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Abstract

When taking a blood meal on a person infected with malaria, female Anopheles gambiae mosquitoes, the major vector of
human malaria, acquire nutrients that will activate egg development (oogenesis) in their ovaries. Simultaneously, they infect
themselves with the malaria parasite. On traversing the mosquito midgut epithelium, invading Plasmodium ookinetes are
met with a potent innate immune response predominantly controlled by mosquito blood cells. Whether the concomitant
processes of mosquito reproduction and immunity affect each other remains controversial. Here, we show that proteins that
deliver nutrients to maturing mosquito oocytes interfere with the antiparasitic response. Lipophorin (Lp) and vitellogenin
(Vg), two nutrient transport proteins, reduce the parasite-killing efficiency of the antiparasitic factor TEP1. In the absence of
either nutrient transport protein, TEP1 binding to the ookinete surface becomes more efficient. We also show that Lp is
required for the normal expression of Vg, and for later Plasmodium development at the oocyst stage. Furthermore, our
results uncover an inhibitory role of the Cactus/REL1/REL2 signaling cassette in the expression of Vg, but not of Lp. We
reveal molecular links that connect reproduction and immunity at several levels and provide a molecular basis for a long-
suspected trade-off between these two processes.
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Introduction

Malaria is a mosquito-borne parasitic disease affecting annually

an estimated 250 million people, of which close to 1 million

(mostly children in sub-Saharan Africa) succumb to the disease

(World Health Organization fact sheet #94, April 2010; http://

www.who.int/mediacentre/factsheets/fs094/en/index.html). Sev-

eral Plasmodium species cause malaria, the most deadly being P.

falciparum transmitted mainly by the Anopheles gambiae mosquito. As

mosquito females require a blood meal to produce eggs, feeding on

a malaria-infected host simultaneously activates oogenesis and

triggers immune responses to malaria parasites. In the midgut,

ingested Plasmodium gametocytes differentiate within minutes into

gametes. After fertilization, zygotes rapidly transform into

ookinetes, i.e. motile cells that traverse the midgut epithelium

between 16 and 48 h post infection (hpi). Once they reach the

hemolymph-bathed basal side of the midgut, ookinetes round up

and transform into oocysts, protected capsules within which

asexual multiplication of the parasite takes place. Previous studies

have established that the ookinete is the parasite stage most

vulnerable to the mosquito immune response [1,2]. As a

consequence of this response, most mosquito species efficiently

eliminate all the invading ookinetes, thereby aborting the parasite

cycle [3]. In a few parasite/mosquito combinations, up to 20% of

ookinetes survive and the disease can be further transmitted. A

number of mosquito humoral antiparasitic proteins have been

characterized (reviewed in [4]). The molecularly best character-

ized and phenotypically most prominent defense pathway

mediating the killing of Plasmodium berghei in A. gambiae involves a

thioester-containing protein (TEP1) homologous to vertebrate
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complement factor C3 [2,5,6]. Depletion of TEP1 by RNA

interference (RNAi) renders mosquitoes hypersusceptible to

Plasmodium infections, resulting in abnormally high infection levels.

Two leucine-rich repeat (LRR) proteins, LRIM1 and APL1C, act

as TEP1 control proteins to stabilize the mature form of TEP1 in

the hemolymph [7,8] and show the same RNAi phenotype as

TEP1 in P. berghei infections [9–12]. The depletion of either protein

results in precocious deposition of TEP1 on self tissues and

completely aborts its binding to the ookinetes [7]. Therefore, it

appears that LRR proteins regulate maintenance of mature TEP1

in circulation; however, the factors that control TEP1 targeting to

the parasite surface remain unknown.

Simultaneously to the midgut crossing by ookinetes, the

physiology of the mosquito is profoundly modified by a blood

meal in preparation for the laying of a clutch of eggs. Within 2 to

3 d after a blood meal, the massive ovary growth allows

maturation of 50–150 oocytes, a process called vitellogenesis

(reviewed in [13]). The blood meal provides the mosquito with

amino acids and lipids that are transferred through midgut cells to

the hemolymph and signal via the Target of Rapamycin (TOR)

pathway to initiate massive synthesis of nutrient transport proteins

in the mosquito fat body [14]. These transport proteins include the

lipid transporter lipophorin (Lp, AGAP001826) (also known as

apolipoprotein II/I or retinoic and fatty acid binding protein,

RFABG/P) and vitellogenin (Vg, AGAP004203), a precursor of

the yolk storage protein vitellin. Both proteins are secreted into the

hemolymph and transported to the ovaries. Vg is a large

phospholipoglycoprotein encoded in A. gambiae by a small family

of nearly-identical genes. Insect Vg harbors potential sites for

lipidation, glycosylation, and phosphorylation and is internalized

by developing oocytes where it is proteolytically cleaved to

generate vitellin, a nutrient source for the developing embryo

(reviewed in [15,16]). Lp, encoded by a single transcript and post-

translationally cleaved, is composed of two subunits of 250 and

80 kDa that together scaffold a lipidic particle. Similar to

vertebrate low- and high-density lipoproteins (LDL and HDL,

respectively), mosquito Lp particles contain a core of fatty acids

and sterols, surrounded by an outer leaflet of phospholipids

[17,18]. These particles function to deliver lipids and fatty acids to

energy-consuming tissues, including rapidly growing imaginal

discs in larvae, muscles, and the ovary in adult females [19]. In

addition to lipids, Lp particles serve as a vehicle for morphogen

proteins in the imaginal discs of Drosophila larvae [20]. Interest-

ingly, human HDL has been shown to host a fraction of

complement factor C3 [21] as well as trypanosome-killing protein

complexes [22]. In mosquitoes, recent studies [23–25] have

implicated Lp in both mosquito reproduction and Plasmodium

survival. In particular, experimental depletion of Lp by RNAi

inhibited oogenesis and also reduced the number of developing

Plasmodium oocysts in the mosquito midgut [23]. This could point

to a nutritional requirement for Lp in the early stages of parasite

development. Indeed, Lp has recently been detected by in vitro

approaches inside developing P. gallinaceum oocysts, suggesting that

it provides parasites with a source of lipids [26]. An intriguing

alternative explanation is that the increasing levels of Lp following

a blood meal may negatively impact mosquito immunity against

parasites. Artificially blocking the physiological rise in Lp levels

would then allow the immune system to exert its full strength

against the parasite.

In the mosquito fat body, two distinct pathways are required for

optimal expression of proteins involved in vitellogenesis: (i) the

nutrient-sensing TOR pathway and (ii) a hormonal cascade that

oversees production of 20-hydroxyecdysone [14,27,28]. Further-

more, in Ae. aegypti mosquitoes infected with microbes and

Plasmodium, the NF-kB factor REL1 positively regulates expression

of Lp and its receptor [24], suggesting that the NF-kB pathway

may also contribute to the regulation of oogenesis in addition to its

known role in mosquito immunity [29–31]. However, our

understanding of how oogenesis and immunity impact each other

remains incomplete: on one hand depletion of Lp strongly inhibits

development of P. gallinaceum; on the other hand over-expression of

Lp resulting from the depletion of the REL1 inhibitor Cactus in Ae.

aegypti is insufficient to rescue the complete block in parasite

development [24].

Here, we investigated the role of the two major nutrient

transport proteins Lp and Vg in mosquito antiparasitic responses

using a common laboratory model of malaria transmission: A.

gambiae mosquitoes infected with the GFP-expressing rodent

parasite P. berghei [32]. We show that similarly to Lp, Vg depletion

reduces parasite survival in mosquito tissues. Strikingly however,

Lp and Vg are no longer required for parasite survival if TEP1 is

depleted, suggesting that the low parasite survival phenotype

associated with the Lp/Vg knockdowns requires TEP1 function.

We propose that Lp and Vg exert distinct non-redundant roles in

reproduction and immunity: Lp is crucial for oogenesis and is

required for normal Vg expression after an infectious blood meal,

whereas Vg contributes to oogenesis and negatively impacts TEP1

binding to the ookinetes. We suggest that the reported negative

impact of Lp depletion on ookinete survival is indirect and is

mediated by reduced levels of Vg. We further demonstrate that the

NF-kB factors REL1 and REL2 limit the expression of Vg after an

infectious blood meal. These results reveal an unexpected network

of interactions whereby Plasmodium killing in mosquitoes is

potentiated by NF-kB pathways at two levels: (i) activation of

anti-Plasmodium genes and (ii) inhibition of the expression of the

nutrient transport protein Vg.

Results

Lp and Vg Depletion Reduce Parasite Survival in a TEP1-
Dependent Manner
Lp knockdown causes a decrease in parasite loads and

simultaneously arrests oogenesis [23]. We examined whether the

Lp knockdown phenotype requires the antiparasitic factor TEP1.

To this end, we compared the numbers of surviving parasites in

Author Summary

Malaria annually claims the lives of almost 1 million infants
and imposes a major socio-economic burden on Africa and
other tropical regions. Meanwhile, the detailed biological
interactions between the malaria parasite and its Anoph-
eles mosquito vector remain largely enigmatic. What we
do know is that the majority of malaria parasites are
normally eliminated by the mosquito’s immune response.
Mosquitoes accidentally acquire an infection by sucking
parasite-laden blood, but this belies the primary function
of the blood in the provisioning of nutrients for egg
development in the insect’s ovaries. We have found that
the molecular processes involved in delivering blood-
acquired nutrients to maturing eggs diminish the efficien-
cy of parasite killing by the mosquito immune system.
Conversely, molecular pathways that set the immune
system on its maximal capacity for parasite killing preclude
the efficient development of the mosquito’s eggs. Our
results reveal some of the molecules that underpin this
example of the trade-offs between reproduction and
immunity, a concept that has long intrigued biologists.

Reproduction versus Immunity in Anopheles
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single TEP1 or Lp knockdown mosquitoes and in double TEP1/Lp

knockdowns by injecting double-stranded RNA (dsRNA) resulting

in RNAi. Four days after dsRNA injection, mosquitoes were fed

on a mouse infected with GFP-expressing parasites. Mosquitoes

were dissected 8 to 10 d later to gauge prevalence of infection and

mean oocyst numbers per midgut (Figure 1A, Figure S3A). As

reported earlier, Lp silencing strongly reduced the number of

developing oocysts. Strikingly, silencing TEP1 at the same time as

Lp annihilated the effect of Lp silencing, i.e. yielded the high oocyst

numbers typically observed upon silencing of TEP1 alone.

Therefore, the low oocyst counts observed in Lp-depleted

mosquitoes are not due to a nutritional dependence of ookinetes

on Lp-derived lipids but are a consequence of TEP1 activity. This

result also suggests that the increased parasite killing in Lp-

depleted mosquitoes takes place at the ookinete stage, since TEP1

binding does not kill oocysts. Further, these results imply that the

loss of Lp renders ookinetes more vulnerable to TEP1-dependent

killing.

To explain these data, we initially hypothesized that Lp particles

might physically sequester components of the TEP1 machinery in

an inactive state, but a search for Lp-associated immune factors

was unsuccessful (with the notable exception of prophenoloxidase),

suggesting that TEP1-containing complexes are not carried in the

hemolymph by Lp particles (see Text S1 and Figure S1).

To investigate whether the adverse effect on immunity is a

specific property of Lp or may be manifested as well by other

nutrient transport factors, we injected mosquitoes with dsVg and

compared parasite development with dsLacZ and dsTEP1-injected

mosquitoes. A 4-fold reduction in mean parasite numbers was

observed in the dsVg group compared to dsLacZ controls (p,0.001,

p,0.001, p,0.05, and p,0.05 depending on the replicate of this

experiment; Figure 1B and Figure S3B). This effect was more

profound than the effect of dsLp (Figure 1A and 1E). We then

examined whether depletion of the major yolk protein would

compromise oogenesis. In contrast to Lp silencing, which resulted

in total abortion of ovary development, roughly 50% of mosquito

females still developed eggs after silencing of Vg compared to 80%

in dsLacZ control mosquitoes (Figure 1C), though ovaries that did

mature usually contained only a few eggs bearing melanotic spots

(unpublished data). When given a chance to lay, Vg-silenced

females did lay a few eggs, the majority of which never hatched

(unpublished data). The difference in strength between the Lp and

Vg silencing phenotypes regarding egg development suggests either

that Lp is more crucial than Vg for egg development or that the

efficiency of Lp silencing is greater than the efficiency of Vg

silencing. Residual Vg protein may allow the development of a few

eggs in dsVg-treated mosquitoes. It is interesting to note that the

strengths of the silencing phenotypes are reversed when consid-

ering parasite survival. To verify the efficiency of RNAi-mediated

depletion of Lp and Vg, we used specific antibodies directed

against the large and small subunits of Lp, and against Vg. RNAi

silencing caused Lp and Vg protein amounts to drop below 10% of

control levels (Figure S2). Subsequently, we systematically

controlled for Lp and Vg silencing efficiency and noted that Vg

depletion was somewhat more variable than Lp depletion, residual

Vg protein sometimes approaching 20% of control levels

(unpublished data). Strikingly, this analysis revealed that the

major protein bands detected in hemolymph samples by

Coomassie staining of SDS-PAGE gels (or of PVDF membranes

after protein transfer) correspond to the Vg and Lp signals

detected by specific antibodies (Figure S2). We excised these easily

visualized bands from Coomassie-stained protein gels and

submitted them to MALDI mass spectrometry. The peptide mass

spectra were searched against the NCBInr database. Each band

from a triplet running between 160 and 200 kDa was unequiv-

ocally identified as Vg, and the bands running at ,250 and

80 kDa were unequivocally identified as the large and small

subunits of Lp, respectively. In addition, a protein running at

,70 kD and showing an expression pattern identical to that of the

,200 kD Vg band (including after RNAi silencing) was identified

as the N-terminal fragment of the polypeptide encoded by Vg

mRNA (visible in Figures 3C, 4C, and S1). This fragment was not

recognized by our Vg antibody, raised against a C-terminal Vg

fragment. Its existence is consistent with the cleavage of Ae. aegypti

Vg prior to secretion [33–35]. No contaminating proteins were

detected at these sizes in the mass spectrometry analysis.

Therefore, Lp and Vg proteins can be readily visualized after

hemolymph electrophoresis and Coomassie staining of SDS-

PAGE gels even without immunoblotting. The efficiency of TEP1

silencing was also confirmed by immunoblotting (Figure 1D).

We next investigated whether Vg and Lp cooperate to

sustain oogenesis and parasite development or are involved in

independent processes. We performed double-knockdown

experiments by simultaneously injecting dsVg-dsLp to compare

to single injections of dsVg and dsLp as controls. As expected,

dsLp completely blocked oogenesis and the same was observed

in concomitant dsLp-dsVg knockdowns (Figure 1F). Moreover,

single dsVg (p= 0.0001) and double dsLp-dsVg (p,0.0001)

knockdowns caused comparable reductions in oocyst counts;

these reductions in oocyst numbers were stronger than in the

single dsLp knockdown (p= 0.024) (Figure 1E). These results

suggest that the influences of Lp and Vg on reproduction and

immunity are balanced differently. Lp may be more crucial for

oogenesis than Vg, whereas Vg influences Plasmodium survival

more strongly than does Lp. In most experiments, the effect of

Vg and Lp knockdowns on parasite counts did not appear to be

additive (Figures 1E, 2A, and unpublished data). Although this

observation is not supported by strong statistical significance, it

raises the possibility that the two proteins may be involved in a

single process benefiting ookinete survival in the physiological

situation.

To determine whether similarly to Lp, the effect of Vg on

parasite development required TEP1 function, we performed

triple knockdown experiments by injecting combinations of

dsTEP1, dsVg, dsLp, or control dsLacZ. Again, total inhibition of

oogenesis was observed in all dsRNA combinations that included

dsLp, suggesting that oogenesis is not influenced by TEP1 function

but absolutely requires Lp (Figure 2B). In striking contrast, high

parasite loads similar to that detected in the dsTEP1 single

knockdown were obtained when TEP1 was depleted simulta-

neously to Vg (unpublished data) or to both Vg and Lp (Figure 2A,

Figure S3C). These findings imply that blocking the transport of

lipids and vitellogenin-derived nutrients does not limit parasite

survival when the immune defense is suppressed; instead, the

observed reduction in parasite numbers in dsLp and dsVg

knockdowns is dependent on TEP1. We conclude that TEP1-

dependent parasite killing is more efficient when Lp and/or Vg

levels are low and that the TEP1-mediated immune pressure

exerted by the vector is a bigger impediment to the establishment

of a Plasmodium infection than nutrient availability. If this

constraint is removed via TEP1 depletion, Plasmodium parasites

can effectively exploit even reduced vector resources and proceed

with the formation of viable oocysts.

We next examined at which level Vg and Lp genetically interact

with TEP1. Binding of mature TEP1 to the parasite surface is one

of the first steps leading to parasite killing; either increasing or

reducing this event greatly influences the outcome of infection

[31,36]. Therefore, we gauged the efficiency of TEP1 binding to

Reproduction versus Immunity in Anopheles
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Figure 1. Effects of Lp and Vg silencing on parasite counts and oogenesis. Mosquitoes were injected with the indicated double-stranded
RNA and infected with P. berghei. Parasite development was gauged 7–9 d post infection by counting GFP-expressing oocysts. Each dot represents
the number of oocysts counted in one midgut. Ovaries containing mature eggs were counted 7 d post infection. Pie charts show the percentage of
mosquitoes containing mature eggs (grey) versus percentage of mosquitoes containing only undeveloped oocytes (black). (A) Effect of concomitant
silencing of TEP1 and Lp on parasite survival. (B) Effect of Vg silencing on parasite survival. In (A) and (B), one representative experiment out of 4
independent replicates is shown. The additional replicates are shown in Figure S3. (C) Effect of Vg silencing on oogenesis. (D) Coomassie staining (top
panel) of a PVDF membrane allows visualization of Vg and Lp in control, Vg-, and Lp-depleted mosquitoes. Hemolymph proteins were separated on a
denaturing SDS-polyacrylamide gel and transferred to a PVDF membrane. Western blotting analysis of hemolymph of Vg- and Lp-depleted
mosquitoes 0, 24, or 48 h after infection using anti-TEP1 antibody (bottom panel). (E, F) Parasite counts (E) and oogenesis (F) in Lp- and Vg-depleted
mosquitoes.
doi:10.1371/journal.pbio.1000434.g001

Reproduction versus Immunity in Anopheles
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Figure 2. Vg and Lp are involved in TEP1-dependent parasite killing. Mosquitoes were injected with the indicated combinations of dsLacZ,
dsVg, dsLp, dsTEP1. (A) Parasite counts. TEP1 silencing rescues the effect of Vg depletion on parasite loss. (B) Oogenesis. TEP1 knockdown doesn’t
rescue the effect of Lp/Vg depletion on oogenesis. (C) Mosquitoes infected with P. berghei were dissected 24 and 48 h post blood meal. Midguts were
fixed and immunostained with anti-TEP1 antibodies. The percentages of live GFP-expressing parasites (green), dying parasites (GFP-positive but
partly covered by TEP1), and dead parasites (GFP negative, TEP1-covered) were determined on microscope images. 48 hpi, the percentage of dead,
TEP1-labelled ookinetes is markedly higher in dsLp or dsLp-Vg mosquitoes than in the dsLacZ controls. In the LacZ control, the percentage of live
parasites increases at 48 h because of the progressive clearance of already dead parasites. See Table S1 for parasite numbers scored in each of three
independent repeats of this experiment. (D) Lp is required for oocyst maturation. Parasite development was gauged 8 dpi by estimating the size of
oocysts in mosquitoes after the depletion of Lp, Vg, or double KD Lp-Vg compared to TEP1 and LacZ knockdown controls. Pictures of dissected
midguts were analyzed using Axiovision. Parasite sizes were estimated by the surface area of each individual oocyst and averaged as mean oocyst
size per dsRNA treatment, yielding the graph to the right. Lp depletion alone or with Vg significantly reduced oocyst sizes compared to controls.
doi:10.1371/journal.pbio.1000434.g002
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ookinetes in dsLp- and dsLp-Vg-injected mosquitoes. At early time

points (24 hpi) TEP1 binding to ookinetes did not differ in the Lp

or Lp-Vg -depleted versus control mosquitoes; but at 48 hpi 70%

to 86% of ookinetes were TEP1 positive (i.e., either dead or

moribund) in dsLp- or dsVg-Lp-injected mosquitoes versus only

41% to 68% in dsLacZ controls (Figure 2C and Table S1, p=0.005

or less by chi-square analysis). Thus, TEP1 binding to parasites

is more efficient in the absence of Lp/Vg. This strongly suggests

that physiological levels of Vg and Lp interfere with the efficient

binding of TEP1 to ookinetes once the invasion phase is

completed.

To see if we could also detect an effect of Lp and Vg depletion

at a later stage of parasite development, we examined oocyst

growth. Strikingly, oocyst size 9 d after infection was markedly

reduced when Lp, but not Vg, was depleted (Figure 2D). In

contrast to oocyst numbers, silencing TEP1 at the same time as Lp

did not rescue oocyst growth (unpublished data), indicating that

the small oocyst size does not result from TEP1 activity in Lp-

deficient mosquitoes. This supports the hypothesis that Lp

contributes nutrients to oocyst development [26]. Therefore, Lp

benefits Plasmodium development at two independent levels: an

early effect favoring ookinete survival by protecting against TEP1-

dependent killing, and a later effect favoring normal oocyst

growth. The latter effect does not require Vg or TEP1 function.

Vg and Lp Do Not Affect TEP1 Expression or Cleavage,
but Lp Is Necessary for Proper Vg Expression
Previous work [7,31] has demonstrated that boosting mosquito

basal immunity via depletion of the inhibitory IkB protein Cactus

up-regulates components of the TEP1 pathway (including TEP1,

LRIM1, and APL1C) and completely blocks parasite develop-

ment. Therefore, we asked whether the knockdown of Vg and Lp
could mimic the effect of Cactus depletion and elevate TEP1

expression levels, providing an explanation to the above

observations. We silenced Lp and/or Vg and examined the

transcript levels of TEP1 before and after blood feeding using

quantitative real-time polymerase chain reaction (qRT-PCR).

Silencing of the two nutrient transport genes did not alter TEP1
expression (Figure 3A). We then evaluated the effect of Lp and Vg

silencing on TEP1 protein amounts and TEP1 cleavage in the

hemolymph by immunoblotting using polyclonal anti-TEP1

antibodies. This analysis did not reveal any marked increase in

the amounts of full-length or mature TEP1 protein (Figures 3C

and 1D).

Surprisingly, silencing of Lp reproducibly lowered the expres-

sion of VgmRNA (Figure 3B and unpublished data). At the protein

level, Lp depletion strongly reduced Vg levels at 47 h (but not

24 h) post-infectious feeding compared with the controls

(Figure 3C), confirming that Lp is indeed required for full Vg

Figure 3. Lp is required for normal Vg expression. Mosquitoes were injected with dsLp, dsVg, or dsLp+dsVg. (A, B) TEP1, Vg, and Lp expression,
respectively, was measured at several time points after P. berghei infection using quantitative RT-PCR. (C) Lp and Vg protein levels in mosquito
hemolymph were gauged by Coomassie staining; TEP1 (full length and processed) by immunoblotting. PPO2 served as a loading control. Note that
levels of Vg protein are strongly reduced at 47, but not 24, h after infection specifically in dsLp-treated mosquitoes.
doi:10.1371/journal.pbio.1000434.g003
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expression between day 1 and day 2 post-infectious blood-feeding.

In contrast, the depletion of Vg had no effect on Lp expression

(Figure 3B) or protein levels (Figure 3C).

Depletion of Cactus Represses Vg Expression
The unexpected observation that Lp and Vg knockdown

simultaneously arrests oogenesis and facilitates TEP1 binding to

ookinetes led us to re-examine the previously observed striking

phenotype of dsCactus, which boosts basal immunity while arresting

oogenesis ([31] and unpublished data). Depleting the IkB-like

repressor protein Cactus increases the activity of NF-kB factors

REL1 and REL2, leading to elevated expression of TEP1 and

other immune factors. Therefore, we investigated whether REL1,

REL2, and Cactus influence the expression of Vg and/or Lp. To

this end, mosquitoes were injected with either dsRel1, dsRel2,

dsCactus, or co-injected with dsRel1-dsRel2, dsRel1-dsCactus, dsRel2-

dsCactus, and dsLacZ control. Mosquitoes were fed on an infected

mouse, and subsequently, the expression of Vg and Lp was

monitored by qRT-PCR. Strikingly, Vg expression was almost

abolished in dsCactus mosquitoes at 24 hpi; conversely, the

depletion of REL1 or REL2 at this time point elevated Vg

expression above the levels in the dsLacZ control (Figure 4A).

Interestingly, concomitant silencing of Cactus/Rel1 and Cactus/Rel2

restored Vg expression to physiological levels (Figure 4B), indicat-

ing that REL1 and REL2 contribute to the regulation of Vg

expression. At the protein level, Vg amounts were unchanged at

24 h but strongly reduced 43 h after infectious blood feeding

specifically in dsCactus-injected-mosquitoes (Figure 4C), confirming

the qPCR data and revealing a clear delay between mRNA and

protein fluctuations. Thus, in the dsCactus background, while TEP1

expression is upregulated, Vg expression is directly or indirectly

repressed by REL1/2. Therefore, the Cactus protein affects TEP1

and Vg levels in opposite directions. We extended our analysis to

Lp, but in contrast to the situation reported for Ae. aegypti [24], its

expression was unaffected by the knockdown of the NF-kB-like

factors (Figure 4A). Since Vg silencing alone, unlike Cactus

silencing, is not sufficient to completely block oogenesis, other

molecules required by developing mosquito oocytes may be

regulated by Cactus in the same manner as Vg.

Taken together, our findings uncover the complex phenotype of

Cactus depletion. It leads to a lower level of Vg expression after a

blood meal, thereby contributing to the arrest in oogenesis seen in

Figure 4. Vg expression is repressed by NF-kB factors REL1/REL2. Mosquitoes were injected with the indicated combinations of dsCactus,
dsRel1, dsRel2, and the expression levels of Vg and Lp examined by qRT-PCR at the indicated time points after infection and compared to dsLacZ
control. Gene expression is expressed relative to the LacZ control at time 0. (A) Vg expression was inhibited in dsCactus but increased in dsRel1/Rel2
mosquitoes. (B) Concomitant depletion of Cactus and Rel1 restored Vg expression. (C) Coomassie staining of hemolymph proteins after
electrophoresis on a 7% SDS-PAGE gel and transfer to a PVDF membrane. No change in Vg protein is seen 24 h after infection, but at 43 h dsCactus
completely blocks Vg expression. Protein identities are indicated to the left. The identity of the subunits of Lp and Vg, and the identity of APL1C and
LRIM1 proteins were established by mass spectrometry of the Coomassie-stained bands and by immunoblotting. APL1C and LRIM1 over-expression
confirms the efficiency of Cactus silencing.
doi:10.1371/journal.pbio.1000434.g004
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Cactus knockdown mosquitoes. On the other hand, it stimulates the

mosquito antiparasitic defense at least at two different levels: (i) by

lowering the level of Vg, rendering TEP1-mediated killing more

efficient, and (ii) by elevating the levels of TEP1 pathway proteins.

Discussion

The first indication that nutrient transport after a blood meal

influences mosquito susceptibility to P. berghei was provided by

Vlachou et al. [23], who demonstrated that experimental

depletion of the lipid carrier protein Lp by RNAi reduces the

number of developing oocysts in the mosquito midgut. Recently,

these results were extended to P. falciparum [25]. However, how

and at which stage of development the parasites were eliminated in

Lp-deficient mosquitoes remained to be determined. We show

here that the major yolk protein Vg shows a similar but more

drastic knockdown phenotype than Lp on Plasmodium survival and

that the Lp and Vg depletion phenotypes require the function of

the immune factor TEP1, which targets ookinetes for killing.

Further, high numbers of parasites actually survive and turn into

oocysts even in the context of Lp and/or Vg depletion, as long as

TEP1 is also experimentally depleted. From these observations, we

infer that physiological levels of both nutrient transport proteins

following a blood meal somehow dampen the strength of the

immune defense and protect ookinetes against destruction by the

TEP1 pathway. The effects of Lp and Vg depletion on TEP1-

mediated parasite killing are similar, and we find that Lp is

required for the full induction of Vg expression on day 2 following

an infectious blood meal. We therefore propose that Lp may

indirectly affect ookinete survival by influencing Vg expression,

while Vg impinges either directly or more closely than Lp on the

TEP1-killing mechanism.

The induction of Vg expression after a blood meal requires both

the TOR pathway and ecdysone signaling [14]. It is unclear why

Lp depletion reduces the expression of Vg after an infectious blood

meal. One possible explanation is that an Lp shortage precludes

ovarian follicle development, preventing the normal secretion of

ecdysone by follicle cells; thus leading to the reduction in Vg

expression. However, attempts to rescue the Lp silencing effect on

Vg expression with exogenously provided 20-hydroxyecdysone

were unsuccessful. As the lower level of Vg expression in Lp-

deficient A. gambiae is reminiscent of the situation observed in adult

Ae. aegypti mosquitoes malnourished during larval life [37], it would

be interesting to determine if Plasmodium survival is compromised

in such malnourished mosquitoes in laboratory and field settings.

The GFP-tagged P. berghei strain used in this study provides a

good model and enables analyses of vectorial capacity that are

much more demanding with wild malaria parasites. However,

recent studies indicate that the mosquito response to P. berghei and

to P. falciparum differ in important ways [10,38]. In addition, the P.

berghei–A. gambiae model is an unnatural host-parasite association.

Therefore, it will be important to see whether our observations

hold true in the A. gambiae–P. falciparum relationship. Importantly

though, the TEP1 pathway does limit P. falciparum survival in A.

gambiae natural infections ([39] and Levashina et al., unpublished

results) and the Lp knockdown was shown to have similar effects in

both systems [25].

What is the molecular basis of the negative effect of the two

nutrient transport proteins on the TEP1 pathway? We initially

hypothesized that Lp-scaffolded lipidic particles could sequester

components of the TEP1 pathway in an inactive state. However,

TEP1 and its interacting partners LRIM1 and APL1C were not

detectable in Lp extracts, suggesting that the Plasmodium-killing

machinery is not carried by Lp particles. Instead, RNAi-mediated

depletion of Lp and, more strikingly, of Vg resulted in more

efficient TEP1 binding to the surface of ookinetes at 48 hpi,

promoting their killing. One explanation could be that Vg (and

perhaps Lp, to a lesser extent) are recruited to the parasite surface,

where they might mask TEP1 binding sites. Consistent with this

idea, fish vitellogenin has recently been found to bind microor-

ganisms and to opsonize them for phagocytosis [40]. Mosquito Vg

may behave non-productively in a similar manner and outcompete

TEP1 from the ookinete surface. Alternatively, a physical

interaction between TEP1 and Vg could inhibit TEP1 activity, a

hypothesis that should be further investigated. Yet another

possible explanation is that transient interactions of ookinetes

with Vg might alter the lipid composition in the ookinetes’

membrane, rendering them less visible to the TEP1 machinery.

The parasite molecules to which TEP1 covalently attaches are

currently unknown, but hydroxyl residues on surface lipids could

be good targets for thioester-dependent TEP1 covalent binding.

We further observed a retarded oocyst growth in Lp-deficient

mosquitoes 9 d post infection. This phenotype was specific to Lp,

as parasites developed normally in Vg-deficient mosquitoes.

Therefore, Lp is a probable lipid source for developing oocysts.

Indeed, Lp was detected inside P. gallinaceum oocysts in vitro,

suggesting that oocysts tap some of the host’s Lp for their

development [26]. Taken together, Lp appears to regulate parasite

development at two distinct stages by two independent mecha-

nisms: (i) providing an indirect protection to ookinetes via

regulation of Vg levels after a blood meal and thereby dampening

TEP1 binding to ookinetes, and (ii) exerting a direct nutritional

role by supplying lipids to growing oocysts.

The quantitative RT-PCR and protein expression results

reported here added the IkB/NF-kB-like factors Cactus/REL1

and REL2, previously known to control immunity [29–31], to the

list of factors that influence Vg expression. We propose that Cactus

depletion boosts TEP1 parasite killing by simultaneously increas-

ing TEP1 expression [31] and decreasing the expression of Vg, in

the absence of which TEP1-mediated killing is more efficient.

Previously, the reason why Cactus depletion blocked oogenesis

while boosting anti-Plasmodium immunity was unknown. Our

results shed new light on this phenomenon by suggesting that

Cactus activity is necessary for the expression of Vg, and probably

of additional factors involved in vitellogenesis.

Although many mosquito genes showing antiparasitic activity

are induced by the NF-kB-like factors REL1 and REL2 [12,29–

31,41], it is currently unclear whether parasite invasion of

mosquito tissues actually activates the NF-kB pathways. However,

the expression of nutrient transport molecules is affected by signals

arising from the parasite’s invasion, in addition to being influenced

by hormone signaling, the TOR pathway, and NF-kB factors.

Indeed, ookinete invasion of the midgut induces Lp mRNA

expression further than does an uninfected blood meal in A.

gambiae and Ae. aegypti [23,24]. At the protein level, we did not

observe a corresponding increase in Lp amounts using specific

antibodies (unpublished data), which may reflect consumption of

the additionally produced Lp by parasites and/or by the midgut

wound healing response to parasite invasion. This implies that Lp

protein homeostasis is under tight physiological regulation.

Conversely, Ahmed et al. [42] reported that parasite invasion

reduces the abundance of the Vg transcript in A. gambiae, while Vg

protein levels were only transiently reduced before accumulating

in the hemolymph. Therefore, the production of both proteins is

subjected to multiple physiological switches. The reported changes

in Vg levels correlated with apoptosis of patches of ovarian

follicular cells, which was prominent following infections and

immune stimulation. Dying ovarian follicles stop secreting
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ecdysteroids and taking up Vg protein, which may explain both

the drop in Vg transcription and the accumulation of Vg protein in

the hemolymph [43,44]. It would be interesting to identify

infection-dependent signals arising at the midgut and triggering

ovarian follicle apoptosis. In Drosophila, pathogenesis is also

reported to trigger cell death in ovaries [45]. In the presence or

absence of an infection, activation of the Immune deficiency (Imd)

pathway (e.g., by injection of dead bacteria) negatively impacted

oogenesis. This effect depended on the immune status, as

oogenesis remained normal in Imd pathway mutants injected

with dead bacteria [46]. The mosquito Cactus/REL1/REL2 NF-

kB pathway is related to the Drosophila Toll and Imd immune

pathways; its targets would therefore represent attractive candi-

dates as modulators of mosquito reproduction. A full understand-

ing of the interactions between reproductive and immune

functions in mosquitoes will require a thorough study of the

molecular pathways influencing the transcription of immune and

vitellogenic factors, and how these pathways are affected by blood

meals, immune defense, and parasite invasion. To our knowledge,

Vg and Cactus are the first molecules reported to occupy a central

position at the interface between reproduction and immunity,

providing a molecular handle to further explore the long-suspected

trade-off between these two processes.

Material and Methods

Potassium Bromide Gradient Purification of Lipophorin
Particles
Approximately 0.5 g of mosquito adults (ca. 330 mosquitoes)

were roughly ground with a Polytron electric homogenizer in 2 ml

ice-cold TNE buffer (100 mM Tris-HCl pH 7.5, 0.2 mM EGTA,

150 mM NaCl) + Complete protease inhibitors (Roche). Debris

were centrifuged at 4uC in a tabletop centrifuge. The supernatant

was transferred to 2.2 ml ultracentrifuge tubes and spun for 3 h at

120,000 g at 4uC in a Sorvall ultracentrifuge equipped with an

S55-S rotor. The cleared supernatant was recovered, completed

with solid potassium bromide to a final concentration of 0.34 g/

ml, overlayed with 0.5 ml TNE buffer+0.33 g/ml KBr, and

centrifuged in 2.2 ml PET ultracentrifuge tubes (Hitachi Koki) at

250,000 g, 10uC, for at least 36 h. The top layer of fat was

discarded and 5 or 6 fractions of 0.5 ml were carefully collected

starting from the top. Lipophorin particles were present in the top

fraction, while the majority of other proteins fractionated into the

fourth.

Lipophorin and Vitellogenin Antibodies
The top fraction of a potassium bromide gradient prepared

using a scale-up of the above method was desalted on a Pharmacia

PD-10 column according to the manufacturer’s instructions. The

two subunits of Lp were the predominant proteins in the extract

according to Coomassie staining of an SDS-PAGE gel. Protein

amount was quantified with a Bradford assay. Six-week-old female

BALB/c mice were injected intraperitoneally with 40 mg of these

lipophorin particles and 100 mg of poly I/C as adjuvant. Three

injections were performed at 2-wk intervals. Four days prior to

hybridoma fusion, mice with positively reacting sera were

reinjected. Spleen cells were fused with Sp2/0.Agl4 myeloma

cells as described [47]. Hybridoma culture supernatants were

tested at day 10 by ELISA for cross-reaction with purified Lp

particles. Positive supernatants were then tested by Western blot

on mosquito extracts. All ELISA-positive supernatants recognized

peptides corresponding in size to either the large (250 kDa) or the

small (80 kDa) Lp subunit. Specific cultures were cloned twice on

soft agar. A hybridoma clone (2H5, immunoglobulin subclass

IgG2ak) recognizing the 80 kDa Lp subunit was selected and

ascites fluid was prepared by injection of 26106 hybridoma cells

into pristane-primed BALB/c mice. The resulting antibody

efficiently immuno-precipitated the 80 kDa Lp subunit and co-

immunoprecipated the 250 kDa subunit. The identity of both

immuno-precipitated subunits, excised from Coomassie-stained

protein gels, was confirmed by mass spectrometry. Similarly, we

prepared a monoclonal antibody (2C6) recognizing the large Lp

subunit. Rabbit polyclonal antibodies specific to Vg were obtained

by immunizing rabbits with a purified recombinant Vg fragment

fused to GST. The Vg gene fragment used for protein production

was amplified from mosquito cDNA using attB-site (capital letters)-

containing primers GGGGACAAGTTTGTACAAAAAAGCAG-

GCTtcaagtttgtgctgcagcacaagcag and GGGGACCACTTTGTA-

CAAGAAAGCTGGGTCCTAagcgcaagatggatggtagtttc. The PCR

product was cloned into pDEST15 (Invitrogen) using the Gateway

technology. Protein was produced in E. coli BL21-AI.

Immunoprecipitation
120 adult mosquitoes were severed by opening the thorax and

abdomen cuticles with fine forceps and bled on ice in 1 ml IP

buffer (TRIS pH 7.9 50mM, NaCl 100 mM, EDTA 2 mM, BSA

0.1 mg/ml) + Complete protease inhibitors (Roche). Carcasses and

cellular debris were removed by two successive 2,500 g centrifu-

gation steps (for 2 min at 4uC); the extract was further cleared by

three 16,500 g centrifugations (2 min each). The sample was pre-

cleared for 1 h at 4uC under gentle rocking with 2 mg of an

irrelevant mouse IgG2ak antibody that was removed by

incubation at 4uC with 35 ml protein A-sepharose slurry

(Pharmacia) for 1 h followed by centrifugation. Supernatant was

split in two aliquots, one subjected to a 1 h incubation with specific

antibody and the other with a non-specific antibody of the same

immunoglobulin class. 35 ml of protein A-Sepharose were added to

each sample, further rocked at 4uC for 1 h, centrifuged. The

supernatant was saved (post-IP supernatant sample). Sepharose

beads were washed 5610 min in TE buffer with or without

500 mM KCl, successively. Lipophorin and associated proteins

were eluted from the beads using SDS-PAGE sample buffer and

submitted to Western blotting.

Hemolymph Protein Samples for SDS-PAGE
At least 8 anesthetized mosquitoes were aligned on ice under the

binocular microscope. Their proboscis was clipped with dissection

scissors. Each mosquito was gently pressed on the thorax with

forceps and the hemolymph droplet forming at the tip of the cut

proboscis was collected into 16 sample (Laemmli) buffer. An

hemolymph amount equivalent to that collected from 4 mosqui-

toes was loaded in each lane of SDS-PAGE gels.

RNAi and Infections
The 741 bp long HincII fragment of Vg1 (AGAP004203) and

the 431 bp long BspHI/BsgI fragment of Lp (AGAP001826) were

cloned from cDNA library clones into the pLL10 vector. RNAi

constructs for TEP1 and NF-kB factors have been described

(Frolet et al. 2006) [31]. Potential cross-silencing effects of the

chosen sequences were analyzed using the Deqor software ([48];

http://deqor.mpi-cbg.de/) with the predicted A. gambiae tran-

scriptome ENSEMBL database. DsRNA was synthesized as

previously described [36]. A. gambiae susceptible G3 strain were

maintained at 28uC, 75%–80% humidity, and a 12/12 h light/

dark cycle. Two-day-emerged adult female mosquitoes from the

same cohort were injected with 0.2 mg of dsRNA using a Nanoject

II injector (Drummond, http://www.drummondsci.com). Co-

injection experiments were performed by injecting a double
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volume of 1:1 mixtures of 3 mg/ml solutions of dsRNAs. Four days

after dsRNA injection mosquitoes were fed on a mouse carrying P.

berghei GFP-con 259cl2 as previously described [36,37]. Statistical

significance was determined with a Kruskall-Wallis test for non-

parametric data followed by Dunn’s post-test. The indicated p

values are those obtained with Dunn’s test.

Assessment of Ovary Development
The ovaries of dissected females were observed under the

binocular microscope. Ovaries containing 3 fully grown eggs or

more were scored as positive. Ovaries with only undeveloped

oocytes or less than 3 fully grown eggs were scored negative.

qRT-PCR
Total RNA from 10 mosquitoes was extracted with Trizol

reagent (Invitrogen) before and after dsRNA injection or after

blood feeding. 2–8 mg of RNA was reverse transcribed using M-

MLV enzyme and random primers (Invitrogen). Specific primers

(Table 1) were used at 300 nM for qRT-PCR reactions.

Ribosomal protein L19 (RPL19) served as an internal control to

normalize gene expression. The reactions were run on an Applied

Biosystems 7500 Fast Real-Time PCR System using Power SYBR

Green Mastermix (http://www.appliedbiosystems.com).

Fluorescence Microscopy
In order to count the surviving GFP-expressing parasites,

mosquito midguts were dissected between 7 and 10 dpi and

prepared as previously described [36,37] and observed under a

fluorescence microscope. To assess TEP1 binding to ookinetes,

mosquito midguts were dissected at 18, 24, and 48 hpi, fixed in

4% formaldehyde at room temperature for 45 min, then washed

with phosphate buffered saline, and stained with anti-TEP1

antibodies as previously described [31,36]. Parasite numbers and

TEP1 labeling were scored using a Zeiss fluorescence microscope

(Axiovert 200M) equipped with a Zeiss Apotome module (http://

www.zeiss.com). GFP-expressing parasites were considered live

while dead parasites were GFP negative. Differential TEP1

staining on ookinete were gauged at 18, 24, and 48 hpi. At least

three independent experiments were conducted per treatment

group with a minimum of five mosquito midguts per treatment.

For each midgut, all ookinetes visible in 4 fields covering most of

the midgut were scored. Table S1 summarizes the ookinete counts

from three independent experiments.

MALDI Mass Spectrometry
Coomassie-stained protein bands excised from SDS-PAGE gels

were digested with trypsin. Tryptic peptides eluted from the gel

slices were subjected to MALDI mass measurement on an

Autoflex III Smartbeam (Bruker-Daltonik GmbH, Bremen,

Germany) matrix-assisted laser desorption/ionization time-of-

flight mass spectrometer (MALDI-TOF TOF) used in reflector

positive mode. The resulting peptide mass fingerprinting data and

peptide fragment fingerprinting data were combined by Biotools 3

software (Bruker Daltonik) and transferred to the search engine

MASCOT (Matrix Science, London, UK). Peptide mass error was

limited to 50 ppm. Proteins were identified by searching data

against NCBI non-redundant protein sequence database.

Supporting Information

Figure S1 Prophenoloxidase but not TEP1 or LRIM1

associates with Lp particles. (A, top panel) Coomassie-

stained polyacrylamide gel resolving mosquito proteins fraction-

ated on a potassium bromide gradient. Molecular weight

standards are indicated on the left. Lp subunits (ApoI and ApoII,

circled red in lane 1) are the main proteins detectable in top

gradient fractions. Fractions 1, 2, 3 are 10-fold concentrated

compared to fractions 4, 5, 6. (A, middle and bottom panel)

Western blotting with anti-TEP1 and LRIM1 antibodies reveal

TEP1 and LRIM1 proteins only in higher density fractions. TEP1-

F, full-length TEP1; TEP1-C, C-terminal TEP1 fragment. (B)

Western blotting analysis of KBr fractions using anti-PPO2

antibody. A fraction of PPO fractionates with Lp particles. (C)

Immunoblotting analysis of Lp particles purified by immunopre-

cipitation 0, 4, or 14 d after a P. berghei infection (dpi) with mouse

anti-Lp (ApoLpII) monoclonal antibody. Non-specific mouse

antibody (NS) is used as an immunoprecipitation control. TEP1

does not associate with purified Lp and is found only in post-IP

(unbound) supernatants.

Found at: doi:10.1371/journal.pbio.1000434.s001 (0.92 MB TIF)

Figure S2 Lp and Vg proteins are readily visualized by

Coomassie staining. Mosquitoes were injected with dsLacZ,

dsLp, or dsVg as indicated and offered a blood meal 4 d later to

induce Vg expression. Hemolymph was collected 24 h after a

blood meal from clipped mosquito proboscises. Hemolymph from

the equivalent of 4 mosquitoes as well as 5- and 10-fold dilutions of

the control dsLacZ hemolymph (2 lanes at the right of the gel) was

resolved by electrophoresis on a 7% SDS-PAGE gel and

transferred to a PVDF membrane. The membrane was subjected

to staining with Coomassie brilliant blue (top panel). Proteins were

subsequently revealed with the indicated antibodies (lower panels).

Molecular weight markers are indicated on the right. Protein

bands revealed by the antibodies superpose perfectly with the

protein bands revealed by Coomassie staining. The protein

identities were confirmed by a mass spectrometric analysis. The

intensities of antibody signals in the 5- and 10-fold diluted sample

indicate that residual Vg and Lp protein levels are less than 10% of

the control level in the corresponding RNAi samples.

Found at: doi:10.1371/journal.pbio.1000434.s002 (2.34 MB TIF)

Figure S3 (A) Three additional repeats of the experiment shown

in Figure 1A. (See Figure 1A for legend.) (B) Three additional

repeats of the experiment shown in Figure 1B. (See Figure 1B for

legend.) (C) Two additional repeats of the experiment shown in

Figure 2A. (See Figure 2A for legend.)

Found at: doi:10.1371/journal.pbio.1000434.s003 (0.35 MB TIF)

Table S1 The table summarizes the parasite scores for

three independent repeats of the experiment shown in

Figure 2C. Shown are parasite percentages in each of the three

possible classes (live, GFP positive; dying, GFP + TEP1 positive;

dead, TEP1 positive). The total number of ookinetes scored for

each treatment group is given in parentheses next to the injected

Table 1. Primers used for qRT-PCR.

Gene Primers for qRT-PCR

TEP1 AAAGCTACGAATTTGTTGCGTCA
TTCTCCCACACACCAAACGAA

Vg CCGACTACGACCAGGACTTC
CTTCCGGCGTAGTAGACGAA

Lp CAGCCAGGATGGTGAGCTTAA
CACCAGCACCTTGGCGTT

RPL19 CCAACTCGCGACAAAACATTC
ACCGGCTTCTTGATGATCAGA

doi:10.1371/journal.pbio.1000434.t001
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dsRNA. p values were obtained by chi-square analysis comparing

parasite scores in dsLp and dsLacZ-injected mosquitoes or

comparing parasite scores in dsLp-Vg and dsLacZ-injected

mosquitoes. For this analysis, we summed all TEP1-positive

ookinetes (dead + dying). Figure 2C was generated with

Experiment 3.

Found at: doi:10.1371/journal.pbio.1000434.s004 (0.04 MB XLS)

Text S1 The supplemental text describes lipophorin

particle purification from adult mosquitoes by potassi-

um bromide gradient fractionation or immuno-precip-

itation and a search for immune factors that co-purify

with lipophorin.

Found at: doi:10.1371/journal.pbio.1000434.s005 (0.10 MB

DOC)
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