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In allocating public health 
resources, the guiding principle 
should be an evidence-based 

quantifi cation of need. A signifi cant 
effort to categorize diseases by their 
global morbidity and mortality impact 
has developed during the last decade, 
epitomized by the Global Burden of 
Diseases [1] and the Disease Control 
Priorities projects [2]. But despite these 
efforts, the evidence base for allocating 
resources for malaria control on a 
global scale is poor.

National reporting on malaria 
continues to be fanciful; Kenya, for 
example, reported only 135 malaria 
deaths in 2002 to the World Health 
Organization [3]. In addition, less 
than half (22/49) of the malaria-
endemic countries in Africa provided 
information for the most-recent 
reporting year, 2003; the rest were 
older [3]. Information on the global 
burden of malaria remains the subject 
of best guesses rooted in national 
reporting systems [3], informed 
estimation based on epidemiological 
data linked to historical malaria 
distributions [4], or unvalidated 
models of malaria distribution in 
Africa [5–7]. As a corollary, resource 
allocations for malaria interventions 
remain driven by perceptions and 
politics, rather than an objective 
assessment of need. This status quo is 
untenable when global and national 
fi nancial resources must be defi ned 
to meet needs for new, expensive 
antimalarial drugs and commodities 
to prevent infection, and to ensure 
that these interventions are optimally 
targeted.

It has been almost 40 years since the 
last global map of malaria endemicity 
was constructed [8], and a decade 
since the need for maps of malaria 
transmission in Africa was fi rst 
advocated [9]. Although substantial 

progress has been made [10–21], 
an evidence-based map of malaria 
transmission intensity for Africa 
remains illusive, and there have been 
no recent efforts to construct a credible 
evidence-based global malaria map.

A New Mapping Project

The primary goal of the recently 
launched Malaria Atlas Project (MAP) 
is to develop the science of malaria 
cartography. Our approach will be 
fi rst to defi ne the global limits of 
contemporary malaria transmission; 
we have initiated this process [12,13], 
but will substantially refi ne these layers 
with additional medical intelligence in 
future years.

Within these limits, we plan to 
then model endemicity using a global 
evidence base of malaria parasite 
prevalence. This Health in Action 
concentrates mostly on how we intend 
to achieve this important goal. Once we 
have created these global endemicity 
maps, these will then provide a 
baseline to facilitate estimation of 
populations at risk of malaria and 
more-credible predictions of disease 
burden. These maps will also provide 
a platform to help target intervention 
needs, and may provide a means to 
measure progress toward national and 
international malaria public health 
goals at a global scale.

Why Do We Need Maps of Malaria 
Transmission?

Malaria parasite transmission intensity 
is spatially heterogeneous [6,22–24]. 
This heterogeneity has important 
implications for risks and age patterns 
of progression from malaria infection 
to disease, disability, and death [5,25].

Endemicity is a measure of the 
level of malaria challenge in a human 
population, and determines the 
average age of fi rst exposure, the rate 
of development of immunity, and 
thus, the expected clinical spectrum 
of disease [25,26]. Therefore, suites 
of relevant interventions should be 
tailored to these basic epidemiological 
foundations [9,27–29].

This is obvious for malaria early 
warning systems, for example, that 

The Health in Action section is a forum for individuals 
or organizations to highlight their innovative 
approaches to a particular health problem.

Funding: SIH is funded by a senior research 
fellowship from the Wellcome Trust (no. 079091). 
RWS is a Wellcome Trust principal research fellow 
(no. 079080), and acknowledges the support of 
the Kenyan Medical Research Institute. This Health 
in Action is published with the permission of the 
director of the Kenyan Medical Research Institute. 
This work forms part of the output of the Malaria 
Atlas Project (http://www.map.ox.ac.uk), principally 
funded by the Wellcome Trust, London, United 
Kingdom.

Competing Interests: The authors have declared 
that no competing interests exist.

Citation: Hay SI, Snow RW (2006) The Malaria Atlas 
Project: Developing global maps of malaria risk. PLoS 
Med 3(12): e473. doi:10.1371/journal.pmed.0030473

Copyright: © 2006 Hay and Snow. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original 
author and source are credited. 

Abbreviations: MAP, Malaria Atlas Project; PR, 
parasite rate

Simon I. Hay and Robert W. Snow are in the Malaria 
Public Health and Epidemiology Group, Centre 
for Geographic Medicine, Kenya Medical Research 
Institute, Nairobi, Kenya. Simon I. Hay is also in 
the Spatial Ecology and Epidemiology Group, 
Department of Zoology, University of Oxford, Oxford, 
United Kingdom. Robert W. Snow is also at the 
Centre for Tropical Medicine, John Radcliffe Hospital, 
University of Oxford, Oxford, United Kingdom.

* To whom correspondence should be addressed. 
E-mail: simon.hay@zoo.ox.ac.uk

The Malaria Atlas Project: 
Developing Global Maps of Malaria Risk
Simon I. Hay*, Robert W. Snow

doi:10.1371/journal.pmed.0030473.g002

MAP Logo



PLoS Medicine  |  www.plosmedicine.org 2205

have a rationale only in epidemic-
prone areas [30,31]. In addition, 
intermittent presumptive treatment 
of infants is likely to have little impact 
on the incidence of clinical malaria 
and anaemia in areas of exceptionally 
low transmission [32]. Moreover, 
where one should withhold iron 
supplementation in young children 
demands an understanding of the 

balanced risks of iron defi ciency, 
malaria disease incidence, and intensity 
of transmission [33,34]. Furthermore, 
optimizing the introduction of 
diagnostics to rationalize the use of 
new, expensive therapies will require 
better tools to target where this is 
cost effi cient and where presumptive 
treatment remains appropriate. We 
anticipate that other interventions are 
likely to have health impacts and cost-
effectiveness balances that may vary 
under different endemicity conditions, 
and we propose to conduct a detailed 
systematic review of the evidence.

It is often not immediately 
apparent when reading guidelines for 
malaria control that there are many 
intervention options available, that 
these may need to be appropriately 
combined, and that the optimal mix 
could depend on the intensity of 
malaria transmission in a given area. 
This would be as true for Africa as it is 
for other malarious territories of the 
Old and New Worlds. Global maps of 
malaria endemicity should therefore be 
essential in every step, from selecting 
appropriate intervention options 
and identifying requirements and 
budgeting, to planning, implementing, 
and monitoring at subnational, 
national, and regional scales.

Large Area Efforts to Map Malaria 
since the 1960s

The fuzzy climate-suitability map for 
stable Plasmodium falciparum malaria 
transmission was a milestone in the 
mapping of malaria in Africa [10]. 
It represented the fi rst attempt for 
several decades to provide a map of P. 
falciparum transmission at a continental 
scale, and has been widely used and 
cited by scientists, international 
agencies, and national malaria control 
programmes [6,35,36].

However, it has also been widely 
misinterpreted, as it represents 
a measure of the likelihood that 
stable transmission can occur, 
rather than ranges of transmission 
intensity. Furthermore, it has never 
been formally evaluated against 
contemporary parasite rate (PR) data 
outside of Kenya [37]. What is required 
for defi ning both disease risks and 
intervention need is a spatial model 
that predicts levels of endemicity, 
defi ned and validated by empirical 
data and constructed at a global 
scale. This approach to assembling 

epidemiological “training” data, 
environmental “predictor” data, and a 
suite of statistical mapping techniques 
to relate the two is considered below.

An Archive of Parasite Prevalence

There are many ways to measure 
the abundance of malaria in a 
given location, and they all have 
their advantages and disadvantages 
that have been reviewed elsewhere 
[23,24,38]. Regardless of any 
epidemiological preferences, PR data 
indisputably constitute the bulk of the 
global information available on the 
distribution of malaria endemicity. 
The PR is the proportion of a sampled 
population that is confi rmed positive 
for malaria parasites, canonically by 
identifying immature “ring stage” 
trophozoites in blood slides [39].

We have adopted a single and 
traditional classifi cation of malaria 
endemicity based on the PR [40], 
to standardize our defi nition of risk 
globally. Endemicity is defi ned by 
the PR in the two- to ten-year age 
cohort (hypoendemic, less than 0.1; 
mesoendemic, 0.11–0.5; hyperendemic, 
0.51–0.75), except for the holoendemic 
class (greater than 0.75) where the PR 
refers to the one-year age group [40]. 
This is important because “risk” is a 
geographically relative concept: nation 
states in Latin America identify areas of 
“high” risk that would be classifi ed as 
low risk in sub-Saharan Africa.

To gather global data on PR surveys 
of a suffi cient extent and density 
to generate endemicity surfaces at 
moderate spatial resolution requires 
combinations of traditional and 
nontraditional search strategies. 
This process has involved electronic 
searches of formal literature and 
grey literature databases, as well as 
using personal contacts with malaria 
research scientists and malaria control 
personnel. Most recently, we have 
developed a Web site to guide people 
in identifying additional data sources 
from areas where information is lacking 
(Box 1). As of September 10, 2006, 
our search has provided 3,036 spatially 
independent geopositioned PR surveys 
undertaken since January 1985 from 
an aggregate sample of 2,143,979 
blood slides in 79 malaria-endemic 
countries. The data included 2,728 
survey locations reporting P. falciparum 
prevalence (Figure 1) and 1,379 
locations reporting P. vivax prevalence.

Box 1. The MAP Web Site
The MAP Web site (http://www.

map.ox.ac.uk) was launched on May 1, 
2006, to further the aims and ambitions 
of MAP. The Web site allows users to 
visualize the current distribution of the 
assembled PR data through static maps 
in Web browsers, or more interactively 
through “.kmz” fi les that enable the data 
to be displayed in Google Earth (http://
earth.google.com). We are currently 
interested in gathering additional PR 
data from the public health community, 
and to facilitate communication we 
have translated the entire Web site into 
Spanish and French.

MAP is different than previous 
attempts at mapping malaria, primarily 
because it is a global initiative, but also 
because it aims to share data from the 
outset. Those supplying useful PR data 
will be provided with the full database 
for their country of interest, provided 
full permission is granted from the data 
owners for distribution. In addition, the 
entire database will be released in the 
public domain after component outputs 
have been peer reviewed. We have set a 
June 1, 2009, deadline for this release.

A second unique feature of MAP is that 
it operates with strict inclusion criteria 
for PR data: only random or complete 
community-sample surveys conducted 
post-1985, where parasite species and 
age groups are defi ned and the survey 
involves more than 50 persons to 
minimize sampling error [68]. Extensive 
details of these and additional inclusion 
rules are provided online in English, 
Spanish, French, Chinese, and Swahili.

Thirdly, the MAP project will collect 
data on P. falciparum malaria, as well as 
the often neglected P. vivax parasite. 
The Web site also allows formal 
acknowledgment of those interested 
individuals and institutions who 
contribute data. We encourage you to 
have a look and send us feedback at 
map@zoo.ox.ac.uk.
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In addition, the distribution of 
the main Anopheles malaria vectors 
and the frequency of the inherited 
haemoglobin disorders will constrain 
malaria infection risks and disease 
outcomes globally. Both will be subject 
to a similar intensity of data search 
and assembly, which will be described 
elsewhere.

An Archive of Global 
Environmental Data

Malaria is a vector-borne disease and 
the culpable anopheline mosquitoes 
are very sensitive to climate. This 
has been exploited in many ways to 
predict the distribution of malaria 
in time [14,30,31,41,42] and space 
[15,20,43]. Mapping the distribution 
of malaria requires spatially referenced 
data (e.g., altitude, temperature, 
rainfall, and vegetation extent) to be 
matched to the PR-survey positions, 
to establish uni and/or multivariate 
statistical relationships between malaria 
endemicity and the environment. 
These relationships can then be 
applied to the environmental data, in 
more or less sophisticated ways (see 
below), to generate continuous global 
maps [20].

Our proclivities are for such 
information derived from Earth-
observing satellites [44–48] 
because they are globally consistent 
measurements, often more 
contemporary and often of higher 
spatial resolution than interpolated 
climatologies [47]. Examples of these 
environmental data [47] have been 
made available in the public domain, 
and will be hosted on a MAP Web 
site when all necessary distribution 
rights have been negotiated. There is 
signifi cant potential for improvement 
in these environmental themes through 
data collected by new generations 
of satellite sensors [48]. Continual 
improvement of these data will be part 
of the ongoing commitment of MAP.

First Steps to Maps of Force 
of Infection

As a cross-sectional measure of 
prevalence, the PR is a less direct 
measure of malaria transmission than 
the entomological inoculation rate 
(the number of infective bites per 
capita, often expressed annually for 
P. falciparum, hence APfEIR) [22,23], 
the vectorial capacity (canonically, 
C) or the basic reproductive number 

(canonically, R0) [38]. These “force 
of infection” metrics, however, are 
much less frequently measured, [6,22] 
and while not recorded at suffi cient 
frequency to enable mapping, will be 
archived by the MAP as companion 
data to inform modelling.

Moreover, in high-endemicity 
areas, PR samples are often restricted 
to children, but in areas of low 
endemicity, surveys are usually 
extended to include all age groups. 
PR is therefore confounded by the 
interacting factors of the age of the 
population sampled, its immune status, 
and the “detectability” of peripheral 
parasitaemia [23,24]. It is necessary 
to transform PR into a measure of the 
force of infection of malaria controlling 
for these factors. This is because these 
interrelated measures are more closely 
related to the life-history characteristics 
and dynamics of the Anopheles vector 
populations that we will attempt to 
model with environmental data. Our 
goal is to generate APfEIR, C, and 
ultimately R0 surfaces from our PR 
data for mapping, and the modelling 
framework within which to perform 
these conversions has already been 
developed [23,24].

doi:10.1371/journal.pmed.0030473.g001

Figure 1. Distribution of the n = 3,036 PR Data Points Collected and Geopositioned by September 10, 2006
There are n = 420 PR surveys conducted in the 1985–1989 period, n = 557 in the 1990–1994 period, n = 556 in the 1995–1999 period, and n = 1,503 in 
the 2000–2006 period.
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Those techniques required to 
standardize PR for age represent an 
ongoing challenge, although methods 
by which to achieve this have been 
suggested [11]. The models written to 
perform these conversions will be made 
freely available in the public domain 
pending peer review. R is the chosen 
MAP platform as it is a programming 
environment that is free to all 
(http:⁄⁄www.r-project.org).

Measuring Risk and Managing 
Uncertainty

Quantifying the uncertainty in 
prediction has been a neglected area 
in the fi eld of malaria mapping and in 
ecology, more generally [49]. Our aim 
is to present all risk maps generated 
through MAP with uncertainty guides, 
companion maps that show the spatial 
variation in predictive accuracy. We also 
intend to evaluate the most-accurate 
procedures for achieving the basic 
mapping with appropriate robustness 
measures [11,50–54]. There are 
alternative methods available to achieve 
mapping with error estimations: Bayesian 
[11,21,55], discriminant analyses 
[52], and logistic-regression [50,52] 
techniques, among others [53,54], and 
these will all be systematically tested 
as part of the MAP project. The code 
written to implement these techniques 
will again be written in R and distributed 
freely upon acceptance of its products 
through peer review.

Where People Live

Accurate population data are critical 
for the assessment of the effects of 
human population density on malaria 
risk and the attribution of risk to 
populations [56]. These databases are 
also becoming increasingly accessible 
[47,56,57]. Areas of the world for 
which we have a particularly poor 
understanding of human population 
distribution will limit the accuracy of 
MAP and other databases to derive 
population at-risk estimates. Countries 
of specifi c concern are highlighted 
in the ancillary data section of the 
MAP Web site. More contemporary or 
higher spatial resolution census data 
supplied to MAP will be forwarded 
with permission to collaborators 
developing the Gridded Population 
of the World, version 3 (GPWv3) and 
the Global Rural–Urban Mapping 
Project (GRUMP) (http:⁄⁄sedac.ciesin.
columbia.edu).

Future Applications

These planned malaria-endemicity 
maps will provide the basis for 
increasing the fi delity of morbidity [4], 
mortality [5,6] and co-infection burden 
estimates [58,59]. These studies lead 
logically to more-accurate commodity 
demand and budget estimation. As 
we have argued, these maps may also 
provide a means to help determine 
the distribution of intervention 
types and mixes within countries. 
Companion maps of the global 
distribution of the main anopheline 
vector species will also be particularly 
important in helping inform the 
appropriate modes of control. At the 
very least, these map suites should 
augment the objective monitoring 
and evaluation of our interventions 
in the coming years. There are 
strong arguments for these exercises 
being conducted independently of 
international agencies responsible for 
the implementation and evaluation of 
interventions [60–62].

While we strive to assemble data to 
defi ne an endemicity baseline, the 
static maps we generate will represent 
a “snapshot” of a dynamic malaria 
epidemiology. It is important to 
establish this epidemiological baseline 
because history has shown that changes 
independent of planned interventions 
are inevitable [63]. These global 
environmental changes will affect the 
populations at risk of malaria. Land-use 
changes [64], such as deforestation 
[65], may modify vector population 
dynamics, for example. Population 
growth, urbanization [6], and climate 
change [66] will additionally affect 
human population dynamics. Other 
factors such as the progression of the 
HIV/AIDS pandemic and changes in 
undernutrition and socioeconomic 
status [66,67] will infl uence the ability 
of human population to cope with 
malaria infection. These changes 
will be signifi cant over the time span 
of international development goals 
and targets. MAP aims to develop 
plausible scenarios for many of these 
infl uences and techniques to model 
their potential impact, as they will be 
confounders in our ability to evaluate 
critically interventions at scale.

Conclusions

The distribution of populations 
exposed to the risk of P. falciparum and 
P. vivax malaria is poorly understood 

at the global level. Considerable 
effort as part of MAP is required to 
improve our basic maps of malaria 
transmission intensity and help identify 
the global distribution of populations 
at risk of malaria. This will involve 
assembling the largest-ever collection 
of PR data and a signifi cant parallel 
investment in establishing the required 
environmental, population, and 
malaria vector data.

A very considerable research effort 
is also required to evaluate those 
statistical techniques needed to relate 
the PR and environmental data 
for extensive map predictions with 
confi dence intervals. This will take time 
and succeed only with the cooperation 
of the malaria control community. To 
encourage interaction, MAP will be 
connected with the philosophy of open 
access, so that all data collected and 
techniques developed can be made 
available in the public domain rapidly 
after peer review. �
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