(z Nai, 1),

where the supremum is taken over all sequences (s(i)}, (¢(j)) of ‘scalars
such that Z’|sz(z)] <1, Zitz(g N<1{4p(a) is equal to the norm of the

operator in I, given by the matrix a). The main friangle projection is
defined by
a(f,7) Hit+igntl,

Tu{a)(E,J) =
¥ 0 otherwige.

We prove that the norms of these projections grow the same as
Inn when % becomes large. This order of growth is attained for the Hilbert
matrices hy, hn(?,§) = (m+1—i—j)~1 if ++js#ntl and 4,i<n,
b, (1, §) == 0 otherwise.

In the fivst seetion the concept of a matrix norm is introduced, and the
norms of the main triangle projections with respect to some special matrix
normsg are estimated. The results of this section applied te the matrix
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norms ¢, and o, are very closed to some theorems of I. 0. Gochberg and
M. G. Krein concerning the Brodski integrals (cf. [4]).

In the gecond section the problem of the existence of unconditional
bases in the matrix spaces is considered. The non-existence of unconditionad
bases in the space of compact operators om I, is proved. It iz worth of
mentioning that all important examples of matrix spaces can be
constructed by means of tengor products in the sense of gome cross-norm
of Banach spaces with bages. For details see Seetion 3. Positive amgwer
to Problem 1 is given in Section 4. In Section 5 we exhibit some
relationships between the unconditional convergence of series in I, and
the convergence almost everywhere. These results generalize the clagsical
results on orthogonal series due to Menchotf and Rademacher (cf. [1]).
At last, Section 8 contains the negative answer to Mazur's problem. and
a geometric interpretation of the main theorem of Seetion 1.

We would like to express our gratitude to Professor B. 8. Mitjagin
who brought to our notice the relationship between the boundedness
of the main triangle projection and the existence of Brodski’s integral
in unifary ideals.

1. Matrix norm and the main triangle projections. Let M denote the
linear space of all scalar-valued (real or complex) matrices a = a(s, f)
(6§ =1,2,...) vuch that a(i,§) =0 for all but finitely many i,§. By
a* we denote the adjoint matrix of a, ie. a*(i, ) = a(j, 7). For ac M
we pub

tria) = ¥ a(i, 0).

3

For @, b in M, acbh denotes the matrix defined by
(@ob)(i, ) = Ya(i, Wbk, 5) (,§=1,2,..).
I

For n,m =1,2,.., we define the matrix Ynm DY Unm(t,J) =1
for i =mn, j =m a.nd uum(@,g) == ) otherwige.

Let Prm(a) = 3 a(i, jlus; for ae M.
i

A non-negative function o on M is called a matriz norm if it satisties
the following conditions:

(i) afa) = 0 iff a = 0; ate) = [Fle(a); ala+b) < a(a)+4 a(d) for
a,be M and any scalar . ' i

(1) a(upm) =1 for n,m =1, 2,

(iif) e(Py,m(e)) < ala) for weM(n m=1,2,..)

A matrix norm is called wunconditional it ,

) l(iv) afa) = a(s('i)t(j)a(i,j)) for acM and for |s(s)] = £(f)] =1

(i,§=1,2, .
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An unconditional matrix norm is called symmetric if

(v) a(a) = a(a(tp(’i), y)(j))) for ae M and for all permutations @ %
of positive mtegers

If o is a matrix norm, then the conjugate norm o is defmed by

a*(a) = sup 12@(2,9)1)(1,@)): sup  Jir(aob).
beM o)t | 7 beld a(d)<1

We have o™(a) = a(a)
Definition 1.1. Let us put for ae M(n =1,2,...)
Ta(@) = D) als,fucs.
irf<nrl
The operator. Ty, is called .the n-th main triangle projection.
In this section ;we are mainly interested in computing the quantities
ta(a) = ‘sup a(Tu(a)) = |Tule  (n=1,3,..),

a{a)<l,neM
ie. the norms of T, with respect to a given matrix norm a.
Tor arbitrary matrix norm o we have
(1.1) to(a) = f,(d*) (n=1,2,...).
If a is symmetrie, then
(1.2) Khe) <o) <

Less trivial is the following fact:
ProrosrrioN 1.1s If a is an unsconditional matriz norm, then

(1.3) 1 (2) < log,2n.

Proof. Call a chain any set C of pairs of positive integers such that
r{C)
0 =1JA4,XxB,
r=1

where (4,) and (B,) are finite sequences of sebts of positive integers such
that if », = r,, then

dey~Apy =0 and By~ B, =0.
Let us put '
Pola) = D afi,jlu; for ac M.
(i,jjxo
Observe that for each a< I and #n = n{a, 0) so large that P, ,(a) = a
and # > max(maxi, maxj) we have the identity
r<r(0) 1;_4 JeB,
Prpf(ali, §)s(8)s(5)),

Po() =@ ¥

(sthjeS(C,m)
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where .»S’(G, n) ig the set of all sequences (s(f)) such that s(j) = £-1 for

F=1,2,...; s{j) =11or j=m;if ji<d, and j,eB,, then s(j;)-8(j,) =1
for r=1,2,...,7(C). Since « is unconditional matrix norm, the last
identity implies

(1.4) for ac M,

o(Po(a)) < a(a)
Next put

Ay ={(,): i+i<k+1} (h=1,2,..).

We shall show that ([»] denotes the “entire” of z)

(1.5) Ay is 2 pnion of §(k) = [log,2%k] chains.
Assume that we have dbne this. Then combining (1.4) and (1.5)
with the obvious idenmtities Ty(a) = 3 a(é,)u;; we get (1.3).
; (B7)edy -
We prove {1.5) by induction. For & = 1 it is trivial. Suppose that
) . S([@+-1)/2]) .
(1.5) holds for 1<k<1IL Let 4, ="|J O(n) for some chaing C(n)
n=1
(n=1,2,...,[(14+1})2]). Let F; and G; be the ‘“translations” defined
by Fyf(i,9) = (i+[(+2)/2),5) and Gy{(i, ) = (i, 5 +[(142)/2)). _
Put (" (n) = Fy{C(n) v G{C(n)) for n =1,2,...,[(1-+1)/2]. Since
each C(n) is a ehain contained in J;, one can easily see that O*(n) is
also a chain. Moreover, we have
S+ .
My = Do By v G4y = I o UJl " (m),
ne

where I = {(¢,7): 1<4,i<<[(1+2)/2]}. Hence Ay I8 2 union of

+1
S([J;—])Jrl = 8(1+1)
chains. This completes the induction and the prbof of (1.3).
Next we shall show that, in general, inequality (1.3) cannot be
improved. We begin with the standard notation.
If # = (@(i)) it a sequence of scalars, then

[(;lm(v;)i”)”” for 1< p < oo,

Il = )
sup ()] for p = co.
Let us set
oo for p =1,
Pr=1pp—1)""  for 1< p< oo,

1 for p = oo,

cm
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Algo if p = oo, then by “1/p”* we understand “0*.
Definition 1.2. Let 1< p, ¢< co. Let us put
o= sup | Mai, Potiy(i)] (ae ).

IRip* <T,IMig* <t §7

Clearly, 4, , is a symmetric matrix norm, Using the Holder inequality
‘we get
Tmvma 11 If 1<p €< p< 00 and 1< g< gy < o, then

Up—1ymr 181
m

(1.8) I, Prm(8)) < Ay g (@)1
(as Min,m=1,2,...).

In the sequel an important role will play the following Hilbert
matrices by, (n =1,2,,..) defined by

Jm41—i—j)?

. for i+j #a4+1 and i,j< n,
7"’1-.(7'3.1) =

0 otherwise.

It i known that for each p with 1 < p < oo there exists a constant
K {p) such that

(1.7 o () < E(p)

(The proof of this fact may be found in [4), Chap. ITT, § 10, or may be
simply derived from the Riesz theorem; cf. [2], Chap. X1, § 7. Historicaly
the first proof iy due to Titchmarsh [14].) :

Prorositron 1.2. Let p + oo, g ¥+ 00 and let 1/p-+1fg>> 1. Then
tlipg) > Clp,g)lnn  (n=1,2,..),

where O(p, q) is.a universal constant.
Proof. Clearly, P,q.(k)=h,. By the assumption, ¢< p*. Thus
by (1.6) and (1.7) we get

A, q{fin) < Jp e (By) 07~ < B ()21,
On the other hand, by Definition 1.2, we have (for n.>2)

TnalTulte) = Tyg( 3] (mt1—i—jy~uy)

T

form=1,2,..

(1.8)

~—1p*_1
=n [p*— Lo

2 (n-4+1—i—j)1,

itign

Sinee for some C independent of » we have

Z‘ tl—i—j)yt = 2 2i> Crlnn,

i+i<n -1 §i<t
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we geb
Apa(Tihg) = On' "= Iny = O M Inm.

Thus
OnHP=H np, ¢

A a(Tohn) .
T Ky T K (p)

AF,Q (hﬂ)

This completes the prooi.

By (1.1) we get =

CororLArY 1.1 If 1/p+ljg
= 0{p, g)Inn.

Problem 1. Hstimate from below the numbers

ty (}‘wa) Z

Inn.

21 (L<p,g< o) then tn(}‘;,ﬂ')

1 1
tﬂ.(lp,q) for — +*< 1 (_/p7 q # OO).

Observe that we have ﬁma(a) = sup(Zla(% P and Ay (@) =
sup ():’m(z JPIME. Thus

tn (ﬂp,m) tn(Aooyg) =1
For each r with 1<r<< 400 define the symmetric matrix norm o, by

for n=1,2,... (l<p<oo,1< g o0).

(te(ao a®y "
Ay a(a)
Tt is well known that of = o (ef. [4], Ohap!_ 1T, §1)‘. Therefore;
by (1.1) and Proposition 1.2, we geb ‘ ’
COROLLARY 1.2. t,{ay) = 4,(0e) = Olnn (n = 1,2, ...).
This corollary is also a consequence of a theorem proved by Gok-
berg and Krein ([4], Chap. II, §6). It follows from Macajev’s results [9]

(cf. also [4], Chap. III, § 6) that for 1 < p < --oo the sequence (i (dln
is bounded.

COROLLARY 1.3, We have

for 1< v < oo,
Gr(a’) =

“for ¥ = oo.

lim?,(e) = limé, (o) = Clnn

Peal P=t0

m=1,2...

Proof For each o< M we have hmcf(a) = 0y (). Thug, in particnlar,

1.0, (he) = s () = A5 (i) 802 Loy (T ) = A o (T i) 3 Clne. Hemoo
Tem00 . Te=co

_  o(Toh) . C

limta (oy) > lim SrEele)l o 0,

pmty (o) > lim =277 =2y I

The identity lim?,(a,) = limg, (o) 18 an obvious consequénce of (1.1).
r=1 =00
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icm®
For further application we shall need another property of the 7
numbers i, (a).
Define the projection Dp: M — M (n=1,32,,

Doos(@) = D Y

ksm max(d,j)=2k~1

D ali, fus.

F<i max(i,i)=2%

.J) by
(i, fugs,
Dy (@) ==
‘PROPOSITION 1.8. If a is o symmetric matriz norm, then
to(a) = supa(Dy(a) = [Dule = (0 =1,2,...).
a{a)< 1
Proof. We consider only the case where # is an odd integer, The

proof for # even is similar. For n = 2m—1 we define a permutation
@, of positive integers by

n—i+2 Co
—2+— for ¢ odd and i< n,
DPp (i) ={( nt+1+1
w (1) _Igi for ¢ even and i< #,
i for i >mn.

Next define an operator U,: M — M by

Un(a) = D ali, om0 (ae ).
7
One can easily check that
Tu(Una) = Up(Dya).

This identity together with the fact that U, is an isometry (because
o i3 a symmetric matrix norm) imply the desired conclusion.

2. Matrix spaces and bases.

Definition 2.1. If « is a matrix norm, then by M, we denote the
Banzch space being the completion of the normed linear space M under
the norm a.

The space M, can be in a natural way identified with the subspace
of all scalar-valued matrices. The norm in M, will be also denoted by ea.

We recall that a sequence (e,) of elements of & Banach space X is
a basis for B if for each ¢ in ¥ there exists a unigue sequence of sealars
(en) such that e = Z -

The following themem is a slight generalization of a result of Gelbaum
and Gil de Lamadrid [3]:

Studia Mathematica XXXIV 4
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TaporEM 2.1. The sequence (tynimliea 8 6 basis for every matrix
space M,, where

- m+1l  for E=mits and 1<s<m+1,

o) = s—m for k=m?ts and m4-1<<s < 2m-1;
(2.1) O s—m  for k=mits and 1L <s < m-+1;

9k) = m+1  for bk =mrt+s and m+1l<s << 2m+1

(m=20,1,2,..).
Proof. Let us et

Qule) = X a(i(), 0wz (@l b =1,2,..).
r<h
It follows from (2.1) that
(2.2)
0 P+ Puypre—Prs for b =m+s and 1 <s <m+1,
I =

PP _mmir—Po_mm for & =m2+s and m-+1< s < 2m-1
(m=10,1,2,...).

(We put Py, = Py; = Pjy = 0). Thus [|Qf. < 3 for all & Since by (2.2)
lim@y;{a) = a for each aecM and since M is dense in M,, we infer that
2

lim@.(a) = & for each aeM,. Bubt this is equivalent to the assertion
- !

of the theorem.

- We reeall that a basis (e,) in a Banach gpace & is called unconditional

if the eonvergence of a series > 1,6, implies the convergence of every series
*

D s(n)t,e6, for s(n) =

in H if for every permutation & of the indicies the sequence (€am)) 18
a basis for B

Gelbanm and Gil de Lamadrid [3] observed that the double sequence
(u;5) is not an unconditional basis for the space of compact operators
in the Hilbert space I,, i.e. in the space M;, .. In fact, those cases where
the double sequence (u;y) is an uncondmona.l basis for a matrix space
(i.e. each ordering of (u; ;) in a sequence is a bagis) are rather exceptional
and very often matrix spaceés do not have any unconditional basis. First
we consider the case of operator ideals on a-Hilbert space.

Definition 2.2. A matrix norm « is called unitary if a(uoaowv)
= a(a) for every stable unita.ry matrices 4 and v and for ae M. -

A matrix ¥ is unitary if a* = u“l, and w is stable if u(i,f) = & for
all but finitely many ¢ and j, where &, = 1 for i = j and & = 0 otherwise.

THEOREM 2.2. For every. unitary matric norm a the following conditions
are equivalent:

+1. Eguivalently, (¢,) is an unconditional basis

icm®
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(2.3)
(2.4)

the double sequence (u;j) is an unconditional basis in M,;
the matriz space M. consisis of Hilbert-Schmadt mairices, i.e. the
identity map @& — a is an isomorphism from M, onie M,,.
Proof. Clearly (ui;) is an unconditional basis in M,. Therefore
(2.4) implies (2.3). Conversely, (2.3) implies that there is X > 1 such that

(2.5) a(b)) < Ea(b) for be M,

where |b](@,j) = [b{i, f)] (6,0 =1,2,...).
Next observe that for each ¢« M there exist stable unitary matrices
w and v sueh that woaov = ((#:6}), where

=V X leti, )P

(This is a consequence of the facts that every matrix has the polar repre-
gentation (c¢f, [2], Chap. X) and that every seH-adjoint matrix iz unitary
equivalent to a diagonal matrix.) Since a¢<M, there is an index » =n{a)
such that # = 0 for ¢ > n(a). Consider the unitary matrix 10, defined by

e 2
iexp (I/——l—xij) for i,j<m,
wy(i, j) ={Vn #
o otherwise.

Ela(d) <

for 1 =1, 2,...

Let b = uoaovow, = ((;6)ow,) = ((tlwﬂ(z,j )). Then [b](¢ tJI/—

(i, =1,2,...). Thus choosing stable unitary matrices u, a.nd 7; 80

that ul((tw) = I/Zij(a;) and #,((1,1,...,1,0,0,...)) = Va(s}) we bave
7 times

%10 [Blopy, = 1/ thu,,l. Thus using the agsumption that « is a unitary
7

norm we get
(2.6) al@)=c(b) and a(B)=} Y &=y Yl = oua).
i 1,7

The desived conclusion follows now frem (2.5), (2.6) and the fact
that M iz dense in M,.

Remark 1. Mitjagin has observed that a similar argument shows
that if ¢ is a matrix such that 1, ,(|vcacu|)< + oo for all umta.ry matrices
% and o, then o;(a) << +oo.

Remark 2. Observe that for each ma,trix norm « condition (2.3)
is equivalent to the following “elementary” condition which does not
involve the motion of nnconditional basis:

If ae My, then (s(i,§)a(i, )|« M. for every mairiz (s(i,j)) such that
S(irj) = +£1 fOW' 7:)]. =1, 2:
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Our next result lies much deeper than Theorem 2.2. First we recall These conditions imply:
thé following concept. Let (e,) be a bagis for a Banach space E, and let . . .
(¢") denote the sequence of coefficient functionals of the basis (i.e. en(®) = ¢, (2.12) H 5 2 - . (Uby) 6, — Ubk“ < —
— & mkysr<mi
for w_%'ane,,,eE (n=1,2,..). Tet us pu for k=1,2,...,4
Konc |(6n)) = S‘}SPIS“PHZ & (@) ery | (2.13) I e (U e || < =
“ ‘ m{R)<r<infly1)
where the second supremurm is taken over all finite sequences of indices for k21 (k,1=1,2,...,5)
P <t (8 =1,2,..0) Let us put # = > Ube. Since U is an isometry and the matrix
It is well known that Lhe bagis (g,) is unconditional if and only if . | ESs
norm o is symmetric, we have
unc {(6a)) < o0
We begin with the following lemma: (2.14) i) = « by = a (i, )t
N . * ),2(7)
TewMa 2.1. Let B be a Banach space with a basis (e,). Let o be a sym- (Z ) (ZZ ( )
metric matriz norm and let U: My~ B be on @somemcallj igomorplic — a(Z 2“‘ z’J)u“) = a(Pyst) < afa) = 1.
embedding such thai < & 2 s
2.7 11;113,,( Uugs) =0 for j,m=1,2,.., KOW we are going to estimate from below thcf number
(2.8) lime}(Tuyy) =0 for i, m=1,2,... - “ (@), ], where m — s+1
7 . . <n m2l-l<r<m(2y 2
Then ( ' ‘We have :
2.9) Koynel(en)) = supis(a). _ '
( wne{ ) 2 SUD% Il er(@) e ”Zszz_ | »2” Ubga— Y d@el.
Proof. Pick &> 0 and fix an index s. Next, by Proposition 1.3,° i<h m{si—1)<r <m(2l) -yl
we choose a matrix & = (a(i, j)) in M so that a(e) =1 and But, by (2.12) and (2.13), we have
(2.10) a(Da(@) > t (@) —s. [Ohas— 3 @
. m(2l—-)<rm(2ly .
We are going to show that < ”sz,_l— 3 (U e ” ot (Uby) g'”
S (211 Kuno(02) 2 to(0) — 2. | m-1jErm ) i Tme n<r<m<~n
This clearly will imply the assertation of the lemma. giz tp—n— =2
In the sequel we shall agsume that 8 = 2n—1 is an odd positive §
numbexr. The proof in the case of an even & is almost the same. Thus
Using (2.7), (2.8) and the standard *‘gliding hump” procedure we \ »
define inductively three increasing sequences of indices (m(B)iLl, (p (B)iu (2.15) ” > > z)er| = “ > szm” ——e.
a .. x . " I<n m(2l-1j<r<m{2l) i<n s
and (g(k)f... so that for b= 3 a(4, ) tgqy,g( the following inequal-
ities hold: (i, f)mk Next observe that
2.16 Ubg_q|| = a by
D 1 (b el < oy @16) | 200 = o 0
r<m(k)
—_ by a4y ) Uppt
= a ¥ J)"l‘p(@),q(i)
[ e} (Uby)e,| < K (z;: sy )
ik Trame - Q(Z ali, j)u”) = a(Dy(a). .
for k=1,2,...,5 and for each m'>m(k--1). i<n max(i,f)—21-1
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(Becauge U is an igometry and the matrix norm « iy symmetrice.) Com-
Dbining (2.15) and (2.18) we get

I o (z)6,
f<n mal-1)<r<m(2])

= a{Dg(a,))—a.

(2.17)

Comparing (2.17) and (2.10) with the definition of Hyle,) we
obtain (2.11). ’

TEmwa 2.2. Let (6f) be o sequence of bounded linear fumclionals in '

o Banach space B, and let a be o symmelric matriz norm. Lf 1'.h,ewe emi..s"li's
an isomorphic embedding T: M, — B, then there owisis another zsomqvp'mo
embedding U: M, - T such that conditions (2.7) and (2.8} are safisfiod.

Proof. Consider the “cubic matrix’ {a,’;(ﬁ'u,,s)}. Since for each
tixed pair of indices (n,r) the sequemce (en( Dt )30 18 bounded, one
ean extract, by the standard disgonal procedure, an. iilc{eamng gequence
of indices (s(j));";l such that there exist limits 1i?wn(Uu,,g(,)) for n,r
=1,2,...

’Re’peating the same arguments for the “cubie matrix” {en( ﬁ%r)s(f))}
we extract an increasing sequence of indices (r())2, so that there exist
limits 1m el (Toey o) for my§ =1, 2, ...

13

Next we pub for ae M,

Va= 2 aliy §) (Uorgaty, aqan ~F Yoz, a(29— 1) — Yoy a(2i—1) — Thr(zm 1), 0(2)} -
(X
Since e is a symmetric matrix norm, for each two increasing se-
quences of indices (p(f)) and (7(j)), and each matrix beM, we have

o 3 b(p(0), 40i))uss) <a(t) = (;j B0, 5
iz 7

Applying this o the matrices @ and Ve we obtain
ala) <a(Va) < dala).

Thus ¥: M, - M, is an isémorphic embedding. Now it is easy fo
verity that U = UV has the desired properties, which completes the
proof.

THROREM 2.3, Let o be a symmetric matriz norm such thai the sequence
(ta{n)) 48 unbounded. Then M. is mot isomorphic to any lWnear subspace
of a Banach space with an uncovnditional basis.

Proof. Suppose on the contrary that ¥: M, — F is an isomorphic
embedding and {e,) is an unconditional basis in B. Let (e)) be a sequence
of coefficient. functionals of the basis (e,). By Lemma 2.2 there is another
isomorphic .embedding U: M, - F which safisfies conditions (2.7) and
(2.8). Now, according to [11], Proposition 1, we replace the original norm

icm
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of # by an equivalent norm with the property that U/ with respect to the
new norm is an isometrically isomorphic embedding. Clearly, (e,) remains
unconditional basis in the new norm. Now, by Lemma 2.1, we get
Kunsl{es)) = +oo. Thus the basis (e,) is not unconditional, a contradietion.

CoroLLARY 2.1. Let 1<Cp, g<<oo and ljp+1fg>1. Then no of
the spaces M, ipg nd M ' s isomorphic to ¢ linear subspace of ¢ Banach

space with an unconditional basis.

Proof. This is an immediate consequence of Theorem 2.3 and
Proposition 1.2-and Corollary 1.1.

Corollary 2.1 and Theorem 2.3 enable us to give various examples
of Banach spaces without unconditional basis. These examples seem
to be new from the point of view of the linear topological elassification
of Banach spaces.

Example 2.1. The space M, i has the following properties:

(2.18) M, | is isomorphic fo no subspace of a Banach space with an

unconditional basis.
(219) In M, | weak and strong convergence of seéquenses cotncide.
(2.20) M, ,
space.

is isometrically isomorphic to a conjugate space of & Banach

Proof. (2.18) follows from Corolary 2.1.

(2.19) Suppose that there exists in M’m a weak Cauchy sequence,
say (@), which does not converge in the norm topology. Then there is
4 > 0 and an increasing sequence of indices (n (m))ﬁ=1 such that

(2.21) M2 (bm) > 8

Clearly, the sequence (b,,) weakly converges to zero. For ael, P

and for p,g =1,2,... we pub
Ppola) = D' Y ali, iy,  Puy= 3 > ali,f)u;.
i<p 7 [=T I
Observe that the ranges of the projections P, {and P,,) are
isomorphie to the Cartesian product of p (respectively ¢) copies of the
space I,. Since in the space I, norm and weak eonvergence for sequences
coincide, we have

(2‘22) limz'l,l(-Pp,oo (bill)) :‘]i]n]vl,l(-Pm,q(bm)) =0
m e

for by = Onomy— Gupm_ry, M =1, 2, ...

(prg=1,2,..).

Using (2.21), (2.22) and applying again the “gliding hump” procedure,
we define three increasing sequences of indices {m(%)), (i(%)) and (j(%)) so that

A (bm(k) - 2

ky<igi(k+1)
ey i< (e 1)

P — X
bm(k) (’bi J) lu’ij) <2 .
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Next we define scalar sequences (¢(4)2, and (y{(j))7, so that

sup | (4)] = sup ly(j)l =1 and
@24) hal Y bl B = D beylD)ay()-
Weskn AP

Tt follows from the definition of the nowm 2,, that the sequemces
(#(4)) and (y(j)) determine by the formula

- Zu(vi,j)w("ﬂ)y(j)

X}
of norm. 1. It follows from (2.21), (2.24) and

TF(a)

a linear functional on M P
{2.23) that
F (b)) = 6—27"  (h=1,2,...).

But éhis contradicts the fact that the sequence (bmp)) converges
weakly to zero in My . This completes the proof.

(2.20) is a pa,rtmular cage of the following fact:

ProPosITION 2.1. Let ¢ be a mairic norm such that the space My has
the following property: if ¢ is a matriz such that

supa( 3 a(i, jlus) < +oo,
nm gé’:’,"

then aeM,. Then M, is isometrically isomorphic to the space (M )"

We omit the eagy proof of this proposition.

Our next example shows that there exists a reflexive Banach space
without an unconditional basis. We recall that if (X;)iZ, is a sequence
of Banach spaces, then by ( P X)), we denote the Banach space of all

1< oo
) such that z;eX; (1 =1,2,...) annd

Nl = ()] )™ < oo

sequences (m;)

Example 2.2. Lel (p(ic)) be o sequence of real numbers such that
1 < p(k) < +oo and either limp (k) == oc or Ump (k) = L. Then the space
2 )

X=( P M

1<k< i (k))z

X is reflewive and separable.

has the following properties:

(2.25)

(2.26) X 45 not isomorphic to any subspcwe of a Banaech space with an

unconditional basis.

Proof. (2.25) follows from the fact that if 1 < 7 < oo, then the
space M, is reflexive and separable (of. [4], chap. ITI, § 1).
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(2.26) Suppose that V: X — E is an isomorphic embedding of X into
a Banach space H, and (6,) is a basis in F. Then, by [11], a new equi-
valent norm on # may be given so that ¥ is an isometric embedding with
regpect to this norm. Hence each V; = VJ; is an isometric embedding

of Mo, into & (J;is the natural embedding of A, . into ( P M,
Ik < oo

Since hmukl == ]Jmu;,l = 0 in the weak topology of the space M, ., Vi

“n (k)) 2)

sat1sﬁes condmons (2.7) and (2.8) of ‘Lemma 2.1. Hence by this lemma
Houme( ev.))>sups11ptn(aa @) = oo (by Corollary 1.8). Thus the basis

(én) is not uncpnd.ltlona.l Thig completes the proof.
Problem 2. Does there exist an unconditional basis in the space
M, for T<p< oo p #* 2%

3. Tensor products of Banach spaces and mairix spaces. In this section
we restate the main results of Section 2 in terms of tengor products of
Banach spaces.

It X, ¥ are Banach spaces, by X® ¥ we shall denote the algebraic
tensor product of X and Y. A norm | |; on X@Y is said fo be tensor
norm if

(3.1) for each weX and yeY;

eyl = ll=|- iyl
i8eTy = [I8]-IT] for any two linear operatory §: X —» X

and T: ¥ > Y.

By X®; Y we shall denote the completion of X®Y with respect
to the norm | ;.

We recall (cf. [5]) that if X and ¥ ave Banach spaces, then by X& ¥
(resp. X & Y) we denote the projective tensor product (resp. the weak
tensor product), i.e. the completion of X®Y with respect to the tensor
norm

laly = _ind 2l sl

a=IT XY

| 3o @v* ()

Assume that (¢,) is a basis in X and (f,) is a basis in Y. Then the
space X ®; Y ig in a mnatural way isometric with ‘some matrix space M,
(this isometry is induced by the map &®&f; — llelllifilu,). Now Theo-
rems 2.1 and 2.2 can be restated as follows:

THEOREM 3.1. If A 45 a tensor norm on X@ Y, then the sequence ¢,@f1,
6180f s, 620F1, 6.0F 2, 628fs, 6:8fs, ... (in this particular order) is a basis
n Xe Y.

(resp.

llali, = for @ = 2@;@%}.

[l“'[]él llﬂ‘ <2
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TEsoREM 3.2, If () % a complete orthonormal system in 1y, then
(e:®e5) 95 an wneconditional basis in the space l,@ily if and only if the tensor
norm 3 is equivalent to the Hilbert-Sehmidt norm.

Tn this section we shall mean by I, the space ¢, and by L, the
space 10, 1].

Since the space Ip @l,, corresponds to the mafrix space M, , and
1, &1, to the space M. . Corollary 2.1 ean be reformulated in the
following way:

COROLLARY 3.1 Lei 1< p, ¢< o0 and 1< L/p--1/q. Then none of
the spaces 1, By, I @lge i85 dsomorphic to o subspacs of @ Banach space
with an mwondmonal basis.

For the function spaces I, and L, we have a rather complete result:

COROLLARY 3.2. If 1< p,q< oo, then none of the spaces L, @ Xg, Lp & ()L
is isomorphic with a subspace of a ,Btmawlz, space with unconditional basis.

Proof. Corollary 3.1 implies that neither 1,®1, nor 62®Z2 is isomorphic
tio a subspace of a Banach space with an unconditional bagis. I 1<<# < 400
then I, is isomorphic to a complemented subspace of L. Thus for e(wh
pair (p,¢) with 1< p, ¢< oo the space 1,81, (resp. 12@)1) may be
isomorphically embedded into the tenser product L,® Ly, resp. In@I,.
This completes the proof in the case where 1<, g < +-o0. In the re-
maining cages the tensor produet I, &Ly (vesp. Ly oL ) contains a subspace
isometrically isomorphic either to L, or to I, Since neither Ly (cf. [12])
nor L, (because I, contains a subspace isomorphic to L.} are isomorphic
to subspaces of Banach spaces with unconditional ba,ﬂes, we get the
desired conclusion, which completes the proof.

4. An application to (p, g)-absolutely summing operators. In the
sequel we shall need the following consequence of Proposition 1.1:

ProposrTIoN 4.1 If (h{4))i_, is & sequence of n positive integors and

aelM, then

(4.1) X al, j)‘ < log,2nd, 1 (a).
d<n - T<R(E)

Proof. The norm 4,(#) does not increase if we apply any of the
following operations on the matrix a: alternation of order of eolumns
or rows, multiplication of a column or a row by —1, addition any number
of columns to the i-th one and in the same time replacing these columns
(except the i-th one) by zeros, the same for the rows. Taking this into
account, it is clear that we can transform the matrix & in & matrix o
such that 1,.(¢') < 4y,;(a) and

212 ati)= 3

i f<ch{®)

a'(i, J).
n 1y Hngn—&-l

icm
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Now (4.1) follows from Proposition 1.1, because

D @iy 5) < aa(Tala)).
i+ignt1
‘We recall that an operator T: X — Y (X, Y Banach spaces) is
(p, q)-absoluiely summing if there is a constant ¢ such that

(ié: J[Tmiuﬂ)””g 6;:*?21 (lg ]m*(mi)lq)qu B

for each = and any sequence (m)r., = X.
Let 8: 1, 1, be the “sum operator”, i.e. let § map the sequence
{a(8)F in 7, into the sequence of its partial sums (5 a(#)) in Z,.
k<3

The following proposition answers Problem 5 of [8]:

PrOPOSITION 4.2. If p > ¢ > 1, then 8 is a (p, q)-absolutely summing
operator. )
) Proof. First observe that according to statements (0.4)-(0.7) of [7]
it is enough to prove that the operator § is (p,1)-absolutely summing
for each p > 1. Let (2,)7_; be 3 sequence of # vectors in I,. Without loss
of generality we may assume that |[Szy| > |82, > ... > ||Sm,|| and that
each #; has almost all coordinates equal to zero. For m=1,3 ..,n
we define a matrix a, by

L w(f) Higm
a/m(@;]) = .
0 otherwise.
One can easily show that
(4.2) Irlem) < sup M la@)l  (m=1,2,...,2).

lerf<1 i<n

Since #;(j) = 0 for all but finitely many j, there is for each ¢ m
(m=1,2,...,n) an index k() such that for I -norm of Sz; we have
k(i)

18z = Sup[ yam(hj)] = {ZaM("J l

Hence, by Proposition 4.1 and by (4.2), we get foreachm =1,2,...,n

2 182z < log, 2mi; 1 (an) < log,2m sup 2 |oc™ (a;)] .

i=m eIl fgn
Hence for m = 1,..., % we have
log, 2m
S|l < ——— sup |* (a25)].
. m <t

=
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This implies

(Z |[Sa; ||I’) Osup 2 &* (o)

<h ISt icn

log, 2m 1')1’”
— e < oo,

This eomplefes the proof.

Since the operstor § iz not weakly compach, we have

COROLIARY 4.1. For each pair (p, g) such that p > ¢ =1 there ewisis
a (p, q)-absolutely summing operalor which 48 not weakly compact.

where

5. An application to wmconditionally convergent geries in L,. For
(2)%, « X (X is a Banach space) we shall write

L{(@)) = sup Zlm @) = sup ”28(@ o

<1 {5 k< ign

In the sequel we put for sake of brevity I = [0, 1]and L, = 1,[0,1].
ProposITION 5.1. Let (fii, c L, and let (Bp)i., be a decreasing
or imreasang:sequeme of mesurable subsets of the interval 1. T'hen

D [ fils)as <loga2nbi((fi)-

ian Fy

(5.1)

Proof. Suppose that the sequence (H;) is decreasing {the proof for.

an increasing sequence being essentially the same). Let F; = I, and
Fi=FBpyr g Bpyey (§=2,3,...,m). Let 4 be a matrix defined by

‘Ff.fi(s)ds

for 4,5 =1,2,...,m,

it i >mn or j>n.
Then
D) Jhleras =
s By
On the other hand,

D afiy5) € ha(Taa).

IS DT §

Ay (@) = sup. ‘Zt(fe = sup 2] fz

A {Zh ign |‘(‘)1<1f4u Fy ign

< s [] Silihilo) \ds L((f)-

lt(msl Pt

) fe( S)dﬂi

Thug (5.1) is a consequence of Proposition 1.1.
Remark 3. Let §: Iy, — € be an operator defined by

t
= [f(e)das  (te[0,1]).
0

icm®
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Using (5.1) and argument similar to tbat of Proposition 4.2, one can
prove that S is (p, ¢)-absolutely summing for p >¢>= 1.
ProvosITIioN 5.2. Let (fifii, < Ly and lot

i)
Tt

g{s) = max
ign

for sel.
Then .

(5.2) [ g(s)ds < 2 Togy2nk, ().
I

Proof. Let us put for ¢ =1,2,...,n

A ={sel: g(s) = Z‘fk(s),gs)>2fk for j =1,...,i—1},
s
B ={sel: —g(s) = 3 fuls), —g(s) < ka(s) for j=1,...,4—1}
BE
and let
Ek=U-Ai: F}c:UBl for k=1,2,...,n
izk izk
Then
fg(s)czs D fok(s)ds— D [ D fuls)as

i<n 4y k<t i€n By k<i
=) Jfords— 2 JHlo)ds.
k<n By, E<n By,

Since the sequences of subsets (Hg) and (Fy) are decreasing, by
Proposition 5.2, we get

[ 9(s)ds < 21020k (1)),
r

which completes the proof.
TeEEOREM b.1. Let 2 i be an unconditional convergent series in L,

and let (3,)2, be o saquance of real nuwmbers such that 1, = O(ln~"4) for
some &> 1 or (t;)el, for some p << co. Then thfl(s ) converges almost
everywhere on 1.
Proof. Let
$) = §U Lfi{$).
0 = smp | 3 ufils)
We have to prove that (g.(s) converges almost everywhere on I
to zero. Since (g,) is a decreasing sequence of positive functions, it is
enough to show that

(5.3) limfgn(s)ds =0.
nor
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We have g.(5) < 21imgy, (), where
m

tafi(s)]

Onm(8) = MAX | 2

nEhEM il

For each n, the sequence of positive funetions (gumhm-x 18 increasing,
Thus
(5.4)

[ ga{s)ds < 21im [ nm(s)ds
I mor

For fixed gnm we define two decreasing sequences (M o, and (l’i)i;n
of measurable subgets of I, in the same way a8 the sequeneeﬂ {Ey) and
(F) for the funetion g(s) in the proof of Proposition 5.2, such that

(5.5) [neds< X 6( [fias— | fuls)ds).
I By 4

NI

Assume now that (f)el, for some 1< p < co. Because for each
decreasing sequence (4;)i, of measurable subsets of 1

(3| [fo)asP")™ < o),

n<ism Ay

where (/i 2 constant which depends only on p (compare with Proposi-
tion 4.2 and Remark 3), by (8.5) and the Holder inequality we get

[am@is<( 3 WP Ch(fitta).
I

nEigm

(5.6)

Since the series Y f; is unconditionally convergent in Ly, ¥ ((fi)ia
i

< L((f:) < oo. This together with (5.6) and (5.4) implies (3.3).
Now suppose that # = O(In™%) for some & > 1.
Tsing Abel’s transformation, the right-hand side of (5.5) is replaced by

S (mti—= (i 1) 2 t;gln"k( ffi(s)ds-— ff,,-(s)as) +
n<ism .

- +Intm Y c,ﬂhl ]a( ffi(s yds— jf, (s)ds).
naham

Let
0" = sup |4, In"k|;
-k

then, by Proposition 5.2, we get
> tkln‘k( [ fals)ds— ffi(s)ds)
k<t Ay By

< 21ogy2 (11— m) by ((f (0 B} i) < €' (Id) 01y (i)

icm®
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Thus the right-hand side of (5.5) does not exceed
L ((f) Z (1n-%'—1n~=(i+1))1m“+0’”11((fi))1n-5m-1nm_

NLE<M

Since the series 3(n™*i—In~"{i+1))ini is convergent and
. —sp1 . . s . '
hmjsaln m =0, inequalities (5.5) and (53.4) imply (8.3). This completes
the proof.

Remark 4. Tet (¢,) e an orthonormal sequence in I, and (8n)ele
for some 1< v <2 Then putting (f,) = (Is,[¢,) and () = (Js,~™"),
we obtain from Proposition 5.1 a well-known theorem of Rademacher
and Menchoff (ef. [1], Theorem 2.5.4). The fundamental Menchoff theorem
(ef. [1], Theorem 2.4.2) suggests the following problem:

Problem 3. Is the assertion of Theorem 5.1 valid for (f,) = (In~'n)?

6. Two other applications. The following argument shows that the
answer to the Mazur’s question (cf. Seottish Book, Problem 83) is negative.
Namely

There ewists a roal sequence (o{3))e, such thas

12 s(i)i(f)efi+j—1)| < +oo

!5(*)|€1'|5(7)Js1

but 3 élo(i)| = —+oo.
Proof. ;'[;or oach n let [o,(d )) be the sequence defined by e,()
= (n—4i+1)"" for i< 2n+1 and ¢ £ n4-1;6,(i) = 0 otherwise. Then

c,,,(z—{_—] 1). = h. (¢,7) for 4,5 <n {where A, denotes the m-th Hilbert
ma;ﬁnx defined in Section 1). By a simple eomputation, we get

sup | Vs (i) enli+i—1)| < | 3 s@uimg, i

SEISLI <1 57 |S(¢)|<1 |t{1)1<1 ]

+ 2 2]%(@-1—9 =1+ Zch(v,—}-j n<

>nd1g Ntk §

< A1 (b)) + 29,

Now nsing (1.6) and (1.7) we infer that
A1,1(hn) < Ay o (Pa)n < K (2)n

sup {23(7,

18(%)1<1; |¢(i 43

Hence ‘
Jenli-+i—1)| < (24 K@),
while

D dleali)| = Dlint1—i) > Onlne (n=1,3,..,).

“ dgn

‘ The existence of a sequence (o(f)) with the desired properties is
a simple consequence of the Banach-Steinhaus theorem.
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Our last result gives a geometric intfarr'uretation qf Pro;)om}nm;%ﬂi.li
in the case of the norm 4,,- By an ellipsoid in the. n—dlmensiorg (ﬁti er
real or complex) veetor space B we ghall mean the image of the 1;-(31. ean
unit ball B, = {weR": |z]<<1} by an ar@Erﬁzry non-dege?nera,fte Te%;rr
transformation of R Here |z = ( 3 | (&))" By the siee of a se

in R" we mean the quantity =

(W) = sup max|o(d)].
we¥  dn

Furthermore, let &, denote the family of all ellipsoids & in R®
guch thatb .
(6.1)  the points (1,0,0,...,0),(1,1,0,..., 0),...,(1,1,...,1) belong
to &.
We are going to prove the following fact: .
PrOPOSITION. 6.1. There are positive constants Oy and Uy (which do not
depend on n) such that
(6.2) - O;In{n+1) < inf ¢(B) < Coln(n=t 1).
’ 8Py,
This proposition is an obvious consequence 6f the next three lemmas
and Proposition 1.1 in the case of the morm J,.
TeMMA 6.1. If b, s the mairiz defined by

1 fornzpzgzl,

balps 0) Elo otherwise,

then A7 1(b) = G (A1) . .
Proof. Sinee A7 is a symmetric matrizx norm, Ax,1(bn) = 71000,
where b,(p,q) =1 for p+q <ntl and Buip, q) = 0 otherwise. Next,
taking into account that A, ;(a) = A,;(a"), we have
‘ & 1
Bl = sup | 3 Bup, datp, )= s | 3 alp, 0.

L@t b M @€l pygcngl
‘One can easily derive from the definition of the norm 2, that
su alp, g = sup A{Ta(a)) = talh,).
41,1('%)@ p+q§z+1 ’ \ @<l
* This completes the proof of the Lem.m:a. 3
LuvMa 6.2, There are positive constants Cy and C, (which do not depeond
on n) such that

(6.3) 6 220 < inf sup gl < Gadfa(ba),
(Uglgeens® g<n

@ © .
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where ¥ is the set of all such sequences (Yadecn OF dlements of E® that there
s @ sequence (Zp)pcn such that the following conditions are satisfied:

(6.4) - llpll <1 for p =1,2,...,n,

(6.5) (@py Yg) = bu(p, 0) Jor Py =1,2,...,m.

(We use the notation (v, y) = ¥ w(i)y (i) for , ycR™)
ign

Proof. We apply the fo]ldwing inequality due to Grothendieck [6]
{cf. also [8], Theorem 2.1):

(6.6)  There is & universal positive constant K4 such that
| X a5, 0)(@, )| < Kol (a)sup Iy 51D e
B,g D

for #,, y,eR"” and for ae M.

Combining (6.4), (6.5) with (6.6) we get:

Ko 4a(bn) = Bg' sup | 3 a(p, 0)(ap, 42| < sup |yl
A<l g a<m
This yields the left-hand side inequality of (6.3) with 6‘1 = Kzl
To prove the right-hand side inequality of (6.3) , 'we define the linear
opexator b, from I7 (i.e. the space " equipped with the norm | {i;) into the
space I, |i.e. the space B™ equipped with the norm I ) by

(Bum)(g) = Db(p, o) for wel and ¢ =1, 2, ..., n.

B

Then the nuclear norm of b, (cf. [13], p. 45, for the definition) is
equal to A7, (b,) (because the space of #Xn matrices with the norm M1
is in a natural way isometrically isomorphic to the projective temsor
product I &I, which is isometrically isomorphic to the space of all
nuclear operators from I into 1%). Therefore for each = 0 there are
& Hilbert space H and linear operators #: I¥ -» H and v: H — I, such
that :

(6.7) by =ou, (=1, A b)+e> |l

(cf. [10], p. 73, proof of Proposition 3). Since &, is an isomorphism, one
can assume without loss of generality that H =& (i.e. B™ equipped with
the norm ||-|| = ;). Indeed, veplace (if necessary) H by (ker o)+ —
the orthogonal complement of the kernel of v, the operator « by Pu,
where P is the orthogonal projection from ¥ onto {ker »)* and » by its
restriction o (ker »)%, and use the fact that each n-dimensional Hilbert
space is isometrically isomorphic to 1.

Studia Mathematica XXXIV - 5
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Now we pub @, = ue, for p=1,2,...,% and quq;fq for
g=1,2,...,n, where g, = (dp)l@ is the p- th unit veetor, v* denotes
the adjoint operator of v and fr is the ‘g-th coordinate functional, iLe.
fa(yy = ylg) for yel,. Then clearly identity (6.5) holds. Using the
formulas

flull = max [,

<

vl = max ||l
e

we derive from (6.7) condition (6.4) and the following inequality:

max [yl < Ar o (ba) -+ .
asn

Letting ¢ tend to zero we get the right-hand side inequality of (6.3).
This completes the proof.

LeEMMA 6.3. For each ellipsoid & in &y there arve sequences (Tplpen
and (Y, gen Soisfying (6.4) and (6.5) and such thot

§( &) = max|ly,.

&

(6.8)

Conwersely, each pair of sequences satisfying (6.4) and (6.6) determines
an ellipsoid & in &, such that (6.8) holds.

Proof. Let &<, and let %: E* — R” be a non-degencrated. linear
operator such that & = w(B,). Letus put &, = »7{(1, 1, 3 :;, g), ey 0))
., % and define y, by the relation

(z,9q) = (ua)(g), @eE",

Then clearly we have (6.5), and (by (6.1)) inequality (6.4). Further,
we have

forp=1,2,..

{6.9) ¢=1,2,...,%.

8 g)‘ = SUPMax [z(g)|

= gupmax |{(uz)(q)|
wé  g<n -

xeBy,

= SUpPIAX (2, Yo)| = maXH@'all
zeB,, a<n

Conversely, if the sequences (#p)pen a04 (Yg)gen satisty (6.4) and (6.5),
then there is the unique linear operator w«: R™ -+ R" satisfying (6.9).
We put & == u(By,). Then (6.8) holds. This completes the proof.

Added in proof. J. Lindenstrauss has pointed out to us that
our Theorem 2.3 can be strengthened as follows:

Let o be a symmetric matriz norm. Then

- AL If suptle) = +oo, then M, 48 not isomorphic to any subspace of
()

& Bamach space with an unconditional basis of finite dimensional subspaces.
B. If supt.(a) =K < oo, then M, has an unconditional basis of
w

finite dimensional subspuces.

icm®

Muain triangle projection - . €7

Proof. A. Replace everywhere on p. 52-54 the “unconditional basis
of 7 by “an unconditional basis (B,) of finite-dimensional subspaces
of B and the “one-dimensional projectors ef(-)e,” by the *coordinate
projectors u,: E —» E,”. Conditions (2.7) and (2.8) replace by the
condition

ﬁzﬂl s ( Ut 3)l] = lifﬂﬂﬁn(l?m,f)ll =0.

In Lemma 2.2 replace {e,(U%. )} by the matrix {7 (T 5)} and use
the fact that for a fixed pair (n, r) the finite dimensionality of H, implies
the total boundedness of the sequence (mu (Ut g))S,.

B. The subspaces B, spanned by «; with max(4,j) = n form the
unconditional decomposition of 3/,. The coordinate projectors are

Ton = Pn,n--Pn_l,n—]_: M, > K,. We show that
Eumol(B)) = sup  sup o ¥, () <2K.
@)l 1y <fa<... <ty =4
Fix 7 <ry<C...<r; and ae M. Then P, u(a) =a for some m.
Put
= 2 Za(i,j)ui,; and - a" =a-—a.
JEim i=d

Since f,(e) < K and the matrix norm a is symmetrie, max{a(a),
a(a”)) < Ka(a). Pick a permutation of indices F so that F(r;) = #; for
j<s,and if k<< and k = r; for < s, then F(k) > m. Let U and V
denote the isometries of M, induced by this permuta,tmn of columns and
rows respectively. Then

D) la) =

i<®

Ppw(Ua’+Va”).

Hence

af 2 7, (a)) < 2K a(a).

s

Since I is dense in M,, this completes the proof.
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La fonction de Green d'im processus de Galton-Watson
var

SERGE DUBTC (Montréal)

1. Introduction. Je me propose d’étudier le comportement asymptoti-
que de la fonction de Green d™un precessus de Galton-Watson dont la
moyenne est finie et est plus grande que 1. Je serai alors en mesure de
signaler quelques propriétés des solutions harmoniques extrémales dsso-
ciées au processus.

Boit {p(n)}n-, une suite de nombres pesitifs dont la somme est 1;
on définit une matrice infinie P = (p(z, y)), p=0,1,2,...,,y=10,1,2,
de fagon récurrente par rapport & x: p(0,y) = 8(0, ),

Y

= D p(aple, y—2).

F=0

plo+1,9)

(Palz, 3}

La, puissance matricielle 2™° de P donne la matrice P* =
On intreduit la fonction de Green

= Zﬁn(my ¥ << +oo
n=0

On introduit également les fonctions génératrices

G(z,9)

= Dpali, )7

V=0

Tnl(2)

ot # est un nombre complexe dont le module ne dépa.sse pas 1. On
a 1f@) <1 et fris(2) = f(fs(2). De plus

D palm, )@ = (fula)
Y=0

Ces diverses matrices permettent de considérer pour chague entier
# une suite de variables aléatoives indépendantes {Z7}i., ot P[Z; = y]
= p,(%,y). Liorsque % =1, on note plus simplement 7}, = Zy. Ceci
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