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Abstract

Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the

major histocompatibility complex (MHC); however, the basis for these associations remains

elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed

genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors,

and we analyzed the effects of individual amino acids within the classical human leukocyte

antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide

polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B

peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and

reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA–viral

peptide interaction as the major factor modulating durable control of HIV infection.

Hiv infection is characterized by acute viremia, often in excess of 5 million viral particles

per milliliter of plasma, followed by an average 100-fold or greater decline to a relatively

stable plasma virus load set point (1). In the absence of antiretroviral therapy, the level of
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viremia is associated with the rate of CD4+ T cell decline and progression to AIDS. There is

substantial interperson variability in the virus load set point, with most individuals having

stable levels exceeding 10,000 RNA copies/ml. Yet a small number of people demonstrate

sustained ability to control HIV replication without therapy. Such individuals, referred to as

HIV controllers, typically maintain stable CD4+ cell counts, do not develop clinical disease,

and are less likely to transmit HIV to others (2).

To determine the genetic basis for this rare phenomenon, we established a multinational

consortium (www.hivcontrollers.org) to recruit HIV-1 controllers, who are defined by at

least three measurements of plasma virus load (VL) < 2000 RNA copies/ml over at least a

12-month period in the absence of antiviral therapy. We performed a genome-wide

association study (GWAS) in the HIV controllers (median VL, CD4 count, and disease

duration of 241 copies/ml, 699 cells/mm3, and 10 years, respectively) and treatment-naïve

chronically infected individuals with advanced disease (median VL and CD4 count of

61,698 copies/ml and 224 cells/mm3, respectively) enrolled in antiviral treatment studies led

by the AIDS Clinical Trials Group. After quality control and imputation on the basis of

HapMap Phase 3 (3), we obtained data on 1,384,048 single-nucleotide polymorphisms

(SNPs) in 974 controllers (cases) and 2648 progressors (controls) from multiple populations

(table S1).

After stratification into European, African American, and Hispanic ethnic groups (fig. S1),

we tested each SNP for association using logistic regression, including the major principal

components as covariates to correct for population substructure (4). In the largest group,

comprising 1712 individuals of European ancestry, we identified 313 SNPs with genome-

wide significance, defined by P < 5 × 10−8 due to correction for multiple comparisons (table

S2). All SNPs that reached genome-wide significance were located in the major

histocompatibility complex (MHC) region on chromosome 6 (Fig. 1A). We obtained similar

results for the other two ethnic groups and in a meta-analysis of all participants (fig. S2). We

also performed a genome-wide analysis to test the influence of local chromosomal ancestry

in the African American sample (4), but we detected no signal outside the MHC (figs. S3

and S4). The impact of the MHC was further underscored when we specifically tested

published associations related to HIV disease progression outside the MHC. Only variants in

the CCR5-CCR2 locus—namely, CCR5Δ32 deletion polymorphism (5), C927T in CCR5

(6), and Val64→Ile64 in CCR2 (7)—replicate with nominal statistical significance in our

study (Fig. 1B and table S3).

Closer examination of the significant SNPs within the MHC showed that they are located

within a 3-Mb region concentrated around class I human leukocyte antigen (HLA) genes

(fig. S5), but extensive linkage disequilibrium (LD) makes precise assignment of causal

variants challenging (8). Therefore, we used stepwise regression to define independent

markers associated with host control. From the initial set of 313 SNPs that reached genome-

wide significance in the European sample, for which the greatest numbers of participants

were available, we found only four independent markers of association (Table 1).

rs9264942, located 35 kb upstream of HLA-C and a putative variant associated with HLA-C

expression levels [odds ratio (OR) = 2.9, P = 2.8 × 10−35, where an OR > 1 indicates a

protective effect], and rs2395029, a proxy for HLA-B*57:01 (OR = 5.3, P = 9.7 × 10−26),

had been previously reported to be associated with virus load set point after acute infection

(9). We also defined rs4418214, a noncoding SNP near MICA (OR = 4.4, P = 1.4 × 10−34),

and rs3131018 in PSORS1C3, a gene implicated in psoriasis (OR = 2.1, P = 4.2 × 10−16).

These four SNPs explain 19% of the observed variance of host control in the European

sample; together with those in CCR5, these SNPs explain 23%, using Nagelkerke’s

approximation (Fig. 1C) (10).
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In the smaller African American sample, we observed 33 SNPs with genome-wide

significance, four of which were identified as independent markers, but all differed from

those in the European sample (Table 1). This suggests that shared causal variants are tagged

by different SNPs in these two populations or that the mechanism of control differs with

ethnicity. Only rs2523608 was previously identified, in a recent study of virus load set point

in African Americans (11). Despite no evidence for historical recombination (D’ = 1), this

SNP is only weakly correlated (r2 < 0.1) with HLA-B*57:03, the class I allele most strongly

associated with durable control of HIV in populations of African ancestry (11-13). In the

Hispanic sample, which was much smaller, the most significant SNP was rs2523590, 2 kb

upstream of HLA-B, also identified in the African American sample described here.

Given the localization of significant SNPs entirely to the HLA class I region, as well as

previous studies showing HLA alleles to affect disease progression (13-20), we next sought

to evaluate whether these SNP and HLA associations might be due to specific amino acids

within HLA. Because HLA types were available for only a portion of the entire cohort, we

developed a method to impute classical HLA alleles and their corresponding amino acid

sequences (4) on the basis of haplotype patterns in an independent data set collected by the

Type 1 Diabetes Genetics Consortium (T1DGC) (21). This data set contains genotype data

for 639 SNPs in the MHC that overlap with genotyped SNPs in our GWAS and classical

HLA types for class I and II loci at four-digit resolution in 2767 unrelated individuals of

European descent.

We imputed HLA types in the European sample of our study and validated the imputations

by comparing to empirical four-digit HLA typing data collected for class I loci in a subset (n

= 371) of the HIV controllers. The quality of the imputations was such that the imputed and

true frequencies for all HLA alleles in this subset were in near-perfect agreement (Fig. 2A)

(r2 = 0.99). Furthermore, the positive predictive value was 95.2% and the sensitivity was

95.2% at two-digit resolution (92.7 and 95.6%, respectively, at four-digit resolution) for

HLA alleles with frequency >2% (Fig. 2B). This indicates that the performance of the

imputation was generally excellent for common alleles, consistent with previous work (22).

We used HLA allele imputations in all participants (even those with HLA types defined by

sequencing) for association analyses to avoid systematic bias between cases and controls.

Lower imputation quality would only decrease power, not increase the false-positive rate,

because cases and controls would be equally affected.

We tested all HLA alleles for association via logistic regression, adjusting for the same

covariates used in SNP analysis (tables S4 and S5). The most significant HLA association is

B*57:01 (OR = 5.5, P = 1.4 × 10−26), which explains the proxy association of rs2395029 in

HCP5. With the use of stepwise regression modeling in the European sample of controllers

and progressors, we were able to implicate B*57:01, B*27:05, B*14/Cw*08:02, B*52, and

A*25 as protective alleles and B*35 and Cw*07 as risk alleles. These associations are

consistent with earlier studies that highlighted a role for HLA class I loci (13-20), and

particularly HLA-B alleles in control of HIV, which indicated that the imputations are

robust. Collectively explaining 19% of the variance of host control, these HLA allele

associations are consistent with the effects of the four independent SNPs.

Virus-infected cells are recognized by CD8+ T cells after presentation of short viral peptides

within the binding groove of HLA class I, and HIV-specific CD8+ T cells are strongly

associated with control (23). We thus evaluated whether the SNP associations identified in

the GWAS, and the HLA associations derived from imputation, might be due to specific

amino acid positions within the HLA molecules, particularly those involved in the

interaction between the viral peptide and the HLA class I molecule. Using the official DNA

sequences defined for known HLA alleles (24), we encoded all variable amino acid positions
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within the coding regions of the HLA genes in each of the previously HLA-typed 2767

individuals in the T1DGC reference panel, and we used this data set to impute the amino

acids in the cases and controls (4). Among a total of 372 polymorphic amino acid positions

in class I and II HLA proteins, 286 are biallelic like a typical nonsynonymous coding SNP.

The remaining 86 positions accommodate more than two amino acids; position 97 is the

most diverse in HLA-B with six possible amino acids observed in European populations.

After imputing these amino acids in the European sample, we used logistic regression to test

all positions for association with host control (fig. S6 and table S6). Notably, position 97 in

HLA-B was more significant (omnibus P = 4 × 10−45) than any single SNP in the GWAS,

and three amino acid positions (67, 70, and 97), all in HLA-B, showed much stronger

associations than any single classical HLA allele, including B*57:01 (Fig. 3A). Moreover,

allelic variants at these positions were associated with substantial frequency differences

between cases and controls (Fig. 3B). These results indicate that the effect of HLA-B on

disease outcome could be mediated, at least in part, by these positions. These three amino

acid positions are located in the peptide binding groove, which suggests that conformational

differences in peptide presentation at these sites contribute to the protective or susceptible

nature of the various HLA-B allotypes. Although both innate and adaptive mechanisms could

be at play, the hypothesis that HLA affects peptide presentation and subsequent T cell

functionality is supported by experimental data showing substantial functional differences

between CTL targeting identical epitopes but restricted by different HLA alleles (25).

We next performed stepwise regression modeling and identified six residues as independent

markers associated with durable control of HIV. These include Arg97, Cys67, Gly62, and

Glu63, all in HLA-B; Ser77 in HLA-A; and Met304 in HLA-C, which collectively explain

20% of the observed variance (similar to the variance explained by the seven classical HLA

alleles described above). With the exception of Met304 in the transmembrane domain of

HLA-C, these residues are all located in the MHC class I peptide binding groove, again

suggesting that the binding pocket—and, by inference, the conformational presentation of

class I-restricted epitopes—plays a key role in host control.

Having identified these amino acid positions as strong candidates to account for the SNP

and HLA association signals in this study, we next investigated their effects on protection or

risk, revealing allelic variants at these positions linked to both extremes (Table 2). HLA-B

position 97 (omnibus P = 4 × 10−45), located at the base of the C pocket, has important

conformational properties for peptide binding (26). Position 97 has six allelic variants:

Protective haplotypes B*57:01, B*27:05, and B*14 are uniquely defined by Val97 (3%

frequency in controls), Asn97 (4%) and Trp97 (3%), respectively; the other amino acids at

this position (Ser, Thr, Arg) segregate on a diverse set of haplotypes. Ser97 (27% frequency)

lies on risk haplotypes Cw*07, B*07, and others, where-as Thr97 (11%) lies on protective

B*52 (and others). Arg97 is the most common amino acid (51%) and is carried by risk allele

B*35, among others. The importance of this amino acid position to host control is

underscored by conditional analyses revealing significance when we adjust incrementally

for Val97 (omnibus test for position 97, P = 3 × 10−20), Asn97 (P = 2 × 10−9), and Trp97 (P

= 7 × 10−5). Thus, at a single position within the peptide binding groove (position 97, C-

pocket), discrete amino acids are associated with opposite disease outcomes, even after

controlling for B*57 and B*27, alleles associated with host control.

We also found similar discordant associations for alleles at positions 67, 63, and 62 (Table

2), all of which line the α1 helix along the peptide binding groove and help shape the B-

pocket (Fig. 4). At position 67 (omnibus P = 2 × 10−42), risk haplotypes B*35 and B*07

carry aromatic residues Phe67 and Tyr67, respectively, whereas protective B*57:01,

B*27:05, and B*14 alleles carry sulfur-containing residues Met67 or Cys67. Position 62 (P =
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5 × 10−27) is biallelic (Arg/Gly) with the Gly62 allele segregating with protective alleles

B*57:01 and B*58 (<1% frequency, OR = 1.7, P = 0.2). Adjacent position 63 (P = 9 ×

10−16) is also biallelic (Glu/Asn) with Glu63 appearing in complete LD (D’ = 1) with

B*57:01, B*27:05, and B*52. In contrast, at this position the risk alleles B*07 (14%

frequency, OR = 0.5, P = 1 × 10−7) and B*35 both carry Asn63. Position 70 (omnibus P = 3

× 10−39) accommodates four alleles that are tightly coupled with positions 67 and 97: Ser70

appears exclusively with Met67 (which defines B*57 and B*58), Gln70 with Tyr67, and

Lys70 with Asn97 (B*27). Hence, these data create a consistent and parsimonious model that

can explain the associations of classical HLA-B alleles by specific amino acids lining the

binding groove (and residues tightly coupled to them), which are expected to have an impact

on the three-dimensional structure of the peptide-MHC complex.

To further investigate the role of individual amino acid positions in HLA-B, we implemented

a permutation procedure to assess how consistent the above observations are with a null

model in which there is no relation between amino acids at a particular position and host

control (4). The results of this procedure provided evidence that multiple amino acid

positions in the peptide binding groove are indeed associated with host control (table S7),

including positions 62, 63, 67, 70, and 97, thus providing a structural basis for the effect of

HLA-B on host control (Fig. 4).

Within HLA-A position 77, which lies on the α helix contributing to the F-pocket, we

identified a weaker but still significant association (omnibus P = 3 × 10−6). Ser77 (6%

frequency, OR = 2.0, P = 2 × 10−6) is carried by only two HLA-A alleles (joint r2 = 1): A*25

(2.4% frequency, OR = 2.6, P = 1 × 10−5) and A*32 (3.2%, OR = 1.6, P = 0.02). Given its

location and earlier association evidence for the A10 supertype (27), HLA-A could play a

role in host control, although the evidence is not as strong as for HLA-B.

The signals within HLA-C are less straight-forward to interpret. Position 304 is a biallelic

variant (Val/Met) located in the transmembrane domain (Met304, 28% frequency, OR = 2.3,

P = 7 × 10−23). Met304 is in moderate LD (r2 = 0.5) with rs9264942, which is known to be

associated with HLA-C expression levels (28). Addition of this SNP to a multivariate model

of all six amino acids is marginally significant (P = 0.013) but eliminates the effect of

Met304 (P = 0.06). Similarly, addition of rs9264942 to a multivariate model of all seven

independent classical HLA alleles is also significant (P = 2 × 10−4) but eliminates the effect

of Cw*07 (P = 0.08). These observations make it difficult to determine the extent to which

epitope presentation in the HLA-C peptide binding pocket is important for host control.

Thus, rs9264942 could be a proxy for not only many protective and risk HLA alleles

(predominantly at HLA-B), but also for an independent effect on HLA-C gene expression,

differentially affecting the response to HIV (29).

We next evaluated associations for the SNPs in the MHC, classical HLA alleles, and amino

acids in a second independent cohort of untreated HIV-infected persons from Switzerland

(fig. S7 and tables S8 and S9) (4), in whom virus load set point was measured as a

quantitative trait. Allelic variants at positions 67, 70, and 97 were also associated with

highly significant differences in virus load set point in this second cohort (Fig. 3C). The

effect estimates of all variable amino acids in HLA-B (r2 > 0.9) and, to a lesser degree, those

in HLA-C (r2 > 0.8) in that cohort are in excellent agreement (figs. S8 and S9). As before,

position 97 in HLA-B is the most significant association (omnibus P = 1 × 10−13). The

HLA-A associations (A*25 or Ser77) did not replicate, which reduces the likelihood that

HLA-A plays a major role in host control.

In the African American sample (fig. S10), the most significant HLA allele association was

observed for two-digit B*57 (OR = 5.1, P = 1.7 × 10−21) and four-digit B*57:03 (OR = 5.1,
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P = 2.8 × 10−17; tables S10 and S11), consistent with previous studies (11-13). Position 97

in HLA-B (omnibus P = 2 × 10−25) is again the most significant amino acid (table S12). The

consistency of these results demonstrates that imputation and association testing at amino

acid resolution in multiple ethnicities can resolve disparate SNP associations in the MHC

and help with fine-mapping of classical HLA associations.

Altogether, these results link the major genetic impact of host control of HIV-1 to specific

amino acids involved in the presentation of viral peptides on infected cells. Moreover, they

reconcile previously reported SNP and HLA associations with host control and lack of

control to specific amino acid positions within the MHC class I peptide binding groove.

Although variation in the entire HLA protein is involved in the differential response to HIV

across HLA allotypes, the major genetic effects are condensed to the positions highlighted in

this study, indicating a structural basis for the HLA association with disease progression that

is probably mediated by the conformation of the peptide within the class I binding groove.

The most significant residue, position 97 in the floor of the peptide binding groove of HLA-

B, is associated with the extremes of viral load, depending on the expressed amino acid. This

residue has been shown to have important conformational properties that affect epitope-

contacting residues within the binding groove (26, 30) and has also been implicated in HLA

protein folding and cell-surface expression (31).

Although the main focus of this study was on common sequence variation, it remains an

open question as to the role of variants outside the MHC and the contribution of epistatic

effects and epigenetic regulation. Additional factors also contribute to immune control of

HIV, including fitness-altering mutations, immuno-regulatory networks, T cell help, thymic

selection, and innate effector mechanisms such as killer cell immunoglobulin-like receptor

recognition (23), some of which are influenced by the peptide-HLA class I complex.

However, the combination and location of the significant amino acids defined here are most

consistent with the genetic associations observed being modulated by HLA class I restricted

CD8+ T cells. These results implicate the nature of the HLA-viral peptide interaction as the

major genetic factor modulating durable control of HIV infection and provide the basis for

future studies of the impact of HLA-peptide conformation on immune cell induction and

function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Genome-wide association results in the European sample. (A) Manhattan plot of 1.3 million

autosomal SNPs. Only SNPs in the MHC on chromosome 6 reach genome-wide

significance, indicated by the horizontal dotted line (P < 5 × 10−8). Red and blue colors

alternate between chromosomes. (B) Quantile-quantile plot of the association results with

(black) and without (blue) SNPs in the extended MHC and the CCR5-CCR2 locus,

indicating that the detectable effect is entirely attributable to these two loci. The red line

denotes the expected distribution under the null hypothesis of no effect. (C) Distribution of

the genotype protective score, defined as the total number of alleles associated with host

control at the four independent SNPs in the MHC and the variants at CCR5-CCR2, showing

marked differences in controllers (orange) and progressors (blue). In aggregate, these

variants explain 23% of the observed variance of durable host control.
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Fig. 2.

Imputation quality of classical HLA alleles in the European sample. (A) Concordance

between imputed (y-axis) and observed (x-axis) frequencies of classical HLA types in 371

HIV-1 controllers with four-digit HLA types obtained through Sanger sequencing. (B)

Positive predictive value, sensitivity, and genotype correlation (r2) with typed alleles as a

function of the observed frequency.
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Fig. 3.

Associations at amino acids in HLA-B in the European sample. (A) Association results for

all variable amino acid positions, as calculated by the omnibus test. Colors denote

conventional pocket positions. P values for significant classical HLA-B alleles are shown for

comparison. (B) Marked allele frequency differences between controllers and progressors

for amino acids at positions 67, 70, and 97. Numbers above the bars indicate odds ratios

(values >1 indicate a protective effect). (C) Associations between allelic variants at amino

acid positions 67, 70, and 97 and quantitative virus load set point in the independent Swiss

HIV cohort study. Effect estimates (beta coefficients from a linear-regression model) are

given in log10 units of virus load set point. P values refer to the omnibus test for association

at each position. Error bars indicate the standard error of the beta coefficient.
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Fig. 4.

Three-dimensional ribbon representation of the HLA-B protein based on Protein Data Bank

entry 2bvp (30), highlighting amino acid positions 62, 63, 67, 70, and 97 lining the peptide

binding pocket. The peptide backbone of the epitope is also displayed. This figure was

prepared with UCSF Chimera (32).
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