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Two major functions of the mammalian ovary are the production of germ cells (oocytes), which allow contin-
uation of the species, and the generation of bioactive molecules, primarily steroids (mainly estrogens and
progestins) and peptide growth factors, which are critical for ovarian function, regulation of the hypothalamic-
pituitary-ovarian axis, and development of secondary sex characteristics. The female germline is created during
embryogenesis when the precursors of primordial germ cells differentiate from somatic lineages of the embryo
and take a unique route to reach the urogenital ridge. This undifferentiated gonad will differentiate along a
female pathway, and the newly formed oocytes will proliferate and subsequently enter meiosis. At this point,
the oocyte has two alternative fates: die, a common destiny of millions of oocytes, or be fertilized, a fate of at
most approximately 100 oocytes, depending on the species. At every step from germline development and ovary
formation to oogenesis and ovarian development and differentiation, there are coordinated interactions of
hundreds of proteins and small RNAs. These studies have helped reproductive biologists to understand not only
the normal functioning of the ovary but also the pathophysiology and genetics of diseases such as infertility and
ovarian cancer. Over the last two decades, parallel progress has been made in the assisted reproductive tech-
nology clinic including better hormonal preparations, prenatal genetic testing, and optimal oocyte and embryo
analysis and cryopreservation. Clearly, we have learned much about the mammalian ovary and manipulating
its most important cargo, the oocyte, since the birth of Louise Brown over 30 yr ago. (Endocrine Reviews 30:
624–712, 2009)
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I. Introduction

The word “ovary” is derived from the Latin word
“ovum,” meaning egg. The mammalian ovary is not

only the female gonad, containing the supply of germ cells
to produce the next generation, but also the female repro-
ductive gland, controlling many aspects of female devel-
opment and physiology. After the union of an oocyte and
a spermatozoon to become a zygote, all cells up to the
eight-cell stage of embryogenesis appear to have similar
totipotency (potential to become any lineage), because
these cells all appear morphologically identical. However,
with the formation of a 16-cell morula, the cells begin the
process of differentiation with cells being allocated to ei-
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ther the inside or outside of the embryo. This process is
exaggerated further at the blastocyst stage in which three
lineages are defined: trophectoderm (future placenta), epi-
blast (future embryo), and primitive endoderm (future
yolk sac). After implantation and further differentiation,
cells within the epiblast eventually form the precursors of
the primordial germ cells (PGCs), the first cells of the fu-
ture ovary to be defined. The PGCs enter the indifferent
gonad, and eventually the ovary forms and permits the
PGCs to differentiate into oocytes, which enter meiosis
and subsequently arrest; this differentiation step and entry
into meiosis suggest that the last of the oocyte “stem cells”
(i.e., the PGCs) likely disappear at this stage of fetal life.
The meiotically arrested oocytes eventually become sur-
rounded by pre-granulosa cells and form individual pri-
mordial follicles, the resting pool of oocytes that have the
potential to be recruited into the growing follicle pool in
the postpubertal mammal, to be fertilized, and to contrib-
ute to the next generation (Fig. 1).

Through various types of developmental, genetic, phys-
iological, and hormonal analyses, the above steps in the
reproductive cycle of a mammalian female have begun to
be understood in great detail. Studies in mice have proven
invaluable for identifying genes critical to normal ovarian
development and function. Mutations in many of the hu-
man homologs of these genes often contribute to infertility
in women (Table 1). In the process of deconstructing the
female reproductive life cycle, techniques for manipula-
tion of the human (and nonhuman) oocyte have been de-

veloped to more effectively create “test tube” babies. In
addition, we have begun to understand conditions in
which these well-orchestrated events of female reproduc-
tive development and physiology go awry, leading to dis-
eases that range from psychologically distressing, such as
infertility, to life-threatening, such as ovarian cancer. In
this review, we describe the development, physiology, and
pathology of the mammalian ovary from its formation to all
the wondrous details that have been discovered about it in
vivo, in the test tube, and in the clinical reproductive setting.

II. Ovarian Development and Differentiation

Future components of the mammalian ovary develop long
before a distinct ovary-like organ can be discerned. In this
section, we describe how the germ cells arise and reach the
undifferentiated gonad, the factors involved in formation
of the ovary, and the early steps that distinguish the female
germline from the male germline.

A. Primordial germ cell formation and migration
Despite the early descriptions of mouse PGCs over 50

yr ago (1), the last decade has continued to see dramatic
advances in our understanding of the molecular mecha-
nisms of PGC formation and migration (current knowl-
edge summarized in Table 2). Chiquoine (1) had initially
shown that the putative PGC stained strongly for alkaline
phosphatase as early as embryonic day (E) 8.5. Consistent
with these findings, these alkaline phosphatase-positive

Abbreviations: AC, Adenylyl cyclase; ADAMTS1, a disintegrin-like and metallopeptidase
with thrombospondin type 1 motif, 1; AdCre, adenovirus expressing Cre recombinase;
AHR, aryl hydrocarbon receptor; AKAP, A-kinase anchoring protein; AKR1C18, aldo-keto
reductase family 1, member C18; ALPL, alkaline phosphatase, liver/bone/kidney; AMH,
anti-Müllerian hormone; AMHR2, AMH type II receptor; APC/C, anaphase-promoting
complex/cyclosome; AR, androgen receptor; Areg, amphiregulin; ART, assisted reproduc-
tive technology; BCL, B cell lymphoma/leukemia; BDNF, brain-derived neurotrophic factor;
bHLH, basic helix-loop-helix; BMP, bone morphogenetic protein; BPES, blepharophimosis/
ptosis/epicanthus inversus syndrome; BRCA1, breast cancer 1; Btc, betacellulin; CBX2,
chromobox homolog 2; CDK, cyclin-dependent kinase; C/EBP�, CCAAT/enhancer-binding
protein �; CEEF, cumulus expansion-enabling factor; cKO, conditional knockout; CL, cor-
pus luteum; CSF, cytostatic factor; CSF1, colony stimulating factor 1; CSPG2, chondroitin
sulfate proteoglycan 2; CTNNB1, �-catenin; CX43, connexin 43; CYP11A1, cytochrome
P450 side-chain cleavage enzyme; CYP17A1, cytochrome P450 17�-hydroxylase/17,20-
lyase; CYP19A1, cytochrome P450 aromatase; CYP26B1, cytochrome P450 26B1; DAZL,
deleted in azoospermia-like; DHH, desert hedgehog; DKK1, dickkopf homolog 1; DND1,
dead end homolog 1; dpc, days post-coitus; DPPA3, developmental pluripotency-associ-
ated 3; E, embryonic day; EGF, epidermal growth factor; EGFR, EGF tyrosine kinase re-
ceptor; EHMT2, euchromatic histone lysine N-methyltransferase 2; EMT, epithelial-to-mes-
enchymal transition; EMX2, empty spiracles homolog 2; ER, estrogen receptor; Ereg,
epiregulin; ��ERKO, ER� and ER� knockout; FBXO43, F-box protein 43; FF-MAS, follicular
fluid-meiosis-activating sterol; FGF, fibroblast growth factor; FGFR2, FGF receptor 2; FIGLA,
factor in the germline �; FMR1, fragile X mental retardation 1; FOG2, friend of GATA2;
FOX, forkhead box; FSHR, FSH receptor; FST, follistatin; FZD, FRIZZLED; Gct, granulosa cell
tumor; GDF9, growth differentiation factor 9; GREM1, gremlin 1; GS, germline stem (cells);
GV, germinal vesicle; GVBD, GV breakdown; HAS2, hyaluronan synthase 2; hCG, human
chorionic gonadotropin; H3K9me2, dimethylated histone 3 lysine 9; H3K27me3, trim-
ethylated histone 3 lysine 27; HMG, high-mobility group; HMGA2, HMG AT-hook 2; HPG,
hypothalamic-pituitary-gonadal; Hsd3b1, 3�-hydroxysteroid dehydrogenase; IBMX,
3-isobutyl-1-methylxanthine; ICSI, intracytoplasmic sperm injection; IFITM3, interferon-
induced transmembrane protein 3; IHH, Indian hedgehog; IKK�, inhibitor of kappa light
polypeptide gene enhancer in B-cells,

kinase beta; I�I, inter-�-trypsin inhibitor; IOSE, immortalized OSE; iPS, induced pluripotent
stem (cells); IVF, in vitro fertilization; KTS, lysine-threonine-serine; Lfng, lunatic fringe;
LHCGR, LH/choriogonadotropin receptor; LHX9, LIM homeobox protein 9; LIF, leukemia
inhibitory factor; LRH1, liver receptor homolog 1; LRP6, low-density lipoprotein receptor-
related protein 6; Mapk1/3 dKO, Mapk1 Mapk3 double mutant mice; MII, meiosis II;
miRNA, microRNA; MOS, Moloney sarcoma oncogene; MPF, maturation-promoting fac-
tor; MT1, metallothionein 1; mTOR, mammalian target of rapamycin; NF-�B, nuclear fac-
tor-�B; NGF, nerve growth factor; NLRP, leucine-rich repeat and pyrin domain containing;
NOBOX, newborn ovary homeobox; NOS3, nitric oxide synthase 3; NR5A, nuclear receptor
subfamily 5, group A; Nr2c2, nuclear receptor subfamily 2, group C, member 2; NRIP1,
nuclear receptor interacting protein 1; NTF5, neurotrophin 5; NTRK, neurotrophic tyrosine
kinase receptor; OOX, oocytectomized; OSE, ovarian surface epithelium; P, postnatal day;
PAH, polycyclic aromatic hydrocarbon; PDE, phosphodiesterase; PDGF, platelet-derived
growth factor; PGC, primordial germ cell; PI3K, phosphatidylinositol 3-kinase; PIP2, phos-
phatidylinositol 4,5-bisphosphate; piRNA, Piwi-interacting RNA; PKA, protein kinase A;
PMSG, pregnant mare serum gonadotropin; POF, premature ovarian failure; PPAR�, per-
oxisome proliferator-activated receptor �; PR, progesterone receptor; PRDM, PRDI- BF1- RIZ
domain containing 1; PRL, prolactin; PRLR, PRL receptor; PRMT5, protein arginine N-meth-
yltransferase 5; PTCH, patched; PTEN, phosphatase and tensin homolog; PTGER2, pros-
taglandin E receptor 2, subtype EP2; PTGS2, prostaglandin synthase 2; PTX3, pentraxin 3;
Rangap1, Ran GTPase activating protein 1; RISC, RNA-induced silencing complex; RNAi,
RNA interference; RSPO1, R-spondin homolog 1; SF1, steroidogenic factor 1; shRNA, short
hairpin RNA; siRNA, small interfering RNA; SMO, Smoothened; SNP, single nucleotide
polymorphism; SOHLH1, spermatogenesis and oogenesis helix-loop-helix 1; SOX9, SRY-
box containing gene 9; SRY, sex-determining region of chromosome Y; STAR, steroido-
genic acute regulatory protein; STAT, signal transducer and activation of transcription;
Stra8, stimulated by retinoic acid gene 8; SV40, simian virus 40; SYCP3, synaptonemal
complex protein 3; TAF, TATA-binding protein-associated factor; TAg, T antigen; TEX14,
testis-expressed gene 14; TIMP1, tissue inhibitor of metalloproteinase 1; TNFAIP6, TNF�-
induced protein 6; TR4, testicular orphan nuclear receptor 4; UTR, untranslated region;
WEE2, WEE1 homolog 2; WT1, Wilms tumor 1 homolog.
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cells were shown to be depleted in the classic white spot-
ting (KIT) and steel (KIT ligand) mouse mutants that are
known to lack germ cells in their gonads (2, 3). By 1967,
Ozdzenski (4) was able to identify these putative PGCs at
the base of the allantois as early as E8.0. Additional mi-
croscopic studies in the 1970s (5, 6) were extremely help-
ful in characterizing these cells and their migration (see
below). However, it was not until 1990 that additional
experimental proof confirmed that these alkaline phos-
phatase-positive cells were in fact PGCs. First, at E7.25, a
cluster of cells were observed containing a “spot” in their
cytoplasm that stained intensely for alkaline phosphatase
activity; these cells were present at the base of the yolk sac
before formation of the allantois (7). Second, follow-up
studies confirmed that these cells were in fact the only
PGCs because ablation of the cells resulted in embryos
without germ cells whereas transplantation of these cells
leads to their proliferation. Thus, using alkaline phospha-
tase as a marker, the female and male (mouse) germline
was thought to be specified by at least E7.25.

One enigma was that alkaline phosphatase was not re-
quired for this process; mutation of ALPL (alkaline phos-
phatase, liver/bone/kidney) does not alter the number of
PGCs or their migration (8). This indicated that ALPL
marked these cells but was not involved in either the for-
mation or function of PGCs.

What then are the factors involved in formation of PGC
precursors and their specification, and when do these fac-
tors act? Knockout models have helped greatly to define
members of the bone morphogenetic protein (BMP) family
as major extrinsic factors that are key to the early devel-

opment of PGC precursors (reviewed in Refs. 9–11 and
summarized in Table 3). BMP4 and BMP8B, secreted from
the extraembryonic ectoderm (12, 13), and BMP2, se-
creted from the visceral endoderm (14), are required for
the early discrimination of PGC precursors from the so-
matic cells of the embryo. These BMPs signal in a dosage-
dependent manner to the epiblast cells through a BMP
receptor cascade that involves phosphorylation of the
BMP SMADs, SMAD1 and SMAD5, both of which, along
with their common SMAD partner, SMAD4, have been
shown to function in this pathway (15–18). In contrast,
the other BMP-signaling SMAD, SMAD8, is dispensable
for this process (19). It is believed that BMPs begin to act
on the pluripotent proximal epiblast cells between E5.5
and E6.0 to allow them to be “competent” to become a
PGC precursor. Signals (some of which are likely BMPs)
from the extraembryonic ectoderm and the visceral
endoderm result in restriction and formation of PGC pre-
cursors only from epiblast cells in the posterior of the em-
bryo (20). One of the earliest genes induced by BMPs is
Ifitm3 (interferon-induced transmembrane protein 3; Fra-
gilis), an excellent early marker for the competence step as
well as the further differentiation of the PGC (21). How-
ever, like ALPL, absence of IFITM3 and its related family
members does not alter PGC formation (22), making it a
functionally dispensable but key marker protein.

At approximately E6.25, six of the IFITM3-positive
epiblast cells adjacent to the extraembryonic ectoderm ex-
press the protein PRDM1 (PRDI- BF1- RIZ domain con-
taining1;BLIMP1); these cells are the first PGCprecursors
and the first cells of the mammalian embryo for which
their fate is committed (23). PRDM1 is a transcriptional
repressor that contains a PRDI-BF1-RIZ domain and five
Krüppel-like C2H2 zinc finger (DNA binding) domains.
PRDM1 was first identified in a screen for gene products
differentially expressed at E7.5 in founder PGC but not
adjacent somatic cells (21). Within 1 d, there are 20–28
PRDM1-positive tightly clustered cells, and by E7.5, 40
PRDM1-positive cells are also positive for alkaline phos-
phatase and show nearly 100% concordance with DPPA3
(developmental pluripotency-associated 3; STELLA), an-
other nonessential marker of PGCs (24, 25). Lineage trac-
ing experiments confirmed that the PRDM1-positive cells
were the germline-restricted PGC progenitors, and that by
E7.5, these 40 cells were the founder population of PGCs.

In parallel with the expression and lineage-tracing stud-
ies, confirmation that PRDM1 was essential for PGC spec-
ification came from several additional mouse knockout
studies (23). First, Bmp4 null mice that lack PGCs also lack
PRDM1-positive cells. Second, null mutations of Prdm1
show that heterozygotes have a reduction in the number of

FIG. 1. Reproductive life cycle of a mammalian female. An oocyte and
a spermatozoon will fuse to form a zygote and undergo multiple steps
in embryogenesis. At about E6.5 in mouse, the PGC will be allocated
and go through multiple steps to reach the genital ridge. In an XX
mammal, the germ cell will form an oocyte that arrests at meiosis I
(MI). During prenatal life in women, and in the perinatal period in
mice, the oocyte will be encased in somatic cells to become primordial
follicles. Upon recruitment into the growing pool, the oocyte increases
in size during folliculogenesis. The LH surge will induce resumption of
meiosis, release of the first body, arrest at MII, and subsequent
ovulation of the oocyte into the fallopian tube. Fertilization with a
spermatozoon will induce the completion of meiosis and release of the
second polar body. The cycle continues in the next generation of
females. During the reproductive cycle, there are multiple steps where
significant oocyte loss is observed.
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PGCs at E7.5, whereas homozygous mutants have near zero
PGCs (23, 26). The few “PGC-like” cells that were observed
at the base of the allantois in the null mutants failed to in-
crease in number, and none of these cells migrated normally.
High levels of PRDM1 expression are also required for PGC
specification as determined by the reduction in PGCs in het-
erozygous mutants and the absence of germ cells in mice
carrying a hypomorphic PRDM1-green fluorescent protein
reporter allele (27).

AlthoughALPL,DPPA3,andIFITM3are importantnon-
essential markers for the lineage restricted PGC, PRDM14
was identified as a relative of PRDM1 that is not only ex-

pressedbut required inPGCs(28,29).PRDM14isexpressed
at least as early as PRDM1 (i.e., �E6.5) in PGC precursors,
andsimilar toPRDM1,expressionofPRDM14isdependent
on BMP4 signaling through at least SMAD1 (i.e., no
PRDM14-positive cells are observed in mice null for these
genes). Phenotypically, absence of PRDM14 results in few
PRDM1-positivecells,withonlya fewof thesecellsobserved
to migrate. However, unlike Prdm1 null mice, which die
duringembryogenesis (23,26),Prdm14null femaleandmale
mice are viable but infertile. Thus, Prdm14 is the second
identified gene that is essential for specification of the mam-
malian germline.

TABLE 1. Mutations associated with infertility in women

Gene Phenotype
OMIM gene

�OMIM infertility�

Bone morphogenetic protein 15 (BMP15) Hypergonadotropic ovarian failure (POF4) 300247 �300510�
Bone morphogenetic protein receptor 1B (BMPR1B) Ovarian dysfunction, hypergonadotropic hypogonadism

and acromesomelic chondrodysplasia
603248

Chromobox homolog 2, Drosophila polycomb class
(CBX2; M33)

Autosomal 46,XY, male-to-female sex reversal
(phenotypically perfect females)

602770 (67)

Chromodomain helicase DNA-binding protein 7 (CHD7) CHARGE syndrome and Kallmann syndrome (KAL5) 608892 �612370�
Diaphanous homolog 2 (DIAPH2) Hypergonadotropic, premature ovarian failure (POF2A) 300108 �300511�
Fibroblast growth factor 8 (FGF8) Normosmic hypogonadotropic hypogonadism and

Kallmann syndrome (KAL6)
600483 �612702�

Fibroblast growth factor receptor 1 (FGFR1) Kallmann syndrome (KAL2) 136350 �147950�
FSH receptor (FSHR) Hypergonadotropic hypogonadism and ovarian

hyperstimulation syndrome
136435

FSH � (FSHB) Deficiency of FSH, primary amenorrhea and infertility 136530 �229070�
Forkhead box L2 (FOXL2) Isolated POF (POF3) associated with BPES type I; FOXL2

402C3G mutations associated with human
granulosa cell tumors

605597 �608996�

Fragile X mental retardation 1 (FMR1) Premature ovarian failure (POF1) associated with
premutations

309550 �311360�

GnRH receptor (GNRHR) Hypogonadotropic hypogonadism 138850
GnRH 1 (GNRH1) Normosmic hypogonadotropic hypogonadism 152760 (769, 770)
Kallmann syndrome 1 (KAL1) Hypogonadotropic hypogonadism and anosmia,

X-linked Kallmann syndrome (KAL1)
308700

KISS1 receptor (KISS1R; GPR54) Hypogonadotropic hypogonadism 604161
LH � (LHB) LHB G102S mutations associated with infertility 152780
LH/choriogonadotropin receptor (LHCGR) Hypergonadotropic hypogonadism (LH resistance) 152790
Nuclear receptor subfamily 0, group B, member 1

(NROB1; DAX1)
X-linked congenital adrenal hypoplasia with

hypogonadotropic hypogonadism; dosage-sensitive
male-to-female sex reversal

300473 �300200; 300018�

Nuclear receptor subfamily 5, group A, member 1
(NR5A1; SF1)

46,XY male-to-female sex reversal and streak gonads
and congenital lipoid adrenal hyperplasia; 46,XX
gonadal dysgenesis and 46,XX primary ovarian
insufficiency

184757 (771)

Premature ovarian failure 1B (POF1B) Hypergonadotropic, primary amenorrhea (POF2B) 300603 �300604�
Prokineticin 2 (PROK2) Normosmic hypogonadotropic hypogonadism and

Kallmann syndrome (KAL4)
607002 �610628�

Prokineticin receptor 2 (PROKR2) Kallmann syndrome (KAL3) 607123 �244200�
R-spondin family, member 1 (RSPO1) 46,XX, female-to-male sex reversal (individuals contain

testes)
609595

Sex-determining region Y (SRY) Mutations lead to
46,XY females; translocations lead to 46,XX males

480000

SRY-related HMG-box gene 9 (SOX9) Autosomal 46,XY male-to-female sex reversal
(campomelic dysplasia)

608160

Tachykinin 3 (TAC3) Normosmic hypogonadotropic hypogonadism 162330
Tachykinin receptor 3 (TACR3) Normosmic hypogonadotropic hypogonadism 162332

Because of space limitations, most cases associated with female-to-male sex reversal due to steroidogenesis defects, syndromes, and chromosomal abnormalities are
excluded from the table. The primary reference (in parentheses) is included for work not yet described in OMIM.
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Because the germline fails to develop in the absence of
PRDM1 and PRDM14, what is the relationship of these
two PRDI- BF1- RIZ domain-containing proteins? Based
on analysis of Prdm1 null embryos and Prdm14 null em-
bryos, it is clear that PRDM1 continues to be expressed in
Prdm14 null embryos and vice versa, indicating that these
proteins function in independent pathways to specify the
germline (29). However, continued PRDM14 expression
requires PRDM1 and vice versa. Although the direct reg-
ulators of PRDM14 and PRDM1 are unknown, let-7 fam-
ily microRNAs are important modulators of PRDM1 ex-
pression, and LIN28 is also required in PGC specification.
During an in vitro screen for genes involved in PGC spec-
ification, small interfering RNA (siRNA) knockdown of
Lin28 was found to reduce the number of PGC-positive
colonies (30). LIN28 is known to suppress the maturation
of let-7 microRNAs (31–35). Furthermore, the Prdm1 3�
untranslated region (UTR) contains an important let-7 bind-

ing site. Thus, LIN28 induction suppresses the levels of let-7
microRNAs, which relieves the inhibition of PRDM1 syn-
thesis and allows PGC specification to proceed.

How do PRDM1 and PRDM14 function to establish
the mammalian germline? To address this question, the
Surani and Saitou laboratories (21, 23, 29) have per-
formed detailed single cell quantitative analysis of gene
expression using cells from wild-type, PRDM1 mutant,
and PRDM14 mutant embryos. Analysis of wild-type em-
bryos had first identified PRDM1 and PRDM14. It also
became clear that major (parallel) events in PGC specifi-
cation are repression of somatic cell gene expression, in-
duction of PGC-enriched gene expression, and reexpres-
sion of pluripotency genes. In particular, the Hoxa1 and
Hoxb1 genes, which are highly expressed in the somatic
epiblast cells in the posterior portion of the developing
embryo at E7.25-E7.5, are never synthesized in the
founder PGCs. Likewise, other mesodermal genes [e.g.,

TABLE 2. PGC events and pathways in the mouse

PGC event Timepoint Major pathways and genes (nonessential markers)

Induction/competence E6.0–6.5 BMP2/4/8 signaling through SMAD1/5 (IFITM3)
Early specification E6.5 PRDM1 and PRDM14 induced; LIN28 induction suppresses let-7 maturation,

allowing PRDM1 protein to be expressed; HOXB1 suppressed and
restricted at somatic lineage

Late specification E7.5 PRDM1 and PRDM14 mark all future PGCs; pluripotency markers POU5F1,
SOX2, and NANOG turned on (DPPA3, ALPL)

Chromatin reprogramming (similar to ES cells) E8.5 H3K27me3 induced; H3K9me2 erased; H2/H4 RMC2 induced
Migration and entry into genital ridge E8.5–11.5 KIT ligand/KIT; NANOS3; DND1
Loss of imprinting and reversal of chromatin

reprogramming
E10.5–12.5 PRDM1-PRMT5 translocation out of nucleus

Meiosis competent state E11.5 DAZL
Meiotic entry E12.5 CYP26B1 down-regulated in XX germ cells

TABLE 3. Phenotypes of mice with mutations in PGC markers and pathway components (order based on expression
and/or function)

Gene (pseudonym) Phenotype/findings Ref.

Bmp2 Embryonic lethal; reduced PGCs 14, 772
Bmp4 Embryonic lethal; no PGCs 12, 773
Bmp8b Viable; male infertility; reduced PGCs 13, 774
Smad1 Embryonic lethal; reduced PGCs 16, 17, 775
Smad5 Embryonic lethal; reduced PGCs 15, 776, 777
Smad4 Embryonic lethal; absent PGCs 18, 778, 779
Ifitm3 (Fragilis) Not essential for PGC function 22
Prdm1 (Blimp1) Embryonic lethal; PGC specification defect 23
Prdm14 Infertility; PGC specification defect 29
Ehmt1 (Glp) Unknown PGC function
Ehmt2 (G9a) Unknown PGC function
Dppa3 (Stella) Not essential for PGC function 24, 25
Alpl (Alkaline phosphatase) Not essential for PGC function 8
Pou5f1 (Oct4) Pluripotency marker 780, 781
Nanog Pluripotency marker 781–783
Sox2 Pluripotency marker 781, 784
Nanos3 Infertile; PGC migration defect 44
Dnd1 (Ter) Infertile; PGC migration defect 45
Kitl Variable phenotypes depending on mutation; PGC migration defect 785
Kit Variable phenotypes depending on mutation; PGC migration defect 785
Tgfbr1 (Alk5) Embryonic lethal; enhanced PGC migration 42, 786
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brachyury (T), Fgf8, and Snai1] are also suppressed. How-
ever, in the absence of PRDM1, the majority of PGC-like
cells are positive for Hoxa1 and/or Hoxb1. This somatic
cell repression program is still intact in the absence of
PRDM14. Absence of PRDM14, but not PRDM1, results
in failed induction of the lineage restricted DPPA3,
whereas absence of PRDM1, but not PRDM14, leads to
absence of the PGC-specific gene Nanos3 (see below).
PGCs also show induction of several pluripotency “master
regulatory” genes including Sox2, Pou5f1 (Oct4), and
Nanog. Absence of PRDM14 leads to repression of Sox2,
whereas Prdm1 null cells show variable expression of
Sox2. Thus, the somatic cell repression function is unique
to PRDM1, whereas both PRDM14 and PRDM1 regulate
some PGC-specific transcripts as well as the pluripotency-
associated protein SOX2.

Since PRDM1 was identified almost two decades ago,
much more data have been accumulated on it than
PRDM14, which was only presented in publications 2 yr
ago. As mentioned earlier, PRDM1 functions in multiple
tissues, and its absence leads to embryonic lethality,
whereas PRDM14 is only required in the mammalian
germline. In addition to their roles in PGC specification,
both PRDM1 and PRDM14 have been implicated in can-
cer. As implied by its pseudonym (BLIMP1, B-lympho-
cyte-induced maturation protein 1), PRDM1 is a master
regulator of the terminal differentiation of B cells into
Ig-producing plasma cells through its ability to act as a
transcriptional repressor, blocking the transcription of a
diverse set of genes such as Myc and p53. Loss of function
mutations in human chromosome 6q21, the location
where PRDM1 maps, are implicated to cause B and T cell
lymphomas, whereas other studies have demonstrated key
tumor suppressor roles of PRDM1 in these lineages. Al-
ternatively, gene amplification of 8q13, where PRDM14
maps, are observed in multiple cancers including breast
cancer, which demonstrates increased expression of
Prdm14 mRNA and protein (36). Increased expression of
PRDM14 in breast cancer cells stimulates growth,
whereas knockdown induces apoptosis. Retroviral inser-
tion into the Prdm14 locus in mice results in its overex-
pression and consequent B cell lymphomas (37). These
studies suggest that PRDM14 functions as an oncogene. In
human ES cells, PRDM14 maintains cell renewal (38).
This information on their tumor suppressor vs. oncogenic
roles confirms that PRDM1 and PRDM14 appear to exert
their effects in different manners.

At E7.5, a time in which PGC specification has oc-
curred, PGCs express markers of pluripotency including
POU5F1, SOX2, NANOG, as well as DPPA3 and ALPL.
At this time point, the methylation pattern of a PGC is
predominantly dimethylated at histone 3 lysine 9

(H3K9me2), whereas there are low levels of trimethylated
histone 3 lysine 27 (H3K27me3). As their symbols imply,
both PRDM1 and PRDM14 have PRDI-BF1-RIZ do-
mains (also called SET domains) that have structural sim-
ilarity to histone methyltransferases. In B cells, where
PRDM1 is a master regulator, PRDM1 interacts with eu-
chromatic histone lysine N-methyltransferase 2 (EHMT2)
(39), which performs dimethylation mainly at histone 3
lysine 9. Between E7.5 and E8.5, PGCs demonstrate major
chromatin changes, increasing the levels of H3K27me3
and erasing the H3K9me2 methylation marks (40, 41),
patterns that resemble the chromatin patterns of pluripo-
tent stem cells. Similar to ES cells, the H3K27me3 marks
also appear to be involved in the repression of the “somatic
cell” gene expression program. H3K9me2 erasure occurs
despite the presence of EHMT2, likely because euchro-
matic histone methyltransferase 1 (EHMT1), which com-
plexes with EHMT2formethylationofH3K9me2, isdown-
regulated by E7.25 (28). Although it is unclear how PRDM1
and PRDM14 directly influence these lysine methylation
changes, chromatin changes in H3K27me3 and H3K9me2
fromE7.5toE8.5dooccur.Furthermore,additionaldataare
evident on the roles of PRDM1 in arginine methylation.
PRDM1 complexes with protein arginine N-methyltrans-
ferase5 (PRMT5) todimethylatehistone2Aandhistone4at
arginine 3 by E8.5. Along with these changes, the PGCs ar-
rest at the G2 stage of the cell cycle and transiently become
transcriptionally silent as they migrate from the base of the
yolk sac along the hindgut to the genital ridge (40).

The exact trigger that initiates PGC migration to the
genital ridge and the chemoattractants that are required
for directional movement toward the genital ridge are
slowly beginning to be understood. The trigger(s) could be
the expression of a key receptor on the PGC and/or the
expression of the secreted chemoattractant from the gen-
ital ridge. An extracellular matrix gradient along the path
of migration is important, and if too much matrix is laid
down, PGCs show reduced migration. For example, sup-
pression of TGF� signaling by knocking out Tgfbr1 (Alk5)
leads to enhanced migration due to reduction in the levels
of TGF�-induced collagen type 1 in the extracellular ma-
trix (42). One of the best candidates to function as a che-
moattractant for PGCs is KIT ligand. Using PGCs ob-
tained from E10.5 and E11.5 embryos, in vitro migration
assays demonstrated that KIT ligand could function as an
effective chemoattractant for the PGCs and that the phos-
phatidylinositol 3-kinase (PI3K)/AKT and SRC kinase
pathways were involved downstream of KIT in the PGC
(43). Although it is not clear whether KIT ligand/KIT sig-
naling is involved in the earliest steps of activation and
migration, these data support a late role for this pathway
in PGC migration into the genital ridge.
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Although not involved in PGC migration, several ad-
ditional gene products are necessary for PGC survival dur-
ing their migration. For example, two RNA binding pro-
teins, NANOS3 and DND1 (dead end homolog 1; TER),
are expressed in PGCs from E7.5 onward and protect the
PGCs from apoptosis; mutations in either Nanos3 or
Dnd1 lead to few germ cells in the genital ridge and germ
cell deficiency (44, 45). Consistent with the pleiotropic
roles of the KIT ligand/KIT pathway, these proteins not
only function in PGC migration but also aid in PGC sur-
vival and proliferation.

During the migration stage, the histone marks and the
expression of the major pluripotency genes are main-
tained. However, beginning at approximately E10.5-
E12.5 and coinciding with entry of the PGCs into the go-
nadal ridge, chromatin and gene expression changes are
observed. At approximately E11.5, the PRDM1-PRMT5
complex, which is observed in the nucleus from the spec-
ification stage through PGC migration, translocates to the
cytoplasm. In parallel, the pluripotency-associated genes
also begin to be down-regulated, whereas the RNA heli-
case DHX38 [DEAH (Asp-Glu-Ala-His) box polypeptide
38], which is normally repressed through arginine meth-
ylation of histones by the PRDM1-PRMT5 complex, be-
gins to be expressed (46). The E8.5-E11.5 period, when
the PGCs show highest expression of the pluripotency-
associated genes, is also the only window for production
of embryonic germ cells from the PGC. It is postulated that
secreted molecules and proteins from the somatic cells in
the genital ridge directly influence these major reprogram-
ming events. Among the changes that are observed are
genome-wide demethylation, erasure of imprinting, and
reactivation of the inactive X chromosome in females. Re-
cent transgene studies have helped to explain X chromo-
some reactivation and the role of the female gonadal en-
vironment in this process (47). The erasure of histone 2A/4
arginine 3 methylation is consistent with the aforemen-
tioned translocation of PRDM1-PRMT5 complex out of
the nucleus. Lastly, once PGCs enter the genital ridge, they
appear to lose their ability to migrate.

B. Formation of the bipotential gonad
Similar to the PGC, the sex of the gonadal ridge initially

is irrelevant; PGCs are attracted equally to an XX or an
XY gonadal ridge. The undifferentiated or bipotential go-
nadal ridge arises at approximately E10.5 between the
coelomic epithelium and the mesonephros, the two dis-
tinct tissues along with the PGCs that contribute most of
the cells of the future ovary or testis during the subsequent
sexual differentiation stages. The initial steps in the pro-
cess appear to be a thickening of the coelomic epithelium.
Several factors have been identified to play key roles in
formation of the genital ridge with so-called bipotential

possibilities (i.e., the potential to develop into a testis or an
ovary depending on the genetic makeup of the somatic
cells in and surrounding the genital ridge; see Sections II.C
and II.D).

Several of the major “bipotential gonad” gene products
also set the stage for the upcoming differentiation into
either a testis or an ovary (Fig. 2 and Table 4). Probably the
first key gene in the development of the bipotential gonad
is the homeobox gene empty spiracles homolog 2 (Emx2).
In the absence of EMX2, which is expressed in the epi-
thelium, the thickening of the coelomic epithelium is not
obvious, resulting in sex-independent absence of the go-
nads as well as absence of the Müllerian duct and Wolffian
duct derivatives (48). Thus, EMX2 appears to be a tran-
scriptional regulator of subsequent events leading to go-
nad and urogenital system formation.

Wilms tumor 1 homolog (Wt1) is the second gene im-
portant for formation of the bipotential gonad. WT1 mu-
tations or deletions (e.g., 11p13) in patients are associated
with several human syndromes that include genitourinary
abnormalities. 46,XY male-to-female sex reversal is ob-

FIG. 2. Gonad function and sexual differentiation. As shown, several
major gene products influence the formation of the bipotential gonad
(light gray), the development of the ovary (white), and the
development of the testis (dark gray). SF1 is a central player in the
bipotential gonad, being regulated by WT1, LHX9, and M33 (CBX2),
and at other steps in gonadal differentiation. In XY gonads, SRY
functions in a short window in pre-Sertoli cells to up-regulate the
transcription of SOX9 that is already expressed at low levels through
the action of SF1. This higher SOX9 expression then suppresses SRY in
a negative feedback loop and also up-regulates itself through the
combined actions of SF1 and SOX9 on the SOX9 promoter. SOX9
also up-regulates FGF9 that signals back through FGFR2 to maintain/
increase SOX9 expression. The ovarian differentiation pathway involves
RSPO1 increasing the signaling of WNT4, which up-regulates �-catenin.
�-catenin acts to up-regulate WNT4 and other proteins such as FST.
The testis pathway appears to mainly antagonize this pathway through
decreasing �-catenin levels. Likewise, �-catenin antagonizes the testis
pathway by destabilizing SOX9.

630 Edson et al. The Mammalian Ovary from Genesis to Revelation Endocrine Reviews, October 2009, 30(6):624–712

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/30/6/624/2355078 by guest on 21 August 2022



served typically in Frasier syndrome (49), occasionally in
Denys-Drash syndrome (50), and in one patient with
WAGR syndrome (50). WT1 is a transcription factor with
four zinc finger domains. Although knockout of Wt1 in
mice leads to midgestation embryonic lethality, it was
noted that male and female knockout mice lacked gonads
by E14, indicating that WT1 is required for early forma-
tion of the bipotential gonad (51). WT1 is expressed in the
coelomic epithelium during gonad formation, and in the
Sertoli cells and granulosa cells during their formation.
Consistent with its expression during gonadal develop-
ment, analysis of the Wt1 mutants at E11 and E12 showed
that the thickening of the coelomic epithelium was mark-
edly reduced compared with wild-type embryos but that
PGC migration into these genital ridges still occurred.
These findings indicate that WT1 may not be required for
the initial step in gonad formation but becomes essential
soon after, at least for further development and/or main-
tenance of these cells.

WT1 acts at several points in the pathways of bipoten-
tial gonad formation and sex determination. There are
two alternative splice variants of WT1 that include or ex-
clude the lysine-threonine-serine (KTS) amino acids be-
tween the third and fourth zinc fingers; functionally, the
presence of the KTS amino acids prevents the fourth zinc
finger from binding to DNA, resulting in lower transcrip-
tional activity (52). To study the relative significance of
these two isoforms, mutations were made to disrupt one or
the other form (53). The absence of the WT1(�KTS) iso-
form results in streak gonads in both male and female
gonads secondary to increased cell death during gonad
formation. These results are consistent with data demon-
strating that the WT1(�KTS) isoform functions to regu-
late the expression of steroidogenic factor 1 (SF1; NR5A1,
nuclear receptor subfamily 5, group A, member 1) (54).
Alternatively, absence of the WT1(�KTS) form of WT1
(mimicking the mutation seen in Frasier syndrome in
which there is less of the �KTS variant) leads to male-to-
female sex reversal and reduced SRY (sex-determining re-
gion of chromosome Y) and SOX9 (SRY-box containing
gene 9) expression, consistent with a later role of WT1 in
sex determination (see Section II.C). In addition, WT1 and

GATA4 transcriptionally cooperate on the mouse, pig,
and human SRY promoters, and the synergy is strongest
with the WT1(�KTS) isoform (55), which is also consis-
tent with the above in vivo data.

LIM homeobox protein 9 (LHX9) is another key reg-
ulator that functions in the development of the bipotential
gonad. Absence of LHX9 does not alter viability; how-
ever, all postnatal mice are phenotypically female with no
gonads (56). Lhx9 is expressed in the coelomic epithelium
of the genital ridge at E9.5, and by E11.5, Lhx9 is ex-
pressed highly in the coelomic epithelium and at lower
levels in the developing gonad. Analysis of the Lhx9 null
gonads at earlier embryonic stages demonstrates no mor-
phological differences from wild type at E11.5, with nor-
mal migration of the PGC into the genital ridge, but no
further development thereafter, and a complete loss of any
defined gonad-like structures by E13.5. The absence of
any gonad results in a lack of testosterone and anti-Mül-
lerian hormone (AMH) synthesis in XY embryos, leading
to no development of the Wolffian duct and failure of the
Müllerian duct to regress, respectively. This situation phe-
nocopies the experiments that Alfred Jost performed over
50 yr earlier in which removal of embryonic rabbit gonads
results in a ductal system that resembles a female (57).

Because the embryonic phenotype of the Lhx9 null
mouse resembles the Wt1 null mouse, what is the pathway
relationship of these two transcription factors and what
regulates Lhx9? Although transcriptional regulators of
Lhx9 in the genital ridge have not been reported, another
study has demonstrated that Lhx9 is regulated in the de-
veloping heart by a transcriptional complex of GATA4
and FOG2 (friend of GATA2; ZFPM2, zinc finger protein,
multitype 2) (58). This is important because the GATA4/
FOG2 complex is also involved in the regulation of SRY
(see Section II.C). LHX9 subsequently functions along
with WT1 in the regulation of SF1, which is first expressed
in the coelomic epithelium and also in the daughter cells
that migrate into the urogenital ridge to become either
Sertoli cells or granulosa cells. Analysis of the Lhx9�/�

urogenital ridge at E11.5 shows very low levels of SF1,
whereas Sf1�/� urogenital ridges have normal levels of
LHX9 (56). Likewise, SF1 is not expressed in the Wt1�/�

TABLE 4. Mouse mutants with defects in the formation of the gonad

Gene Phenotype Ref.

Emx2 Midgestation embryonic lethality; absence of gonads due to defects in the coelomic epithelium 48
Wt1 Midgestation embryonic lethality; lack of gonads by E14 51
Wt1 (�KTS splice variant) Streak gonads in males and females 53
Wt1 (�KTS splice variant) Male-to-female sex reversal 53
Lhx9 Viable mice; male-to-female sex reversal 56
Cbx2 (M33) Lethality (60%) between birth and 21 d; male-to-female sex reversal 65
Pod1 Neonatal lethality; disorganized gonads 68
Nr5a1 (Sf1) Early postnatal lethality; absence of both gonads and Müllerian duct derivatives 59
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urogenital ridges (54). Furthermore, in addition to the
four binding sites for WT1 in the Sf1 promoter, there also
is one binding site for LHX9, and both LHX9 and
WT1(�KTS) synergize to regulate transcription of Sf1
(54). Consistent with these findings and the function of
SF1 as the key gene downstream of WT1 and LHX9, ab-
sence of SF1 leads to failure of development of the bipo-
tential gonad and absence of gonads at birth (59), pheno-
copying the WT1 and LHX9 knockout mice. These
findings are recapitulated in human patients that have SF1
(NR5A1) mutations, resulting in XY male-to-female sex
reversal (Table 1) (60–64).

Further evidence for the central role of SF1 in bipoten-
tial gonad formation comes from analysis of additional
knockout mice. Mice lacking CBX2 (chromobox ho-
molog 2; M33) also display XY male-to-female sex rever-
sal and defects in ovarian development (65). CBX2 is a
polycomb gene homolog that likely functions through ef-
fects on chromatin structure. Absence of CBX2 leads to
variable gonadal phenotypes, including many cases of XY
null mice in which the gonad appeared to be an ovary and
where external genitalia were feminized. Cbx2�/� XX off-
spring were all sterile, ovaries were always smaller, and in
two of 16 cases they were absent. Examination of E13.5
null males revealed an absence of testis cords. Many of
these findings are consistent with CBX2 playing a role
upstream of SF1, a finding consistent with nearly identical
defects that are observed in the spleens and adrenal glands
of Cbx2 and Sf1 knockout mice (66). SF1 was decreased
at the mRNA and protein levels in the CBX2 knockout
spleen and adrenal gland, and at least in Y1 mouse adre-
nocortical cells, chromatin immunoprecipitation studies
showed that CBX2 binds to the Sf1 locus. Consistent with
these findings, a mutation in human CBX2 was discovered
to play an important role in sex determination (67). Be-
cause of maternal age, prenatal karyotype analysis was
performed, and the fetus was shown to be 46,XY. How-
ever, the child that was born was phenotypically female
with normal ovaries and a female reproductive tract. After
analysis of several sex determination genes, compound
heterozygous mutations (inherited from each parent) were
found in the CBX2 alleles, resulting in P98L and R443P
alterations in each of the CBX2 proteins. These mutations
were at evolutionarily conserved amino acid positions.
Whereas transfection of a wild-type CBX2 construct into
H295R cells resulted in induction of the endogenous SF1
gene or SF1-luciferase constructs, the two CBX2 mutant
constructs showed minimal induction of SF1 or luciferase.
Thus, CBX2 positively regulates SF1 in the bipotential
gonad to influence downstream expression of SRY,
SOX9, or both in the sex determination cascade. Muta-

tions in CBX2 and other genes that affect sex determina-
tion and female fertility are presented in Table 1.

Whereas absence of the above factors leads to sup-
pressed levels of SF1, a different scenario is observed in
mice null for Pod1 (also known as Tcf21, transcription
factor 21) (68). POD1 is a basic helix-loop-helix (bHLH)
transcription factor and is expressed at E11.5 in the coe-
lomic epithelium and the region between the gonad and
mesonephroswithpersistenceof expression inbothglands
at E12.5 and through birth. In the absence of POD1, ex-
ternal genitalia are feminized and the gonads of both sexes
are disorganized. Beginning at E11.0, the knockout go-
nads were shorter, and by E12.5, testes resembled ovaries
with absence of testis cords and lack of formation of the
male-specific coelomic vessel, whereas the ovary lacked a
mesenchymal zone. In both cases, the gonads remained
close to the adrenal glands. Similar to the above mutants,
PGCs migrate normally into the genital ridges. Although
SRY and SOX9 were expressed in presumptive pre-Sertoli
cells and differentiated Sertoli cells, levels of SOX9 were
suppressed initially and disappeared by E18.5. The major
cause of the gonadal defects appears to originate in the
steroidogenic interstitial cell population. Normally, wild-
type embryonic ovaries do not express CYP11A1 (cyto-
chrome P450 side-chain cleavage enzyme), a downstream
target of SF1, and in the male gonad CYP11A1 is not
expressed in Leydig cells until after E12.5. However,
CYP11A1 is expressed at earlier timepoints (E11.5) in
POD1-deficient gonads of both sexes, and there is a delay
in expression of SF1. At E12.5, SF1 is expressed in the
developing testis, but not the coelomic epithelium, and
POD1 and SF1 do not colocalize. However, in the Pod1
knockout, the same cells in the coelomic epithelium and
gonad that normally express POD1 (marked by a lacZ
reporter) are now SF1-positive. Other studies suggest that
POD1 acts indirectly to repress Sf1 at the transcriptional
level. Thus, POD1 appears to act in an interstitial cell
progenitor to suppress SF1, and in the absence of POD1,
promiscuous expression of SF1 and its downstream target,
CYP11A1, disrupt testis and ovary development. There-
fore, not only does absence of SF1 result in defects in the
bipotential gonad and sex determination, but ectopic pro-
duction of SF1 is also detrimental to ovarian and testicular
differentiation programs.

C. The XX gonad is not an innocent bystander in sex
determination

Inmammals, the sexchromosomes, inparticular thepres-
ence of a Y chromosome, determine whether the undiffer-
entiated gonad will differentiate into a testis (in the case of an
XYmammal suchasaman)oranovary (in thecaseofanXX
mammal such as a woman) (69). One fewer X chromosome
(i.e., XO observed in Turner’s syndrome, in which the
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woman has streak ovaries) or two or more copies of the X
chromosome in the presence of a Y chromosome (e.g., XXY
as observed in Klinefelter’s syndrome, in which the man has
testes) does not alter the sex differentiation of the bipotential
gonad (70, 71). These studies, along with genetic analysis of
sex-reversed patients (XX males or XY females), in which a
portion of the Y chromosome was either translocated to an-
other chromosome or was deleted from the Y chromosome,
respectively, helped to identify theSRYgene inmiceandmen
(72, 73). Because this review centers on the ovary, we will
focus our discussion on how SRY prevents the development
of an ovary and directs the bipotential gonad to form a testis.
More detailed discussions of the history of SRY and its role
in sex determination are reviewed by leading groups in this
field (74–76).

Based on all of the above studies, it was believed that the
presence of SRY actively caused testis development to oc-
cur and that in the absence of SRY, the ovary passively
developed (i.e., the so-called “default” pathway). The Sry
gene encodes a high-mobility group (HMG) box motif
that is responsible for its DNA binding characteristics and
its ability to bind DNA. The HMG box, which is the most
conserved SRY sequence between mammals, is most prone
to mutations that cause male-to-female sex reversal in pa-
tients. Based on studies in the mouse, the SRY protein is
expressed in each pre-Sertoli cell during a narrow window
of several hours in the period of gonadal differentiation
(E10.5-E12.5), resulting in up-regulation of Sox9, the ma-
jor (if not the only) gene transcriptionally downstream of
SRY (77). In addition to their roles in the bipotential go-
nad, several of the same transcription factors act on the
major genes involved in sex determination. SF1, WT1, and
the GATA4/FOG2 complex are required for the transcrip-
tion of Sry (55). Furthermore, the initial low level of ex-
pression of Sox9 in the bipotential gonad requires SF1
(59), and the subsequent high level induction of Sox9 that
is required for testis formation is regulated first by both
SRY and SF1 and then by SF1 and SOX9 as part of a

feedback loop (78). Because only 10% of cases of male-
to-female sex reversal are due to mutations in SRY, many
genetic studies were helpful in identifying mutations of
gene products involved in sex determination that are
downstream of SRY, such as SOX9. For example, loss of
function mutations in SOX9 in humans causes the severe
bone disease, campomelic dysplasia, in which XY male-
to-female sex reversal is also observed (79, 80), whereas
duplication of the region encoding SOX9 (i.e., gain of
function mutation) has been shown to cause XX female-
to-male sex reversal (81). SOX9 not only results in a pos-
itive feedback on itself but also up-regulates SF1 to posi-
tively regulate Sox9 (82) and also induces fibroblast
growth factor 9 (FGF9) that signals back through FGF
receptor 2 (FGFR2) to increase Sox9 levels (83–87). These
studies continued to support the idea that induction of the
“male” genes Sry or Sox9 positively causes the undiffer-
entiated gonad to develop into a testis.

In 1993, both McElreavey et al. (88) and Goodfellow
and Lovell-Badge (89) proposed the “Z” model for sex
determination. In this model, the XX gonad produces a
factor “Z” that actively stimulates the ovarian differenti-
ation cascade, and SRY or some downstream target of
SRY inhibited this cascade. As shown in Fig. 2, there is an
interplay of gene products in the testis and ovarian differ-
entiation cascades that functions to suppress key proteins
in the opposing pathway. A significant amount of data
have begun to accumulate in support of the Z model.
Along with the identification of the genes mutated or du-
plicated in cases of XX female-to-male and XY male-to-
female sex reversal, several mouse models have been cre-
ated to understand the ovarian differentiation pathway
(Table 5). Loss of function mutations in R-spondin ho-
molog 1 (RSPO1) were identified as the cause of the re-
cessive disorder palmoplantar hyperkeratosis. All individ-
uals with this syndrome are phenotypic males (either XY
or XX), the first such case of complete XX female-to-male
sex reversal (90). RSPO1 is a secreted protein that acts

TABLE 5. Transgenic animals with alterations in sex determination

Transgenic model Phenotype Ref.

Rspo1 KO Development of male-specific coelomic vessel in XX gonad 93, 94
Gata4 KI No coelomic vessel defects 99
Fog2 KO No coelomic vessel defects 99
Wnt4 KO Development of male-specific coelomic vessel in XX gonad 95
Ctnnb1 (�-catenin) cKO (Nr5a1-Cre) Development of male-specific coelomic vessel in XX gonad 97, 99
Ctnnb1 (�-catenin) Tg XY, male-to-female sex reversal 96
Fst KO Development of male-specific coelomic vessel in XX gonad 98
Fgfr2 cKO (Heat shock-Cre; Sf1-Cre) XY, male-to-female sex reversal 86
Sox9 Tg XX, female-to-male sex reversal 787
Fgf9 KO XY, male-to-female sex reversal 83
Sry Tg XX, female-to-male sex reversal 788
Pdgfra KO Disrupted testis cord formation and abnormal Leydig cells 789

KO, knockout; cKO, conditional knockout (Cre transgenic); KI, knockin; Tg, transgenic.
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extracellularly to increase the signaling of WNT4. The
extracellular protein dickkopf homolog 1 (DKK1) binds
to a cell surface complex of kringle-containing transmem-
brane protein 1 (KREMEN1) and low-density lipopro-
tein receptor-related protein 6 (LRP6) to cause inter-
nalization of this ternary complex. However, RSPO1
binds to KREMEN1, dislodging DKK1, and allowing
LRP6 access to FRIZZLED (FZD) for binding of WNT4
to the LRP6-FZD coreceptor complex and signaling to
increase �-catenin (CTNNB1) levels (91). An alternative
model suggests that RSPO1 functions directly to stimulate
�-catenin signaling by binding to LRP6 (92), although the
activity of RSPO1 alone is much less than in the presence
of a WNT ligand (91).

As presented in Table 5, mutations or overexpression of
multiple components of the ovary determination cascade
[RSPO1, WNT4, �-catenin, or follistatin (FST)] will result
in variable degrees of female-to-male sex reversal (93–98).
The developing testis contains cords and a coelomic vessel,
structures that are absent in the ovary. Mutations in ovary
determination cascade genes (Rspo1, Wnt4, and Fst) lead
to the presence of a coelomic vessel in the ovary. Besides
its role in the regulation of Sry expression and testis de-
termination, the GATA4/FOG2 complex also suppresses
the expression of Dkk1, thereby altering the downstream
components of the WNT4 signaling pathway in the ovary
(99). Not only WNT4 levels, but also FST levels are sup-
pressed. FST was initially detected as a differentially ex-
pressed gene in the developing ovary compared with the
testis (100), and absence of FST leads to the development
of a coelomic vessel in the developing ovary (98). These
findings are milder forms of sex reversal compared with
mice lacking RSPO1 or WNT4 where additional alter-
ations are observed, including 17�-hydroxylase/17,20-
lyase cytochrome P450 (CYP17A1)-positive, cytochrome
P450 aromatase (CYP19A1)-positive adrenal-like cells
that produce androgens.

Where do these ovarian and testicular factors converge
to influence sex determination? Much data have accumu-
lated to indicate that �-catenin is a central downstream
signaling protein in the sex determination pathway. Ac-
tivation of the WNT4 pathway allows �-catenin to trans-
locate to the nucleus to interact with hepatocyte nuclear
factor 1 homeobox A (HNF1A; TCF1) and regulate tran-
scription. The testis differentiation pathway regulates the
ovarian differentiation pathway in two ways: 1) human
SRY inhibits �-catenin-mediated transcription by direct
interaction with �-catenin (101); and 2) SOX9 interacts
with �-catenin to cause their mutual degradation. These
studies suggest that �-catenin may be the infamous Z fac-
tor that is regulated by the testis differentiation pathway.
Thus, in the ovarian differentiation pathway, increased

levels of �-catenin will result in degradation of SOX9,
preventing it from inducing itself or other genes, such as
Fgf9. Indeed, studies in both humans and mice support a
role for �-catenin as a major pro-ovary and anti-testis
factor. In humans, a duplication of the region encoding
WNT4 and RSPO1 has been shown to cause XY male-
to-female sex reversal (102). In mice, overexpression of a
stable allele of �-catenin causes XY male-to-female sex
reversal (96), whereas conditional knockout (cKO) of
�-catenin (97, 99) leads to the presence of a coelomic ves-
sel in XX gonads.

D. Sexually dimorphic changes in the initiation
of meiosis

Before entry of PGCs into the urogenital ridge, XX
(“female”) and XY (“male”) PGCs appear to function
identically in all aspects. This suggests that there are no
sexually dimorphic products for formation, migration,
and entry of the PGCs into the genital ridge and that the
sex chromosomes are not influencing this process. The
first mechanistic difference between an XX and an XY
germ cell in the genital ridge is reactivation of the inactive
X in the female PGC. Soon after this point, there is a major
change in the fate of these PGCs. Whereas XY germ cells
arrest in mitosis and do not divide again until postnatally
as spermatogonia, the XX germ cells continue to divide
and then enter meiosis at approximately E12.5. Subse-
quently, the female germ cells arrest at the diplotene stage
of meiosis I and do not resume meiosis until postnatally
during ovarian folliculogenesis. As mentioned in Section I,
this indicates that the last known dividing oocyte “stem
cell” must also disappear at this time. Elegant studies from
several laboratories have been able to piece together the
molecular details of these important sexual dimorphic
processes (Fig. 3).

The first gene necessary to lay the groundwork for these
changes is Dazl (deleted in azoospermia-like). Dazl is ex-
pressed in both XX and XY PGCs at the time of arrival at
the genital ridge (103). Normally, both XX and XY germ
cells begin to express Sycp3 (synaptonemal complex pro-
tein 3) but in the absence of DAZL, SYCP3 is essentially
absent, thereby defining a “meiosis-competent” germ cell
(104). In the presence of DAZL, this intermediate premei-
otic germ cell is responsive to retinoic acid, the meiotic
initiation molecule derived from mesonephroi of both
sexes (105, 106). In addition, DAZL is an RNA binding
protein that specifically binds to the 3� UTR of the Sycp3
mRNA to positively regulate its translation (107). Thus,
DAZL acts both upstream in the PGC as well as down-
stream to regulate meiosis.

If both male and female germ cells are “primed” for
meiosis and bathed in a similar retinoid acid environment,
what causes the sexually dimorphic paths? The gene prod-
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uct that is responsible for these changes is cytochrome
P450 26B1 (CYP26B1), the major protein that degrades
retinoic acid. CYP26B1 is down-regulated in somatic cells
of the ovary at E12.5 but up-regulated in the testis, thus
allowing accessibility of the XX germ cells, but not the XY
germ cells, to retinoic acid (105). In the absence of
CYP26B1, the XY germ cells of the embryonic testes ini-
tiate meiosis, mimicking the XX germ cells. Furthermore,
the synthetic retinoid Am580, which is not degraded by
CYP26B1, has a similar induction of meiosis in the germ
cells of wild-type testes (108), yielding further evidence of
the interrelationships of retinoic acid, CYP26B1, and the
initiation of meiosis.

How is retinoic acid acting in the germ cell to regulate
meiosis? The Page laboratory (109) had previously shown
that a known retinoic acid target, Stra8 (stimulated by
retinoic acid gene 8), a bHLH transcription factor, was
expressed in the embryo exclusively in XX germ cells be-
fore meiotic entry. Using a knockout approach, their lab-
oratory showed that absence of STRA8 blocked entry of
the XX germ cells into meiosis, and the meiotic markers
Dmc1 and Spo11 were undetectable in the E14.5 ovaries
(110). Consistent with retinoic acid as the major inducer
ofStra8 in embryonicgermcells, absenceofCYP26B1also
leads to increased Stra8 in the embryonic testes after E12.5
(111) paralleling the Stra8 rise seen in females. As the
levels of CYP26B1 wane after E13.5 in the testes with
increased exposure of the XY germ cells to retinoic acid,
a “backup” protein, NANOS2, is expressed and represses
Stra8; absence of NANOS2 in the males leads to induction
of Stra8 (after E13.5), whereas expression of NANOS2 in

embryonic female germ cells suppresses Stra8 (111). Thus,
a retinoic acid to Stra8 pathway results in sexually dimor-
phic differences in meiotic entry in females vs. males. Ad-
ditional signaling pathways that regulate meiotic arrest
and reentry postnatally are discussed in the following
section.

III. Ovarian Folliculogenesis

Autocrine, paracrine, juxtacrine, and endocrine factors
are essential for ovarian folliculogenesis. Besides the oo-
cyte, the reproductive cargo of the follicle, the somatic cells
of the ovarian follicle, namely the granulosa cells that
function as the ovarian “nurse” cells and thecal cells
that function to supply the granulosa cells with the es-
trogenic precursor, androstenedione, are recruited to
the oocyte and are directly or indirectly necessary for
oocyte development, physiology, and survival. As
shown in Fig. 4, the major stages of ovarian folliculo-
genesis are formation of the primordial follicle; recruit-
ment into the growing pool to form a primary, second-
ary, and tertiary follicle; and lastly ovulation and
subsequent formation of a corpus luteum (CL). In this
section, we will describe these steps in greater detail.
Several of the mutations that cause infertility in humans
are also summarized in Table 1.

A. Formation of an ovarian follicle—oocyte survival vs.
primordial follicle formation

Before formation of an ovarian follicle, oocytes are
present within germ cell clusters, also referred to as germ
cell cysts or nests. Primordial follicle formation occurs
when oocytes that survive the process of germ cell cluster
breakdown are individually surrounded with squamous
pre-granulosa cells. This represents the first stage of fol-
liculogenesis, and it takes place during the latter half of
fetal development in humans and in the days immediately
following birth in mice (112, 113). In mammals, the pop-
ulation of primordial follicles serves as a resting and finite
pool of oocytes available during the female reproductive
life span. Although germ cell cluster breakdown, primor-
dial follicle formation, and subsequent recruitment re-
main the least understood steps of folliculogenesis, key
regulators of these initial stages of follicle development
continue to be identified. Furthermore, despite many un-
answered questions during this crucial period, the concept
of ovarian cross talk between oocytes and somatic cells is
apparent from the formation of primordial follicles on-
ward (114, 115).

After differentiation of PGCs, oogonia undergo mi-
totic proliferation with incomplete cytokinesis, leaving
daughter cells connected by intercellular bridges. The ma-

FIG. 3. Sexually dimorphic initiation of meiosis in the embryonic ovary.
During embryogenesis, the mesonephroi adjacent to the developing
ovary (A) and testes (B) contain several aldehyde dehydrogenases that
convert retinaldehyde to all-trans-retinoic acid (RA). The somatic cells
of the developing testes contain the enzyme CYP26B1, which
degrades RA to pass freely to the germ cell to bind to retinoic acid
receptors (RAR). In the developing ovary, RA induces STRA8, which
induces SYCP3, which is stably translated in the presence of DAZL and
becomes chromosomally localized as the XX germ cell becomes an
oocyte and enters meiosis. In male germ cells, the absence of high
enough levels of RA early and under the repressive actions of NANOS
at later time points, STRA8 is not synthesized and the XY germ cell
becomes mitotically arrested.
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jority of germ cells in a cluster divide synchronously such
that a single germ cell cluster contains 2n germ cells (116).
Germ cells subsequently enter meiosis, becoming oo-
cytes. Individual oocytes within these nests lack sur-
rounding somatic cells, and the majority of the oocytes
will undergo apoptosis as the germ cell clusters break
down to give rise to primordial follicles (117).

Interestingly, although intercellular bridges appear to
be evolutionarily conserved structures connecting germ
cells from insects to mammals, they do not appear to be
essential for follicle formation or female fertility in mice.
Testis-expressed gene 14 (TEX14) was discovered as the
first essential protein in the postnatal intercellular bridge
that interconnects differentiating male germ cells during
spermatogenesis (118). Whereas male mice lacking
TEX14 are sterile due to postnatal defects in spermato-
genesis (118), TEX14 null females have normal fertility
over a 6-month breeding period and follicles in all stages
of folliculogenesis at 1 yr of age, suggesting that inter-
cellular bridge formation during embryonic germ cell
development is not essential for female fertility (119).
Nevertheless, intercellular bridges may have a role in
determining the initial pool of oocytes because postna-
tal day (P) 2.5 Tex14�/� ovaries have fewer oocytes
relative to control ovaries.

Members of the B cell lymphoma/leukemia (BCL)
protein family have opposing functions in regulating
germ cell apoptosis (120). Although BCL2 and BCLX
protect against apoptosis, BAX promotes cell death.
Deletion of antiapoptotic BCL2 results in fewer oocytes
and primordial follicles at 6 wk of age, with no differ-

ences in the number of primary and preantral follicles
(121). Neonatal ovaries, however, have not been exam-
ined; this would be useful to determine the initial reserve
of primordial follicles. As has been observed for BCLX
(122), BCL2 may influence survival during PGC devel-
opment rather than, or in addition to, during germ cell
cluster breakdown and primordial follicle endowment.
For example, loss of proapoptotic BCL member Bax
increases the number of germ cells at E13.5, before the
start of meiosis and germ cell apoptosis (123), but its
role during primordial follicle formation is controver-
sial. Although 6-wk-old Bax�/� females have increased
nonatretic primordial follicles compared with wild-type
controls and, accordingly, a prolonged reproductive life
span (124), there are conflicting reports regarding the
roles of BAX postnatally during primordial follicle en-
dowment. Postnatal day 4 (P4) Bax�/� females were
originally reported to have similar numbers of primor-
dial follicles; however, others documented an increase
in primordial follicles at P4 (123). This discrepancy may
be due to criteria used in classifying primordial follicles
because Greenfeld et al. (123) counted follicles with a
mixture of squamous and cuboidal granulosa cells as
primordial, rather than as transitioning into primary
follicles.

One regulator of BAX is the aryl hydrocarbon receptor
(AHR), a ligand-activated member of the PER-ARNT-
SIM family of transcription factors that is activated by
polycyclic aromatic hydrocarbons (PAHs). The mouse
Bax promoter contains two consensus AHR response el-
ements, and exposure of female mice to PAHs induces Bax

FIG. 4. Classification of the major stages of mammalian folliculogenesis. Primordial follicles form 1–2 d after birth in mice and in utero in humans.
Preantral follicles begin to develop prenatally in humans, whereas in mice this occurs postnatally. In both mice and humans, preantral follicular
development does not require stimulation by the pituitary gonadotropins. By the secondary stage, an additional layer of somatic cells, the theca,
forms outside the basement membrane of the follicle. At puberty, FSH secreted by the pituitary promotes further granulosa cell proliferation and
survival. Ovulation of the dominant follicle occurs in response to a rise in the other pituitary gonadotropin, LH. After ovulation, the remaining
granulosa and theca cells undergo terminal differentiation to form the CL. In most cases, primordial, primary, secondary, preantral, and antral are
names commonly used to refer to the different stages of folliculogenesis; however, a classification system described by Pedersen and Peters (768)
is also used. Pedersen stages are determined based on the size of the oocyte and the number of granulosa cells in cross-section for any given
follicle. Although not shown, certain Pedersen stages are subdivided (i.e., 3a, 3b, 5a, 5b) depending on the number of granulosa cells surrounding
the oocyte.
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and subsequently apoptosis in primordial and primary oo-
cytes (125). In support of a role for BAX in establishing
primordial follicles, ovaries from Ahr null mice have ap-
proximately a 2-fold increase in primordial follicles at
P2-P4 (126, 127), but no differences in germ cell number
before birth on E18 (126). Interestingly, in ovaries from
Ahr�/� mice, there are no differences in the number of
primordial follicles by P8, and there are actually fewer
antral follicles at 8 wk (126), whereas ovaries from Bax�/�

females at P7 still contain significantly more primordial
follicles (123), suggesting that additional regulators of
BAX are active in oocytes during this period. The AHR-
BAX pathway is required for PAH-induced oocyte death
in mice (125), suggesting that activation of AHR in hu-
mans exposed to environmental toxins may contribute to
premature ovarian failure (POF), also known as primary
ovarian insufficiency.

A second apoptotic pathway that operates in cells in-
volves activation of caspases, which are proteases that
upon activation cleave a number of cellular proteins lead-
ing to apoptosis. Targeted disruption of the caspase 2 gene
(Casp2) resulted in significantly more primordial follicles
at P4 in Casp2�/� ovaries, and oocytes from Casp2�/�

mice were resistant to the chemotherapeutic agent doxo-
rubicin (128). Thus, during fetal development and in the
perinatal period, apoptosis is important in establishing the
primordial pool, and apoptotic cell death continues
throughout folliculogenesis in oocytes and granulosa cells
during follicular atresia.

FIGLA (factor in the germline �) is a germ cell-specific
bHLH transcription factor that is required for initial fol-
licle formation. The bHLH family of transcription factors
functions by forming homo- or heterodimers that bind to
gene regulatory regions containing E-box consensus se-
quences (CANNTG). Female mice lacking Figla are sterile
secondary to a complete absence of follicles and oocytes
(129). Upon closer inspection, although ovaries from E18
Figla null and wild-type females have similar numbers of
germ cell clusters in the perinatal period, primordial fol-
licles fail to form, and oocytes are depleted by P2 in Figla
null ovaries. FIGLA was first identified through in vitro
studies as a regulator of all three zona pellucida genes,
Zp1, Zp2, and Zp3 (130). The zona pellucida proteins
comprise the glycoprotein-rich matrix that surrounds de-
veloping oocytes and is essential for fertilization. Al-
though mice deficient in Zp1, Zp2, or Zp3 are either in-
fertile or subfertile (131–133), follicles lacking any of the
zona pellucida genes can progress through all stages of
folliculogenesis. Furthermore, the zona pellucida matrix
does not form until oocytes begin to grow, suggesting that
FIGLA has additional downstream targets whose mis-
regulation prevents early oocyte-somatic cell interactions.

Human FIGLA is also expressed only in female germ cells
and, like mouse FIGLA, can heterodimerize with the ubiq-
uitous E12 bHLH transcription factor and bind E-box
consensus elements in the human ZP2 promoter (134,
135). Human FIGLA transcripts are detectable by 14 wk
gestation and dramatically increase at midgestation (19
wk), corresponding to the time of human primordial fol-
licle formation.

Gene expression studies comparing ovaries from
Figla�/� and wild-type mice at four different time points
showed the greatest number of differentially expressed
genes when comparing newborn ovaries, consistent with
the onset of primordial follicle formation (136). Of the
altered genes, 165 were decreased, and 38 were increased
in Figla�/� ovaries, and a large percentage of these genes
code for transcription factors or proteins with nucleic acid
binding functions. Interestingly, many genes normally ex-
pressed in the testis were up-regulated in Figla�/� ovaries,
suggesting a role for FIGLA in repressing male germ cell-
specific genes in oocytes. Pou5f1, which postnatally is
germ cell-specific and expressed in growing oocytes, was
decreased, and its postnatal up-regulation occurs just after
FIGLA is expressed (137), suggesting that FIGLA is one
regulator of this important transcription factor during this
key time period. Members of the oocyte-specific NLRP
(NACHT, leucine-rich repeat and pyrin domain contain-
ing) gene family were also decreased or absent in Figla null
ovaries. Despite shared structural motifs in the NLRP fam-
ily, individual proteins do not appear to be functionally
redundant; inactivation of a single Nlrp gene, Nlrp5, also
known as Mater, prevents embryo development beyond
the two-cell stage (138). Thus, in addition to identifying
target genes and pathways during primordial follicle for-
mation, the results of these studies suggest that FIGLA
might directly or indirectly be important during the later
stages of oocyte development.

Although upstream regulators of FIGLA are unknown,
studies have identified a number of signaling pathways
important in germ cell cluster breakdown and primordial
follicle formation that couldpotentially regulateFIGLAor
other mediators of early folliculogenesis. Previous obser-
vations supported a role for maternal hormones in the
maintenance of germ cell clusters during mouse fetal de-
velopment. Multi-oocyte follicles containing two or more
oocytes within a follicle boundary might arise from oocyte
clusters that fail to separate. Multi-oocyte follicles occur
more frequently in mice exposed to estrogens or estrogenic
compounds prenatally or in the neonatal period (139,
140). In an in vitro ovarian culture system, ovaries from
newborn mice cultured over the course of 7 d in the pres-
ence of estradiol, progesterone, or genistein, a phytoestro-
gen, exhibit fewer single oocytes and more germ cell clus-
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ters, supporting a role for these steroids in blocking cluster
breakdown and primordial follicle formation (141). New-
born rat ovaries cultured in the presence of progesterone
or newborn rats injected with progesterone show a similar
reduction in primordial follicle formation (142). The au-
thors propose that in developing mice, high maternal ste-
roids provide an inhibitory signal that prevents cluster
breakdown, whereas at birth, the drop in these steroids
allows clusters to break apart (141, 142). However,
whereas mice lacking Cyp19a1, which are deficient in es-
tradiol, have a reduction in primordial follicles at 10 wk of
age (143), ovaries in the neonatal period have not been
examined, and the chief defect in folliculogenesis in
CYP19A1-deficient females is a block at the antral follicle
stage (144). Likewise, mice lacking the progesterone re-
ceptor (PR) have normal follicular development, and the
primary ovarian defect is inability to ovulate (145). Fur-
thermore, in humans, primordial follicle formation occurs
during the last half of fetal development when maternal
estradiol and progesterone are high, suggesting a different
mechanism controlling primordial follicle formation in
humans. Studies in nonhuman primates suggest that es-
tradiol actually promotes primordial follicle formation.
Late gestation fetuses from baboons treated with an aro-
matase inhibitor show a reduction in primordial follicles
and an increase in germ cell clusters (146). Thus, the effects
and physiological relevance of estradiol and progesterone
during follicle formation are unclear, and further studies
are warranted. It is possible that the effects of progesterone
in rodents are partly due to signaling through a membrane
progesterone receptor, rather than the classical nuclear
receptor. In rats, the inhibitory effect of progesterone on
primordial follicle assembly is not completely reversed
whenthenuclearPRantagonist,RU-486, is also added (142).

Whereas estradiol and progesterone may partially in-
hibit primordial follicle formation in rodents, NOTCH
signaling appears to promote it. There are four NOTCH
receptors in mammals that interact with two families of
ligands, DELTA-like and JAGGED, on neighboring cells.
Ligand binding of NOTCH leads to proteolytic cleavage
by the ADAM-family of metalloproteases, followed by
cleavage by �-secretase to free the NOTCH intracellular
domain (NICD). The NICD translocates to the nucleus
and interacts with the DNA-binding CSL [CBF1, Su(H),
and Lag-1] transcription factor and its coactivator, Mas-
termind, to promote transcription (147). In neonatal
mouse ovaries, the NOTCH2 receptor is expressed in pre-
granulosa cells, the NOTCH ligand JAGGED1 is ex-
pressed in germ cells, and NOTCH target genes Hes1 and
Hey2 are in both cell types. Using a similar in vitro ovarian
culture system, blocking NOTCH signaling with �-secre-
tase inhibitors decreases primordial follicle formation and

increases the germ cells remaining in clusters (148). Fur-
ther support for NOTCH signaling during primordial fol-
licle formation and later stages of folliculogenesis is evi-
dent in lunatic fringe (Lfng) null mice. Lunatic fringe is a
modulator of the NOTCH pathway and is expressed in
granulosa and thecal cells of developing follicles. Al-
though most Lfng null mice die shortly after birth, females
that survive are infertile with follicular defects that include
multi-oocyte follicles (149).

B. Maintenance of primordial follicles and
initial recruitment

Follicle recruitment is generally subdivided into two
broad categories: initial activation of primordial follicles,
which occurs throughout life until menopause; and, after
puberty, cyclic recruitment of a limited number of small
follicles from the growing cohort, from which a subset is
selected for dominance and ovulation (150). Although the
initial recruitment of follicles from the primordial into the
growing pool remains a poorly understood process, in
recent years mutant mouse models have led to the identi-
fication of several key transcription factors and signaling
pathways that regulate this early step in folliculogenesis.
The transition from primordial to primary follicle is
marked histologically by a morphological change in gran-
ulosa cells from squamous to cuboidal.

NOBOX (newborn ovary homeobox), SOHLH1
(spermatogenesis and oogenesis helix-loop-helix 1),
and SOHLH2 are critical transcription factors during the
transition from primordial to primary follicles. Nobox
and Sohlh1 were both identified using an in silico subtrac-
tion strategy to identify expressed sequence tags that are
preferentially expressed in oocytes but not in other mouse
cDNA libraries (151). Sohlh2 was subsequently discov-
ered using the BLAST program of the National Center for
Biotechnology Information to search for bHLH domains
that share homology with Sohlh1 (152). All three genes are
expressed in germ cell clusters, primordial follicles, and
primary follicles in females, whereas Sohlh1 and Sohlh2
are also expressed in spermatogonia. Whereas SOHLH1
and SOHLH2 disappear rapidly as oocytes reach the sec-
ondary follicle stage, NOBOX continues to be expressed
throughout folliculogenesis. Mice lacking any of these
three transcription factors are sterile (153–156). Although
ovaries from newborn Nobox�/� or Sohlh1�/� mice con-
tain similar numbers of germ cell clusters and primordial
follicles relative to controls, progression beyond the pri-
mordial follicle stage isdisrupted.ByP3, controlmicehave
formed primary follicles, but Nobox�/� and Sohlh1�/�

mice lack primary follicles and begin to demonstrate an
early postnatal loss of oocytes. Ovaries from Sohlh2�/�

are remarkably similar to Sohlh1�/� and Nobox�/� ova-
ries, although occasional follicles escape early postnatal
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death and progress to multilayered follicles. Thus, mice
deficient in Nobox, Sohlh1, or Sohlh2 have defects in the
primordial to primary follicle transition, and these genes
do not appear to function redundantly during early
folliculogenesis.

Molecular analysis of Nobox�/� ovaries shows that
expression levels of key oocyte-specific genes, including
Gdf9, Bmp15, Mos, Pou5f1, and several Nlrp family
members, are dramatically decreased (157). Furthermore,
Gdf9 and Pou5f1 appear to be directly regulated by
NOBOX, and several other down-regulated genes also
contain putative NOBOX consensus binding elements in
their promoters (158). Although Figla expression and
some FIGLA targets, such as Zp1, Zp2, and Zp3, are not
altered in Nobox�/� ovaries, many of the gene changes
observed in Nobox�/� ovaries were also found in Figla�/�

ovaries (136), including an up-regulation of several testis-
specific genes, which suggests that these transcription fac-
tors function in both individual and redundant regulatory
pathways during oogenesis.

Ovaries from Sohlh1�/� mice have gene changes sim-
ilar to those observed in Nobox�/� ovaries, but also show
a significant reduction in Nobox, Figla, Zp1, and Zp3
(155). In contrast, Sohlh1 is not significantly affected in
Nobox�/� ovaries, suggesting that SOHLH proteins func-
tion upstream of Nobox and Figla. The ovarian physiol-
ogy in Sohlh1�/� mice, however, is less severe than in
Figla�/� mice, which may be due to persistent low-level
expression of Figla in these mice. An additional transcrip-
tion factor, Lhx8, which encodes a LIM homeodomain
protein, is also down-regulated in Sohlh1�/� ovaries and
the ovarian phenotype in Lhx8�/� mice phenocopies
Sohlh1�/� mice (155, 159). By chromatin immunopre-
cipitation and reporter assays, SOHLH1 appears to di-
rectly regulate Lhx8, Zp1, and Zp3 through conserved
E-box promoter elements, but not Nobox or Zp2. New-
born ovaries from Sohlh2�/� mice have very similar mo-
lecular changes as those from Sohlh1�/� mice, consistent
with data suggesting that SOHLH1 and SOHLH2 form
heterodimers (160). Interestingly, Sohlh2 is down-regu-
lated in Sohlh1�/� ovaries, and likewise, Sohlh1 is down-
regulated in Sohlh2�/� ovaries, supporting a further role
for transcriptional cross-regulation (153). Unlike the find-
ings in Nobox�/� ovaries, in newborn ovaries from
Sohlh1�/� or Sohlh2�/� mice, Kit receptor is down-reg-
ulated (153). Kit is also decreased in newborn Figla�/�

ovaries (136), and in Lhx8�/� newborn ovaries, both Kit
and its ligand, Kitl, are reduced (159).

Interactions between KIT ligand and the KIT tyrosine
kinase receptor appear to be critical in early folliculogen-
esis. During postnatal ovarian development, KIT is ex-
pressed in oocytes and KIT ligand is expressed in pre-

granulosa and granulosa cells throughout folliculogenesis
(161–165). The importance of KIT/KIT ligand signaling
during folliculogenesis was first identified in mutant mice
and later extended by in vivo function blocking and in
vitro culture studies. As mentioned in Section II, many
different mutations of Kit or Kitl, encoded by the W and
Sl loci, respectively, result in defects in PGC development.
A number of alleles have been identified in both loci that
have differential effects on female fertility. In particular,
the Steel Panda (Slpan) and Steel Contrasted (Slcon) muta-
tions, which result in reduced expression of normal Kitl
transcript in the gonads (166, 167), provide insight into
the roles of KIT/KIT ligand during early folliculogenesis.
In addition to a reduction in the number of germ cells, mice
homozygous for the Slpan and Slcon alleles have fewer oo-
cytes in the growing pool, and the majority of those that
develop arrest at the primary follicle stage. Female mice
with the Steel Transfer (Slt) mutation display a similar
arrest of folliculogenesis with many primordial follicles
present, but few growing follicles (168). Because Slcon fe-
males might have a single litter and have occasional fol-
licles that progress beyond the primary stage, despite in-
creased atresia at the antral follicle stage, there may be a
threshold levelofKIT ligandnecessary forprimordial follicle
recruitmentandlater folliculardevelopment.TheSlpan,Slcon,
andSlt mutantmicemighthave sufficient levelsofKIT ligand
produced for some follicles to reach the primary stage, but
insufficient levels of KIT ligand lead to early arrest or in-
creased atresia.

In vivo and in vitro studies further support a role for
KIT/KIT ligand interactions during initiation of follicular
growth from the primordial pool. Newborn mice injected
with an antibody to KIT (ACK2) that blocks interaction
with KIT ligand have a block at the primordial stage of
follicle development. When P2 mice, which have formed
primordial follicles, are injected with ACK2 antibodies,
primary follicle development is only slightly interrupted,
although these mice show a delay in antral follicle devel-
opment (165). Similar inhibition of primordial follicle de-
velopment is seen in an in vitro neonatal rat ovary organ
culture system. In contrast, treatment of neonatal rat ova-
ries with recombinant KIT ligand accelerates the primor-
dial to primary follicle transition, resulting in an increased
number of growing follicles (169). These studies and the
Kitl mutant mice suggest that intact KIT signaling is not
essential during germ cell cluster breakdown, but it is nec-
essary during the transition from primordial to primary
follicles and in later stages of follicle development.

The mechanisms by which KIT ligand/KIT signaling
contribute to the primordial to primary follicle transition
are not entirely known; however, evidence suggests that
the KIT ligand/KIT pathway induces the PI3K/AKT path-
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way, leading to phosphorylation and inactivation of fork-
head box O3 (FOXO3; FKHRL1), an inhibitor of primor-
dial follicle activation. PI3K catalyzes the conversion of
the membrane phospholipid phosphatidylinositol 4,5-
bisphosphate (PIP2) to the second messenger, phosphati-
dylinositol 3,4,5-trisphosphate (PIP3), which leads to
AKT activation. FOXO3 is a member of the FOXO sub-
family of forkhead transcription factors, which are down-
stream targets of the PI3K/AKT pathway; activation of the
PI3K/AKT pathway functionally suppresses FOXO tran-
scription factors secondary to phosphorylation and nu-
clear exclusion (170). When mouse or rat oocytes are
treated with KIT ligand, FOXO3 is phosphorylated in a
PI3K/AKT-dependent manner because treatment with a
PI3K inhibitor prevents AKT activation and subsequent
FOXO3 phosphorylation (171).

The functional consequence of FOXO3 inactivation is
illustrated in mice lacking Foxo3. Although Foxo3 is ex-
pressed in multiple tissues, the chief phenotypic defect in
Foxo3�/� mice is a rapid decline in fertility and ultimately
sterility by 15 wk of age. Histologically, by 2 wk of age,
ovaries from Foxo3�/� mice are enlarged relative to con-
trols, have a marked increase in growing and atretic fol-
licles, and have an absence of primordial follicles (172). By
8.5–9.5 wk of age, ovaries from Foxo3�/� mice have
abundant zona pellucida remnants (172, 173), suggesting
widespread follicular activation, followed secondarily by
atresia. Because forkhead box O1 (FOXO1) mRNA and
protein are expressed in mouse oocytes (174, 175), it ap-
pears that FOXO1 regulates different functions or is not
expressed in sufficientquantities to substitute forFOXO3.
Thus, deletion of Foxo3 removes an oocyte activation
brake, leading to premature recruitment of follicles and a
complete depletion of the primordial pool before sexual
maturity. Further support for the inhibitory role of
FOXO3 on follicular activation is seen in transgenic mice
expressing constitutively active Foxo3 under control of
the Zp3 promoter, which is active beginning at the pri-
mary stage of folliculogenesis. Zp3-Foxo3 transgenic fe-
males are severely infertile due to impeded follicular de-
velopment beyond primary and secondary follicles (176).

Additional genetic studies support a critical role for the
PI3K/AKT pathway upstream of FOXO3. Oocyte-specific
deletion of Pten (phosphatase and tensin homolog deleted
on chromosome 10), which opposes the actions of PI3K by
converting PIP3 to PIP2, causes premature activation of
primordial follicles, with an ovarian phenotype nearly
identical to Foxo3 deletion (177, 178). Loss of Pten in
oocytes results in enhanced PI3K activity, AKT hyperac-
tivation, and functional suppression of Foxo3 secondary
to hyperphosphorylation and nuclear export. Concurrent

loss of Pten and Foxo3 in oocytes does not have a syner-
gistic effect on follicle activation (178), and the PI3K in-
hibitor LY294002 suppresses primordial follicle activa-
tion in ovaries with Pten-deficient oocytes but has no
effect in Foxo3 mutant ovaries (177), suggesting a linear
PTEN-PI3K-AKT-FOXO3 pathway. The initial fertility
of Foxo3 and conditional Pten mutant females suggests
that this pathway is not essential for later steps of follicu-
logenesis, ovulation, or fertilization. The critical role for
this pathway in regulating primordial follicle activation
throughout the reproductive life span has been demon-
strated using a tamoxifen-inducible germ cell-specific Cre
mouse model (Vasa-CreERT2). Administration of tamox-
ifen to adult Vasa-CreERT2 Foxo3flox/flox or Vasa-CreERT2

Ptenflox/flox mice causes the same global activation of pri-
mordial follicles that is seen in the ubiquitous Foxo3 and
Pten knockout or conditional models (177). It is unknown
whether KIT is an upstream modulator of this pathway in
vivo, or at least one of many receptor tyrosine kinases that
might initiate this signaling cascade to promote primordial
follicle recruitment. However, female mice with a mutated
KIT receptor (KitY719F) that prevents binding and activa-
tion of PI3K have a retardation of folliculogenesis beyond
the primary stages of development (179), similar to mice
with constitutively active FOXO3 (176). It would be in-
teresting to determine whether FOXO3 is predominantly
nuclear in these mice and whether loss of Foxo3 would
rescue the observed histological findings.

How nuclear FOXO3 prevents primordial follicle ac-
tivation is unknown. It has been proposed to arrest growth
through increased expression of cyclin-dependent kinase
inhibitor 1B (CDKN1B; also known as p27Kip1) (180),
which is retained in the nuclei of 20-d-old mice expressing
constitutively active Foxo3 (176), and FOXO3 regulation
of p27Kip1 has been documented in other systems (181).
Indeed, p27Kip1 also functions as a suppressor of primor-
dial follicle activation because Cdkn1b�/� females exhibit
premature activation of primordial follicles (182). How-
ever, whereas Cdkn1b�/� and Foxo3�/� both have in-
creased recruitment from and ultimate depletion of the
primordial follicle pool, mice lacking both genes show a
synergistic acceleration of follicle activation, suggesting
that they can function independently to suppress primor-
dial follicle activation. Furthermore, by Western blot anal-
ysis, p27Kip1 levels are normal in oocytes from Foxo3�/�

mice, and p27Kip1-deficient oocytes have normal total and
phospho-FOXO3 (182), although immunolocalization of
each protein in the respective mutants may have been more
conclusive. It is likely that FOXO3 has multiple targets in
primordial oocytes that contribute to the quiescent state
until the appropriate signal initiates activation and oocyte
growth.
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Finally, recent work has identified an additional critical
mediator of PI3K activation, 3-phosphoinositide depen-
dent protein kinase-1 (PDPK1; PDK1). Binding of PIP3
leads to activation of PDK1 and subsequent phosphory-
lation of AKT and other kinases of the AGC family (pro-
tein kinases A, G, and C) (183). Oocyte-specific deletion
of Pdk1 caused infertility; despite no difference in ovarian
morphology and follicle count through P23, pubertal ova-
ries were smaller and contained fewer follicles at all stages,
secondary to depletion of primordial follicles (184).
Whereas KIT ligand stimulated AKT phosphorylation in
cultured wild-type oocytes, it did not in Pdk1 cKO oo-
cytes, thereby preventing FOXO3 phosphorylation (and
thus presumably primordial follicle activation). How-
ever, phosphorylation of ribosomal protein S6 kinase
(RPS6KB1; S6K1), an additional PDK1 target down-
stream of PI3K activation, was also disrupted. This pre-
vented phosphorylation and activation of the 40S ribo-
somal protein, RPS6, which is necessary for ribosome
biogenesis and protein translation (185). Liu and col-
leagues (184) predicted that RPS6 may be downstream of
PI3K-AKT-S6K1 and important in oocyte growth after
primordial follicle activation. Indeed, conditional deletion
of Rps6 resulted in a more profound ovarian defect with
Rsp6 cKO ovaries already smaller by P23 and completely
devoid of follicles by 8 wk of age (184). Thus, the sup-
pressed AKT signaling in PDK1-deficient oocytes appears
to both prevent primordial follicle activation through re-
tained nuclear FOXO3 and negatively impact oocyte sur-
vival through decreased RPS6 activity. This also suggests
tight control over the PI3K-PDK1-AKT signaling pathway
in maintaining and activating the pool of primordial
follicles.

Whereas FOXO3 is the key oocyte factor critical for
suppressing primordial follicle activation, another fork-
head domain transcription factor, forkhead box L2
(FOXL2), is crucial in the transition from squamous to
cuboidal granulosa cells that occurs during the primordial
to primary transition. Nonsense mutations in FOXL2
cause type I blepharophimosis/ptosis/epicanthus inversus
syndrome (BPES) and FOXL2 duplications cause type II
BPES (186). Type I BPES is also associated with POF. In
the ovary, FOXL2 is expressed in pre-granulosa cells sur-
rounding primordial follicles and in granulosa cells
throughout folliculogenesis. Foxl2�/� mice form primor-
dial follicles, but differentiation of granulosa cells from the
squamous to cuboidal state is blocked, granulosa cell pro-
liferation is interrupted, oocyte growth is retarded, and
secondary follicles fail to form (187, 188). At 2 wk of age,
the majority of primordial follicles are activated in
Foxl2�/� ovaries, as demonstrated by expression of TGF�

family member growth differentiation factor 9 (Gdf9), a

marker of oocyte activation (see Section III. C). However,
this activation is accompanied by widespread follicular
atresia and a near absence of primordial follicles by 8 wk
of age because the defective granulosa cells fail to support
growing oocytes (187). Another TGF� superfamily mem-
ber, AMH (Müllerian-inhibiting substance, MIS), shows
reduced expression in Foxl2�/� compared with wild-type
ovaries (187); however, this is likely secondary to the gen-
eral perturbation of folliculogenesis in Foxl2�/� ovaries.

AMH induces regression of the Müllerian ducts during
male fetal sex differentiation (189). In the ovary, AMH
produced by granulosa cells of growing follicles also ap-
pears to suppress primordial follicle recruitment. In the
rodent and human ovary, AMH and its type II receptor,
AMHR2, are expressed in granulosa cells of primary and
growing preantral follicles (190, 191). Although female
mice lacking AMH are fertile, Amh�/� juveniles show an
increase in growing follicles, and by 4 months this increase
is reflected in a reduction of primordial follicles compared
with wild-type littermates. By 13 months of age, Amh�/�

females have few remaining primordial follicles and cor-
respondingly few growing follicles (192). In vitro studies
support the in vivo findings because neonatal ovaries cul-
tured in the presence of recombinant AMH show fewer
growing follicles (193). Thus, AMH appears to inhibit the
growth of primordial follicles, and in its absence, there is
a faster depletion of growing follicles, although it is un-
known how AMH functions to repress primordial follicle
recruitment (i.e., whether this is a direct or indirect effect
of AMH).

Clinically, serum AMH may be a useful biomarker of
ovarian reserve (190). In women and mice, serum AMH
declines with increasing age. Whereas it is difficult to es-
tablish a direct link between serum AMH and the primor-
dial follicle pool in humans, antral follicle number is pos-
itively correlated with AMH (194). In mice, there is a
strong correlation between serum AMH and the number
of primordial follicles (195).

Neurotrophins are soluble growth factors whose func-
tions in development extend beyond the nervous system
and include regulation of early folliculogenesis. At least
four of the five neurotrophins are expressed in the ovary,
including nerve growth factor (Ngf), brain-derived neu-
rotrophic factor (Bdnf), neurotrophin 3 (Ntf3), and neu-
rotrophin 5 (Ntf5). In addition, all four neurotrophin re-
ceptors are present in the ovary, including neurotrophic
tyrosine kinase receptor types 1 through 3 (Ntrk1, Ntrk2,
and Ntrk3; also known as TrkA, TrkB, and TrkC, respec-
tively), and Ngfr (p75), which recognizes all neurotro-
phins with low affinity (Ref. 196; and reviewed in Ref.
197). Ngf expression in the somatic cells and oocytes pre-
cedes follicle formation, and ovaries from 7-d-old Ngf�/�
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mice contain mostly primordial follicles with few primary
follicles, whereas wild-type ovaries show numerous pri-
mary and secondary follicles at this age (198). Similar to
observations in Foxl2-deficient ovaries (187, 188), Ngf-
deficient ovaries have reduced somatic cell proliferation,
suggesting that NGF signaling is also important in the
differentiation of squamous pre-granulosa cells to cuboi-
dal granulosa cells during primordial follicle activation.
Although mice lacking the common p75 NGF receptor are
fertile with no defects in follicle formation (199), mice
lacking the high-affinity NGF receptor, NTRK1, are peri-
natal lethal (200, 201), and the ovarian effects of Ntrk1
deficiency remain unknown, although it would be pos-
sible to transplant Ntrk1-deficient ovaries under the
kidney capsule of wild-type mice to assess postnatal
follicular development, as described with the Ntrk2-
deficient ovaries (202).

In addition to the above genetic models and the in vitro
studies that complement the in vivo findings, multiple
other in vitro studies suggest that several pathways con-
verge to activate or repress primordial follicle recruitment.
Ovaries from 4-d-old rats cultured in vitro show an in-
crease in growing follicles and fewer primordial follicles
when basic FGF2, keratinocyte growth factor (FGF7),
BMP4, leukemia inhibitory factor (LIF), platelet-derived
growth factor (PDGF), or glial-derived neurotrophic fac-
tor (GDNF) are added to the culture medium (Refs. 203
and 204; and reviewed in Ref. 205). Injection of BMP7
into the ovarian bursa of rats also results in fewer primor-
dial follicles and, correspondingly, more growing follicles
(206). At least some of these factors, including FGF2,
PDGF, and LIF, may promote the primordial to primary
transition by up-regulation of Kitl in granulosa cells. In
primordial follicles, FGF2 and PDGF are primarily ex-
pressed in oocytes, whereas LIF is found in pre-granulosa
and somatic cells (207). Besides AMH, the only other fac-
tor shown to inhibit primordial follicle recruitment is the
chemoattractive cytokine, CXCL12. Both CXCL12 and
its receptor, CXCR4, are predominantly expressed in pri-
mordial andactivatedoocytes.Whenneonatalmouseova-
ries are treated with CXCL12, there is a reduction in grow-
ing follicles and a higher density of primordial follicles
(208). CXCL12/CXCR4 interactions are also important
during PGC migration when CXCR4 is expressed in mi-
grating germ cells and CXCL12 is expressed in the dorsal
body wall. In CXCR4-deficient embryos, fewer PGCs
reach the genital ridge (209).

Whether any of the above observations with added
growth factors have physiological relevance in vivo re-
mains to be determined. For example, Fgf2�/� mice are
viable and fertile (210); Fgf7�/� mice have abnormal hair
development, but fertility defects have not been reported

(211); Lif�/� mice have defects in implantation, but nor-
mal folliculogenesis and ovulation (212). Disruption of
the genes encoding many of the other putative regulators
of primordial follicle activation results in embryonic or
perinatal lethality. Furthermore, given the ability of many
of these growth factors to influence Kitl expression, it is
possible that redundant pathways have evolved so that
one factor may compensate for deficiency of others. Thus,
validation of the in vitro findings would require cKO mod-
els, as well as generation of mice lacking two or more genes
in the appropriate ovarian cell type.

Although the molecular events that control primordial
follicle formation and maintenance in vivo remain poorly
defined, a number of mouse models in recent years have
helped to identify master regulators of this critical period in
folliculogenesis. The findings in these mutant mice are sum-
marized in Table 6. Moreover, essential mediators of these
processes are candidate genes for POF. The clinical criteria
for POF are amenorrhea for at least 4 months before 40 yr of
age with two serum FSH measurements in the menopausal
range (213). In addition to patients with type I BPES that
have nonsense mutations in FOXL2 (186), rare function-
disrupting mutations in NOBOX and FIGLA have been ob-
served in Caucasian and Chinese women, respectively, with
nonsyndromic ovarian failure (214, 215). Because these
women were heterozygous for NOBOX or FIGLA muta-
tions, further work is needed to determine whether these
mutations are sufficient to cause ovarian failure. In vitro
studies suggest that at least one of the missense muta-
tions in NOBOX had a dominant negative effect on the
ability of wild-type NOBOX to bind DNA.

C. Preantral folliculogenesis
Preantral folliculogenesis is characterized by oocyte

growth, granulosa cell proliferation, and acquisition of an
additional somatic cell layer, the theca. Preantral follicle
growth in mice begins 10–12 d after birth when a cohort of
developing follicles reaches the secondary stage of folliculo-
genesis. Secondary follicles contain oocytes in midgrowth
stages surrounded by two or more layers of granulosa cells.
Growth of preantral follicles is dependent on autocrine and
paracrineregulatory factorsbutappears tobegonadotropin-
independent.Micedeficient in theFSH� subunit (216)or the
FSH receptor (FSHR) (217, 218), as well as hypogonadal
mice with naturally occurring mutations in GnRH, which
results in a marked reduction in synthesis of FSH and LH
from the anterior pituitary (219), have normal preantral fol-
licle growth despite defective antral folliculogenesis.

During preantral folliculogenesis, the complex bidirec-
tional communication between the oocyte and the somatic
compartments of the follicle becomes more apparent. Al-
though the oocyte relies on surrounding somatic cells to sup-
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port its growth and development, the rate of follicular de-
velopment is critically dependent on the oocyte. This
dominant role for the oocyte in directing folliculogenesis has
been demonstrated in elegant reaggregation experiments
performed by Eppig et al. (220) where oocytes isolated from
secondary follicles of P12 mice were combined with somatic
cells from newborn ovaries. The reaggregated ovaries exhib-
itedacceleratedfolliculogenesisandcontainedantral follicles
9 d after grafting beneath the renal capsule. Furthermore, the
granulosacells fromtheseantral folliclesunderwentcumulus
expansion when recovered cumulus-oocyte complexes
were treated with FSH, and the oocytes from these isolated
cumulus-oocyte complexes could resume meiosis and un-
dergo fertilization. In contrast, reaggregated control ovaries
in which both the oocytes and somatic cells were from new-
born mice contained only secondary follicles 9 d after graft-
ing. Although the precise mechanism by which the oocyte
orchestrates follicular development is not known, oocyte-
secreted factors appear to have crucial roles.

The first oocyte-derived growth factor demonstrated to
be critical for somatic cell function in vivo was GDF9. In
mice, GDF9 is first expressed in the oocytes of primary
follicles with persistent expression until after ovulation
(221, 222). Consistent with this expression pattern, Gdf9
null mice form primordial and primary follicles, but have
a block in follicular development at the primary stage of
folliculogenesis (223). Histologically, whereas the oocytes
in Gdf9�/� ovaries grow more rapidly compared with
controls (224), the granulosa cells show reduced prolifer-
ation and defects in differentiation with eventual devel-
opment of an abnormal steroidogenic phenotype (225),
and a theca layer fails to develop (223). In addition, very
few granulosa cells in Gdf9�/� ovaries undergo apoptosis.
Despite similar levels of Kit expression in the oocyte, gran-
ulosa cell levels of Kitl and inhibin � are dramatically
increased (225), suggesting that GDF9 from the oocyte
negatively regulates granulosa cell production of these
growth factors. The increase in inhibin � could prevent

TABLE 6. Mouse models with defects in early folliculogenesis

Gene Reproductive phenotype Fertility status Ref.

Folliculogenesis-specific basic helix-
loop-helix (Figla; FIGa)

No primordial follicles develop at birth and oocytes
die

Decreased reproductive
lifespan

129

LIM homeobox protein 8 (Lhx8) Primordial to primary follicle block and oocyte loss Infertile 155
NOBOX oogenesis homeobox (Nobox) Primordial to primary follicle block and oocyte loss Infertile 156
Spermatogenesis and oogenesis-

specific basic helix-loop-helix 1
(Sohlh1)

Primordial to primary follicle block and oocyte loss Infertile 155, 790

Spermatogenesis and oogenesis-
specific basic helix-loop-helix 2
(Sohlh2)

Primordial to primary follicle block and oocyte loss Infertile 153, 160

B-cell leukemia/lymphoma 2 (Bcl2) Fewer oocytes/primordial follicles in the postnatal
ovary

Subfertile 121

Aryl-hydrocarbon receptor (Ahr) Increased primordial follicles early; decreased
numbers of antral follicles in adults

Subfertile 126, 127

Bcl2-associated X protein (Bax) Increased oocytes and primordial follicles Prolonged reproductive
lifespan

123, 124

Kit ligand (Kitl; Steel) Panda, contrasted, and transfer mutants have
reduced germ cells and block in folliculogenesis
at primary stage

Infertile 166–168

Anti-Müllerian hormone (Amh) Early depletion of primordial follicles Decreased reproductive
lifespan

192, 193

Forkhead box O3 (Foxo3a) Global follicular activation and early follicular
depletion

Progressive infertility 172

Forkhead box L2 (Foxl2) Ovarian failure due to absence of germ cell
proliferation and differentiation

Infertile 187, 188

Phosphatase and tensin homolog
deleted on chromosome 10 (Pten)
(cKO)

Global follicular activation and early follicular
depletion

Progressive infertility 177, 178

3-Phosphoinositide-dependent
protein kinase-1 (Pdpk1; Pdk1)
(cKO)

Ovarian failure due to depletion of primordial
follicles, presumably through decreased survival

Infertile 184

Ribosomal protein S6 (Rps6) (cKO) Ovarian failure due to depletion of primordial
follicles, presumably through decreased survival

Infertile 184

Growth differentiation factor-9 (Gdf9) Folliculogenesis arrest at the one-layer follicle
stage

Infertile 223, 225

Nerve growth factor (Ngf) Fewer primary and secondary follicles; reduced
granulosa cell proliferation

Infertile 198
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proliferation of granulosa cells at the primary follicle stage
because mice lacking both inhibin � and GDF9 develop
multilayered follicles (226). The up-regulation of Kitl may
lead to enhanced signaling through oocyte-expressed KIT,
contributing to the increased oocyte size observed in
Gdf9�/� ovaries (224).

An oocyte-granulosa cell regulatory loop has been pos-
tulated where KIT ligand from granulosa cells promotes
oocyte growth until a specific size is reached, upon which
time GDF9 secretion from enlarged oocytes suppresses
Kitl expression in cumulus cells to slow or stop further
oocyte growth (114). As previously mentioned, in addi-
tion to the role of KIT/KIT ligand signaling during initial
recruitment of primordial follicles, mutations affecting
KIT or KIT ligand often show defects at the primary fol-
licle stage, similar to what is observed in GDF9 null ova-
ries. For example, the Slpan mutant mice, with a hypomor-
phic Kitl allele, exhibit decreased oocyte recruitment, and
the majority of follicles fail to develop beyond the early
primary stage. Furthermore, whereas addition of KIT li-
gand to follicles growing in culture enhances oocyte
growth (227), treatment of granulosa cells isolated from
preantral and antral follicles with recombinant GDF9 sup-
presses Kitl expression (228). However, Gdf9 is not
misexpressed (i.e., decreased) in the oocytes of mice with
a mutated KIT receptor (179), suggesting that KIT signal-
ing does not directly regulate Gdf9 in such a feedback
loop.

BMP15 is another oocyte-secreted TGF� superfamily
member that was identified using a homology-based clon-
ing strategy to identify BMP homologs (229). In addition
to 52% amino acid identity, BMP15 and GDF9 share in-
teresting features. Bmp15 mRNA has an expression pat-
tern identical to Gdf9 in mouse oocytes, and BMP15 and
GDF9 proteins lack a conserved cysteine residue found in
other TGF� superfamily members. This cysteine is re-
quired for intermolecular disulfide bond formation that
occurs during dimerization of other family members, in-
dicating that BMP15 and GDF9 form noncovalent homo-
and/or heterodimers. Despite these characteristics, unlike
GDF9, BMP15 is not required during preantral folliculo-
genesis in mice. Bmp15�/� are subfertile; however, this is
secondary to decreased ovulation and fertilization rates,
rather than disrupted folliculogenesis (230). GDF9 and
BMP15 may, however, have redundant roles during fol-
liculogenesis, with GDF9 being the dominant growth fac-
tor in mice. Ovaries from Gdf9�/� Bmp15�/� mice have
more defects than Bmp15�/� mice, including fewer late-
stage follicles and CLs and increased oocyte loss.

There appear to be species-specific differences as to the
importance of oocyte-secreted GDF9 and BMP15 during
folliculogenesis. To date, five polymorphisms causing

nonsense or missense mutations in BMP15 and one caus-
ing a missense mutation in GDF9 have been identified in
several breeds of sheep. These mutations are associated
with increased ovulation in heterozygous carriers, but ste-
rility in homozygous carriers (231, 232). The ovarian phe-
notype of sheep with homozygous X-linked mutations
[Fecundity X (FecX)] is similar to that of Gdf9 null mice
with failure of follicles to develop beyond the primary
follicle stage and uncoupling of oocyte growth relative to
granulosa cell proliferation (233). Linkage analysis, how-
ever, mapped the FecX allele to the BMP15 gene locus
(234), which is in an orthologous location on mouse and
human X chromosomes (229). In vitro studies suggest that
certain BMP15 missense mutations, such as the V31D sub-
stitution found in the Inverdale strain of sheep (234), may
impair proteolytic processing and secretion of GDF9
(235). However, despite oocyte and granulosa cell abnor-
malities, antral follicles are present in ovaries from sheep
homozygous for a point mutation in the GDF9 gene,
which causes a nonconservative amino acid substitution in
a region of the mature protein that is predicted to interact
with its type I receptor (232). Thus, whereas mouse
BMP15 does not appear to have a critical function in early
folliculogenesis, in sheep it is essential for early follicular
development, and GDF9 may be more important in later
stages. Although they are rare, mutations in BMP15 and
GDF9 that affect secretion or function when evaluated in
in vitro assays have been reported in women with POF
(236–240).

The neurotrophins NTF5 and BDNF, which signal
through NTRK2 on the oocyte, are expressed in human
and mouse primordial follicles (202, 241) and appear to
have redundant roles in preantral folliculogenesis. Loss of
Ntf5 alone does not alter follicle number through the sec-
ondary stage; however, concomitant loss of Ntf5 and Bdnf
causes a significant reduction in the number of secondary
follicles, which is also seen in Ntrk2 null ovaries. Although
not significant, the number of primary follicles is also de-
creased, whereas the population of primordial follicles is
unaffected in P7 Ntrk2�/� mice (202). When Ntrk2 null
ovaries from P4-P5 mice are transplanted under the renal
capsule of adult wild-type females, after a period of 2 wk
the ovaries are nearly depleted of oocytes and those that
remain are degenerating, in contrast to transplanted con-
trol ovaries, which contained follicles that have reached
the antral stage (202). Thus, although NTF5, BDNF, and
NTRK2 do not appear to be critical for initial follicle re-
cruitment, progression beyond the primary stage is inter-
rupted. Because Gdf9 and Kitl levels are unchanged in
Ntrk2 null ovaries, NTF5 and BDNF appear to affect the
transition to secondary follicles independent of these
pathways.
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In addition to the multiple paracrine factors involved in
the intricate dialogue between the somatic cells and oocyte
of a developing follicle, direct connections via intercellular
membrane gap junction channels are also essential during
folliculogenesis. Gap junctions allow the transfer of ions,
metabolites, and small molecules between neighboring
cells. Connexins are the core proteins that make up gap
junctions. Several connexins are expressed in the mam-
malian ovary (reviewed in Refs. 242 and 243), and at least
two, connexin 43 (CX43; GJA1) and connexin 37 (CX37;
GJA4), have essential and distinct roles during folliculo-
genesis. CX43 forms gap junctions between granulosa
cells throughout folliculogenesis (244), whereas CX37 lo-
calizes to oocyte-granulosa cell gap junctions beginning in
the primary follicle stage (245). Gja1 knockout mice die in
the early postnatal period due to severe cardiac malfor-
mations (246). Neonatal Gja1�/� ovaries are small sec-
ondary to germ cell deficiency that occurs as early as E11.5
(244). To determine whether the remaining germ cells
couldparticipate in folliculogenesis, ovaries fromfetal and
newborn Gja1�/� mice were cultured in vitro or trans-
planted under the kidney capsule of wild-type mice (244,
247). These CX43-deficient ovaries showed a block at the
primary follicle stage with impaired granulosa cell prolif-
eration and retardation of oocyte growth. The oocytes
were also morphologically abnormal with defects in mei-
otic maturation.

Oocytes in mice lacking CX37 also have defects in mei-
otic competence and do not grow to a normal size (248),
but follicular development progresses to the later prean-

tral stage (245). Despite a near-complete absence of large
antral (Graafian) follicles, CX37-deficient ovaries have
numerous small CL-like structures, suggesting that com-
munication via gap junctions is a major mechanism reg-
ulating CL formation; when oocyte-granulosa cell cou-
pling is disrupted, premature luteinization occurs. This is
perhaps logical, given that luteinization normally occurs
after ovulation, a natural disruptor of oocyte-granulosa
cell gap junctions. Thus, whereas CX37 gap junctions are
essential for the preantral to antral follicle transition,
CX43 gap junctions are required for granulosa cell pro-
liferation earlier in folliculogenesis to form multilayered
follicles, and both types of junctions support proper oo-
cyte development.

Although we have highlighted a few growth factors and
signaling pathways as well as the importance of intercel-
lular connections during preantral folliculogenesis, nu-
merous mouse models with defects in preantral follicular
development have been characterized. These mutant mice
are summarized in Table 7.

D. Theca formation and physiology
Once the follicle achieves two layers of granulosa cells,

an additional morphologically distinct layer of somatic
cells, the theca, differentiates as the outermost layer of the
follicle (113). Cells of the theca interna layer, which forms
just outside the basement membrane surrounding the
granulosa cells, have ultrastructural features, including
numerous mitochondria with tubular cristae, smooth en-
doplasmic reticulum,andabundant lipidvesicles, that cor-

TABLE 7. Mouse models with defects in preantral folliculogenesis

Gene Reproductive phenotype
Fertility
status Ref.

FSH receptor (Fshr) Preantral block in folliculogenesis Infertile 218
FSH � (Fshb) Preantral block in folliculogenesis; rescued by exogenous

gonadotropins
Infertile 216

Cyclin D2 (Ccnd2) Failure of granulosa cell proliferation Infertile 292
Discoidin domain receptor family, member

2 (Ddr2; slie)
Spontaneous mutant; smaller pituitaries and gonadal

dysfunction, dwarfism
Infertile 791

IGF-I (Igf1) Hypogonadal; impaired antral follicle formation Infertile 290
Nitric oxide synthase 1, neuronal (Nos1) Impaired central hormonal regulation of reproductive

function; decreased ovary weight, decreased CLs
Infertile 792

Phosphate cytidylyltransferase 1, choline,
b isoform (Pcyt1b)

Multiple follicular defects; reduced ovarian follicles and
CLs

Subfertile 793

SH2B adaptor protein 1 (Sh2b1) Small, anovulatory ovaries with reduced numbers of
developing follicles

Subfertile 794

Rous sarcoma oncogene (Src) Defect in antral follicle development; anovulation Infertile 795
TAF4B RNA polymerase II, TATA box

binding protein-associated factor
(Taf4b; TAFII105)

Defects in follicular development, oocyte maturation and
fertilization

Infertile 308–310

Thrombospondin 1 (Thbs1) Increased VEGF and ovarian hypervascularization,
increased follicle numbers but decreased size of
preantral and antral follicles

Subfertile 796

Ubiquitin protein ligase E3A (Ube3a;
E6-AP)

Ovarian hypoplasia; defects in ovulation Subfertile 797

VEGF, Vascular endothelial growth factor.
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respond with their principal function as a source of an-
drogens for neighboring granulosa cells to convert to
estrogens (249). The theca externa, composed of fibro-
blasts, smooth muscle-like cells, and macrophages, is im-
portant during ovulation. Cells that contribute to the
theca differentiate from mesenchymal precursor cells
present in the ovarian stroma, adjacent to developing fol-
licles (250). Like preantral folliculogenesis, theca forma-
tion is gonadotropin-independent because thecal precur-
sor cells lack LH receptors and the theca layer still forms
in the ovaries of FSH-deficient mice (216). Upon forma-
tion of a discernible theca interna layer, however, LH prin-
cipally controls thecal cell androgen production.

Although the factors that regulate thecal cell differen-
tiation are unknown, they appear to be small molecules in
the 20- to 25-kDa range secreted by growing follicles.
When undifferentiated theca-interstitial cells were cul-
tured in conditioned medium from rat preantral follicles
with two to five layers of granulosa cells, markers of theca
differentiation, including mRNAs for LH/choriogonado-
tropin receptor (Lhcgr) and the Cyp17a1 family member,
were expressed and androgens were produced (251). Can-
didate factors that may contribute to thecal cell differen-
tiation include IGF, KIT ligand, and GDF9. In cultured rat
thecal cells, IGF-I increased expression of Lhcgr, Cyp11a1,
and 3�-hydroxysteroid dehydrogenase (Hsd3b1), but
mRNAs for other thecal cell markers, including steroido-
genic acute regulatory protein (Star) and Cyp17a1, were
only up-regulated when KIT ligand was also added (252).
As mentioned in Section III. E, a thecal layer fails to form
in Gdf9�/� ovaries (223), which show a lack of thecal cell
markers Cyp17a1, Lhcgr, and Kit, despite an abundance
of presumed thecal cell precursors in the interstitium and
increased circulating FSH and LH (225). Whether GDF9
regulates thecal cell recruitment and/or differentiation di-
rectly or indirectly through regulation of preantral gran-
ulosa cell development is unknown. Recombinant mouse
GDF9 has been shown to up-regulate Igf1 in cultured
granulosa cells (253, 254), suggesting that at least some of
the effects of GDF9 on theca development are indirect.
Furthermore, GDF9 may be more important in thecal dif-
ferentiation because Inha Gdf9 double knockout mice
form a morphological theca layer, but thecal cell markers
are not expressed in this layer (226).

Although long believed to exist, putative thecal stem
cells have recently been isolated from neonatal mouse ova-
ries. Using a procedure that had previously been successful
in isolating male germline stem (GS) cells from neonatal
testes (255), Honda et al. (256) hoped to isolate putative
and controversial female GS cells. Instead, the authors
isolated somatic cell colonies that were positive for alka-
line phosphatase (a stem cell marker) and proliferated and

remained in an undifferentiated state in serum-free GS cell
media. When the cells were treated with serum, LH, IGF-I,
and KIT ligand, or with conditioned medium from gran-
ulosa cells, they underwent cytological changes consistent
with steroidogenic ability and secreted androstenedione
into the culture medium. Transplantation of EGFP-posi-
tive, undifferentiated stem cells into host ovaries showed
colonization of interstitial areas and inner and outer theca
layers around fully grown follicles.

Members of the hedgehog family of secreted morpho-
gens are also candidate regulators of early thecal cell dif-
ferentiation and may be especially important in regulating
differentiation of smooth muscle cells in the theca externa
during ovulation. In mammals, there are three secreted
hedgehog ligands, including Indian hedgehog, desert hedge-
hog, and sonic hedgehog (IHH, DHH, and SHH). Hedge-
hog ligands bind and functionally inactivate transmem-
brane patched (PTCH1 and PTCH2) receptors on responsive
cells, causing derepression of the Smoothened (SMO)
seven pass transmembrane receptor, ultimately regulating
the activity or levels of Gli family transcription factors
(GLI1, GLI2, and GLI3) (reviewed in Ref. 257). Beginning
in the primary follicle stage, Ihh and Dhh mRNAs localize
to granulosa cells of growing follicles, decreasing before
ovulation, whereas Ptch1 and Gli1 are in the mesenchy-
mal stromal cells surrounding primary follicles and in-
creased in the theca layerof larger follicles (258).Although
Dhh knockout mice do not have an ovarian phenotype,
Ihh may have redundant or dominant roles during follic-
ular development. To study constitutive activation of
hedgehog signaling, a transgenic mouse (SmoM2) has
been developed that conditionally expresses a dominant
SMO protein that is not inhibited by patched receptors
(259). Dominant activation of SMO in granulosa and
thecal cells using Amhr2-Cre (260, 261) caused defec-
tive formation of the smooth muscle layer found in the
theca externa and severely impaired ovulation (262). The
observation that excess hedgehog signaling prevented
smooth muscle differentiation is in agreement with other
organ systems where mesenchymal cells furthest from an
epithelial hedgehog source differentiate into smooth mus-
cle (262). Thus, in wild-type mice, higher levels of PTCH1
in thecal cells may limit hedgehog signaling in the follicle,
allowing differentiation of the theca externa. Because
there is extensive cross talk between TGF� and hedgehog
pathways in several cell types and tissues (263), it would
be interesting to determine whether components of hedge-
hog signaling are altered in Gdf9 null mice, contributing
to the absence of thecal differentiation as a result of GDF9
deficiency.

Granulosa cells of antral follicles are the chief source of
estradiol production, yet they lack the biosynthetic en-
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zyme (CYP17A1) necessary to produce the aromatizable
androgen and estradiol precursor, androstenedione. Al-
though cells of the theca interna express CYP17A1, they
are deficient in CYP19A1, the key enzyme in the conver-
sion of androstenedione to estrogens that is expressed by
granulosa cells of later-stage follicles (264). Expression of
each of these enzymes is controlled by pituitary gonado-
tropins, forming the basis of the two-cell, two-gonado-
tropin concept of estradiol production (reviewed in Ref.
249, and summarized in Fig. 5). In response to LH stim-
ulation, thecal cells express key steroidogenic enzymes,
including CYP11A1, HSD3B1, and CYP17A1. LH also
promotes up-regulation of STAR, which facilitates deliv-
ery of cholesterol to the inner mitochondrial membrane
where CYP11A1 is located. Granulosa cells respond to
FSH by up-regulating CYP19A1 and 17�-hydroxysteroid
dehydrogenase (HSD17B1).

Because estradiol is not essential until later stages of
folliculogenesis and ovulation (see Section III. E), but the-
cal cells express LH receptor starting at the secondary
follicle stage, it is important to suppress excess androgen
biosynthesis in preantral and small antral follicles. To
modulate the stimulatory effect of LH on theca androgen
production in smaller follicles, granulosa cells secrete fac-
tors, such as activins, that inhibit androstenedione pro-

duction (265, 266). KIT ligand from granulosa cells may
also up-regulate factors in thecal cells, including TGF�,
TGF�, FGF7, and hepatocyte growth factor, that have
autocrine inhibitory effects on androstenedione produc-
tion (reviewed in Ref. 267). On the other hand, a threshold
level of androgens from thecal cells may be necessary for
preantral follicular growth, and production may be con-
trolled by GDF9 (268). In a rat follicle culture system,
intra-oocyte injection of Gdf9 morpholino antisense oli-
gonucleotides suppressed preantral follicle growth,
Cyp17a1 expression, and testosterone production, and
these effects were attenuated by exogenous GDF9 (268).
The androgen receptor antagonist flutamide also blocked
GDF9-induced follicle growth. There are, however, con-
flicting reports on the effects of recombinant GDF9. Treat-
ment of rat theca-interstitial cells with recombinant GDF9
stimulates androstenedione production (269), whereas in
bovine thecal cell culture, GDF9 increased thecal cell pro-
liferation but decreased IGF-I-induced steroidogenesis
(270). Many of these observations may be indirect effects
of GDF9 and could also be due to differences in culture
conditions.

Although we have focused our discussion on factors
involved in normal theca formation and function, thecal
cells, through excess androgen biosynthesis, contribute
to polycystic ovarian syndrome. In addition to clinical
features of hyperandrogenism due to excess ovarian and
adrenal androgen production, this heterogeneous dis-
order is accompanied by ovarian dysfunction, including
ovulatory defects and/or polycystic ovaries (271). For a
more extensive review of the pathophysiology and po-
tential genes involved in polycystic ovarian syndrome,
the reader is referred to previous work in this journal
(272, 273).

E. Antral follicle formation, FSH, and estradiol
A number of important changes take place in the follicle

during formation of the antrum. During antral folliculo-
genesis, multiple small, fluid-filled spaces eventually coa-
lesce to form a single antral cavity that separates two func-
tionally distinct granulosa cell populations. The newly
formed mural granulosa cells line the wall of the follicle
and are critical for steroidogenesis and ovulation, whereas
the cumulus granulosa cells surround the oocyte, promot-
ing its growth and developmental competence. These two
cell types appear to be defined by opposing gradients of
FSH from outside the follicle and oocyte-secreted factors
from within (274). The transition from preantral to antral
follicle marks a change from principally intraovarian to
extraovarian regulation of folliculogenesis as the hypo-
thalamic-pituitary-gonadal (HPG) axis starts functioning.
Although preantral follicles are responsive to FSH, during
antral folliculogenesis, FSH becomes essential (216) not

FIG. 5. The two-cell, two-gonadotropin concept of follicular steroid
production. The main function of thecal cells during folliculogenesis is
the production of steroids. Although thecal cells are capable of de
novo production of androgens, they lack aromatase (CYP19A1), which
is required to convert androgens into estradiol. Thecal cells respond to
basal levels of LH by up-regulating biosynthetic enzymes involved in
steroid production, including STAR, CYP11A1, CYP17A1, and 3�-
hydroxysteroid dehydrogenase (3�-HSD). STAR facilitates the transport
of cholesterol to the inner mitochondrial membrane, where it is
converted to pregnenolone by CYP11A1. Pregnenolone is converted to
dehydroepiandrosterone (DHEA) by CYP17A1. Finally, 3�-HSD converts
DHEA into androstenedione, which diffuses across the basement
membrane to granulosa cells. In response to stimulation by FSH,
granulosa cells up-regulate CYP19A1 and 17�-hydroxysteroid
dehydrogenase (17�-HSD), which convert androstenedione into
estradiol (249).

Endocrine Reviews, October 2009, 30(6):624–712 edrv.endojournals.org 647

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/30/6/624/2355078 by guest on 21 August 2022



only to prevent granulosa cell apoptosis and follicular
atresia (275), but also for granulosa cell proliferation, es-
tradiol production, and LH receptor expression (276).

FSH and LH are the pituitary gonadotropins that co-
ordinate antral follicle development and ovulation. These
heterodimeric glycoprotein hormones have a unique
�-subunit and a common �-subunit that is also shared
with TSH and chorionic gonadotropin. A number of pos-
itive and negative feedback loops in the HPG axis coor-
dinate follicle maturation and dominant follicle selection
with sexual behavior and preparation for pregnancy. In
addition to the negative feedback of estradiol on the HPG
axis, the ovary also produces growth factors, including
activins, inhibins, and FSTs, that modulate pituitary FSH
secretion (277), but also act locally to regulate follicular
development.

To circumvent the multiple defects observed in mice
lacking the common �-subunit (and thus lacking FSH, LH,
and TSH) (278), and the difficulty in studying FSH func-
tion independent of LH in hypogonadal mutants (219),
mice lacking the FSH� subunit and therefore circulating
FSH were generated (216). Whereas FSH is not essential
for male fertility, FSH-deficient females were infertile due
to a block in folliculogenesis before antral follicle forma-
tion. Despite the absence of antral follicles and no ovula-
tion in FSH-deficient mice, ovaries at 6 wk contained all
earlier stages of follicles, including primordial, primary,
and multilayered preantral follicles, supporting the notion
that early folliculogenesis is gonadotropin-independent.
The lack of large antral follicles and CLs probably ac-
counts for the smaller-sized ovaries. Juvenile FSH-defi-
cient mice responded to exogenous administration of
pregnant mare serum gonadotropin (PMSG) and human
chorionic gonadotropin (hCG), with similar numbers of
oocytes recovered from control and knockout females,
suggesting that ovulatory competence was not affected by
the absence of FSH. Mice lacking FSHR are also infertile
with very similar ovarian and uterine findings (217, 218).
Although mutations in FSH and FSHR in humans are rare,
the clinical features in humans are similar to the defects
observed in mouse models (279–284).

The regulation and functions of FSH in mammals ap-
pear to be evolutionarily conserved. When a 10-kb human
FSH� transgene that contained gonadotrope-specific,
GnRH-responsive, and steroid-responsive elements was
introduced into the FSH� knockout mice to create an in-
terspecies FSH heterodimer hybrid (mouse �:human
FSH�), defects in folliculogenesis were rescued and fertil-
ity of transgenic mice was restored to wild-type levels
(285). Bitransgenic mice were also engineered that ex-
pressed the �-subunit of hCG and the FSH� subunit under
the control of the metallothionein 1 (MT1) promoter, re-

sulting in expression of human FSH from multiple tissues
in FSH�-deficient mice. Although fertility was restored in
some females (30%), litters were smaller and two out of
three females died in the postpartum period. The different
phenotypes in the two transgenic mice may be due to the
nature of FSH secretion, which is constitutive (nonpulsa-
tile) when under control of MT1 but more physiological
(pulsatile) in the human FSH� transgenic model.

The classical signaling cascade activated by binding of
FSH to the G protein-coupled FSHR is a linear adenylyl
cyclase (AC)/cAMP/protein kinase A (PKA) pathway that
results in phosphorylation and activation of the transcrip-
tion factor cAMP-response element-binding protein to
regulate a number of target genes, including aromatase,
the �- and �-subunits of inhibin, LH receptor, and many
more. In recent years, however, a number of additional
intracellular signaling pathways, some of which are PKA-
independent, have also been identified (reviewed in Refs.
286 and 287). Although FSH up-regulates serum and glu-
cocorticoid-induced kinase 1 (SGK1) at the transcrip-
tional level through the classical PKA pathway, phosphor-
ylation and activation of SGK1 and AKT also occurs in a
PKA-independent, PI3K-dependent fashion that still re-
quires cAMP (288). Although activation of PI3K in this
setting was proposed to be mediated by cAMP-regulated
guanine nucleotide exchange factors that activate RAS-
like small GTPases upstream of PI3K, more recent studies
point to FSHR activation of a SRC tyrosine kinase-depen-
dent pathway (289).

IGF-I also activates the PI3K pathway in granulosa
cells. FSH and IGF-I signaling pathways impact prolifer-
ation, differentiation, and survival of granulosa cells, in
part by distinct regulation of the levels of FOXO1 mRNA
and protein (174, 286). Igf1 null mice are infertile, with an
arrest at the preantral follicle stage similar to FSH�- and
FSHR-deficient ovaries (290, 291). Interestingly, al-
though Igf1 and Fshr mRNAs colocalize in healthy gona-
dotropin-responsive follicles, Igf1 is not altered in ovaries
from FSH-deficient females, but Fshr and Cyp19a1 are
reduced in IGF-I knockout mice (291). Thus, IGF-I ap-
pears to enhance granulosa cell responsiveness to FSH by
augmenting levels of FSHR.

FSH, IGF-I, and estradiol signaling cascades control
granulosa cell proliferation through modulation of the cell
cycle. The D- and E-type cyclins positively regulate entry
into the cell cycle by binding cyclin-dependent kinases
(CDK4/6 and CDK2, respectively) and activating a cas-
cade that promotes the G1/S transition. CDK inhibitors,
such as p27Kip1, block cell cycle progression by inactivat-
ing cyclin-CDK complexes. Mice null for cyclin D2
(Ccnd2) have impaired granulosa cell proliferation and
demonstrate an arrest in folliculogenesis at the preantral
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stage (292), similar to Fshb�/� and Igf1�/� mice. Treat-
ment of rat granulosa cells with PMSG up-regulates
Ccnd2 mRNA in a cAMP-dependent manner, and Ccnd2
null ovaries show a minimal response to exogenous FSH,
in contrast to rapid granulosa cell proliferation observed
in controls. Surprisingly, in FSH� null mice, Ccnd2 is only
modestly decreased (and cell cycle inhibitor mRNAs are
not up-regulated) (293), whereas Igf1 is unchanged in
granulosa cells (291) and serum estradiol is not altered
(216). Ccnd2 also showed little change in FSHR knockout
mice (218). Thus, despite the obvious requirement for cy-
clin D2 during antral follicle formation, these findings
suggest a dynamic interdependence of FSH, IGF-I, estra-
diol, and other pathways in regulation of granulosa cell
proliferation. For example, in vitro studies in rat granu-
losa cells suggest that both FSH signaling to remove
FOXO1 repression of Ccnd2 and SMAD2/3 signaling are
required to up-regulate cyclin D2 (294).

As shown in Fig. 5, estradiol production in the ovary
relies on an interplay between thecal and granulosa cells,
and the final biosynthetic step requires aromatase to con-
vert androgens to estrogens. Cyp19a1 null mice are unable
to produce estradiol (144), and therefore provide insight
into the role of this sex steroid on folliculogenesis. Ovaries
from 12- to 14-wk-old Cyp19a1 null mice contained fol-
licles of all types; however, the mice were infertile and CLs
were absent, suggesting impaired ovulation. In addition,
many antral follicles were histologically abnormal with
uneven granulosa cell layers and increased apoptosis. Fol-
licular atresia increased with age, and many antral follicles
that remained were cystic and hemorrhagic (295). Con-
sistent with a role for estradiol in the negative feedback
regulation of gonadotropin production, serum FSH and
LH were elevated in Cyp19a1 null mice, and the high LH
likely contributed to hyperplastic ovarian stroma, as well
as markedly increased serum testosterone levels. A second
Cyp19a1 knockout mouse model had similar findings
and suggested that the increased atresia could be due to
up-regulation of proapoptotic genes, including p53 and
Bax (296).

The effects of estradiol on folliculogenesis are mediated
by two estrogen receptors, ER� (Esr1) and ER� (Esr2).
These classical ERs are members of the nuclear receptor
superfamily of ligand-activated transcription factors. A
membrane-bound G protein-coupled receptor, GPR30
(Gper), might mediate rapid, nongenomic estradiol sig-
naling (297) and is implicated in maintenance of meiotic
arrest in fish oocytes (298). In ovaries from 5-month-old
GPR30-deficient mice, however, fertility is unimpaired
and folliculogenesis appears normal, with follicles in all
stages of development and CLs present (299). In contrast,
mice lacking ER� (300), ER� (301), or both (302, 303)

have several ovarian findings consistent with their pat-
terns of expression. ER� is expressed in granulosa cells of
growing follicles and is regulated by gonadotropins,
whereas ER� is predominantly expressed in thecal and
interstitial cells (304). Absence of ER� causes infertility,
and mutant ovaries contain enlarged, cystic, and hemor-
rhagic follicles and no CLs or evidence of ovulation, sim-
ilar to Cyp19a1 null mice and the findings in polycystic
ovarian syndrome. The elevated androgen, estradiol, and
LH levels in the serum of Esr1 null mice indicate that loss
of ER� significantly affects the negative feedback of es-
tradiol on the HPG axis. Intraovarian feedback of estra-
diol on thecal cell androgen production also appears to be
disrupted in Esr1 null follicles, which occurs through loss
of repression of Cyp17a1 by ER�, and consequently in-
creased androstenedione production (305). Mice lacking
ER� are subfertile, with the principal defect being reduced
ovulation, which may be attributed to reduced expression
of LHCGR in granulosa cells (306) because induction of
LHCGR in these cells is highest in preovulatory follicles
and depends on the synergistic interactions of FSH and
estradiol, as shown originally in hormonally primed hy-
pophysectomized immature rats (307). As discussed in
Section III. F, LH is a critical mediator of events in the
periovulatory period. Ovaries from young adult ER�

knockout mice have follicles at all stages of development,
but fewer CLs and more atretic follicles. As might be ex-
pected based on the individual ER knockouts, mice lack-
ing both ER� and ER� (��ERKO) are anovulatory, but
they also exhibit a phenotype distinct from each single ER
knockout. Ovaries from prepubertal ��ERKO mice ex-
hibit precocious maturation with adult-like antral folli-
cles. In adult ��ERKO ovaries, however, most follicles
only reach the small antral stage, CLs are absent, and there
are many sex-reversed follicles with degenerating or ab-
sent oocytes and the presence of Sertoli-like cells. Similar
Sertoli-likeandLeydig-like cells areobserved inaromatase
knockout mice (144). In summary, the ER and CYP19A1
knockout models suggest that unlike FSH, estradiol is not
essential for antral follicle formation but is critical for
granulosa cell growth and differentiation to maintain an-
tral follicles and promote ovulation.

TAF4B is a gonad-enriched transcriptional coactivator
subunit of the TFIID core transcriptional complex that
may be an important cofactor in regulation of FSH target
genes. The TFIID complex consists of the TATA-binding
protein and a number of TATA-binding protein-associ-
ated factors (TAFs) that function as coactivators to recruit
RNA polymerase II to specific gene promoters. In the
ovary, TAF4B primarily localizes to granulosa cells of
large preantral follicles (308, 309) in adult mice, but it is
also detected in the oocytes of embryonic and prepubertal
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mice (310). Taf4b null females are infertile with elevated
serum FSH and multiple defects throughout folliculogen-
esis, including a reduction in primordial, preantral, and
antral follicles in prepubertal and adult TAF4B-deficient
ovaries, as well as less proliferation and increased apo-
ptosis of granulosa cells (309, 310). Ccnd2 and Cyp19a1
were also reduced in Taf4b null adult ovaries (308), but
these findings and the elevated serum FSH could be sec-
ondary to a widespread decrease in granulosa cells and
ovarian failure that prevents feedback of granulosa cell-
produced estradiol and inhibin on pituitary FSH produc-
tion. To identify TAF4B-dependent promoters, TAF4B
was overexpressed in a spontaneously immortalized rat
granulosa cell line (311). In this context, TAF4B activated
Ccnd2, Inha, Inhba, and Fst promoters and also up-
regulated the transcription factor c-Jun, which is rapidly
induced by FSH (312). These effects were through direct
association of TAF4B with target gene promoters. In a
human granulosa cell line, increased cAMP leads to PKA-
dependent phosphorylation of TAF4B (313), which might
affect its function, and in pig granulosa cells FSH increases
Taf4b expression, which is required for maximal induc-
tion of IGF binding protein 3 (Igfbp3) by FSH (314).
Taken together, these in vitro studies and the granulosa
cell proliferation and survival defects in TAF4B-deficient
ovaries suggest that although TAF4B appears critical dur-
ing multiple stages of folliculogenesis, it is both a target
and a mediator of FSH signaling in later stages.

Androgens may also have a role in priming granulosa
cells to respond to gonadotropins because ovaries from
10-d-old androgen receptor (Ar) null females have a re-
duction in Fshr, and Ar null adults are subfertile, with
decreased ovulation rates and defects in cumulus-oocyte
complexes (315). In another Ar�/� model (316), Fshr
trended lower but was not significantly decreased in 8-wk-
old ovaries, although by this age a number of hormones

and growth factors, including FSH, estradiol, and IGF-I,
could have compensated for the absence of AR. Ar and
Fshr mRNAs colocalize to granulosa cells, and testoster-
one up-regulates granulosa cell FSHR in primate ovaries
(317). Further work is needed to determine whether an-
drogens influence follicular response to FSH.

Although FSH signaling is essential for antral follicle
formation and survival and we have focused on FSH-
regulated pathways in this section, a number of other fac-
tors have also been identified that are critically important
during this stage of folliculogenesis. Mutant mouse mod-
els with alterations in antral follicle development are sum-
marized in Table 8. In addition, mutations in multiple
genes have been identified that cause hypogonadism and
infertility in women secondary to disruption of gonado-
tropin-signaling pathways (Ref. 284, and summarized in
Table 1).

F. The preovulatory follicle, cumulus expansion,
ovulation, and luteinization

Although a majority of follicles in the growing pool will
undergo atresia, a select few antral follicles (the number var-
ies by species) in a developing cohort reach the preovulatory
stage. Those follicles that survive to this stage were likely
most responsive (because of higher relative FSHR expres-
sion) to decreasing serum FSH that occurs through negative
feedback of estradiol and inhibin on the pituitary. Whereas
rising serum estradiol functions to suppress pituitary FSH
secretion, increased follicular estradiol production enhances
pituitary LH production, resulting in the LH surge. Preovu-
latory follicles express LHCGR at high concentrations in
granulosa cells, enabling them to respond to the LH surge,
which initiates a cascade of events leading to oocyte meiotic
resumption, cumulus expansion, follicle rupture, and finally
terminal differentiation of the remaining granulosa and the-
cal cells to create the CL.

TABLE 8. Mouse models with defects in antral follicle development

Gene Reproductive phenotype
Fertility
status Ref.

A disintegrin-like and metalloprotease with
thrombospondin type 1 motif, 1
(Adamts1)

Defects in preovulatory follicle development Subfertile 341

Inner mitochondrial membrane peptidase
2-like (Immp2l) (transgenic insertion)

Folliculogenesis and ovulation defects Infertile 798

Insulin receptor substrate 2 (Irs2) Small, anovulatory ovaries with reduced numbers of
follicles

Infertile 799

Estrogen receptor � (Esr1; ER�) Enlarged, cystic and hemorrhagic follicles, and no
CLs or evidence of ovulation

Infertile 300

Estrogen receptor � (Esr2; ER�) Block in late antral folliculogenesis and decreased
ovulation

Subfertile 301

Superoxide dismutase 1 (Sod1) Folliculogenesis defect; failure to maintain pregnancy Subfertile 800, 801
SRY-box containing gene 3 (Sox3) Follicular atresia and oogenesis defects Subfertile 802
TNF type I receptor superfamily, member

1a (Tnfrsf1a)
Enhanced prepubertal response to gonadotropins;

early ovarian senescence
Subfertile 803
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Consistent with the patterns of expression of LHCGR
in developing follicles and the cyclic rise in LH that pre-
cedes ovulation in mammals, mice deficient in LH (Lhb
null) (318) or LH receptor (Lhcgr null) (319, 320) are
infertile with defects in steroidogenesis. As mentioned in
Section III. C, Lhcgr is a marker for thecal cells, and LH
induces many enzymes involved in steroid biosynthesis.
Lhb null females have decreased serum estradiol and pro-
gesterone and a reduction in Cyp11a1, Cyp17a1, and
Cyp19a1, despite an intact thecal layer. Folliculogenesis is
blocked at the early antral follicle stage; healthy large an-
tral and preovulatory follicles and CLs are absent. How-
ever, similar to Fshb null mice, exogenous gonadotropin
administration rescues the follicular defects, and compa-
rable numbers of oocytes are recovered from LH-deficient
and control-stimulated females. The histological defects in
Lhcgr null ovaries mirror those observed in Lhb null ova-
ries, and serum estradiol and progesterone are also de-
creased in Lhcgr null females. Hormone replacement ther-
apy with estradiol and progesterone failed to restore
fertility or reverse the follicular defects (319); however,
this may partially be attributed to the absence of LH re-
ceptor in antral follicles because one of the effects of es-
tradiol, as shown by ER�-deficient mice, is up-regulation
of Lhcgr expression (306). Nevertheless, additional ER-
independent targets downstream of LH signaling are
likely responsible for growth beyond the early antral stage
and for triggering ovulation. In recent years, a number of
factors that influence the response of follicles to the LH
surge have been identified.

Expansion of the cumulus cells on a hyaluronan-rich
extracellular matrix surrounding the oocyte is initiated by
the LH surge and is required for normal ovulation and
fertilization. Regulation of this process is multifactorial
and dependent on the activation of MAPK signaling (321,
322), as well as oocyte-secreted paracrine factors (323).
After the LH surge, a number of genes involved in forma-
tion and stabilization of the extracellular matrix of the
cumulus oophorus are up-regulated (324). Although a
number of genes are induced in cumulus-oocyte com-
plexes in the periovulatory period (325), we will focus on
those that are essential for proper formation of the cumu-
lus matrix; these genes include Has2, Ptgs2, Tnfaip6, and
Ptx3. As shown in Fig. 6, hyaluronan synthase 2 (HAS2)
is required for the production of hyaluronan, which forms
the structural backbone of the cumulus matrix. Hyaluro-
nan chains are stabilized through interactions with addi-
tional matrix proteins. TNF�-induced protein 6 (TN-
FAIP6) catalyzes the formation of covalent crosslinks
between hyaluronan and the heavy chain of serum-derived
inter-�-trypsin inhibitor (I�I) (326). Pentraxin 3 (PTX3)
appears to stabilize the cumulus matrix through interac-

tions with I�I (327). Prostaglandin synthase 2 (PTGS2;
also known as COX2) is the rate-limiting enzyme in the
synthesis of prostaglandins, and genetic studies suggest
that prostaglandin signaling through the prostaglandin E
receptor 2, subtype EP2 (PTGER2) functions upstream of
TNFAIP6 (328). Although it is not entirely understood
how these proteins interact to organize the extracellular
matrix of the cumulus oophorus, each of them is essential
for normal cumulus expansion. Targeted disruption of
Ptgs2 (329, 330), Ptger2 (331–333), Tnfaip6 (334), or
Ptx3 (254) results in abnormal or absent cumulus expan-
sion and extreme subfertility (in Ptgs2, Ptger2, and Ptx3
null females) or sterility (in Tnfaip6 null females). Has2
null mice are embryonic lethal (335), but RNA interfer-
ence (RNAi)-mediated silencing of Has2 in cultured cu-
mulus-oocyte complexes reduces cumulus expansion
(336). I�I biosynthesis in the liver requires the �-1-micro-
globulin/bikunin light chain (encoded by Ambp) for
proper assembly and secretion. Ambp null female mice
also demonstrate severely impaired cumulus expansion
and a marked reduction in fertility, which is rescued by
administration of I�I (337, 338). Finally, many additional
factors are in the cumulus matrix. Chondroitin sulfate
proteoglycan 2 (CSPG2; also known as versican), which
can bind hyaluronan, is induced by LH and detected in
cumulus-oocyte complexes in the periovulatory follicle
(325, 339). Cspg2 null mice are embryonic lethal (340), so
the physiological role of CSPG2 in cumulus expansion has
not been determined. However, ADAMTS1 (a disintegrin-
like and metallopeptidase with thrombospondin type 1
motif, 1) is a protease known to cleave CSPG2, and Ad-
amts1 null females are subfertile with defects in preovu-

FIG. 6. Hyaluronan-I�I-PTX3 interactions stabilize the cumulus matrix.
GDF9 and BMP15 secreted by the oocyte stimulate cumulus cells to
produce HAS2, TNFAIP6, and PTX3. HAS2 catalyzes the synthesis of
hyaluronan (HA; curved line), the structural backbone of the cumulus
matrix. Hyaluronan is covalently linked to the heavy chain of I�I (white
box) by the catalytic activity of TNFAIP6. Multimers of PTX3 (black
trapezoids) stabilize the hyaluronan matrix by interacting with I�I.
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latory follicle development (341), including less extensive
cumulus expansion (342).

As previously mentioned, two functionally distinct
granulosa cell populations exist in the antral follicle. In-
terestingly, the mural granulosa cells lining the follicle ex-
press high levels of LHCGR, whereas the cumulus cells
surrounding the oocyte do not (at least in mice) (274, 343).
How then does the LH surge lead to induction of target
genes in cumulus cells that are critical for cumulus expan-
sion? Conti and colleagues (344) have shown that the LH
surge causes a rapid increase in epidermal growth factor
(EGF)-like family members, Areg, Ereg, and Btc (encoding
amphiregulin, epiregulin, and betacellulin, respectively),
specifically in mural granulosa cells of preovulatory fol-
licles. These ligands are synthesized as integral membrane
proteins and are released from the cell surface by proteo-
lytic cleavage of the ectodomain. They then bind and ac-
tivate EGF tyrosine kinase receptors (EGFRs). All three of
these growth factors stimulate cumulus expansion and oo-
cyte maturation in vitro in an EGFR-dependent manner.
The effect of these EGF-like factors on cumulus expansion
occurs through up-regulation of Ptgs2, Has2, and Tnfaip6
genes (344), whose products are essential for formation
and stabilization of the extracellular matrix of the cumu-
lus oophorus. Within 4 h of hCG stimulation, transcripts
for Areg, Ereg, and Btc are also detected in cumulus-oo-
cyte complexes, suggesting that an autocrine regulatory
loop is established to maintain EGF-like growth factor
expression in cumulus cells (325).

The in vitro findings have been verified by in vivo anal-
ysis in Areg�/� or Ereg�/� mice, which show reduced cu-
mulus expansion in response to exogenous gonadotropins
(345). Although Egfr�/� mice are embryonic lethal, mice
with a hypomorphic Egfr allele (Egfrwa2) are viable, and
Areg�/� Egfrwa2/wa2 double mutant females showed more
profound defects in induction of Ptgs2, Has2, and Tn-
faip6, cumulus expansion, and ovulation after gonado-
tropin administration (345). In support of an evolution-
arily conserved role for EGF-like growth factors in
cumulus expansion, amphiregulin is abundant in human
follicular fluid obtained from patients undergoing in vitro
fertilization (IVF) (346, 347).

As mentioned previously, the LH surge leads to acti-
vation of MAPK signaling, which was first implicated in
an in vitro culture assay to be an important mediator of
cumulus expansion. The UO126 inhibitor of MAPK sig-
naling prevented gonadotropin, EGF, and cAMP analog
stimulation of cumulus expansion (321). Recently, Rich-
ards and colleagues (322) validated these findings in vivo.
Binding of EGF-like growth factors to EGFR leads to ac-
tivation of MAPK3 and MAPK1; also known as extracel-
lular signal-regulated kinases 1 and 2 (ERK1/2), respec-

tively. Both Mapk3 null mice and Mapk1 cKO mice [using
granulosa cell-specific Cyp19a1-Cre (264)] are fertile.
Mapk1 Mapk3 double mutant mice (Mapk1/3 dKO),
however, are sterile with defects not only in cumulus ex-
pansion but also in ovulation, luteinization, and oocyte
meiotic maturation (322). In response to hCG, granulosa
cells normally stop dividing and terminally differentiate,
resulting in decreased estradiol production and increased
progesterone. However, when Mapk1/3 dKO mice were
given hCG, granulosa cells continued to proliferate, and
serum estradiol remained elevated because Cyp19a1 con-
tinued to be expressed at a high level, and Sult1e1, an
estradiol-metabolizing enzyme (348), was not induced,
whereas progesterone did not increase due to the lack of
induction of Cyp11a1, Star, and other genes. Thus, MAPK
signaling is a critical target and effector of several events
triggered by the LH surge in preovulatory follicles. Of
further interest, disruption of MAPK1/3 in the pituitary
completely blocks the LH surge mode in females but has
no effect on basal LH production, thereby rendering the
females infertile, whereas the males are fertile (349).

Despite convincing in vitro and genetic evidence for
EGF-like factors and MAPK signaling as mediators of cu-
mulus expansion in response to the LH surge, the oocyte
also has an obligatory role in this process. To circumvent
the absence of LH receptors on cumulus cells, in vitro
expansion of isolated cumulus-oocyte complexes relies on
the addition of FSH, cAMP analogs, or EGF. Nearly 20 yr
ago, two groups demonstrated that the oocyte is also re-
quired to achieve expansion. Microsurgical removal of the
oocyte from isolated cumulus-oocyte complexes [referred
to as oocytectomized (OOX) complexes] prevented cu-
mulus expansion when FSH or EGF was added to the
culture medium (323). Expansion of OOX complexes
could be rescued by coculture with denuded oocytes or
conditioned medium from denuded oocytes. A similar ex-
periment in which cumulus cells were mechanically dis-
sociated fromoocytes andcultured separately showed that
these cells failed to synthesize a mucinous matrix in re-
sponse to FSH, but oocyte coculture or oocyte-condi-
tioned medium restored matrix production (350). These
experiments suggested that oocytes secrete a cumulus
expansion-enabling factor (CEEF) that allowed oocytes to
respond to FSH. Although follicular development in
GDF9 knockout mice is arrested at the primary follicle
stage, in vitro studies have identified critical functions for
GDF9 in preovulatory granulosa cells and suggest that it
may be the primary CEEF secreted by fully grown oocytes.
Recombinant GDF9 up-regulates Has2, Ptgs2, Ptger2,
Tnfaip6, and Ptx3 in granulosa cell culture systems (221,
254). Using an RNAi approach, injection of mouse oo-
cytes with Gdf9 double-stranded RNA, but not Bmp15
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double-stranded RNA, resulted in lower Has2 and Ptgs2
expression as well as limited cumulus expansion when
OOX cumulus complexes were cocultured with Gdf9
knockdown oocytes (351).

GDF9 signals through an unusual heterodimeric com-
plex of a type I TGF� family receptor, and the type II BMP
receptor, BMPRII, to activate SMAD2/3 (352). In vitro
and in vivo evidence suggests that cumulus expansion is
dependent on SMAD2/3 signaling. The ALK4/5/7 inhib-
itor, SB-431542, prevents SMAD2/3 activation and cu-
mulus expansion of OOX complexes cultured in the pres-
ence of FSH and GDF9 or oocytes (353), suggesting that
one or more of these type I receptors is involved. Condi-
tional deletion of Smad2 and Smad3 in granulosa cells
using Amhr2-Cre (Smad2/3 cKO) disrupts cumulus ex-
pansion in vivo (354). Interestingly, although treatment of
Smad2/3 cKO granulosa cells with GDF9 failed to induce
Has2 and Ptx3, the other cumulus expansion-related tran-
scripts, Ptgs2 and Tnfaip6, were attenuated but still up-
regulated in response to GDF9. These results suggest that
GDF9 may function through both SMAD2/3-dependent
and SMAD2/3-independent pathways to regulate cumu-
lus expansion. It is plausible that SMAD-independent sig-
naling by GDF9 could involve activation of MAPK path-
ways because TGF� family members have been shown to
activate MAPK pathways (263), and activation of these
pathways is required for cumulus expansion (321, 322).

Although there is convincing evidence that GDF9 is
sufficient to function as a CEEF, there is, however, con-
troversy as to whether GDF9 is the sole CEEF (355).
BMP15 has also been implicated in the regulation of cu-
mulus expansion and up-regulates expression of EGF-like
growth factors in cumulus cells in vitro (356). Although
the fertility defects in Bmp15�/� mice are subtle and
Gdf9�/� mice are phenotypically normal, Gdf9�/�

Bmp15�/� double mutant mice on a 129SvEV inbred
background are infertile with impaired cumulus expan-
sion (230). Furthermore, coculture of Gdf9�/� Bmp15�/�

oocytes with OOX cumulus complexes fails to enable cu-
mulus expansion in the presence of FSH, and the cumulus
cells have less activation of MAPK, suggesting that
BMP15 acts synergistically with GDF9 as a CEEF (357).
BMP15 is believed to signal through the type I activin
receptor-like kinase ALK6 (also known as BMPR1B) to
activate SMAD1/5/8 pathways (358). Bmpr1b�/� female
mice are infertile secondary to defects in cumulus expan-
sion, despite a paradoxical increase in Ptgs2 (359). Finally,
BMP15 is found in the follicular fluid of patients under-
going IVF and is associated with increased fertilization
and embryo development (360). Although a direct link
between BMP15 and cumulus expansion in human cumu-
lus-oocyte complexes was not made, other studies have

associated higher levels of HAS2 and PTGS2 in human
cumulus cells with higher quality embryos (361, 362). Be-
cause both BMP15 and GDF9 are expressed in human
cumulus-oocyte complexes (363), the relative contribu-
tion of each factor to human cumulus expansion and de-
velopmental potential remains to be determined. Studies
in Bmp15�/� and Gdf9�/� Bmp15�/� mice, however,
suggest that both growth factors influence developmental
competence of oocytes after fertilization (357).

Cumulus expansion and ovulation are not mutually
exclusive, as demonstrated by many of the mutant mouse
models discussed thus far that have defects in both pro-
cesses. Ovulation has been compared with an inflamma-
tory-like process, based on the follicular hyperemia, large
amount of prostaglandin production, and synthesis of the
hyaluronan-rich extracellular matrix that occurs during
this stage of follicular development (364). Indeed, many of
the matrix-associated genes that are up-regulated in the
follicle after the LH surge are also found at sites of
inflammation.

A number of transcriptional regulators induced down-
stream of LH receptor activation are necessary for ovula-
tion. After the LH surge, progesterone receptor (PR) is
rapidly induced in the mural granulosa cells of the pre-
ovulatory follicle (365, 366). Like ER� and ER�, PR is a
member of the nuclear receptor superfamily of transcrip-
tion factors. Although progesterone has classically been
associated with pregnancy, PR-deficient mice illustrate the
importance of progesterone in ovulation as well (145).
There are two PR isoforms, PR-A and PR-B, that arise
from a single gene (Pgr) as a result of transcription from
alternative promoters and translation initiation at two al-
ternative start codons in the Pgr transcript (367). The orig-
inal Pgr null mouse model eliminated production of either
PR isoform, and females were infertile secondary to
anovulation, despite cumulus expansion in unruptured
follicles (145). CLs were absent; however, subsequent
studies showed that granulosa cells in unruptured follicles
expressed markers of ovulation and luteinization, includ-
ing Ptgs2 and Cyp11a1, suggesting that the differentiation
response of granulosa cells to the LH surge was intact in
Pgr null mice (368). Selective ablation of each PR isoform
by point mutation of each alternative start codon demon-
strated that PR-A, but not PR-B, mediates the ovulatory
response to the LH surge (369, 370).

Although it is not entirely understood how PR regulates
ovulation, misregulation of a number of gene targets
downstream of PR has been identified (371). Genes for the
Adamts1 and cathepsin L (Ctsl) proteases are down-reg-
ulated, and although only Adamts1 null mice have im-
paired ovulation (341), cathepsin L may function redun-
dantly because a number of proteases are expressed in the
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periovulatory follicle and many individual knockout mod-
els are fertile (372). The vasoactive molecule endothelin 2
(Edn2) is induced in preovulatory follicles in a PR-depen-
dent manner (373), and mice treated with endothelin re-
ceptor antagonists have a dramatic decline in ovulation
secondary to impaired smooth muscle contraction that
normally drives follicular rupture (374). Edn2 and an-
other PR target gene, cGMP-dependent protein kinase
(Prkg2) (375), may be indirectly regulated by PR through
peroxisome proliferator-activated receptor � (PPAR�, en-
coded by Pparg). Pparg is also decreased in Pgr null ova-
ries and conditional deletion of Pparg (Pparg cKO) in the
periovulatory follicle using PR-Cre (376) caused subfer-
tility secondary to impaired follicle rupture (377). A subset
of PR target genes, including Edn2, Prkg2, and Il6, were
decreased in Pparg cKO ovaries, and a PPAR�-specific
antagonist, GW9662, markedly attenuated induction of
these genes in cultured granulosa cells. Another PR target
gene is Snap25, which regulates vesicle secretion and ap-
pears to be important for the release of potent cytokines
from granulosa cells as part of the inflammatory and
immune-like response of ovulation (364, 378). Highlight-
ing the diverse functions of PR downstream of the LH
surge in the periovulatory period, components of many
other signaling pathways, including EGF-like growth fac-
tors and members of the WNT signaling family, are also
altered in PR-deficient mice (371).

Other transcriptional regulators that mediate the ovu-
latory response to the LH surge include C/EBP� (CCAAT/
enhancer-binding protein �, encoded by Cebpb) and sev-
eral members of the nuclear receptor family (discussed in
detail below). C/EBP� is a member of a family of basic
leucine zipper proteins that recognize similar DNA motifs
and dimerize with themselves or other basic leucine zipper
transcription factors to activate or repress gene transcrip-
tion. Cebpb is strongly up-regulated in periovulatory fol-
licles after hCG administration, and similar to Pgr null
mice, Cebpb�/� females are sterile and their ovaries con-
tain many unruptured follicles but lack CLs (379). Less is
known about how C/EBP� functions downstream of the
LH surge during ovulation; however, both Cyp19a1 and
inhibin � mRNAs fail to be down-regulated after hCG
administration to Cebpb�/� females, suggesting that
C/EBP� may be an important transcriptional repressor
during the granulosa cell differentiation process initiated
by the LH surge (379, 380).

Interestingly, the ovarian phenotype of Cebpb�/� fe-
males is similar to Mapk1/3 dKO females. In response to
amphiregulin, C/EBP� has been shown to induce expres-
sion of genes up-regulated in the periovulatory period,
including, Ptgs2, Tnfaip6, Pgr, and Star, and the up-
regulation of these genes is dependent on MAPK activity

(322). However, conditional deletion of Cebpb in granu-
losa cells results in subfertility, and CLs are present in
some adult ovaries, suggesting that C/EBP� is not the only
transcription factor downstream of MAPK signaling in
granulosa cells (322).

Conditional deletion of two related members of the
NR5A subfamily, liver receptor homolog 1 (LRH1, en-
coded by Nr5a2) and SF1 (encoded by Nr5a1) leads to
infertility secondary to anovulation, despite distinct mo-
lecular and hormonal changes in each mutant (381, 382).
In Lrh1 cKO mice, there is increased CYP19A1 expression
and enhanced follicular estradiol production secondary to
a decrease in nitric oxide synthase 3 (NOS3), an inhibitor
of CYP19A1 expression and activity in mice and humans
(383, 384). Chromatin immunoprecipitation analysis
identified Nos3 as a direct target of LRH1 (381). Ptgs2
and Tnfaip6 were substantially reduced after hCG treat-
ment,whichmaypartiallybedue to the enhancedestradiol
signaling because this has previously been shown to reduce
PTGS2 in mice lacking the estradiol-metabolizing enzyme
SULT1E1 (348). Finally, Lrh1 cKO mice also exhibited
impaired progesterone synthesis secondary to a decrease
in scavenger receptor B1 (Scarb1), Star, and Cyp11a1 after
hCG administration (381).

Although Sf1 cKO mice are also anovulatory, adult
ovaries are substantially smaller compared with wild-type
ovaries, which was not readily apparent in Lrh1 cKO
mice. In addition, despite similar basal serum estradiol
levels in Sf1 cKO vs. control mice, the increase in estradiol
and progesterone after PMSG was blunted in Sf1 cKO
mice. Furthermore, in contrast to Lrh1 cKO mice,
CYP19A1 was slightly decreased in Sf1 cKO mice, and
there was no difference in Cyp11a1 in ovaries from un-
treated or PMSG-stimulated females (382). CYP11A1
did, however, appear to be ectopically expressed in the
granulosa cells of large follicles, rather than only the thecal
layer or CL. Although mRNA levels for other steroido-
genic enzymes critical for progesterone synthesis were not
reported, it appears that SF1 and LRH1 have unique roles
in the regulation of some ovarian target genes.

Nuclear receptor interacting protein 1 (NRIP1; also
known as RIP140), functions as a coregulator of the nu-
clear receptor superfamily. Nrip1�/� female mice are also
infertile secondary to anovulation; however, the unrup-
tured follicles in these mice go on to form CLs with trapped
oocytes (385). More detailed histological analysis of
Nrip1 null ovaries demonstrated defects in cumulus ex-
pansion, suggesting that NRIP1 is also an important
mediator of this process, as well as ovulation. Gene
expression profiling showed that after gonadotropin
stimulation, Nrip1 null mice fail to induce many genes
already discussed that are important for cumulus expan-
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sion, including EGF-like growth factors (Areg, Ereg, and
Btc), Has2, Ptgs2, Tnfaip6, and Cspg2, whereas many
genes involved in cell-cell adhesion are up-regulated and
might, therefore, impede expansion. Nrip1 is most dra-
matically up-regulated in mural granulosa cells after
PMSG administration, whereas Cebpb increases after
PMSG plus hCG administration (379, 380, 385). Because
both FSH and LH activate cAMP/PKA/cAMP response
element-binding protein pathways to influence gene ex-
pression, the increase in NRIP1 and C/EBP� in the peri-
ovulatory period may function to modulate transcription
of the many target genes with cAMP response elements.

In contrast to evidence supporting a role for NRIP1 and
C/EBP� downstream of LH, the testicular orphan nuclear
receptor 4 (TR4; also known as nuclear receptor subfam-
ily 2, group C, member 2, Nr2c2) may be important in
preparing preovulatory follicles for the LH surge.
Nr2c2�/� mice (386) exhibit subfertility, with smaller
ovaries containing fewer preovulatory follicles and CLs,
as well as a muted response to superovulation protocols
(387). These defects, however, appear to be secondary to
a decrease in LH receptor. Furthermore, TR4 appears to
regulate Lhcgr expression through direct binding to a TR4
response element in the Lhcgr promoter, suggesting that
TR4 activity is important before the LH surge, perhaps to
prepare granulosa cells to respond to the rise in LH that
triggers ovulation.

After follicle rupture and release of the cumulus-oocyte
complex, the final fate of the remaining granulosa and
thecal cells is terminal differentiation to form the CL, a
highly differentiated endocrine structure responsible for
secreting progesterone to stimulate the uterus and main-
tain pregnancy. The processes controlling the formation,
function, and regression of the CL are complex and have
recently been reviewed in this journal (388) and elsewhere
(389). Therefore, we will focus on the key regulators of CL
formation and maintenance.

The process of CL formation requires the granulosa
cells to exit the cell cycle. Although FSH is critical for
promoting granulosa cell proliferation through up-regu-
lation of cyclin D2, the LH surge, via obligatory MAPK1/3
activation (322), causes cell cycle arrest by shifting the
balance of cell cycle regulators to favor inhibitors of cell
cycle progression, such as the CDK inhibitor p27Kip1. In
particular, using a rat model system, cyclin D2 is rapidly
and robustly down-regulated in the preovulatory follicle
after hCG administration (390). Although there is also a
transient decrease in p27Kip1, by 24 h after hCG, p27Kip1

is markedly increased in terminally differentiated luteal
cells. An additional CDK inhibitor, p21Cip1 (CDKN1A), is
induced within 2–4 h of hCG administration. Loss of
function studies suggest that p27Kip1 is the principal reg-

ulator of luteinization, although p21Cip1 likely has a co-
operative role. Cdkn1b�/� female mice are sterile, and
their ovaries exhibit granulosa cell hyperplasia and im-
paired differentiation to form CLs (391–393). In further
support of a luteinization defect, ovulation in response to
exogenous gonadotropins is unimpaired, but pregnancy is
not maintained (391). Although Cdkn1a�/� female mice
are fertile (394, 395), in contrast to observations in
Cdkn1b�/� mice, their ovaries are not enlarged compared
with wild-type ovaries. Cdkn1b�/� Cdkn1a�/� ovaries
were even larger than Cdkn1b�/� ovaries and had more
profound granulosa cell hyperproliferation, suggesting
that p27Kip1 and p21Cip1 function synergistically to pro-
mote cell cycle exit in differentiating granulosa cells (396).

An additional cell cycle regulator, CDK4, is indirectly
involved in maintaining the CL once it has formed.
Cdk4�/� female mice (397, 398) are infertile because of
insufficient progesterone production by the CL to allow
embryo implantation. This is due to a failure of pituitary
lactotropes to proliferate and produce prolactin (PRL)
(399). Although progesterone is considered the hormone
of pregnancy, in rodents PRL has a critical role in CL
maintenance and progesterone production. Both isoforms
of the PRL receptor (PRLR) are up-regulated during lu-
teinization in an LH-dependent manner (400). Prlr�/�

mice are sterile secondary to insufficient progesterone pro-
duction to support implantation and pregnancy (401). A
more detailed characterization of Prlr�/� ovaries revealed
that CLs initially form, but they were disorganized, failed
to show signs of neovascularization, and had increased
apoptosis (402). Although Cdkn1b levels increased as ex-
pected in Prlr�/� ovaries at 1.5 d post-coitus (dpc), they
were not maintained at elevated levels by 2.5 dpc, which
may be attributed to a relative decrease in Lhcgr expres-
sion over the same time period. Transcripts for numerous
enzymes involved in steroidogenesis that are known to be
induced by LH, including Star, Cyp11a1, and Hsd3b1,
were also reduced. Conversely, Prlr�/� ovaries showed an
increase in the progesterone-metabolizing enzyme 20�-
hydroxysteroid dehydrogenase (AKR1C18, aldo-keto re-
ductase family 1, member C18) in regressing CLs. Al-
though their ovaries were not examined, Prl�/� mice are
also infertile with an impaired pseudopregnancy response
and irregular estrous cycles (403). PRL signaling activates
a Janus kinase/signal transducer and activation of tran-
scription (STAT) pathway, specifically STAT5A/B.
Stat5a�/� Stat5b�/� mice are also infertile, and similar to
Prlr�/� mice, their ovaries show reduced Cdkn1b and in-
creased AKR1C18 (404). These mouse models suggest
that PRL is important in maintaining CLs and progester-
one production through positive regulation of LH recep-
tor and negative regulation of AKR1C18. In women, hCG
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secretion by the embryonic trophoblast serves a function
analogous to PRL in sustaining the CL during early preg-
nancy (389).

What might regulate PRLR to prevent premature re-
gression of CLs? Components of the WNT/FZD signaling
pathways, including Wnt4, Fzd1, and Fzd4, are highly
expressed in periovulatory follicles, and Fzd4 is particu-
larly increased in CLs. The functional significance of this
is demonstrated by Fzd4�/� mice, which are infertile with
histological and molecular defects in their ovaries that are
quite similar to Prlr�/� mice (405). Moreover, Prlr was
also reduced at 1.5 and 5.5 dpc, suggesting that WNT
signaling is necessary for cells of the CL to be able to
respond to PRL. It is also possible that PTEN impacts the
response of cells to PRL because in Ptenflox/flox Cyp19a1-
Cre mice that have a conditional deletion of Pten in gran-
ulosa/luteal cells, the life span of CLs is extended (406).

The timing of luteinization is important for normal re-
productive function, and the fact that it occurs after ovu-
lation supports a role for oocyte-derived inhibitors that
prevent premature luteinization. As mentioned, oocyte-
secreted factors oppose FSH signaling to define two dis-
tinct granulosa cell populations in the antral follicle. Spe-
cifically, oocyte-secreted proteins signal through Smad2/3
to oppose FSH induction of ovulatory (Lhcgr) and steroi-
dogenic (Cyp11a1) markers in the cumulus cells close to
the oocyte (407), suggesting that a TGF� family member,
such as GDF9, may be an important inhibitor of lutein-
ization. Support for this is seen in mice with conditional
deletion of the common SMAD, Smad4, in granulosa cells
of preantral follicles (408). Although Smad4 cKO ovaries
exhibit a number of follicular defects, including impaired
cumulus expansion and ovulation, there were a number of
small and large follicles with luteinizing cells surrounding
oocytes, and these findings were accentuated after admin-
istration of PMSG alone in 3-wk-old mice. Molecularly, in
contrast to control mice, granulosa cells from PMSG-stim-
ulated Smad4 cKO mice had significantly higher levels of
genes related to steroidogenesis and luteinization, includ-
ing Lhcgr, Cyp11a1, Hsd17b7, Star, secreted frizzled-re-
lated protein (Sfrp4), and the prostaglandin F receptor
(Ptgfr). Although it is also possible that the loss of SMAD4
prevents granulosa cells from responding appropriately to
BMP/TGF�/activin signals from the surrounding stroma
that might also inhibit luteinization, Eppig and colleagues
(407) provide convincing evidence that activation of
SMAD signaling by oocyte-secreted factors is key to pre-
venting premature differentiation of granulosa cells.

Although we have tried to highlight critical mediators
of ovulation, cumulus expansion, and luteinization, many
additional factors are involved in these processes in the
periovulatory follicle. Mutant mouse models illustrating

the diverse number of factors that regulate these events are
summarized in Table 9.

G. Regulation of meiotic arrest and reentry
Oocytes start meiosis in the embryonic gonad and

progress through the diplotene stage of the first meiotic
prophase. Meiosis is arrested by E14.5 in mouse oocytes
and does not resume until the LH surge, when a number
of changes take place in the somatic cells and the oocyte to
facilitate meiotic maturation. The resumption of meiosis
can be recognized morphologically by dissolution of the
nuclear envelope, referred to as germinal vesicle break-
down (GVBD).

In the course of follicular development, oocytes acquire
the competence to resume meiosis such that about the time
of antrum formation they have synthesized a threshold
level of maturation-promoting factor (MPF), which is a
complex consisting of CDK1 and cyclin B that regulates
the G2/M transition of the cell cycle in mitosis and meiosis
(409, 410). However, MPF promotes meiosis, so to main-
tain arrest at prophase I until the LH surge, MPF must be
kept in an inactive state. It has been known for decades
that once mammalian oocytes attain meiotic competence,
they rely on the follicular milieu to prevent premature
resumption of meiosis. Removal of the oocyte from antral
follicles causes spontaneous maturation, as evidenced by
GVBD (411, 412). Importantly, this inhibitory signal ap-
pears to originate from mural granulosa cells because the
oocytes were isolated with their surrounding cumulus
cells. Likewise, the requirement of high levels of cAMP in
the oocyte to maintain meiotic arrest has been dogma for
many years, and a decrease in oocyte cAMP levels is as-
sociated with the resumption of meiosis (reviewed in Refs.
409 and 410). For years, however, two questions re-
mained unanswered: how does high cAMP maintain mei-
otic arrest, and how are cAMP levels controlled within the
oocyte?

The net effect of elevated cAMP is activation of PKA
signaling pathways that keep MPF in its inactive state, and
although the targets of PKA were postulated to be regu-
lators of CDK phosphorylation (409), whether this was by
direct or indirect means has only recently been established.
CDK1 is negatively regulated through phosphorylation on
Thr14 and Tyr15. The WEE1/MYT1 protein kinases
phosphorylate and inactivate CDK1, whereas CDC25
phosphatases activate CDK1 by dephosphorylating
Thr14 and Tyr15 (413). Using a novel strategy to isolate
PKA substrates involved in regulating meiotic maturation,
Conti and colleagues (414) performed a small pool ex-
pression screen of a mouse oocyte cDNA library and iden-
tified Wee2 (WEE1 homolog 2; Wee1b). In vitro assays
showed that PKA could phosphorylate WEE2, and in vivo
reduction of WEE2 by the generation of transgenic mice
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TABLE 9. Mouse models with defects in the periovulatory period

Gene Reproductive phenotype Fertility status Ref.

Cumulus expansion and ovulation
LH � (Lhb) Block in folliculogenesis at the early antral stage Infertile 318
LH/choriogonadotropin receptor (Lhcgr) Block in folliculogenesis at the early antral stage Infertile 319, 320
Prostaglandin-endoperoxide synthase 2 (Ptgs2;

Cox2)
Defects in ovulation, cumulus expansion, and

implantation
Mostly infertile 329, 330

Prostaglandin E receptor 2, subtype EP2 (Ptger2) Defects in ovulation and cumulus expansion;
decreased fertilization and preimplantation
defects

Subfertile 331–333

Pentraxin 3 (Ptx3) Defects in cumulus-oocyte complex integrity
and ovulation

Subfertile 254, 804

TNF��induced protein 6 (Tnfaip6) Impaired cumulus matrix formation resulting in
failed cumulus-oocyte complex expansion

Infertile 334

CCAAT/enhancer-binding protein � (Cebpb) Reduced ovulation; fail to form CL Infertile 379
IL-6 signal transducer (Il6st; gp130) Defect in oocyte maturation/ovulation Subfertile 805
LFNG O-fucosylpeptide 3-�-N-

acetylglucosaminyltransferase (Lfng; lunatic
fringe homolog)

Multiple defects in folliculogenesis; luteinized
follicles with trapped oocytes; defect in
meiotic maturation of oocytes

Infertile 149

Nitric oxide synthase 3, endothelial cell (Nos3;
eNos)

Compromised ovulation, delayed meiotic
progression from metaphase I

Subfertile 806

Nuclear receptor interacting protein (Nrip1;
RIP40)

Ovulation defect; ovaries accumulate luteinized
and unruptured follicles

Infertile 385

Nuclear receptor subfamily 2, group C, member
2 (Nr2c2; TR4)

Small ovaries with few preovulatory follicles and
CLs; decreased ovulation

Variable lethality;
subfertile

386, 387

2�-5� Oligoadenylate synthetase 1D (Oas1d) Defects in folliculogenesis and ovulatory
efficiency

Subfertile 807

Phosphodiesterase type 4, cAMP specific
(Pde4d)

Impaired ovulation; luteinized follicles with
trapped oocytes

Subfertile 808

Progesterone receptor (Pgr; PR) Anovulation; CLs absent Infertile 145
Sirtuin 1 (Sirt1; SIR2a) Small ovaries; anovulation; CLs absent Variable lethality;

extremely
subfertile

809

Sulfotransferase family 1E, member 1 (Sult1e1) Abnormal ovulation and cumulus expansion Subfertile 348, 810
Transformation-related protein 73 (Trp73) TAp73 isoform deficiency; defective ovulation,

oocyte meiotic defects, and maternal effects
Variable lethality;

infertile
791

Y box protein 2 (Ybx2; Msy2) Follicular atresia, oocyte loss, anovulation Infertile 811
Peroxisome proliferator activated receptor �

(Pparg) (cKO)
Impaired ovulation Subfertile 377

�1 Microglobulin/bikunin (Ambp) Defects in ovulation and cumulus-oocyte
complex integrity

Subfertile 337, 338

Amphiregulin (Areg) Suppressed cumulus expansion, delayed meiotic
reentry

Subfertile 345

Bone morphogenetic protein 15 (Bmp15) Defects in cumulus expansion and ovulation Subfertile 230
Bone morphogenetic protein receptor, type IB

(Bmpr1b)
Defects in estrous cyclicity, cumulus expansion,

and endometrial gland development
Subfertile 359

Epiregulin (Eregwa2/wa2; hypomorph) Suppressed cumulus expansion, defective
meiotic resumption, ovulation defect

Subfertile 345

MAPKs 3 and 1 (Mapk3�/� Mapk1 cKO) Defects in cumulus expansion and oocyte
meiotic maturation; anovulation and absent
CLs

Infertile 322

Nuclear receptor subfamily 5, group 2, member
1 (Nr5a1; Sf1, steroidogenic factor 1) (cKO)

Small ovaries with few resting and growing
follicles; defects in estrous cyclicity, cumulus
expansion, and ovulation; CLs absent

Infertile 382

Nuclear receptor subfamily 5, group 2, member
2 (Nr5a2; Lrh1, liver receptor homolog 1)
(cKO)

Defects in estrous cyclicity, cumulus expansion,
and ovulation; CLs absent

Infertile 381

Phospholipase C-�1 (Plcb1) Decreased ovulation with trapped oocytes;
abnormal mating behavior

Subfertile 812

Corpus luteum formation
Cyclin-dependent kinase 4 (Cdk4) Defects in the hypothalamic-pituitary-gonadal

axis disrupts maintenance of CL during
pregnancy

Infertile 397, 398

(Continued)
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expressing a short hairpin RNA (shRNA) correspond-
ing to Wee2 induced GVBD in about 25% of oocytes
recovered after PMSG stimulation, despite genetic [i.e.,
in Pde3a�/� oocytes (415), see below] or chemical
maintenance of high cAMP conditions. In vitro injec-
tion of Wee2 shRNA showed a similar rate of GVBD in
the presence of high cAMP. That not all oocytes in
which Wee2 was knocked down underwent GVBD sug-
gests that either compensatory WEE1/MYT1 family
members may function in the oocyte, or the high cAMP
conditions prevented CDC25 phosphatases from acti-
vating MPF. Although all three CDC25 phosphatase
family members (CDC25A, CDC25B, and CDC25C) are
expressed in mouse oocytes (416), only CDC25B appears
to be essential for activating CDK1. Cdc25b null mice are
sterile, and their oocytes cannot activate CDK1 to resume
meiosis, but the meiotic arrest defect is rescued by micro-
injection of Cdc25b mRNA (417). Cdc25c�/� mice are
fertile (418), and although Cdc25a�/� mice are embryonic
lethal (419), RNAi experiments suggest that CDC25A
may have a supportive role in meiotic resumption (420).
CDC25 was first identified as a PKA substrate in Xenopus
oocytes. Duckworth et al. (421) demonstrated that PKA
phosphorylates CDC25C, leading to binding and sequestra-
tion in thecytoplasmby14-3-3.Thesignal to resumemeiosis
(in this case, progesterone) led to dephosphorylation of
CDC25, followed by dephosphorylation and activation of
CDK1. Two groups have recently shown that similar regu-
lation of CDC25B by PKA occurs in mouse oocytes (422,
423), thusestablishingthatPKAdirectly targetsCDC25Bfor
cytoplasmic sequestration in prophase-arrested oocytes.
Hence, despite acquiring meiotic competence by the early
antral follicle stage, highcAMPconcentrations in theoocytes
ofpreovulatory follicleskeepPKAactive, thereby inhibiting the

CDK1activator,CDC25B,andactivating theCDK1inhibitor,
WEE2.

What controls cAMP levels upstream of PKA? Early
studies suggested that oocytes have an endogenous means
by which they control intracellular cAMP homeostasis.
Inhibitors of cAMP phosphodiesterases (PDEs), such as
3-isobutyl-1-methylxanthine (IBMX), prevent metabo-
lism of cAMP and therefore spontaneous maturation of
isolated oocytes (424). Stimulation of ACs or heterotri-
meric G proteins that activate ACs with forskolin or chol-
era toxin, respectively, prevents or attenuates meiotic re-
sumption, and this effect is potentiated in the presence of
small concentrations of IBMX (425, 426). Diffusion of
cAMP from granulosa cells to the oocyte by gap junctions
has been proposed as a second means by which meiotic
arrest is maintained (409, 410). Work in recent years has
solidified the hypothesis that cAMP homeostasis in the
oocyte is under the control of endogenous factors; how-
ever, there also appears to be a role for gap junctional
communication between follicular cells in the regulation
of meiotic arrest.

After initially establishing a role for stimulatory G pro-
teins (G�S) (427) within the oocyte in maintaining meiotic
arrest, Mehlmann et al. (428) searched an expressed se-
quence tag database from a prophase I-arrested oocyte
cDNA library and identified the orphan G protein-cou-
pled receptor, GPR3, as a candidate activator of G�S.
GPR3 was particularly interesting because of its constitu-
tive activation of AC activity when overexpressed in
HEK293 cells (429). The majority of oocytes within antral
follicles of Gpr3�/� females demonstrate premature re-
sumption of meiosis before the LH surge (428, 430). As a
consequence, Gpr3�/� females are subfertile and develop
POF (430). Taking advantage of the turnover properties of

TABLE 9. (Continued)

Gene Reproductive phenotype Fertility status Ref.

Cyclin-dependent kinase inhibitor 1B (Cdkn1b;
p27Kip1)

Corpus luteum differentiation failure and
granulosa cell hyperplasia

Infertile 391–393

Early growth response 1 (Egr1; NGFI-A);
(targeted lacZ insertion)

Down-regulation of LH receptor, not remedied
with gonadotropin treatment

Infertile 813

Early growth response 1 (Egr1; NGFI-A);
(targeted neo insertion)

LH insufficiency, loss of estrous cyclicity, no CLs;
rescued by treatment with gonadotropins

Infertile 814

Aminopeptidase puromycin-sensitive (Npepps;
Psa)

Lack of CL formation and PRL production
causes early pregnancy loss

Infertile 815

Prostaglandin F receptor (Ptgfr) Do not undergo parturition, failed luteolysis Infertile 816
Prolactin (Prl) Irregular estrous cycles and impaired

pseudopregnancy response
Infertile 403

Prolactin receptor (Prlr) Compromised ovulation, fertilization, and
preimplantation development in of Prlr null
embryos

Infertile 401, 402

MAD homolog 4 (Smad4) (cKO) Premature luteinization; decreased ovulation
with trapped oocytes

Subfertile 408

Although many genes are critical for multiple events during this period, mouse models are categorized based on the principal findings.
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G�S and a green fluorescent protein-linked G�S molecule,
GPR3 was shown to directly activate G�S (431). The pu-
tative AC downstream of GPR3/G�S in the oocyte was
determined using a degenerate cloning strategy. AC3
(Adcy3) was identified as the predominant oocyte AC in
rats, whereas AC1 (Adcy1) and AC9 (Adcy9) were most
frequently amplified in mouse oocytes (432). However,
AC3 was also abundant in mouse oocytes, and although
most Adcy3�/� mice died soon after birth (433), those
females that reached maturity exhibited reduced fertility
and fecundity. Histologically, Adcy3�/� ovaries showed
premature meiotic resumption in about 50% of the oo-
cytes (432). The incomplete penetrance of this phenotype
could be due to the other ACs present in oocytes. Never-
theless, there is strong evidence that GPR3 signals through
G�S to activate an AC that keeps cAMP elevated before the
rise in LH.

If GPR3 is truly a constitutively active G protein-cou-
pled receptor, how is the cAMP signal terminated to allow
activation of MPF? In in vitro follicle culture, LH does not
change the localization of G�S from the oocyte plasma
membrane to the cytoplasm, suggesting that GPR3/G�S

signaling is not inhibited in response to LH. The other
ways to regulate the cAMP signal could be increasing
cAMP turnover or targeting the cAMP effector PKA. PDEs
catalyze the hydrolysis of cAMP, and they appear to have
an evolutionarily conserved function in vertebrate oo-
cytes. PDE3-specific inhibitors block meiotic resumption
and oocyte maturation in Xenopus oocytes and cultured
murine and human oocytes (434–437). Although there
are two PDE3 isoforms, PDE3A and PDE3B, PDE3A ap-
pears to be the major form expressed in mammalian oo-
cytes (435, 436) and an essential function for PDE3A in
vivo is seen in Pde3a�/� female mice, which are sterile
because ovulated oocytes remain arrested in the germinal
vesicle (GV) stageofmeiosis I (415). InhibitionofPKA,how-
ever, restored meiotic maturation in Pde3a�/� oocytes in
vitro. These studies indicated that one means by which oo-
cytes resume meiosis is through PDE3A-mediated cAMP hy-
drolysis, leading to a reduction in PKA activity.

PKA activity can also be mediated by localization away
from substrates by A-kinase anchoring proteins (AKAPs).

AKAP1 localizes primarily to the mitochondria in wild-
type oocytes; whereas the RII� PKA subtype is primarily
cytoplasmic in GV-stage oocytes, in meiosis II (MII) oo-
cytes, AKAP1 and RII� PKA colocalize to the mitochon-
dria (438). Akap1�/� females are severely subfertile with
ovulated oocytes that remain arrested in the GV-stage and
maintain a cytoplasmic distribution of RII� PKA. This
suggests that upon receiving the signal to resume meiosis,
PKA is sequestered to the mitochondria by AKAP1, al-
lowing meiotic maturation to proceed. There also appears
to be an additional unidentified AKAP that facilitates the
cytoplasmic distribution of PKA in GV-stage oocytes. In-
jecting an inhibitor (HT31) that disrupts PKA/AKAP in-
teractions into GV-stage oocytes caused GVBD, despite
maintaining high levels of cAMP with the PDE inhibitor
IBMX. Taken together, the resumption of meiosis after a
rise in LH is facilitated by at least two mechanisms that
reduce PKA activity: a reduction in cAMP by PDE3A, and
redistribution of PKA away from its targets by AKAP1.
The mediators of this critical stage in oocyte development
are summarized in Table 10.

A second path to meiotic resumption after the LH
surge appears to involve the regulation of gap junctions.
Although it is clear that oocytes are capable of endog-
enous cAMP production, it is unclear whether somatic
cells also contribute cAMP to the oocyte by way of gap
junctions, and that the two sources of cAMP are re-
quired for preventing premature MPF activation. The
disruption of gap junctions with chemical inhibitors has
demonstrated that they are important in preventing
meiotic maturation (439). It is known that oocyte mat-
uration depends on cumulus cell MAPK activity (321,
322), and Jaffe and colleagues (440) recently demon-
strated that LH causes a rapid MAPK-dependent phos-
phorylation and closure of the CX43 gap junctions be-
tween the follicular somatic cells, whereas the CX37
junctions between oocytes and cumulus cells remain
open. Importantly, inhibition of MAPK activation (us-
ing low doses of the U0126 MAP Kinase Kinase inhib-
itor) prevented LH-induced channel closure, but not
GVBD in response to LH, suggesting that gap junction

TABLE 10. Mouse models with defects in meiotic arrest or reentry

Gene Reproductive phenotype
Fertility
status Ref.

G protein-coupled receptor 3 (Gpr3) Abnormal resumption of meiosis in oocytes Subfertile 428, 430
Adenylate cyclase 3 (Adcy3) Premature meiotic resumption in 50% of oocytes Subfertile 432
Phosphodiesterase 3A, cGMP inhibited (Pde3a) Presence of trapped oocytes; failure of ovulated

oocytes to progress beyond GV stage
Infertile 415

Cell division cycle 25 homolog B (Cdc25b) Oocytes are arrested in meiotic prophase with
defects in MPF activity

Infertile 417

Moloney sarcoma oncogene (Mos) Parthenogenetic activation, cysts, and teratomas Subfertile 453, 454
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closure is one of two redundant mechanisms by which
LH signaling causes reentry into meiosis.

There are still a number of unanswered questions re-
garding the reinitiation of meiosis I, namely, how is the LH
signal to mural granulosa cells propagated to the oocyte to
allow maturation? What are the molecules that pass be-
tween gap junctions to maintain arrest? The EGF-like
growth factors that are critical for ovulation and cumulus
expansion also appear to be involved in promoting oocyte
maturation in vitro and in vivo (344, 345). However this
is likely an indirect effect because although they induce
oocyte maturation in cumulus-oocyte complexes, they do
not have an effect on denuded oocytes (344, 441). Steroids
are known to influence meiotic maturation in lower ver-
tebrates and have been implicated as mediators down-
stream of EGFR activation in cultured mouse cumulus-
oocyte complexes. EGFR activation up-regulates steroid
production, and with the exception of ER�, the other clas-
sical steroid receptors (AR, ER�, PR) are detected in
mouse oocytes, and treatment with their respective ligand
agonists induced oocyte maturation (442). However, the
physiological significance of steroid receptors in mamma-
lian oocyte maturation remains to be determined, and
maturation defects have not been reported in Ar, Esr2, or
Pgr null oocytes. Moreover, others have reported inhibi-
tory effects of steroids on oocyte maturation (Refs. 443
and 444; and reviewed in Ref. 410). Follicular fluid-mei-
osis-activating sterol (FF-MAS), first isolated from human
follicular fluid (445), has also been proposed as an inducer
of oocyte maturation; however, the timing of the rise in
FF-MAS in vivo appears later than the onset of GVBD, and
FF-MAS may be more important in the meiosis I to meta-
phase II transition (reviewed in Ref. 410).

In addition to the possibility that cAMP passes through
gap junctions into the oocyte, cGMP has been proposed as
a competitive inhibitor of PDE3A that enters the oocyte
through gap junctions (446). Although inhibiting gap
junctional communication did not alter PDE3 activity, the
methods for quantifying PDE3 activity may have diluted
cGMP, thereby preventing competitive inhibition during
in vitro assays (439, 440). Intraoocyte cGMP levels de-
crease during spontaneous maturation of rat oocytes, mi-
croinjection of cGMP prevents resumption of meiosis
(447), and inhibiting guanylate cyclase activity in rat ovar-
ian follicles induces oocyte maturation (448). More sen-
sitive Förster resonance energy transfer-based cyclic nu-
cleotide assays have recently been used to quantify cAMP
and cGMP levels in follicle-enclosed mouse oocytes (449).
Exposure of these follicles to LH resulted in a decrease in
cGMP in both the oocyte and somatic cells, as well as a
decrease in oocyte cAMP. The decrease in cGMP occurred

by both gap junction-dependent and -independent mech-
anisms, resulting in increased PDE3A activity and a cor-
responding decrease in cAMP, followed by GVBD. Thus,
although much work remains to identify the intermediate
steps from the LH surge and the elusive in vivo inducer of
oocyte maturation, the numerous mouse models gener-
ated in recent years have established a role for intra-oocyte
regulation of cAMP homeostasis as essential for meiotic
arrest and reentry. Likewise, there is sufficient evidence
that gap junctional communication throughout the so-
matic compartment and between somatic cells and oocytes
is also important.

After activation of MPF and reentry into meiosis, chro-
mosomal condensation and segregation occurs, the nu-
clear envelope breaks down, and asymmetric division of
the cytoplasm results in extrusion of the first polar body.
Unlike mitosis, there is no intervening S-phase, and in-
stead, meiosis progresses to a second division to reduce the
genome from diploid to haploid. Whereas maintaining
MPF in an inactive stage until the LH surge keeps oocytes
arrested in prophase I, the activity of a cytostatic factor
(CSF) (450) causes metaphase II arrest in the oocyte by
stabilization of MPF, and the completion of MII does not
occur until fertilization. CSF stabilizes MPF by inhibiting
the anaphase-promoting complex/cyclosome (APC/C), an
E3 ubiquitin ligase that targets cyclin B for 26S proteoso-
mal degradation to allow the metaphase-anaphase tran-
sition (451). Although the existence of CSF was proposed
in 1971 (450), it took almost two decades to identify
MOS, a serine-threonine kinase, encoded by the Moloney
sarcoma oncogene (Mos), as a critical component of CSF,
first in Xenopus laevis oocytes (452), then in the mid-
1990s in mouse oocytes. Disruption of the mouse Mos
gene caused female subfertility, and Mos knockout oo-
cytes underwent parthenogenetic activation secondary to
a failure of metaphase II arrest (453, 454). MOS may also
have a function in the transition to MII because emission
of the first polar body is delayed (454) and it is enlarged,
which appears to result from failure of the spindle appa-
ratus to translocate to the cortex, resulting in an altered
cleavage plane. The enlarged polar bodies frequently went
through another round of division, rather than degrading,
which is the normal fate in wild-type oocytes (455). Al-
though MOS satisfies the criteria of a CSF component
(450), how it functions to inhibit APC/C activity in mam-
malian oocytes is currently unknown.

More recently, endogenous meiotic inhibitor 2 (EMI2;
also known as F-box protein 43, FBXO43) has been identi-
fied as an additional protein with CSF activity in Xenopus
eggs (456) and mouse oocytes (457). FBXO43 functions by
inhibiting the APC/C, which in mouse oocytes may be
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through direct interaction with the APC/C activator CDC20
(457). RNAi-mediated knockdown of Fbxo43 in mouse oo-
cytes causes progression through the cell cycle without ar-
resting at metaphase II and results in aberrant cytokinesis.
Expressing a stable form of FBXO43 and treating oocytes
with a chemical inducer of parthenogenesis (SrCl2) resulted
in stable MII arrest. Alternatively, knocking down both
Fbxo43 and its presumed target, Cdc20, maintains meiotic
arrest. Moreover, knockdown of Cdc20 alone prevents egg
activation after SrCl2 treatment or sperm head injection
(457). Thus, FBXO43 also has CSF activity that is manifest
through inhibition of CDC20, thereby preventing APC/C
activation to allow degradation of cyclin B and progression
through the cell cycle. FBXO43 has also been implicated in
the entry into MII by stabilizing cyclin B in interkinesis to
allow formation of a metaphase II spindle (458).

Because both MOS and FBXO43 have CSF activity and
FBXO43 specifically inhibits APC/C activity, could
FBXO43 be the missing link between MOS and metaphase
II arrest? Although Xenopus eggs have been a good model
system for studying MOS signaling pathways, there ap-
pear to be differences in MOS targets in mammals (459).
MOS is an activator of MAPK-signaling pathways, and in
Xenopus, MOS activation of MAPK leads to activation of
the 90-kDa ribosomal protein S6 kinase (p90RSK) (460,
461), which was recently shown to phosphorylate Xeno-
pus FBXO43 on Ser335/Thr336, causing increased sta-
bility and activity, thereby contributing to metaphase II
arrest (462, 463). However, p90RSK does not appear to
be the downstream mediator of MOS in maintaining
metaphase II arrest because oocytes from triple Rsk null
mice (Rsk1, Rsk2, Rsk3) have a stable CSF arrest, and
injection of constitutively active Rsk1 or Rsk2 RNA
into Mos�/� oocytes does not restore MII arrest (464).
Thus, in mammals, a direct linear pathway connecting
MOS activation of MAPK signaling to phosphorylation
and stabilization of FBXO43 cannot currently be
drawn. Generation of Fbxo43�/� mice or overexpres-
sion of a stable FBXO43 protein in Mos�/� oocytes may
help clarify any connection between FBXO43 and MOS
as components of CSF.

The oocyte completes the final stages of meiosis after
fertilization. The signal to resume meiosis comes from the
sperm, which introduces phospholipase C � into the oo-
cyte cytoplasm (465), triggering calcium oscillations that
activate APC/C, leading to cyclin B degradation and the
completion of meiosis (466). Thus, after being formed in
the embryo and nurtured postnatally by granulosa cells as
it progressed through multiple stages of folliculogenesis,
the oocyte’s journey ends with fertilization, and the cycle
begins anew.

IV. Ovarian Cancer

Ovarian cancer is the most lethal gynecological malig-
nancy in the United States and the fifth leading cause of
cancer death in women, with an estimated 21,650 new
cases and 15,520 deaths in 2008 (467). The 5-yr survival
rate for women diagnosed with cancer localized to the
ovary exceeds 90%; however, nearly 70% of cases are
diagnosed after the cancer has metastasized to distant
sites, and the 5-yr survival rate for these patients is only
30%. These statistics reflect the lack of an effective screen-
ing test for early stage diagnosis and highlight difficulties
in the successful treatment of advanced-stage disease. In
the following sections, we discuss the three major
classes of ovarian cancer: epithelial, sex cord-stromal,
and germ cell.

A. Epithelial ovarian cancer

1. Origins and genetics
Approximately 90% of ovarian cancers are epithelial

(carcinomas) and are classified by their histological fea-
tures as serous (50% of ovarian cancers), endometrioid
(20%), mucinous (10%), clear cell (5%), transitional,
mixed, and undifferentiated (468–470). These cancers are
thought to arise from the ovarian surface epithelium
(OSE), the single layer of squamous-to-cuboidal epithelial
cells that comprises the ovarian surface (reviewed in Ref.
471). Unlike most adult epithelia, the OSE has both epi-
thelial and mesenchymal characteristics that are advanta-
geous for participating in ovarian rupture and repair
through repeated ovulatory cycles. These functions may
also increase the susceptibility of OSE to genetic mutation
and malignant transformation (472–474). Putative pre-
cursor lesions are hypothesized to originate in OSE-lined
clefts and inclusion cysts in the ovarian cortex, two irreg-
ular morphological structures that become more prevalent
with age (470, 471, 475). In the progression to malig-
nancy, the OSE differentiates and resembles the lining of
different Müllerian duct-derived regions of the female re-
productive tract (471). For example, serous, endometri-
oid, and mucinous ovarian carcinomas are histologically
similar to normal epithelia of the fallopian tube, endome-
trium, and endocervix, respectively. One decade ago, this
observation raised an alternative hypothesis that epithelial
ovarian cancers do not develop from metaplastic changes
in the OSE but instead arise directly from the fallopian
tube and secondary Müllerian system, which is composed
of microscopic paraovarian and paratubal structures lined
by Müllerian epithelium, namely endosalpingiosis, endo-
metriosis, and endocervicosis (476, 477). Although this
hypothesis has not gained widespread approval, recent
studies suggest that some tumors diagnosed as serous
“ovarian” carcinoma more likely originated in the distal
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fallopian tube and then implanted on the ovarian surface,
particularly in women with BRCA1 (breast cancer 1) or
BRCA2 (breast cancer 2) mutations (478–480). Addi-
tionally, the association between endometriosis and ovar-
ian carcinomas of the endometrioid and clear cell subtypes
is well documented (reviewed in Refs. 481–483).

The different histological subtypes and grades of epi-
thelial ovarian cancer are genetically distinct disease en-
tities with unique defects in specific signaling pathways
(reviewed in Refs. 470 and 484). Approximately 50–80%
of high-grade serous carcinomas demonstrate mutations
in the tumor suppressor p53 (470, 484). On the other
hand, low-grade serous carcinomas and serous borderline
tumors frequently have mutations in KRAS, BRAF, or
ERBB2 that constitutively activate MAPK signaling and
lead to abnormal regulation of downstream target genes,
including overexpression of cyclin D1 (470, 484, 485).
The rarity of KRAS, BRAF, or ERBB2 mutations in high-
grade serous carcinomas has challenged the dogma that
these tumors naturally progress from low-grade serous
carcinomas. A growing body of molecular evidence now
supports the hypothesis that benign serous cystadenomas
transform into serous borderline tumors that are the likely
precursors of low-grade serous carcinomas, but that high-
grade serous carcinomas develop independently and more
rapidly from unknown precursors that undergo distinct
genetic alterations. Similar to high-grade serous carcino-
mas, the majority of high-grade endometrioid ovarian
cancers have p53 mutations and arise from unidentified
precursor lesions (470, 484). In contrast, low-grade en-
dometrioid carcinomas may come from endometrioid
borderline tumors with endometriosis as the likely pre-
cursor. Low-grade endometrioid carcinomas are charac-
terized by aberrant activation of the canonical WNT sig-
naling pathway, specifically through activating mutations
in �-catenin and less commonly through inactivating mu-
tations in negative regulators of �-catenin such as APC,
AXIN1, and AXIN2 (470, 484). Deregulation of the PI3K
signaling pathway has also been described secondary to
activating mutations in PIK3CA and inactivating muta-
tions in the tumor suppressor PTEN (470, 484). Likewise,
PIK3CA mutations have been reported in 20–25% of
clear cell ovarian carcinomas, with multiple studies show-
ing a strong association with endometriosis (470, 484).
Finally, over 75% of mucinous ovarian cancers demon-
strate mutations in KRAS (470, 484).

Five years ago, Shih and Kurman proposed a new clas-
sification scheme for ovarian carcinomas based on their
hypothesized patterns of tumor progression (484, 486–
488). In this model, tumors are designated as type I or type
II. Type I tumors are generally slow growing and localized
to the ovary at diagnosis, whereas type II tumors are more

aggressive and present as advanced-stage metastatic dis-
ease. Type I tumors are composed of genetically distinct
low-grade serous and mucinous cancers that develop in an
adenoma-borderline-carcinoma sequence, as well as low-
grade endometrioid and clear cell cancers that progress
from endometriosis. Type II tumors are high-grade serous,
endometrioid, and undifferentiated carcinomas that do
not have recognizable precursor lesions but commonly
harbor p53 mutations and high levels of chromosomal
instability.

2. Modeling epithelial ovarian cancer
Understanding the fundamental mechanisms govern-

ing the pathogenesis of epithelial ovarian cancers depends
on the ability to develop robust models in vitro and in vivo.
Over the past 30 yr, important advances have been made
using rodent and human OSE cultures, human ovarian
cancer cell lines, xenograft models, and genetically engi-
neered mouse models (summarized in Table 11). Auer-
sperg and colleagues (471) were pioneers in the isolation,
culture, and genetic manipulation of rodent and human
OSE, including OSE from women with family histories of
ovarian cancer. In 1981, they introduced Kirsten murine
sarcoma virus into cultured rat OSE and observed that
transformed cells formed endometrioid tumors within 1
wk of sc or ip injection into immunosuppressed female rats
(489). These early experiments established a framework
for further studying the potential of individual oncogenes
to immortalize and transform OSE and promote tumori-
genesis. Of note, there are important structural and phys-
iological differences between rodent and human OSE that
should be considered when extrapolating results between
species. Repeated passaging of rodent OSE cultures results
in spontaneous immortalization and malignant transfor-
mation based on loss of contact inhibition, substrate-in-
dependent growth, and tumor formation in nude mice
(473,474,490). In contrast, humanOSEcultures aremore
prone to undergo senescence (471), consistent with the
observation that human cells generally require more mu-
tations to bypass senescence and growth arrest compared
with murine cells (491). This interspecies variation sug-
gests that experiments with cultured human OSE might be
more relevant than with cultured rodent OSE. Immortal-
ized ovarian surface epithelial (IOSE) cell lines have been
derived from human OSE by transfection with simian vi-
rus 40 (SV40) early genes alone or with the catalytic sub-
unit of telomerase (hTERT) (492–496). Subsequent trans-
fection of SV40-immortalized cells with E-cadherin or
transfection of SV40/hTERT-immortalized cells with
ERBB2, activated HRAS, or activated KRAS causes trans-
formation and tumor development in immunocompro-
mised mice (496–498). Immortalization and malignant
transformation of human OSE cells has also been achieved
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by transfection with human papilloma virus type 16 E6/E7
genes (499, 500).

Although OSE cultures are useful for modeling early
steps in cancer formation, cell lines established from nat-
urally occurring human ovarian cancers are valuable for
exploring advanced-stage disease. Numerous cell lines
have been studied in vitro and injected sc, ip, and intra-
bursally (orthotopically) into rodents to compare tumor
behavior between various histological subtypes and to an-
alyze the efficacy of novel therapeutics. Advanced nonin-
vasive imaging technologies facilitate in vivo visualization
of tumor progression and metastasis (501). One caveat to
these xenograft models is that the tumors formed in vivo
may be histologically different from the original cancer
that gave rise to the cell line. For example, ES-2 cells were
reportedly derived from ovarian clear cell carcinoma but
form undifferentiated carcinomas in xenografted mice
(502). These incongruities may be secondary to subtle het-
erogeneity in the parental cancer, variations in tumor mi-
croenvironment, or genetic aberrations that accumulate
in culture, thus raising the general question of whether
culture-based cancer models accurately recapitulate tu-
morigenesis in vivo. Furthermore, xenograft models using
either human ovarian cancer cell lines or human OSE cul-
tures require immunodeficient mice and neglect potential
roles for the immune system in tumor progression.

Orsulic et al. (503) established one of the earliest mouse
models for ovarian cancer. They used transgenic mice ex-
pressing avian retroviral receptor under control of the ker-
atin 5 promoter, which drives expression in epithelial cells

including OSE. Ovarian explants from these mice were
cultured transiently and infected with retroviral vectors
carrying the oncogenes Myc, activated Kras, or activated
Akt. Mutations in all of these genes have been reported in
human ovarian cancers. Transduced ovarian cell aggre-
gates were injected sc into nude mice. Eight weeks after
injection, recipient mice had poorly differentiated carci-
nomas when ovarian cells were infected with at least two
oncogenes and only on a p53�/� background. Infection
with one oncogene on a p53�/� background was also suf-
ficient for tumor formation, but with a longer latency of 12
wk to 6 months, perhaps allowing time for additional ge-
netic mutations to occur. Moreover, when infected cells
were implanted under the ovarian bursa of nude mice,
widespread ip and retroperitoneal metastases were ob-
served. These features make it a convenient model for test-
ing therapies that may prevent dissemination; however,
this system still depends on manipulation of cells in
culture and does not model the natural progression of
disease from intact ovaries. To overcome these potential
confounding factors, stronger genetic approaches were
required.

Connolly et al. (504) created transgenic mice express-
ing SV40 T antigen (TAg) under control of the promoter
for Amhr2. Amhr2 is expressed in the developing Mülle-
rian ducts, OSE, ovarian granulosa cells, oviducts, and
uterus (260, 504–507). In addition, Amhr2 expression
has been reported in human ovarian cancer cell lines and
ascites cells isolated from ovarian cancer patients (508).
Fifty percent of Amhr2-TAg transgenic females developed

TABLE 11. Mouse models of epithelial ovarian cancer

Model Phenotype Ref.

p53�/� ovarian explants transduced with Myc,
activated Kras, or activated Akt, followed by
injection of cells into nude mice sc, ip, or
intrabursally

Infection with at least two oncogenes causes poorly
differentiated carcinomas 8 wk after injection; infection with
one oncogene has longer latency of 12 wk to 6 months;
intrabursal injection leads to ip and retroperitoneal
metastases

503

p53flox/flox Brca1flox/flox ovarian explants
transduced with Cre and Myc, followed by ip
injection into immunodeficient or
immunocompetent mice

Serous carcinomas with hemorrhagic ascites and peritoneal
metastases

524

Amhr2-TAg (transgenic; mouse Amhr2 promoter
driving expression of SV40 T antigen)

Bilateral, poorly differentiated ovarian carcinomas with serous
components and ip metastases; tumors present in newborn
ovaries

504, 509

AdCre-infected p53flox/flox Rb1flox/flox (double cKO) Serous, poorly differentiated, and undifferentiated metastatic
ovarian carcinomas; median survival of 227 d after AdCre
injection

510

LSL-KrasG12D/� Ptenflox/flox Amhr2cre/� (activation
of oncogenic Kras allele and conditional
deletion of Pten)

Serous ovarian carcinomas 513

AdCre-infected LSL-KrasG12D/� Ptenflox/flox

(activation of oncogenic Kras allele and
conditional deletion of Pten)

Endometrioid ovarian carcinomas with peritoneal dissemination 511, 512

AdCre-infected Apcflox/flox Ptenflox/flox (double
cKO)

Endometrioid ovarian carcinomas with peritoneal dissemination 515

AdCre, ovarian intrabursal injection of recombinant adenovirus expressing Cre recombinase; LSL, LoxP-Stop-LoxP.

Endocrine Reviews, October 2009, 30(6):624–712 edrv.endojournals.org 663

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/30/6/624/2355078 by guest on 21 August 2022



bilateral ovarian carcinomas with ip metastases by 6–13
wk of age. The tumors were mostly poorly differentiated,
with some regions resembling human serous ovarian can-
cers. They were also positive for epithelial markers cyto-
keratins 8 and 19 but negative for the granulosa cell
marker inhibin �, suggesting that they were derived from
OSE cells and not granulosa cells. On closer examination,
ovarian tumors were already present in newborn females,
consistent with the embryonic expression of Amhr2 (509).
This makes it difficult to study the earliest steps of cancer
initiation using the Amhr2-TAg transgenic model and
highlights the need for inducible systems in which disease
onset can be controlled.

In rodents, encapsulation of the ovary by the bursal
membrane creates a protected cavity for the selective de-
livery of inducing agents to the OSE. Intrabursal injection
of recombinant adenovirus-expressing Cre recombinase
(AdCre) drives Cre-mediated recombination specifically
in the OSE and not in other stromal cells or oocytes. This
approach has been effective for conditional deletion of
floxed tumor suppressor genes and conditional activation
of oncogenes preceded by a floxed stop sequence. Using
this technology, Flesken-Nikitin et al. (510) deleted the
tumor suppressors p53 and Rb1 in the OSE. p53 muta-
tions are common in high-grade human ovarian carcino-
mas, and involvement of RB1 has also been described.
Targeted inactivation of both genes in murine OSE re-
sulted in serous ovarian cancers as well as poorly differ-
entiated and undifferentiated tumors with metastases.
Double knockout mice had a median survival of 227 d
after AdCre injection. Deletion of Rb1 alone did not cause
ovarian tumors, whereas deletion of p53 alone rarely
caused ovarian cancer, consistent with the fact that
these tumor suppressors regulate interconnected signal-
ing pathways.

The mouse models described above exhibit ovarian car-
cinomas that are either poorly differentiated or with se-
rous histology, the most common subtype in women. De-
spite these groundbreaking advances, decoding the
morphological and genetic diversity of epithelial ovarian
cancers requires models that faithfully represent each ma-
jor histological subtype. Dinulescu et al. (511, 512) used
the intrabursal AdCre-loxP system to simultaneously ac-
tivate an oncogenic Kras allele and delete the Pten tumor
suppressor in murine OSE. Double mutant females devel-
oped invasive endometrioid ovarian carcinomas with peri-
toneal dissemination as early as 7 wk after AdCre injec-
tion. The tumors showed activation of the MAPK and
AKT pathways, so this model may be instrumental in test-
ing targeted therapies that specifically inhibit these signal-
ing cascades. Interestingly, activation of Kras alone was
insufficient to provoke tumor formation but instead re-

sulted in peritoneal endometriosis and benign endometri-
osis-like lesions on the ovary. Deletion of Pten alone pro-
duced similar benign epithelial ovarian lesions but did not
cause endometriosis, although one of 13 Pten cKO females
demonstrated endometrioid ovarian cancer at 26 wk, rais-
ing the possibility that the endometriosis-like lesions on
the ovary were potential precursors to ovarian cancer.
More recently, Richards and colleagues (513) generated
similar Kras and Pten mutations in OSE cells using mice
expressing Amhr2-Cre rather than the intrabursal admin-
istration of AdCre used by Dinulescu et al. (511). Curi-
ously, these mutants developed serous, rather than endo-
metrioid, OSE adenocarcinomas with 100% penetrance.
Reasons for the phenotypic differences in these two mod-
els expressing the same mutant genes remain to be deter-
mined but could be dependent on the stage and/or OSE cell
context-specific events initiated by AdCre compared to
Amhr2-Cre. In women, loss of heterozygosity at the
10q23.3 PTEN locus and somatic mutations in PTEN
have been observed in endometriosis and ovarian carci-
nomas of the endometrioid and clear cell subtypes (514).
In contrast, KRAS mutations have not been reported in
endometriosis and are rare in endometrioid ovarian can-
cer, with no evidence to support coexistence or cooperat-
ivity with PTEN inactivation.

Cho and colleagues (515) examined a large number of
primary human endometrioid ovarian cancers and found
a significant frequency of coexisting mutations in WNT/
�-catenin and PI3K/PTEN signaling pathways. This oc-
curred almost exclusively in tumors that were low-grade
and lacking p53 mutations. To investigate whether these
pathways cooperate to drive the malignant transforma-
tion of OSE, they used the intrabursal AdCre-loxP system
to conditionally inactivate the tumor suppressors Apc and
Pten, which are negative regulators of �-catenin and PI3K,
respectively. Whereas no abnormalities were reported for
either single mutant, concomitant deregulation of both
pathways induced endometrioid ovarian carcinomas with
100% penetrance within 6 wk of AdCre injection. The
tumors were accompanied by hemorrhagic ascites, occa-
sional peritoneal dissemination to the liver, and areas of
spindle cell morphology that were negative for cytokeratin
and E-cadherin immunoreactivity, suggesting epithelial-
to-mesenchymal transition. Despite the strong association
between endometrioid ovarian cancer and endometriosis
in women, there was no evidence of endometriosis-like
lesions in the Apc Pten cKO. However, alterations in gene
expression between the mouse tumors and control ovaries
were highly correlated with aberrations in human endo-
metrioid ovarian cancers, in particular to those harboring
mutations in WNT/�-catenin and PI3K/PTEN signaling.
Hence, this mouse model may be extremely valuable for
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identifying therapies specifically tailored to endometrioid
ovarian cancer. Furthermore, the phenotype reveals that
genetic interactions between canonical WNT signaling
and the PI3K/PTEN pathway promote ovarian tumori-
genesis. Molecular intersections between these pathways
have been described. For example, AKT directly phos-
phorylates �-catenin, consequently increasing �-catenin
transcriptional activity and promoting tumor cell invasion
in vitro (516). Nevertheless, it remains unknown which
mechanisms of cross talk are relevant to ovarian cancer.

Approximately 10% of epithelial ovarian cancers are
hereditary with evidence of autosomal dominant genetic
susceptibility (reviewed in Ref. 517). Loss of function
germline mutations in the tumor suppressor BRCA1 ac-
count for 90% of these cases and are highly penetrant,
conferring a 40–60% lifetime risk of developing ovarian
cancer, compared with 1–2% in the general population
(517, 518). The tumors are typically serous ovarian car-
cinomas. BRCA1 inactivation also occurs in the majority
of sporadic ovarian tumors but usually through mecha-
nisms other than somatic mutation, for instance, epige-
netic silencing due to promoter hypermethylation (re-
viewed in Ref. 519). BRCA1 has critical functions in the
DNA damage response and the maintenance of genomic
integrity; therefore, defects in BRCA1 have widespread
cellular consequences that presumably enhance vulnera-
bility to genomic instability and oncogenic transforma-
tion. Indeed, familial ovarian cancers develop at a younger
age compared with sporadic ovarian cancers (517). Ova-
ries removed prophylactically from BRCA1 carriers and
women with a family history of ovarian cancer displayed
a higher frequency of morphological alterations in the
OSE that may reflect preneoplastic lesions (520–522).
Similar trends were observed in murine OSE after targeted
deletion of Brca1 using intrabursal AdCre administration
(523). Despite these findings, Brca1 cKO females did not
develop ovarian tumors even 1 yr after injection. BRCA1
inactivation inprimaryculturesofmurineOSEsuppressed
proliferation, increased apoptosis, and heightened sensi-
tivity to cisplatin (523, 524). On the other hand, concom-
itant deletion of BRCA1 and p53 enhanced proliferation,
whereas inactivation of p53 alone had no effect, suggest-
ing that p53 dysfunction or other oncogenic events are
essential mediators of BRCA1-associated tumorigenesis
(523). Accordingly, p53 mutations are more common in
hereditary than sporadic ovarian cancers and may be an
early initiating event in BRCA1 carriers (525, 526). Al-
though other players in BRCA1-mediated ovarian cancer
remain to be identified, retroviral infection with the Myc
oncogene (but not Kras, Erbb2, or Akt) was sufficient for
transforming OSE cells with combined deficiency of Brca1
and p53 (524). BRCA1 binds MYC and represses its tran-

scriptional and transforming activity (229). MYC is am-
plified in BRCA1-associated breast cancer, but its role in
BRCA1-associated ovarian cancer is unclear (527, 528).

B. Sex cord-stromal ovarian cancer
Tumors emanating from the gonadal sex cords and

stroma comprise about 7% of ovarian cancers and include
granulosa-theca cell tumors, thecoma-fibromas, Sertoli-
Leydig cell tumors, sex cord tumors with annular tubules,
and gynandroblastomas (468, 529). Hormone secretion is
a salient feature of these cancers, which often present as a
large, unilateral adnexal mass confined to the ovary with
signs and symptoms of estrogen or androgen excess. The
mainstay of treatment is surgery to remove the tumor,
followed by adjuvant chemotherapy in selected patients.
Granulosa cell tumors account for approximately 70% of
sex cord-stromal ovarian cancers and are classified as
adult (95%) or juvenile (5%) (529). The adult variant is
more common in postmenopausal women and associated
with abnormal vaginal bleeding, endometrial hyperplasia,
and endometrial carcinoma, whereas the juvenile type fre-
quently entails gonadotropin-independent isosexual pre-
cocious puberty in prepubertal girls (i.e., secondary to es-
trogen secretion by the tumor). In contrast to epithelial
ovarian cancers, the majority of which are diagnosed at
advanced stages with poor prognoses, about 80% of adult
granulosa cell tumors are diagnosed at stage I and have 5-
and 10-yr survival rates exceeding 90% (529). Neverthe-
less, adult granulosa cell tumors are slow-growing and
tend toward late recurrence; although the median time to
relapse is around 5 yr after initial diagnosis, recurrences
have been reported after 40 yr, and recurrent disease bears
a somber prognosis (529, 530).

Sex cord-stromal ovarian cancers are rare, and this is
most likely explained by the highly orchestrated removal
of apoptotic granulosa cells in follicles undergoing atresia
that occurs in most (99%) of all growing follicles. The
rarity of these cancers has hindered comprehensive study
of the genetic aberrations responsible for tumor formation
and progression in women. On the other hand, granulosa
cell tumors are the most common spontaneous ovarian
tumors in mice (531). Beamer and colleagues have exten-
sively investigated the pathogenesis of spontaneous gran-
ulosa cell tumors in SWR and SWXJ mouse strains. Tu-
mors in these mice are grossly visible by 6 wk of age and
histologically resemble human juvenile granulosa cell tu-
mors (531, 532). The window of tumor initiation is be-
tween 3 and 5 wk of age; beyond this timeframe, unaf-
fected females are no longer at risk. Incomplete penetrance
of the phenotype during a restricted period of ovarian
maturation indicates a complex interplay between multi-
ple genetic and environmental factors. Detailed linkage
studies in these spontaneous mouse models have identified
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nine granulosa cell tumor (Gct) susceptibility loci (532–
536). The Gct1 locus on distal mouse chromosome 4 sur-
faced in three independent mapping crosses using diver-
gent mouse strains (532). Loss of this genomic region is a
secondary aberration in transgenic mouse models of oli-
godendroglioma and mammary carcinoma (532, 537,
538). The orthologous region on human chromosome 1p
is also deleted in various cancers, strongly suggesting the
presence of as yet unidentified tumor suppressor genes
(532, 539–541). Additionally, Gct4 is an X-linked tumor
susceptibility locus that modulates responsiveness to an-
drogenic steroids and shows a strong parent-of-origin ef-
fect associated with paternal inheritance, raising the pos-
sibility that epigenetic effects such as imprinting might
also influence tumor formation (534–536).

Further insight into the pathways involved in ovarian
sex cord-stromal tumorigenesis stems from a variety of
transgenic mouse models (summarized in Table 12).
TGF� superfamily members are critical regulators of ovar-
ian folliculogenesis and granulosa cell function, and in-

clude inhibins, activins, BMPs, growth and differentiation
factors, and anti-Müllerian hormone. Granulosa cells and
Sertoli cells secrete inhibins (�:�A, �:�B) and activins (�A:
�A, �B:�B, �A:�B) that suppress (i.e., inhibins) or stim-
ulate (i.e., activins) pituitary production and secretion of
FSH. Mice null for the inhibin �-subunit gene (Inha�/�),
and therefore completely inhibin-deficient, develop bilat-
eral, multifocal, mixed, invasive sex cord-stromal tumors
with 100% penetrance in both sexes as early as 4 wk of age
(542, 543). The mice eventually die secondary to a cancer
cachexia syndrome marked by severe weight loss and mul-
tiple extragonadal defects (544). Hence, inhibins are se-
creted tumor suppressors with gonadal specificity. For
more than 15 yr, inhibin-deficient mice have been a valu-
able model system to investigate modifiers of gonadal tu-
morigenesis, including gonadotropins, sex steroid hor-
mones and receptors, cell cycle regulators, and activin
signaling (summarized in Table 13).

FSH and LH are pituitary gonadotropins composed of a
common �-subunit and a hormone-specific �-subunit, the

TABLE 12. Mouse models of sex cord-stromal ovarian cancer

Model Phenotype Ref.

SWR/SWXJ strains Spontaneous granulosa cell tumors by 6 wk of age;
incomplete penetrance

531

Inha�/� (inhibin � knockout)a Bilateral, mixed sex cord-stromal ovarian tumors with 100%
penetrance as early as 4 wk of age; cancer cachexia
syndrome; elevated FSH, estradiol, and activins A and B

542–544

Fshr�/� (FSH receptor knockout) Unilateral Sertoli-Leydig cell tumors by 1 yr of age; cachexia;
elevated FSH and LH; low estradiol

817

bLH�-CTP (transgenic; chronic hypersecretion of LH) Strain-dependent formation of granulosa cell tumors with
100% penetrance by 5 months of age; polycystic ovaries

550, 551

Inh�-TAg (transgenic; mouse inhibin � promoter driving
expression of SV40 T antigen)

Granulosa cell tumors with 100% penetrance by 6 months of
age

552

bLH�-CTP/Inh�-TAg (double transgenic) Earlier formation, more rapid progression, and enhanced
aggressiveness of granulosa cell tumors compared to either
single transgenic model; occasional metastases to lungs
and liver

553

MT-hCG (transgenic; mouse metallothionein 1
promoter fused to coding sequences of human
chorionic gonadotropin �- and �-subunits)

Hemorrhagic and cystic ovaries; thecomas and stromal cell
expansion; enlarged uterine horns; urinary tract
abnormalities; elevated estradiol

554

Smad1 Smad5 (double cKO using Amhr2-Cre) Unilateral or bilateral poorly differentiated granulosa cell
tumors with 100% penetrance by 3 months of age;
metastases to lymph nodes and peritoneum

576

Smad1 Smad5 Smad8 (triple cKO using Amhr2-Cre) Similar to Smad1 Smad5 double cKO 576
Ctnnb1flox(ex3)/� Amhr2cre/� (conditional expression of

dominant stable form of �-catenin)
Unilateral or bilateral, hemorrhagic, cystic granulosa cell

tumors; detected in mice older than 5 months and
prevalence increased with age; precursor lesions; osseous
metaplasia

583, 584

Ptenflox/flox Amhr2cre/� (cKO) Unilateral or bilateral granulosa cell tumors with low
penetrance; ossification and cysts; metastases to lungs

585

Ptenflox/flox Ctnnb1flox(ex3)/� Amhr2cre/� (double
conditional mutant)

Bilateral granulosa cell tumors with 100% penetrance;
dysplastic cells in newborn ovaries; death prior to 9 wk of
age

585

Men1�/� (multiple endocrine neoplasia 1 heterozygote) Granulosa cell tumors; multiple endocrine tumors; tumors
show loss of heterozygosity at Men1 locus

818–820

OSP1-TAg (transgenic; rat ovarian-specific promoter 1
driving expression of SV40 T antigen)

Unilateral granulosa cell tumors; tumors in multiple other
tissues

821

a Mouse models related to the inhibin � knockout are described in Table 13.
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TABLE 13. Mouse models related to the inhibin � knockout

Model Phenotype Endocrine abnormalitiesa

Survival
relative to

Inha�/� Ref.

Inha�/� (inhibin � knockout) Bilateral, mixed sex cord-stromal
ovarian tumors with 100%
penetrance as early as 4 wk
of age; cancer cachexia
syndrome

Elevated FSH, estradiol, and activins
A and B

n/a 542–544

Gonadotropins
Inha�/� Gnrh1hpg/hpg

(gonadotropin releasing
hormone)

No tumors, only premalignant
ovarian lesions (e.g.,
seminiferous tubule-like
structures without germ cells)

Suppressed FSH and LH 111 545

Inha�/� Fshb�/� (FSH �
subunit)

Slower growing and less
invasive tumors; delayed
onset of cancer cachexia
syndrome

FSH absent; decreased estradiol and
activin A compared to Inha�/�

11 549

Inha�/� Lhb�/� (LH �
subunit)

Delayed tumor progression Lower FSH compared to Inha�/� at
6 wk of age

1 555

Sex steroid hormones
and receptors

Inha�/� females treated
with flutamide, an
androgen antagonist

Delayed tumor development
and less hemorrhagic tumors

Decreased FSH compared to
untreated Inha�/�

1 558

Inha�/� Esr1�/� (estrogen
receptor �)

More rapid tumor development
and earlier onset of cancer
cachexia syndrome

Elevated estradiol; suppressed FSH
and LH compared to Inha�/�

22 558

Inha�/� Esr2�/� (estrogen
receptor �)

Similar to Inha�/� Estradiol and gonadotropin levels
similar to Inha�/�

2 558

Inha�/� Esr1�/� Esr2�/�

(estrogen receptors �
and �)

Accelerated tumor development
and earlier onset of wasting
syndrome

Elevated FSH 222 558

Cell cycle regulators
Inha�/� Ccnd2�/� (cyclin

D2)
Delayed onset and slower

progression of tumors and
cancer cachexia syndrome

Elevated FSH 11 562

Inha�/� Cdkn1b�/�

(cyclin-dependent
kinase inhibitor 1B, also
known as p27Kip1)

Accelerated tumor development
and earlier onset of wasting
syndrome

Elevated FSH and activin A 222 557, 562

Inha�/� Rb1�/�

(retinoblastoma 1)
Accelerated tumor progression Higher LH and progesterone

compared to Inha�/�
2 563

Activin signaling
Inha�/� Acvr2a�/� (activin

receptor IIA)
Similar to Inha�/� with notable

absence of cancer cachexia
syndrome

Elevated activins A and B 111 567

Inha�/� MT-Fst (mouse
metallothionein 1
promoter fused to
coding sequence of
mouse follistatin)

Less hemorrhagic tumors and
less severe wasting syndrome

Elevated FSH compared to MT-Fst
controls; decreased activin A
compared to Inha�/�

1 571

Inha�/� treated with
ACVR2A-mFc, a
chimeric activin
antagonist

Slower tumor progression and
absence of wasting syndrome

Trend toward lower FSH compared
to PBS-treated Inha�/� females

111 572

Inha�/� Smad3�/� (MAD
homolog 3, also known
as Madh3)

Slower tumor progression and
delayed onset of wasting
syndrome

Decreased activin A and trend
toward lower estradiol compared
to Inha�/� at 15 wk of age

111 573, 574

Miscellaneous
Inha�/� Gdf9�/� (growth

differentiation factor 9)
Similar to Inha�/� Not determined Unchanged 226

n/a, Not applicable.
a Serum levels as compared to wild-type mice, unless otherwise specified.
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synthesis of which is regulated in part by hypothalamic
GnRH. When inhibin � mutants were crossed to mice
deficient in GnRH [i.e., the hypogonadal (Gnrh1hpg)
model], in which FSH and LH levels are suppressed, the
resulting double homozygous mutants were strikingly
free of tumors and the cancer cachexia syndrome (545).
Although the ovaries of Inha�/� Gnrh1hpg/hpg mice con-
tain seminiferous tubule-like structures similar to le-
sions in Inha�/� females, these structures do not evolve
beyond the premalignant stage. In an analogous exper-
iment, Beamer and colleagues (546, 547) showed that
an intact hypothalamic-pituitary axis is essential for
granulosa cell tumor development in genetically sus-
ceptible SWR/SWXJ female mice. These data suggest
that gonadotropins are key regulators of ovarian tu-
morigenesis, consistent with the dramatic rise in the
incidence of ovarian cancer around menopause, when
gonadotropin levels are elevated (reviewed in Ref. 548).

Further experiments were necessary to delineate the
individual contributions of FSH and LH. Inhibin-deficient
mice have increased serum FSH levels compared with
wild-type mice, consistent with the known function of
inhibins to suppress FSH (542). As mentioned earlier,
binding of FSH to its receptor on granulosa cells activates
cAMP-dependent PKA signaling and other pathways, ul-
timately promoting the expression of genes that orches-
trate granulosa cell proliferation and differentiation. Fe-
male mice deficient in inhibins and FSH (Inha�/� Fshb�/�)
have increased survival because of slower growing, less
invasive tumors along with delayed onset of the wasting
syndrome (549). In a complementary gain of function ex-
periment, human FSH �- and �-subunits were simulta-
neously overexpressed from the mouse MT1 promoter on
a wild-type background (549). Transgenic female mice
with elevated human FSH do not develop cancer but in-
stead have hemorrhagic and cystic ovaries in addition to
urinary tract dysfunction, features reminiscent of human
ovarian hyperstimulation and polycystic ovarian syn-
dromes. Together, these models demonstrate that FSH sig-
naling promotes sex cord-stromal tumor progression but
is not necessary for tumor formation.

Corroborating evidence from several different mouse
models emphasizes the contribution of LH to granulosa
cell tumorigenesis. Chronic hypersecretion of LH in trans-
genic female mice (bLH�-CTP) causes polycystic ovaries
and strain-dependent formation of granulosa cell tumors
with 100% penetrance by 5 months of age (550, 551). In
another transgenic model, granulosa cell tumors invari-
ably develop by 6 months of age when the inhibin � pro-
moter drives SV40 TAg expression (Inh�-TAg) (552). No-
tably, double transgenic bLH�-CTP/Inh�-TAg females
display earlier formation and more rapid progression of

tumors (553). Related to the bLH�-CTP model, the
mouse MT1 promoter was used to simultaneously over-
express �- and �-subunits of hCG, a placental glycopro-
tein hormone and LH analog that acts through the LH
receptor (554). Like MT-hFSH mice, MT-hCG transgenic
females develop hemorrhagic and cystic ovaries coinci-
dent with urinary tract defects; thecomas and marked stro-
mal cell expansion are also observed in the ovaries.

In light of these observations and to further understand
the distinct phenotypes of Inha�/� Gnrh1hpg/hpg mice and
Inha�/� Fshb�/� mice, we recently characterized mice
deficient in both inhibins and LH (555). Inha�/� Lhb�/�

females develop ovarian cancer but have increased sur-
vival because of delayed tumor progression, an effect cor-
related with elevated tumor expression of p15INK4b

(Cdkn2b) and a trend toward higher levels of p27Kip1,
both genes that repress cell proliferation. Loss of expres-
sion of CDK inhibitors p15INK4b and p16INK4a (Cdkn2a)
have been reported in adult granulosa cell tumors in
women, and the loss of p27Kip1 exacerbates tumorigenesis
in inhibin-deficient mice (556, 557). Inha�/� Lhb�/�

ovarian tumors also have decreased expression of
Cyp17a1, the LH-induced thecal cell enzyme that converts
pregnenolone and progesterone to dehydroepiandros-
terone and androstenedione, respectively (555). Lower
Cyp17a1 expression might reduce the levels of these an-
drogens, consequently slowing tumor growth in Inha�/�

Lhb�/� females. This explanation is based on the obser-
vation that treatment of inhibin-deficient females with the
androgen antagonist flutamide prolongs life span by di-
minishing tumor progression (558). Conversely, exog-
enously supplied androgens increase the frequency of
granulosa cell tumors in genetically susceptible SWR/
SWXJ female mice (534, 546, 559). Importantly, treat-
ment of SWR/SWXJ females with hCG, but not FSH, also
induces tumors (547). These experiments collectively sug-
gest that LH signaling is sufficient for ovarian sex cord-
stromal tumor formation, in part by triggering androgen
production.

Consistent with the fact that granulosa cells are the
principal site of estradiol synthesis, granulosa cell tumors
in women and mice secrete estradiol. To investigate the
role of estrogen signaling in sex cord-stromal ovarian can-
cers, our group generated mice lacking inhibin �, ER�

(Esr1), and ER� (Esr2) (558). Inha�/� Esr1�/� females
exhibit a substantial decrease in survival attributed to
more rapid tumor progression and earlier onset of the
cancer cachexia syndrome. Although Inha�/� Esr2�/� fe-
males are similar to Inha�/� single mutants, triple knock-
out Inha�/� Esr1�/� Esr2�/� females demonstrate the
most severe phenotype with 100% death by 9 wk of age,
a timepoint at which the majority of Inha�/� mice are still
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alive. These data indicate that in the absence of inhibins,
ER signaling is protective in females. Accordingly, estra-
diol treatment suppresses granulosa cell tumor incidence
in genetically susceptible SWR/SWXJ mice (559). Because
ESR1 and ESR2 are expressed in human granulosa cell
cancers, the protective effect of estradiol may occur
through direct action on the tumor by unknown mecha-
nisms (560). Estradiol also imparts negative feedback on
the hypothalamic-pituitary axis that is predominantly me-
diated by ER� (561). Therefore, an alternative explana-
tion is that estradiol reduces LH synthesis and release from
the pituitary in an ER-intact mouse, which in turn miti-
gates tumorigenesis as described earlier.

Signaling cascades activated by gonadotropins and sex
steroid hormones ultimately converge on a final common
pathway: the cell cycle. The G1/S transition is regulated by
D- and E-type cyclins that complex with CDKs (CDK4/6
and CDK2, respectively) to promote cell proliferation,
whereas CDK inhibitors such as p27Kip1 block cell cycle
progression. The absence of CCND2 causes female steril-
ity because of impaired granulosa cell proliferation in re-
sponse to FSH (292). On the other hand, sterility in
p27Kip1 null females is secondary to defects in cell cycle
withdrawal and luteinization in response to LH (391–
393). Ccnd2 expression is higher in human granulosa cell
tumors compared with other ovarian cancers and normal
ovaries (292). Moreover, sex cord-stromal cancers in in-
hibin-deficient females have elevated Ccnd2 and Cdk4
mRNA and lower p27Kip1 protein compared with wild-
type ovaries, leading to the hypothesis that these alter-
ations might foster tumor growth (557). Indeed, the loss of
CCND2 prolonged survival, and the loss of p27Kip1 de-
creased survival in inhibin-deficient mice, correlating with
changes in the rate of tumor development and onset of the
associated wasting syndrome (557, 562). Granulosa cell-
specific deletion of Rb1 (retinoblastoma 1) on the inhibin
� null background also accelerates ovarian tumorigenesis
(563). When unphosphorylated and active, RB1 binds to
E2F transcription factors and prevents the expression of
genes required for cell cycle progression (reviewed in Ref.
564). RB1 also blocks cell proliferation by inhibiting the
ubiquitination and degradation of p27Kip1 (565, 566). Ac-
cordingly, ovarian tumors lacking inhibins and RB1 have
lower p27Kip1 levels and increased expression of mitotic
markers such as CCND2, PCNA (proliferating cell nu-
clear antigen), and CCNB1 (cyclin B1) compared with
tumors from Inha�/� females. Despite these aberrations,
double mutants showed only a modest rise in mortality,
likely because there was also increased apoptosis that may
have limited tumor growth and higher expression of re-
lated family members Rbl1 (retinoblastoma-like 1; p107)

and Rbl2 (retinoblastoma-like 2; p130) that might have
partially compensated for loss of Rb1.

Along with their endocrine actions as regulators of FSH
levels, inhibins and activins secreted from granulosa cells
function in autocrine and paracrine fashions to balance
growth and differentiation within the maturing follicle.
TGF� superfamily ligands signal through transmembrane
serine/threonine kinase receptor complexes that phos-
phorylate and activate intracellular SMAD proteins,
which then translocate to the nucleus to control gene ex-
pression. Activins bind ACVR2A and ACVR2B (type II
receptors) that recruit activin receptor-like kinases (type I
receptors), which signal through SMAD2 and SMAD3.
Gonadal tumors in inhibin-deficient mice secrete large
amounts of activins into the circulation (544). Because
inhibins antagonize activins at the receptor level, inhibin-
deficient mice are a useful model for studying the conse-
quences of unchecked activin signaling on tumorigenesis.
Deletion of Acvr2a on the inhibin � null background does
not abolish tumor development but instead prolongs life
span by preventing the cancer cachexia syndrome (567).
This wasting syndrome is characterized by severe weight
loss, lethargy, hepatocellular inflammation and necrosis,
and atrophy of the glandular stomach (544). Acvr2a is
expressed in mouse liver and glandular stomach, and in-
fusion of recombinant activin A in rodents induces apo-
ptosis of hepatocytes around the central vein, a pattern
similar to the liver pathology in cachectic Inha�/� mice
(567–569). These data indicate that increased activin sig-
naling specifically through ACVR2A in hepatocytes and
the glandular stomach causes the wasting syndrome in
inhibin-deficient mice.

Although absence of ACVR2A does not affect tumor
growth, activin signaling through ACVR2B or other uniden-
tified receptors may promote tumor progression. Activin A
stimulates the growth of gonadal tumor cell lines de-
rived from inhibin �- and p53-deficient mice, whereas
FST inhibits tumor cell proliferation (570). FST binds to
activin �-subunits and interferes with the binding of ac-
tivins to ACVR2A and ACVR2B. Transgenic overexpres-
sion of FST in inhibin-deficient mice expectedly decreases
the severity of the wasting syndrome but also produces less
hemorrhagic ovarian tumors (571). Similar outcomes
were observed when Inha�/� mice were injected with a
chimeric activin antagonist consisting of the ACVR2A ex-
tracellular domain fused to the Fc region of murine IgG2a
(ACVR2A-mFc) (572). Treatment with ACVR2A-mFc
completely prevented the wasting syndrome and delayed
tumor progression.

The models described thus far modulate activin signal-
ing at the ligand or receptor level. To investigate down-
stream components of the pathway, two independent
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groups generated Inha�/� Smad3�/� double knockout
mice that have increased survival because of diminished
ovarian tumor progression (573, 574). SMAD3 regulates
Ccnd2 expression through transcriptional activation at
the Ccnd2 promoter and through potentiation of FSH sig-
naling (294, 574, 575). Double mutant ovarian tumors
have lower CCND2 and partial insensitivity to FSH sig-
naling, specifically through PI3K/AKT, leading to a phe-
notype reminiscent of both Inha�/� Ccnd2�/� mutants
and Inha�/� Fshb�/� mutants (574). Notably, loss of
SMAD3 attenuates tumor development to a greater degree
in inhibin-deficient males than females, supporting func-
tional redundancy with SMAD2 in ovarian granulosa cells
(354, 573).

Recent work has shown that the oncogenic effects of
activin signaling through SMAD2 and SMAD3 are bal-
anced by the tumor suppressive roles of BMP signaling
through SMAD1, SMAD5, and SMAD8. Conditional de-
letion of Smad1/5 or Smad1/5/8 in ovarian granulosa cells
causes progressive infertility and granulosa cell tumors
that metastasize to the lymph nodes and peritoneum
(576). The tumors and metastases express inhibin �, and
therefore activin signaling is either normal or suppressed
because the mutants do not develop elevated activin levels
or cachexia. However, the nuclear localization of phos-
pho-SMAD2/3 immunoreactivity indicates activation of
SMAD2/3 by the physiologically normal levels of activins
or by another ligand such as TGF�. Multiple TGF�-in-
duced genes (e.g., Hmga2, Mmp2, Tgfbi) are up-regu-
lated in Smad1/5 knockout tumors compared with wild-
type granulosa cells, and overexpression of TGF�

promotes tumor invasion and metastasis in a variety of
human cancers. Overall, this model emphasizes that
growth and differentiation of granulosa cells are deter-
mined by complex interactions between BMP and
TGF�/activin pathways.

Similar to granulosa cell tumors in women, the ovarian
cancers in Smad1/5 cKO mice and in genetically suscep-
tible SWR/SWXJ mice are inhibin-positive (576, 577).
Throughout the literature, this has raised questions about
the relevance of the inhibin-deficient mouse model to hu-
man ovarian cancers. If inhibins are markers for human
granulosa cell tumors, how can they be tumor suppres-
sors? The recently described phenotypes of ACVR2A-
mFc-treated inhibin-deficient mice, Inha�/� Smad3�/�

mutants, and in particular the Smad1/5 cKO have shed
light on this apparent paradox. Activation of SMAD2/3
promotes tumorigenesis upon stimulation by TGF� or ac-
tivin signaling; hence, inhibins are clearly tumor suppres-
sors in part because they function as activin antagonists.
The strong evidence implicating TGF� superfamily sig-
naling in granulosa cell tumorigenesis and the fact that

granulosa cell tumors in women are inhibin-positive (578)
suggest that these tumors have mutations that circumnav-
igate the inhibins, effectively making them inhibin-resis-
tant and ultimately leading to SMAD2/3 activation,
SMAD1/5 inactivation, or aberrations in the expression or
function of their respective target genes. Validation of this
hypothesis awaits investigation of TGF� superfamily sig-
naling in human granulosa cell cancers. Furthermore, al-
though inhibin � mutations may not be a common initi-
ating event in human granulosa cell tumors, the TGF�

model predicts that the loss of inhibins would exacerbate
tumorigenesis by unleashing activin (and FSH) signaling.
Indeed, Ala-Fossi et al. (579) reported that in contrast to
early-stage granulosa cell tumors in women, advanced-
stage tumors were negative for inhibin � immunostaining
and correlated with shorter survival.

Aside from TGF� superfamily signaling, WNT pathway
components are also expressed in ovarian granulosa cells
(580–582), and alterations in WNT signaling have been im-
plicated in granulosa cell tumorigenesis. Richards and col-
leagues (583) observed nuclear localization of �-catenin in
humanandequinegranulosacell tumors, indicatingaberrant
activation of the canonical WNT pathway. To model this
scenario, they generated Ctnnb1flox(ex3)/� Amhr2cre/� mice
expressing a dominant stable form of �-catenin in granulosa
cells. Mutant females developed unilateral or bilateral tu-
mors composed of sheets of granulosa cells and hemorrhagic
cysts lined with granulosa cells. Tumors were only detected
in mice older than 5 months, and the prevalence increased
with age because eight of 14 females were affected by 7.5
months and two others developed tumors after 1 yr. The
tumors apparently evolve from precursor lesions that are
present at 6 wk of age and characterized by vascular follicle-
like nests of disorganized, pleiomorphic granulosa cells in
addition to cavitary and cystic structures. Gene expression
analyses revealed that some of these pretumoral lesions
progress through an intermediate stage resembling osseous
metaplasia, consistent with known roles for WNT signaling
in cell fate determination and differentiation (583, 584).
These unique observations suggest that metaplastic transfor-
mation might be an important premalignant step for human
granulosa cell tumors, although this has not yet been
described.

Regions of ossification and cystic structures were
also reported in granulosa cell tumors of Ptenflox/flox

Amhr2cre/� cKO females (585). Only 7% of these mutants
developed tumors between 7 wk and 7 months, but the
tumors were particularly aggressive and metastasized to
the lungs. In contrast, the Ptenflox/flox Cyp19a1-Cre mice
do not develop tumors but do exhibit enhanced ovulation
rates related to reduced follicular apoptosis (406). Thus,
there appears to be a stage-dependent effect of disrupting
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Pten in granulosa cells. The tumor suppressor PTEN re-
presses the PI3K/AKT pathway, a major effector of FSH
signaling in granulosa cells (586). FSH activation of PI3K/
AKT triggers mammalian target of rapamycin (mTOR)
signaling and attenuates FOXO1 repression at the Ccnd2
promoter (294, 586) by rapidly turning off expression of
the Foxo1 gene in granulosa cells (174). Accordingly, tu-
mors resulting from deletion of PTEN in granulosa cells
demonstrated loss of FOXO1 expression and elevated
mTOR and phospho-mTOR levels compared with Cre-
negative granulosa cells (585). Unexpectedly, the tumors
also showed loss of phospho-AKT expression, an in-
congruent finding that may be the end result of negative
feedback loops induced by early constitutive activation
of the PI3K/AKT pathway. Human and equine granu-
losa cell tumors do not have alterations in PTEN ex-
pression but instead show perinuclear and nuclear lo-
calization of phospho-AKT, the significance of which
remains unclear.

As mentioned earlier, there are several avenues of cross
talk between PI3K/AKT and canonical WNT signaling,
and these pathways cooperatively induce endometrioid
tumors in a mouse model of epithelial ovarian cancer
(515). Hence, simultaneous activation of both pathways
in granulosa cells might also have synergistic effects on sex
cord-stromal tumorigenesis. Boerboom and colleagues
(585) tested this hypothesis by generating Ptenflox/flox

Ctnnb1flox(ex3)/� Amhr2cre/� mice, which developed bilat-
eral granulosa cell tumors with enhanced severity com-
pared with either single conditional mutant. The pheno-
type was fully penetrant with dysplastic cells present in
newborn ovaries and death occurring before 9 wk of age,
a rapid course that likely precluded metastasis. Indeed,
surgical removal of the tumors from 6-wk-old females
prolonged survival and allowed for the emergence of pul-
monary metastases, indicating that the tumors were ca-
pable of malignant progression. Future dissection of the
precise mechanisms regulating tumorigenesis in these
models may shed new light on the pathogenesis of human
granulosa cell tumors.

Finally, in an exciting and provocative study, Hunts-
man and colleagues (587) used next generation sequenc-
ing technology to comprehensively profile the transcrip-
tomes of four human adult granulosa cell tumors. They
identified a single recurrent somatic missense mutation
(402C3G, C134W) in the FOXL2 gene. This variant was
confirmed to be present in 86 of 89 independent adult
granulosa cell tumors, three of 14 thecomas, and one of 10
juvenile granulosa cell tumors, but absent in multiple sex
cord-stromal tumors of other subtypes and numerous un-
related ovarian and breast cancers. As described earlier in
Section III, FOXL2 is a forkhead transcription factor that

is expressed in granulosa cells and essential for their dif-
ferentiation from squamous to cuboidal morphology dur-
ing the primordial to primary follicle transition. Previ-
ously characterized germline mutations in FOXL2 cause
type I BPES with POF (186), a phenotype recapitulated in
Foxl2 null female mice, which are sterile (187, 188). Al-
though the somatic mutation in the current study occurs
on the surface of the forkhead DNA-binding domain, the
impact on FOXL2 function remains unclear. Nonetheless,
the specificity of the mutation for adult granulosa cell tu-
mors holds promise for future investigation.

C. Germ cell ovarian cancer
Germ cell tumors represent 20–25% of ovarian neo-

plasms but only 1–2% of ovarian cancers (588). They
account for the majority of ovarian tumors in women
younger than 20 yr old. Unlike epithelial ovarian cancers,
germ cell tumors are frequently diagnosed at stage I dis-
ease, perhaps because they grow rapidly and provoke
symptoms early, secondary to capsular distension, hem-
orrhage, or necrosis (589). Also, women with advanced-
stage germ cell tumors often respond well to treatment.
From 1973 to 2002, the age-adjusted incidence of germ
cell ovarian cancer declined, and survival rates improved
significantly, with 5-yr relative survival exceeding
80% (589).

Ovarian germ cell tumors are classified as teratomas,
dysgerminomas (the female counterpart to the male sem-
inoma), endodermal sinus (yolk sac) tumors, choriocar-
cinomas, embryonal carcinomas, and mixed (468, 588).
Teratomas (from the Greek word “teras,” or monster) are
the most common type and are further divided into mature
(benign), immature (malignant), and monodermal or
highly specialized (struma ovarii and carcinoid tumors).
Mature cystic teratomas are pathologically intriguing be-
cause they contain adult tissues from all three germ layers
(ectoderm, mesoderm, endoderm), for example, skin,
hair, sebaceous glands, teeth, cartilage, bone, thyroid, and
neural tissue. Immature teratomas similarly contain de-
rivatives of all three germ layers, but with less differenti-
ation and closer resemblance to embryonic than adult tis-
sues (468). The majority of malignant ovarian germ cell
tumors are immature teratomas, dysgerminomas, or
endodermal sinus tumors (589).

Most basic research on germ cell tumorigenesis has cen-
tered around mature and immature teratomas. In women
and mice, ovarian teratomas arise from parthenogenetic
cleavage of oocytes; in other words, oocytes that begin to
form embryos in the absence of fertilization by sperm.
Cytogenetic analyses have revealed five mechanisms of
origin for human ovarian teratomas: meiosis I error; MII
error; duplication of the genome of a mature ovum; mi-
totic division of a premeiotic germ cell; and fusion of two
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ova (590, 591). Scattered reports of spontaneous ovarian
teratomas in mice began as early as 1920 (592). Although
the scarcity of these tumors has precluded detailed study
in mouse models, there are a few exceptions (summarized
in Table 14). Stevens and Varnum (592) observed that
strain LT/Sv females develop spontaneous ovarian tera-
tomas as early as 30 d of age, with 50% of females affected
by the time they are 90 d old. The penetrance jumps to
more than 80% in recombinant inbred lines LTXBO and
LTXBJ that were generated from intercrossing strains
LT/Sv and C57BL/6J (593, 594). This is curious because
C57BL/6J females are not predisposed to teratoma for-
mation. The phenotype is likely multigenic and includes a
semidominant LT/Sv allele at ovarian teratoma suscepti-
bility locus (Ots1) on chromosome 6 and modifier alleles
from C57BL/6J (593, 595).

The teratomas in LT/Sv and LT-related strains (here-
after referred to as LT) are mostly benign and stem from
parthenotes in the ovary that resemble normal embryos
until the blastocyst stage when they become disorganized
and form tumors (592). Eppig and colleagues (593, 596,
597) outlined the sequence of events leading from oocyte
to tumor in LT females, namely metaphase I arrest, par-
thenogenetic activation, completion of the first meiotic
division, development to the blastocyst stage, and tera-
toma formation. The mammalian oocyte normally ad-
vances without interruption from prophase I to metaphase
II by the time of ovulation, remaining arrested in meta-
phase II until fertilization activates the egg and triggers
completion of the second meiotic division. LT oocytes fre-
quently deviate from this paradigm and arrest at meta-
phase I instead of metaphase II; when this occurs in the
ovary (i.e., before ovulation), these oocytes are vulnerable
to tumorigenesis (593). Metaphase I arrest in LT oocytes
is initiated by sustained activation of the spindle assembly
checkpoint, possibly due to meiotic spindle abnormalities

or intrinsic defects in the checkpoint machinery (598). Al-
though the checkpoint is eventually inactivated, the delay
allows for premature buildup of CSF to levels that main-
tain metaphase I arrest (599–602). In normal oocytes that
are not delayed, CSF does not reach adequate levels to
induce arrest until metaphase II. The mechanisms respon-
sible for parthenogenetic activation and teratoma devel-
opment subsequent to metaphase I arrest in LT oocytes
remain unknown.

As mentioned, in normal mammalian oocytes CSF is
essential for metaphase II arrest by the time of ovulation.
An integral component of CSF is MOS, a serine/threonine
kinase with MAPK-stimulatory activity. Whereas meta-
phase I arrest predisposes LT oocytes to form teratomas,
destabilization of metaphase II arrest leads to partheno-
genetic activation of oocytes and teratoma development in
Mos knockout females (453, 454, 603, 604). The terato-
mas are usually benign and histologically similar to those
in LT mice but appear with lower frequency and later
onset; specifically, 30% of Mos�/� females have tumors
between 4 and 8 months of age (604). Hirao and Eppig
(594) noted that this incidence is peculiarly low given the
large proportion of mutant oocytes that become parthe-
nogenetically activated. However, in contrast to LT par-
thenotes, Mos�/� parthenotes rarely progress to the blas-
tocyst stage, and this might explain their decreased
propensity to form tumors (594).

In light of the substantial cross talk between oocytes
and somatic cells, it is not surprising that several pieces of
evidence have revealed connections between granulosa
cells and the development of teratomas. In LT strains, the
primary lesions responsible for tumor formation are in-
trinsic to the oocyte; nonetheless, cumulus cells contribute
to the maintenance of metaphase I arrest, induction of
parthenogenesis, and eventual progression to metaphase
II (605). LT ovaries also contain numerous abnormal fol-

TABLE 14. Mouse models of germ cell ovarian cancer

Model Phenotype Ref.

LT/Sv and LT-related strains (e.g., LTXBO, LTXBJ) Abnormal metaphase I arrest; spontaneous ovarian
teratomas as early as 30 d of age; 50–80% penetrance
by 90 d of age

592, 593

Mos�/� (Moloney sarcoma oncogene knockout) Destabilization of metaphase II arrest; 30% have teratomas
between 4 and 8 months of age

453, 454, 603, 604

Inh�-Bcl2 (transgenic; mouse inhibin �
promoter driving expression of Bcl2)

Mature cystic teratomas in 4 of 20 females 607

TG.KD (transgenic; imprinted transgene
integrated on chromosome 8 of FVB/N strain)

Unilateral or bilateral mature and immature teratomas with
occasional metastases to lymph nodes and lungs; 15–
20% of hemizygous females affected; dominant effect
secondary to alterations of endogenous gene(s) at
insertion locus

822

Ubiquitin C-hCG�� (double transgenic; human
ubiquitin C promoter driving expression of
human chorionic gonadotropin �- and �-
subunits)

Teratomas; precocious puberty; enhanced steroidogenesis;
infertility

823
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licles comprised of a single layer of granulosa cells sur-
rounding a disproportionately large oocyte (606). Parthe-
nogenetic embryos that form teratomas are usually found
in these granulosa cell-deficient follicles, and the presence
of these follicles is necessary but insufficient for germ cell
tumorigenesis in LT females. In another mouse model,
overexpression of the antiapoptotic protein BCL2 in ovarian
somatic cells resulted inmature cystic teratomas in fourof20
transgenic females (607). The predominant phenotype of
these transgenic mice is prolonged somatic cell survival and
enhancedfolliculogenesis,anditwashypothesizedthatpara-
crine signals from mutant somatic cells influence oocyte dif-
ferentiation and in some instances steer oocytes toward tu-
morigenesis. On the other hand, overexpression of BCL2 in
mouse oocytes delays spontaneous apoptosis of oocytes in
culture, but does not cause germ cell tumors (608).

D. Small RNAs in ovarian physiology and cancer
The discovery of small noncoding RNAs that direct

gene silencing has unveiled new dimensions in reproduc-
tive physiology and disease. There are three major classes
of silencing RNAs encoded in the mammalian genome:
microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs),
and siRNAs. Each of these small RNA categories has
unique structural and functional characteristics (summa-
rized in Table 15).

1. Small RNAs in ovarian physiology
As illustrated in Fig. 7, miRNAs are transcribed by

RNA polymerase II as long primary transcripts that are
processed into approximately 70-nt stem-loop precursors
by a complex that includes the ribonuclease (RNase) III
DROSHA and the RNA-binding protein DGCR8. Precur-
sor miRNAs are exported from the nucleus to the cyto-

plasm where they are cleaved by a sec-
ond RNase III, DICER (Dicer1), to
produce a 21- to 23-nt duplex structure,
one strand of which is preferentially in-
corporated into the RNA-induced si-
lencing complex (RISC). The RISC
guides pairing of the mature miRNA
with complementary sequences in the 3�
UTR of target mRNA transcripts. Per-
fect complementarity between a
miRNA and its mRNA target causes
mRNA degradation through endonu-
cleolytic cleavage (reviewed in Ref.
609). Although this is often the scenario
in plants, target pairing in animal cells is
frequently imperfect and also down-
regulates gene expression by repressing
translation, possibly at the initiation or
elongation steps, and by accelerating
mRNA decay through removal of the
poly(A) tail (609). In a complex twist to
the miRNA dogma, recent evidence in-
dicates that miRNAs may also activate
translation under rare conditions (610).
To date, there are approximately 700
human and 500 mouse miRNAs, and
many are evolutionarily conserved.

FIG. 7. Dicer-dependent synthesis of miRNAs and endogenous siRNAs. A, miRNA genes are
transcribed by RNA polymerase II to generate primary transcripts. These transcripts are
cropped by the DROSHA/DGCR8 Microprocessor complex to yield approximately 70-nt
precursor miRNAs, which are exported from the nucleus to the cytoplasm by Exportin 5.
There, the DICER complex processes the precursor into a 21- to 23-nt duplex consisting of the
mature miRNA and its antisense. The mature miRNA is preferentially loaded into the miRNA-
induced silencing complex (miRISC), which mediates pairing with complementary sequences
in the 3� UTR of target mRNA transcripts, leading to mRNA degradation and translational
repression. The specificity of targeting is especially dependent on nucleotides 2–8 of the
mature miRNA, known as the seed sequence. B, Endogenous siRNAs are synthesized from
long, double-stranded RNA precursors derived from repetitive sequences, sense-antisense
pairs, or inverted repeats that form hairpins. It is unknown whether endogenous siRNA
precursors use Exportin 5 to translocate to the nucleus; however, once in the cytoplasm they
are processed by the DICER complex into 21- to 23-nt duplexes. Mature siRNAs are
incorporated into the siRNA-induced silencing complex (siRISC), which is similar to the miRISC
but may also have unique components. Endogenous siRNAs function in transposon
suppression and other functions such as pseudogene regulation of founding source mRNAs.

TABLE 15. Characteristics of mammalian small RNAs

Class
Length

(nucleotides) Synthesis Function

miRNA 21–23 DICER-dependent Regulation of translation and stability of target mRNAs
siRNA 21–23 DICER-dependent Transposon suppression and pseudogene regulation of

founding source mRNAs
piRNA 24–31 DICER-independent feed-forward amplification loop Transposon regulation and unknown functions
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Collectively, miRNAs are predicted to directly regulate
over 60% of human protein-coding genes (611). For sev-
eral years, they were the only small RNAs that had been
identified in mammals.

In 2006, five laboratories independently reported the
discovery of mammalian piRNAs in mouse and rat testes
(612–616). PiRNAs (24–31 nt) are longer than miRNAs
and siRNAs (21–23 nt), consistent with the observation that
piRNAs are generated without DICER through a feed-for-
ward amplification loop that is still under investigation (re-
viewed in Refs. 617–619). There are estimated to be over
100,000 PiRNAs in the mammalian genome; they are en-
coded in relatively few genomic clusters and in a strand-spe-
cific manner within each cluster. Although the genomic lo-
cations of piRNA clusters are conserved between species,
specificpiRNAsequencesarepoorly conserved.UnlikemiR-
NAs and siRNAs, which interact with Argonaute family
proteins in the RISC, piRNAs interact with Piwi family
proteins (MILI, MIWI, and MIWI2; also known as PIWIL2,
PIWIL1,andPIWIL4,respectively) (reviewedinRef.620). In
mice, homozygous deletion of individual Piwi proteins
causes spermatogenesis arrest and male sterility (621–623).
Furthermore, Mili and Miwi2 knockout males demonstrate
activation of transposable elements, supporting the hypoth-
esis that piRNAs suppress transposon mobilization in the
male germline (623, 624). Interestingly, the majority of
mammalian piRNAs do not map to annotated repeats
such as transposons and retrotransposons, suggesting
other potential functions of the piRNA pathway including
epigenetic regulation and translational control (617).

If piRNAs guard the male germline against transposon
activation, what mechanisms similarly protect the female
germline? Initially, only a handful of piRNAs had been
cloned from whole mouse ovary, and it was unknown
which were expressed in oocytes (625). Moreover, MILI is
the only Piwi family protein detected in oocytes (626), but
Mili knockout females are fertile (622), implying that
piRNAs are not the only factors that maintain stability of
the oocyte genome. Watanabe et al. (616) identified a
novel class of oocyte-expressed small RNAs known as en-
dogenous siRNAs. Similar to miRNAs, siRNAs are pro-
cessed by DICER into 21- to 23-nt species that function in
the RISC. However, unlike miRNAs, which have short
stem-loop precursors, siRNAs are synthesized from
longer double-stranded RNA precursors that are derived
from retrotransposons and other sources.

The initial data provided a glimpse into the siRNA pop-
ulation in the female germline and motivated two inde-
pendent laboratories to comprehensively profile the
gamut of small RNAs in mouse oocytes using deep se-
quencing technology (626, 627). In addition to detecting
annotated miRNAs, they uncovered a broad MILI-bound

piRNA population resembling piRNAs expressed in early-
stage spermatocytes. Even more compelling was the iden-
tification of new endogenous siRNAs that are abundantly
expressed. Most of these siRNAs are predicted to target
specific retrotransposons that are also suppressed by
piRNAs, a functional redundancy that could explain the
absence of a phenotype in Mili knockout females, al-
though retrotransposons preferentially targeted by either
piRNAs or siRNAs were observed as well. Apart from ret-
rotransposons, double-stranded RNA precursors of siRNAs
are also generated from inverted repeat structures that
form hairpins, the pairing of overlapping transcripts that
are oppositely oriented, and the pairing of a protein-cod-
ing mRNA and an antisense transcript from its corre-
sponding pseudogene. This latter example is most intrigu-
ing and suggests that mammalian pseudogenes, previously
relegated to the domain of nonfunctional “junk DNA,”
instead regulate the expression of their founding source
mRNAs through the siRNA pathway.

Because DICER is required for the synthesis of both
siRNAs and miRNAs, conditional deletion of Dicer1 in
mouse oocytes offered additional insight into the func-
tional roles of these small RNA pathways in the female
germline (628, 629). Dicer1 Zp3-Cre cKO females are
sterile despite the observation that their ovaries are histo-
logically normal and responsive to gonadotropins. Fur-
ther investigation of mutant oocytes highlighted defects in
spindle organization and chromosome cohesion that
block completion of meiosis I. Microarray profiling of
DICER cKO oocytes revealed up-regulation of genes in-
volved in microtubule dynamics and increased expression
of maternal transcripts that are normally degraded during
meiotic maturation, suggesting that DICER-dependent
small RNA pathways foster oocyte maturation by accel-
erating mRNA turnover and regulating genes essential for
spindle integrity. MiRNAs predicted to target genes in-
volved in microtubule-based processes include mir-103,
let-7d, mir-16, mir-30b, and mir-30c. Also, the complete
set of up-regulated genes was significantly enriched in pu-
tative binding sites for mir-495, mir-126, and mir-302c*.

Transposon levels and oocyte transcripts with trans-
poson sequences embedded in their 3� UTRs are increased
in DICER cKO oocytes; in particular, repetitive sequences
such as short interspersed nuclear elements (SINEs) and
mouse transcript subfamilies B and C (MTB/MTC) are
elevated (626–628). MTB and MTC are almost exclu-
sively regulated by endogenous siRNAs and not piRNAs,
indicating that transposon activation in mutant oocytes is
secondary to loss of DICER-dependent siRNA biogenesis
(627). Putative targets of pseudogene-derived siRNAs are
also increased in the absence of DICER, for example, oo-
genesin 4 (Oog4), histone deacetylase 1 (Hdac1), and Ran
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GTPase activating protein 1 (Rangap1). The regulatory
target of RANGAP1 is the RAS oncogene family member
RAN, which is important for microtubule organization in
mouse oocytes (630). Interestingly, mir-30b and mir-30c
are predicted to target Ran, and accordingly, Ran expres-
sion is increased in the DICER knockout (628). The pu-
tative silencing of Ran by miRNAs and Rangap1 by
siRNAs leads to speculation that miRNA and siRNA
pathways may coordinately regulate related functional
networks that are essential for oocyte maturation.

Whereas current evidence suggests that mammalian
piRNAs are critical primarily in the male germline, and
roles for endogenous siRNAs may be restricted to oocytes
and ES cells, miRNA expression is ubiquitous and essen-
tial for the proper function of germ cells and somatic cells
(summarized in Table 16). Conditional deletion of Dicer1
in various somatic cells and tissues of mice results in dra-
matic phenotypes that are predominantly attributed to
loss of specific miRNAs, albeit dysfunction caused by dis-
ruption of siRNA biogenesis cannot be definitively ex-
cluded. To investigate global roles for miRNA and siRNA
pathways in somatic cells of the female reproductive tract,
our laboratory and others generated Dicer1 cKO mice
using Amhr2-Cre (631–634). Although Amhr2-Cre is
commonly used for studying gene function in ovarian
granulosa cells, it is also expressed postnatally in the
smooth muscle and stromal cells of the oviducts and
uterus, and embryonically in the mesenchyme of the de-
veloping Müllerian ducts that give rise to these structures
(260, 505–507).Dicer1 Amhr2-Cre females are sterile and
have multiple reproductive defects, including prominent
bilateral oviductal cysts that act as a reservoir for sper-
matozoa and oocytes and prevent embryos from transiting
the oviduct to enter the uterus for implantation. The uteri
of mutant females demonstrate normal decidualization
(631); however, they are shorter and have fewer endome-
trial glands, an observation that correlates with implan-
tation defects after embryo transfer experiments (633).
Mutant ovaries are histologically normal except for a sub-

tle but significant increase in granulosa cell apoptosis. In
response to gonadotropin stimulation, immature cKO fe-
males ovulate significantly fewer oocytes, have oocytes that
are trapped in luteinized follicles, and show a marked de-
creased in theproportionofoocytes thatprogress to the two-
cell stage after overnight culture. Taken together, these ob-
servations suggest that DICER is essential for proper
development of the oviducts and uterus, and that DICER
expression in granulosa cells regulates ovulation and indi-
rectly contributes to oocyte quality because of communication
between somatic and germ cell compartments of the ovary.

One possible explanation for the ovulatory defects we
observed may be aberrant LH signaling in granulosa cells
upon loss of DICER. Fiedler et al. (635) compared miRNA
expression profiles in granulosa cells isolated from wild-
type mice pharmacologically stimulated with PMSG alone
or PMSG followed by hCG. Of the 212 miRNAs detected,
13 miRNAs were differentially expressed as early as 4 h
after hCG treatment. The expression levels of two up-
regulated miRNAs, mir-132 and mir-212, were also in-
creased in granulosa cell cultures treated with cAMP, a
principal second messenger downstream of LH. Notably,
these two miRNAs share identical seed sequences and
hence may target some of the same transcripts. Although
specific interactions between granulosa cell miRNAs and
mRNAs remain to be identified and validated, these data
demonstrate that LH signaling alters granulosa cell
miRNA expression, which in turn might influence the reg-
ulation of genes that govern ovulation.

It appears that granulosa cell miRNA expression may be
dispensable for luteinization because we did not observe lu-
teinization defects after deleting DICER in granulosa cells
(631). However, miRNAs may indirectly affect CL function
through roles in angiogenesis. Otsuka et al. (636) created a
viable mouse model with hypomorphic DICER expression
and reduced miRNA production. They reported female ste-
rility secondary to luteal insufficiency, characterized by
lower serum progesterone levels and decreased ovarian ex-
pression of Lhcgr, Cyp11a1, and Prlr after copulation. Mu-

TABLE 16. Dicer mutations with female reproductive phenotypes

Mouse model Phenotype Ref.

Dicer1 Zp3-Cre (Dicer cKO in oocytes) Sterile; defects in spindle organization and chromosome
cohesion block completion of meiosis I; increased
expression of genes involved in microtubule dynamics,
maternal transcripts normally degraded during meiotic
maturation, transposons, and putative targets of
pseudogene-derived siRNAs

626–629

Dicer1 Amhr2-Cre (Dicer cKO in ovary, oviduct, uterus) Sterile; bilateral oviductal cysts sequester embryos and prevent
transit to the uterus; decreased ovulation; uteri decidualize
normally but are shorter with fewer endometrial glands and
demonstrate implantation defects after embryo transfer
experiments

631–634

Dicer1 hypomorphic mutation Sterile; luteal insufficiency due to diminished vascularity in CLs 636
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tant females showed diminished vascularity in their CLs,
along with up-regulation of the antiangiogenic factors tissue
inhibitor of metalloproteinase 1 (TIMP1) and platelet
factor 4 (PF4). The Timp1 3� UTR has binding sites for
two miRNAs, mir-17–5p and let-7b, which decreased ex-
pression of a luciferase reporter fused to the Timp1 3� UTR
and also reduced TIMP1 activity in cultured endothelial
cells. Intrabursal injection of wild-type mice with inhibi-
tors against these two miRNAs increased TIMP1 levels
and impaired CL angiogenesis, whereas combined over-
expression of mir-17–5p and let-7b in hypomorphic
DICER females suppressed TIMP1 levels and improved
CL vascularity. Nonetheless, restoration of these two
miRNAs failed to maintain pregnancy in DICER mutants,
thus highlighting potential roles for other miRNAs.

2. Misregulation of miRNAs in ovarian cancer
The precise functions of ovarian miRNAs remain to be

delineated; however, studies in a wide range of tissues and
cell types indicate that miRNAs guide fundamental cellu-
lar processes such as proliferation, differentiation, and ap-
optosis. Hence, it is not surprising that aberrations in
miRNA expression have been observed in a variety of hu-
man cancers. MiRNA profiles reflect the developmental
lineages and differentiation states of tumors, sometimes
with greater accuracy than mRNA profiles (637). During
mammalian development, a global rise in miRNA levels
correlates with increasing cellular differentiation. In con-
trast, cancers generally demonstrate an overall reduction
in miRNA expression that corresponds to a less differen-
tiated state. Searching for a causal relationship between
these observations, Kumar et al. (638) globally repressed
miRNA levels in mouse and human cancer cell lines using
shRNA-mediated knockdown of three factors required
for miRNA processing: DROSHA, DGCR8, and DICER.
With knockdown of these gene products, the cells showed
increased proliferation, improved colony formation, and
better migration, and also formed tumors more rapidly
and with greater invasive properties in nude mice. Nota-
bly, impaired miRNA processing enhanced tumorigenesis
only in cells that were already transformed but was insuf-
ficient to cause de novo transformation, suggesting that
decreases in miRNA expression modify rather than initi-
ate carcinogenesis. Although these experiments broadly
implicate miRNAs as tumor suppressors, either through
direct targeting or indirect regulation of oncogenes, other
studies highlight roles for specific miRNAs as oncogenes
such that their overexpression accelerates tumorigenesis,
clearly indicating that these small RNAs have dual func-
tions in cancer.

Potential mechanisms of miRNA deregulation in can-
cer are diverse and include defects in miRNA processing
(638), DNA copy number abnormalities (639–641), epi-

genetic alterations (641, 642), mutations in the miRNA or
its mRNA binding site (643), and aberrant transcription
(644). Using microarray profiling, a handful of studies
have identified genome-wide alterations in miRNA ex-
pression in primary epithelial ovarian tumors and estab-
lished ovarian cancer cell lines. This work has focused
predominantly on the most common subtype, serous ovar-
ian carcinoma, presumably because these tumors are more
readily procured, although a few endometrioid and clear
cell ovarian cancers have also been profiled. Both Iorio et
al. (645) and Nam et al. (646) found up-regulation of
mir-141, mir-200a, mir-200b, mir-200c, and mir-21 in
ovarian cancers compared with normal ovary, down-reg-
ulation of mir-99a, mir-100, mir-125a, mir-125b, mir-
143, mir-145, mir-214, and let-7 family members, and
aberrations unique to their respective studies. Similarly,
Yang et al. (647) observed up-regulation of mir-200a and
down-regulation of mir-100, mir-125b, and let-7 family
members in their analysis of serous ovarian cancers com-
pared with HIOSE118, a human OSE cell line immortal-
ized with SV40 large TAg (648). On the other hand,
Dahiya et al. (649) reported changes in the opposite di-
rection for mir-99a, mir-100, mir-141, mir-200a, and
mir-21 when comparing ovarian cancers to HOSE-B, a
human OSE cell line immortalized with human papillo-
mavirus genes E6 and E7. These discrepancies underscore
a major challenge in dissecting the molecular signature of
ovarian cancer: the choice of “normal” control dramatically
influences the outcome of genome-wide expression studies.

Zorn et al. (650) systematically illustrated this problem
by comparing the gene expression profiles between a com-
mon set of serous ovarian carcinomas and five different
control groups: OSE brushings; whole ovary; short-term
cultures of normal OSE (NOSE); SV40 large TAg-immor-
talized OSE cell lines (IOSE); and telomerase-immortal-
ized OSE cell lines (TIOSE). For each cancer and normal
pairing, the majority of differentially expressed genes were
unique to that particular comparison, with no gene
present in all five comparisons. Additionally, hierarchical
clustering of the controls revealed distinct profiles for each
group, with the first major branch point separating the
cultured samples (NOSE, IOSE, TIOSE) from those that
were not cultured (OSE brushings and whole ovary),
pointing to the substantial impact of in vitro manipulation
on OSE-derived cells. Taken together, these data em-
phasize that candidate genes and miRNAs that emerge
from profiling experiments should be meticulously ex-
amined in independent functional assays to evaluate
their actual relevance to cancer formation and progres-
sion. To date, specific roles for only a few miRNAs have
been described in epithelial ovarian cancer (summarized
in Table 17).
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Given the frequent mutation of p53 in high-grade hu-
man ovarian carcinomas, Corney et al. (651) compared
miRNA expression profiles between primary cultures of
wild-type and p53-deficient mouse OSE cells to screen for
miRNAs that are regulated in a p53-dependent manner.
Mir-34b and mir-34c were significantly down-regulated
upon p53 inactivation and are transcribed from a single
locus containing an upstream p53 binding site that is con-
served between mouse and human. Both miRNAs are
markedly decreased in a p53 null human ovarian cancer
cell line (SKOV-3) compared with short-term cultures of
human OSE cells, and two profiling studies reported lower
levels of mir-34c in primary serous ovarian carcinomas
compared with normal ovary (645) or an immortalized
OSE cell line (649). Overexpression of mir-34b and mir-
34c in p53 null mouse OSE cell lines suppressed their pro-
liferation and anchorage-independent growth (651).
These data are consistent with five independent studies
demonstrating activation of mir-34 family members by
p53, with mir-34 overexpression inducing cell cycle arrest
or apoptosis depending on the cellular context (652–656).
Accordingly, predicted mir-34 targets are involved in cell
cycle control, apoptosis, and DNA repair, and validated
targets include BCL2, CDK4/6, cyclin E2 (CCNE2), and
met proto-oncogene (MET) (652, 654, 657). Aside from
ovarian cancer, reduced mir-34 expression has been re-
ported in neuroblastoma (658), pancreatic cancer (653),
and non-small cell lung cancer (652). Thus, the mir-34
family is an integral effector of the p53 tumor suppressor
network, and the loss of mir-34 expression, either second-
ary to p53 mutation or independently in the case of p53
wild-type tumors, may be a driving force in ovarian and
other cancers.

One of the hallmarks of tumor progression is epithelial-
to-mesenchymal transition (EMT), a complex process
characterized by loss of E-cadherin-mediated cell-cell ad-
hesion and polarity, and by acquisition of vimentin ex-
pression and the ability to migrate and invade, ultimately
facilitating metastasis. The zinc finger E-box binding ho-
meobox transcription factors ZEB1 and ZEB2 promote

EMT by repressing expression of E-cadherin and other
master regulators of epithelial polarity (659, 660). The
ratio of ZEB2/E-cadherin expression is higher in stage IV
compared with stage III ovarian carcinomas and may pre-
dict poor overall survival (661). Several independent stud-
ies demonstrated that mir-200 family members (mir-200a,
mir-200b, mir-200c, mir-141, mir-429) and mir-205 di-
rectly target ZEB1 and ZEB2 and prevent EMT induction
(659, 662, 663). In the National Cancer Institute panel of
human cancer cell lines (NCI60), which includes several
ovarian cancer lines, mir-200 members are selectively ex-
pressed in E-cadherin-positive and vimentin-negative
cells, further indicating that these miRNAs are strong de-
terminants of the epithelial phenotype (659). Moreover,
Park et al. (659) found a significant correlation between
mir-200c and E-cadherin expression in primary serous
ovarian carcinomas. These data raise the possibility that
loss of mir-200 family members may contribute to ovarian
cancer metastasis, but counterintuitive to this hypothesis
is the observation that higher levels of mir-200 family
miRNAs were significantly correlated with shorter overall
survival in women with serous ovarian carcinoma (646).
A formal comparison of mir-200 expression and function
between primary and metastatic ovarian lesions has not
been done.

Loss of function mutations in PTEN are characteristic
of endometrioid ovarian carcinomas (664); however, re-
duced or absent PTEN expression has been described in
other ovarian cancer subtypes with intact PTEN alleles
(665), hinting at alternate mechanisms of PTEN inactiva-
tion. Yang et al. (647) showed that the PTEN 3� UTR is
targeted by mir-214, which is up-regulated in ovarian can-
cers [although two other studies (645, 646) reported de-
creased mir-214 expression] and inversely correlated with
PTENprotein levels.Overexpressionofmir-214 inhuman
ovarian cancer cell lines reduced PTEN expression and
conferred resistance to cisplatin-induced apoptosis by ac-
tivating the AKT pathway, whereas knockdown of mir-
214 sensitized cells to cisplatin (647). Although many
women with ovarian cancer are initially responsive to ad-

TABLE 17. MiRNAs with putative functions in epithelial ovarian cancer

MiRNA
Select validated

targets Potential role of miRNA Ref.

mir-34a; mir-34b; mir-34c BCL2; CDK4; CDK6;
CCNE2; MET

Activated by p53; loss of function mutations in
p53 may decrease mir-34 expression

651

mir-200a; mir-200b; mir-200c; mir-141;
mir-429; mir-205

ZEB1; ZEB2 Repress epithelial-to-mesenchymal transition 659

mir-214 PTEN Overexpression promotes chemoresistance 647
mir-199a-5p IKK� (IKBKB) Loss of function activates NF-�B pathway,

which may foster a protumor
microenvironment

667

let-7 family KRAS; HRAS; MYC;
HMGA2

Loss of function may promote tumorigenesis;
let-7i knockdown increases chemoresistance

666, 677–680
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juvant chemotherapy with cisplatin, the majority of pa-
tients develop recurrent disease that is drug-resistant. Out
of 11 patients with recurrent ovarian cancer, eight had low
or undetectable mir-214 levels in their primary tumors but
elevated mir-214 expression in their recurrent lesions, sug-
gesting that mir-214 may promote chemoresistance in
ovarian cancer. Notably, an independent analysis detected
higher mir-214 expression in primary ovarian carcinomas
from women with poor responses to chemotherapy com-
pared to those with greater chemosensitivity (666).

Chen et al. (667) identified another miRNA-mediated
pathway that may be a critical regulator of chemorespon-
siveness in ovarian cancer. Nuclear factor-�B (NF-�B)
activation directs the constitutive secretion of proin-
flammatory cytokines that promote tumor progression
by stimulating cell proliferation, inducing antiapoptotic
proteins, and enhancing chemoresistance. Using ovarian
cancer cell lines and primary cells isolated from malignant
ovarian cancer ascites and solid tumors, they demon-
strated that NF-�B pathway activity is directly dependent
on the expression of inhibitor of kappa light polypeptide
gene enhancer in B-cells, kinase beta (IKK�), part of a
protein complex that phosphorylates and degrades an in-
hibitor of NF-�B. Whereas NF-�B activity varied with
IKK� protein levels, IKK� mRNA expression was rela-
tively constant, indicating posttranscriptional regulation
of IKK�. Microarray profiling revealed that the expres-
sion of mir-199a was inversely correlated with NF-�B ac-
tivity, and further experiments showed direct targeting of
IKK� by mir-199a. Therefore, low mir-199a expression
leads to up-regulation of IKK� and contributes to NF-�B
pathway activation, potentially fostering a protumor micro-
environment. Interestingly,mir-199alevelswerelowerinovar-
ian cancers compared with normal ovary (645), but higher in
ovarian cancers compared with an IOSE cell line (649).

To pinpoint additional miRNAs that modulate chemore-
sponsiveness, Sorrentino et al. (668) analyzed differences in
miRNA expression between various human ovarian cancer
cell lines that are sensitive or resistant to cisplatin and pac-
litaxel. Three miRNAs (mir-30c, mir-130a, mir-335) were
consistently down-regulated in the drug-resistant cell lines,
and each miRNA has a unique set of predicted target genes.
Although the levels of these miRNAs were not manipulated
to show a causative role in drug response, reporter assays
demonstrated that mir-130a targets colony stimulating
factor 1 (CSF1). The overexpression of CSF1 and its
receptor denotes poor prognosis in ovarian and breast
cancers (669 – 671). CSF1 mediates chemoresistance of
breast cancer cells and promotes invasion and metas-
tasis of ovarian cancer cells in culture and in a xenograft
model (672– 674). Although it was previously demon-
strated that the CSF1 3� UTR contains an AU-rich ele-

ment that binds glyceraldehyde-3-phosphate dehydro-
genase and controls mRNA stability (675, 676), this is
the first report indicating posttranscriptional regula-
tion of CSF1 by the miRNA pathway.

Extending beyond the profiles of drug-resistant cell
lines, Zhang and colleagues (666) identified miRNAs that
are differentially expressed between primary ovarian can-
cers from women with chemosensitive and chemoresistant
disease. Among the top miRNAs comprising a distinct
signature, let-7i was dramatically reduced in chemoresis-
tant tumors, and lower let-7i levels were significantly cor-
related with shorter progression-free survival. Knock-
down of let-7i in human ovarian cancer cell lines increased
resistance to cisplatin, whereas let-7i overexpression en-
hanced chemosensitivity. These data are corroborated by
a wealth of evidence indicating that let-7 family members
are potent tumor suppressors in a variety of human can-
cers. Let-7 is a chief regulator of cell proliferation path-
ways and directly represses known oncogenes such as
KRAS (677), HRAS (677), MYC (678), and HMGA2
(HMG AT-hook 2) (679, 680). HMGA2 is an architec-
tural transcription factor that is undetectable in normal
OSE but is expressed in ovarian cancer (681–683). Silenc-
ing of HMGA2 in ovarian cancer cell lines suppressed
growth and increased apoptosis in culture and signifi-
cantly reduced tumor burden in nude mice (683). HMGA2
expression is inversely correlated with let-7 expression in
the NCI60 cancer cell lines and in primary ovarian carci-
nomas (681, 682). Patients with high HMGA2 and low
let-7 in their tumors have worse progression-free survival
compared to women with a low HMGA2/let-7 expression
ratio, suggesting that this ratio may be an important pre-
dictor of outcome (681, 682).

Let-7 is among a group of miRNAs that are absent in
the early embryo but then induced in later stages of de-
velopment and in adult tissues (682). It has been hypoth-
esized that these miRNAs in part control the onset and
maintenance of cell differentiation by suppressing the ex-
pression of embryonic proteins, including HMGA2. On
the other hand, the loss of let-7 might allow reexpression
of the embryonic program and transformation to a de-
differentiated state that drives tumorigenesis. Indeed, re-
duced let-7 levels determine key properties of breast can-
cer stem cells, namely self-renewal (through the regulation
of HRAS) and multipotent differentiation (through the
regulation of HMGA2), and these findings may have
broad implications for other human cancers (684). As
mentioned in Section II, the posttranscriptional matura-
tion of let-7 primary transcripts is suppressed by the plu-
ripotent factor LIN28 and its homolog, LIN28B (31–35).
In agreement with the discussion above, high LIN28B
expression is significantly associated with increased risk of
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disease progression and death in women with epithelial
ovarian cancer (685). Furthermore, consistent with roles
for LIN28 in PGC development and oncogenesis, LIN28/
LIN28B expression is a reliable marker for testicular germ
cell tumors (30), and these proteins may likewise be in-
volved in the pathogenesis of germ cell ovarian cancers,
although this has not yet been explored.

3. MiRNAs as prognostic and diagnostic biomarkers
The aforementioned studies highlight emerging roles

for miRNAs in the pathogenesis of ovarian cancer, includ-
ing regulating the response to chemotherapy and the po-
tential to metastasize. If aberrations in miRNA function
significantly influence tumor behavior, it follows that the
expression patterns of specific miRNAs may be powerful
prognostic indicators for cancer patients. For women with
ovarian cancer, the identification of miRNA-related bi-
omarkers is still in its infancy, but the early data have
revealed several candidates whose expression in ovarian
tumors portends prolonged (�) or diminished (�) sur-
vival, for example, let-7(�), mir-200(�), mir-93(�), and
the eight miRNAs(�) clustered in the Dlk1-Gtl2 domain,
a putative tumor suppressor locus on human chromosome
14 (641, 646, 666). These eight miRNAs are mir-337,
mir-368, mir-376a, mir-376b, mir-377, mir-410, mir-432,
and mir-495 (641).

As described earlier, there is a global reduction in
miRNA expression in a variety of human cancers, sug-
gesting deregulation of the miRNA processing machinery.
Lower mRNA and protein levels of DROSHA and DICER
in advanced-stage, poorly differentiated epithelial ovarian
carcinomas compared with benign OSE specimens have
been reported (686). Low DROSHA expression signifi-
cantly correlated with suboptimal surgical cytoreduction,
whereas low DICER1 expression significantly associated
with advanced tumor stage and was an independent pre-
dictor of shorter survival. These data conflict with other
evidence demonstrating similar mRNA and protein levels
of DROSHA and DICER between early- and late-stage
epithelial ovarian cancers, without any correlation to pa-
tient survival (641). A third study found that there were no
significant differences in the expression of miRNA pro-
cessing enzymes in multiple types of human cancer (637).
Hence, the utility of these factors as prognostic markers
remains inconclusive. Finally, a fourth study identified
lower expression of eukaryotic translation initiation fac-
tor 6 as an independent predictor of reduced disease-free
survival, but not overall survival, in women with serous
ovarian carcinoma (687). Eukaryotic translation initia-
tion factor 6 associates with the RISC complex and is a key
mediator of miRNA-dependent gene silencing (688), sug-
gesting that global impairment of miRNA function may
contribute to tumor recurrence.

The stark contrast in 5-yr survival rates for women
diagnosed with advanced stage ovarian cancer (30%)
compared with localized disease (90%) emphasizes the
crucial importance of early detection (467). Recently, sev-
eral laboratories demonstrated that tumor-derived miRNAs in
serum or plasma are stable markers for cancer detection
(689, 690), an exciting discovery considering that miRNA
expression profiles classify human cancers with high
accuracy (637). The mechanisms by which circulating
miRNAs are protected from endogenous RNase activity
remainunknown,butmayinvolvethepackagingofmiRNAs
into exosomes, vesicles of endocytic origin that are re-
leased into the extracellular environment (691, 692). A
pilot comparison of serum miRNA expression between
healthy women and patients newly diagnosed with epi-
thelial ovarian cancer before treatment revealed up-regu-
lation (mir-21, mir-92, mir-93, mir-126, mir-29a) and
down-regulation (mir-155, mir-127, mir-99b) of specific
miRNAs in cancer patients (693). These preliminary ob-
servations are encouraging and warrant further investiga-
tion on a larger scale, especially to determine whether dif-
ferentially expressed miRNAs are clinically informative in
early stage disease. Indeed, the development of minimally
invasive miRNA screens to detect and monitor ovarian
cancer would be revolutionary.

V. The Assisted Reproductive Technology
Laboratory

Infertility is a worldwide problem for individuals wishing
to reproduce, affecting about 15% of couples and causing
significant economic, social, and psychological distress for
the childless couple (694, 695). Approximately 9% of
women in the 20- to 44-yr-old age group experience a
12-month period where they are unable to become preg-
nant (696). Luckily for these women, assisted reproduc-
tive technologies (ART) have been developed to help them
achieve their dreams of becoming mothers. In this section,
we will briefly describe the advances that have been made
in the ART laboratory and clinic that have revolutionized
reproduction. For a historical perspective on gonadotro-
pin use in the clinic, the reader is referred to a 2004 article
by Lunenfeld (697). For a more extensive review of the
development of ovarian stimulation agents and their use in
the clinic, the reader is referred to a 2006 review in this
journal by Macklon et al. (698). In the current review, we
will give sufficient background to bring the reader up to
speed and give an update on key advances in the last few
years that we believe will have an important impact on the
advancement of female fertility.
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A. Hormonal preparations
The first “test tube baby,” Louise Brown, celebrated

her 31st birthday this year (699). During the past three
decades, there have been many procedural changes that
have come about to enhance the success rate of ART.
Whereas Louise Brown was conceived through a natural
ovulatory cycle (699), within a few years, clomiphene ci-
trate and urinary gonadotropins were being used to hy-
perstimulate the ovaries (700). Clomiphene citrate, a se-
lective ER modulator, inhibits the feedback of estrogen on
the pituitary leading to increased release of FSH (a non-
covalent �:� heterodimer; the �-subunit is common to the
four glycoprotein hormones, whereas the �-subunit is
unique to FSH, LH, hCG, and TSH) and stimulation of
follicle recruitment. Since the early days of ART, there
have been multiple advances in the hormones, their con-
centrations, and the preparations that are given to women
to stimulate their ovaries to produce mature oocytes that
can be fertilized in vitro. Although clomiphene citrate con-
tinues to be used in the setting of controlled ovarian stim-
ulation, multiple preparations of human postmenopausal
gonadotropins and recombinant preparations of human
FSH, LH, and hCG (viewed as “safer” because they are not
prone to any possible transfer of infectious agents such as
viruses or prions) have been effectively developed and are
being used successfully in the ART clinic. Furthermore,
these recombinant preparations are not only used in the
ART clinic; in 2008, Pergoveris, a mixture of recombinant
FSH and LH, was approved in Europe for the treatment of
severe combined FSH and LH deficiencies.

To more closely mimic the longer continuous levels of
FSH seen in normal cycles, several recombinant long-act-
ing FSH analogs have been created including FSH-CTP
(addition of one or more O-linked C-terminal extensions
of hCG� to the FSH� C terminus), tandem FSH-CTP
(fusion of FSH�-CTP and the common �-subunit), an
N-linked tandem FSH variant (FSH�-� subunit fusion
linked by an N-linked peptide), single-chain FSH-Fc (a
human FSH�-� subunit-linker sequence-IgG1 Fc domain
fusion), and heterodimeric FSH-Fc fusion (human FSH�-
linker sequence-IgG1 Fc domain-6 His and human �-
subunit-linker sequence-IgG1 Fc domain covalent dimer)
(701–703). FSH-CTP (corifollitropin alfa), the first of this
new generation of long-acting gonadotropin analogs (also
referred to as sustained follicular stimulants) to be tested
in feasibility studies in the clinic, has an approximately 2-
to 3-fold longer half-life (t1⁄2 � 65 h) and essentially iden-
tical biopotency compared with FSH, producing similar
numbers of oocytes (704). Most importantly, corifolli-
tropin alfa yielded equal numbers of good quality embryos
to transfer, the incidence of ovarian hyperstimulation syn-
drome was low, and only a single initial injection of

corifollitropin alfa was required, compared to multi-daily
injections of recombinant FSH injections. Results from a
randomized phase II trial (NCT00598208) showed that
corifollitropin alfa was highly effective in a 1-wk regimen
(705). Patients were given 60, 120, or 180 mg of corifol-
litropin alfa on d 1, a GnRH antagonist on d 5 through the
end of the cycle, and daily injections of recombinant FSH
(Puregon) beginning 1 wk later until it was time to induce
oocyte maturation with hCG. Compared with daily injec-
tions of Puregon for the first 7 d of the cycle, there was a
statistically significant increase in the number of cumulus-
oocyte complexes retrieved when patients were treated
with 120 mg and 180 mg of corifollitropin alfa. Likewise,
there was an increase in the mean number of good quality
embryos obtained, and cumulative pregnancy rate was
also higher in these same groups. In July 2008, Schering
announced the results of its first phase III trial
(NCT00696800, called ENGAGE), the largest double-
blind fertility trial ever. In this trial, 1509 women received
either a single 150 mg dose of corifollitropin alfa or daily
injections of 200 IU of Puregon for 7 d. Other aspects of
the study (the GnRH antagonist and follow-up injections
of FSH and hCG) were the same as the phase II trial. The
findings indicated that the ongoing pregnancy rate with
corifollitropin alfa (38.9%) vs. Puregon (38.1%) was sim-
ilar. If results of the additional phase III trials are as prom-
ising as the above studies, then corifollitropin alfa proto-
cols could replace many of the older protocols in the clinic
with added benefits to the patient. In January 2009, the
European Medicine Agency decided to review Schering-
Plough’s Marketing Authorization Application for
corifollitropin alfa. For an extensive review on corifolli-
tropin alfa, the reader should see the recent paper by
Fauser et al. (706).

One goal of the pharmaceutical companies who are
working in the ART area has been to develop orally bio-
available small molecule (low molecular weight) FSH and
LH agonists that could replace the injectable glycopro-
teins. The early days of development of these small mol-
ecules have been reviewed by Lunenfeld (697), and the
more recent advances have been reviewed by Arey (707).
An amazing aspect regarding the development of these
small molecular analogs is that they can “substitute” for
the large bulky glycosylated LH or FSH protein dimers. It
is believed that these small molecules bind to allosteric
pockets in the FSH or LH receptors that are distinct from
the orthostatic binding sites of the endogenous ligands.
Thus, these small molecules are not mimicking the FSH or
LH ligand binding, but instead activate the receptor
through an independent site to induce a conformational
change in the receptor that mimics endogenous ligand
binding to the receptor. This feature of the small molecules
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has made it easier to find and develop both more potent
and specific FSH and LH agonists.

There are three classes of small molecule glycoprotein
hormone receptor agonists: the thiazolidine (FSHR ago-
nists), the pyrazole (LH receptor agonists), and the thien-
opyrimidine (TSH receptor/LH receptor agonist) classes.
Members of the thiazolidine class were the first reported
small molecule glycoprotein hormone agonists that were
shown to act allosterically (708). Although the pyrazole
class was shown to be selective for LH receptor agonist
activity with an EC50 in the low micromolar range (709),
discovery and optimization studies resulted in a specific
thienopyrimidine analog (Org 43553) with an EC50 of 3.7
nM for LH receptor activation (710). Org 43553 is the first
orally active LH receptor agonist, is able to induce ovu-
lation in mice and rats when given orally (710), and has
been developed as a good radioligand for the identification
of more potent analogs (711). It will be interesting to see
whether similar orally efficacious FSHR analogs can also
be developed, possibly following the leads of Org 43553.

B. In vitro fertilization and intracytoplasmic sperm
injection

It is estimated that 3.5 million babies have been born
through theuseofART.Althoughchildrenhavebeenborn
through the injection of sperm into a woman’s reproduc-
tive tract (intrauterine or intracervical insemination), the
most common procedures used in the ART clinic are IVF
and intracytoplasmic sperm injection (ICSI). IVF, as its
name implies, allows oocytes to be fertilized by sperma-
tozoa in vitro and requires the donor’s spermatozoa to
have all of the necessary characteristics for fertilization
(i.e., the spermatozoa must be motile, have the capability
to bind to the oocyte zona pellucida, and be able to fuse
with the oocyte membrane). ICSI was first reported in
1992, and involves the injection of a single sperm into the
cytoplasm of an MII oocyte. Because ICSI bypasses a num-
ber of steps in the fertilization process, normal spermato-
zoa and abnormal (e.g., immotile) spermatozoa or earlier
stage elongation and elongated spermatids can be used for
the procedure, allowing some men with infertility to pass
their genetic material to offspring. In 2008, the Interna-
tional Committee for Monitoring Assisted Reproductive
Technologies reported that about 200,000 babies are born
annually from ART and the total number of procedures
are about 1.3 million. In addition, approximately 50% of
ART procedures performed in 2008 were in seven coun-
tries (Japan, the United States, France, Germany, Spain,
the United Kingdom, and Australia). Based on 2004 data,
Denmark has the highest incidence of ART babies born
(4.2% of all births) (705). Furthermore, most ART labo-
ratories now use ICSI (63% of cycles) as the routine
procedure.

Despite the growing use of ICSI worldwide, there are
reports of increased malformations in children born from
ICSI including imprinting errors such as Beckwith-Wiede-
mann syndrome and Angelman syndrome (reviewed in
Refs. 712 and 713). However, these malformations are
less likely to be associated with the ICSI procedure per se
than the transfer of sperm containing defective genetic
material or, alternatively, the use of oocytes from women
who are transmitting genetic abnormalities to their off-
spring. The Practice Committee of the American Society
for Reproductive Medicine and the Practice Committee of
the Society for Assisted Reproductive Technology have
formulated a number of recommendations on ICSI (714).

In addition to the above studies on ICSI, there are also
reports that ART (IVF or ICSI) is associated with birth
defects. Using data from the National Birth Defects Pre-
vention Study for babies born in the United States between
October 1997 and December 2003, a number of structural
birth defects were found to be increased in children whose
mothers used ART to become pregnant (715). Among the
defects observed in singleton births are septal heart de-
fects, cleft lip with or without cleft palate, esophageal atre-
sia, and anorectal atresia. Similar to ICSI itself, the etiol-
ogies of the increase in these birth defects are not clear,
although an increase in transmission of defective genetic
material and/or epigenetic alterations associated with cul-
turing of embryos under nonphysiological conditions
could be causal.

C. Advances in cryopreservation
Freezing of spermatozoa for IVF or ICSI is relatively

straightforward. Likewise, excellent strategies have been
developed for cryopreserving human and nonhuman em-
bryos. Although challenges remain for the preservation of
ovarian tissue (see below), a major breakthrough has been
made for cryopreserving oocytes.

Why is the cryopreservation of oocytes (or ovarian tis-
sue) important? Oocytes are highly sensitive to toxins,
including polycyclic aromatic hydrocarbons (120, 716),
as well as drugs used for cancer chemotherapy and radi-
ation treatment. Furthermore, in some countries, there are
strict guidelines for human embryo freezing. For example,
the German embryo protection law that was passed in
1991 states that no more than three embryos can be pro-
duced in each IVF cycle and all embryos, irrespective of
their quality, must be transferred, cannot be frozen, and
cannot be discarded. However, this has led to an increased
incidence of fetal reductions. Italy subsequently enacted
nearly identical legislation restricting embryo freezing and
limiting the number of oocytes fertilized to three. Thus,
there are practical and ethical reasons why oocyte cryo-
preservation should be used.
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In 1986, the first baby was born from a frozen human
oocyte (717). Despite the millions of children that have
been born through ART procedures, only a few hundred
have been born through fertilization of a frozen oocyte.
This low incidence is secondary to the poor survival of
oocytes cryopreserved with the typical slow-freezing cryo-
protectant solutions. Both the slow speed of the freezing
methods and the long-term exposure of oocytes to the
solutions used for cryoprotection are associated with sig-
nificant trauma to the human oocyte, making this meth-
odology impractical in the ART laboratory (reviewed in
Ref. 718).

Fortunately, scientists and clinicians have been able to
take an alternative approach for oocyte cryopreservation
which involves vitrification, the rapid freezing of speci-
mens (e.g., oocytes or embryos) in ultrasmall volumes
(719–726). The original study by Kuwayama et al. (719)
demonstrated higher oocyte survival, fertilization, and
pregnancy outcome when a slightly lower concentration
of ethylene glycol (5.0 mol/liter) was used and when cu-
mulus cells were not removed from the oocytes, suggesting
that this method could also be used in the future for freez-
ing GV oocytes. In the 4 yr since this initial report, the
vitrification approach for freezing human oocytes has be-
come remarkably efficient in multiple ART laboratories
(725). One possible reason for the success of the vitrifica-
tion method over slow freezing is the more rapid recovery
of the meiotic spindle with vitrification (727, 728), allow-
ing fertilization after thawing to proceed in a more timely
manner. In addition, various groups have also begun to
use straws or CryoLoops that are closed to the liquid ni-
trogen (729, 730), thereby avoiding any possible contam-
ination (infectious or otherwise) of the vitrified human
oocytes. Likewise, vitrification has also been shown to be
highly efficient for the cryopreservation of d 3 human em-
bryos (731); 94.8% of vitrified embryos survived the pro-
cedure compared with slow freezing (88.7%), and signif-
icantly more developed to the blastocyst stage with
vitrification (60.3%) vs. slow freezing (49.5%). These vit-
rification strategies are also beginning to be used for freez-
ing human ovarian cortex (732) for the preservation of
fertility in women who are subjected to chemotherapy or
radiation therapy for cancer treatment. However, with
this cohort of women, a strategy for the in vitro culture of
human primordial follicles to fertilizable MII oocytes is a
necessary first step to ensuring future fertility.

D. Choosing the best oocyte—morphological and
molecular analysis

In vivo or in vitro, the best embryo will obviously de-
velop from the best oocyte. Abnormalities in oocytes,
whether genetic or metabolic, are not beneficial to a
healthy embryo or a healthy offspring. A major problem

for the ART laboratory is how to decide which oocyte is
“best.” Unlike chorionic villus biopsies or amniocentesis,
where there are an abundance of cells available for mo-
lecular and chromosomal analysis, the genetic status of the
oocyte DNA that joins with the sperm cannot be evalu-
ated. Over the last few years, there have been several ad-
vances made for noninvasive analysis of the oocyte, and
these strategies are discussed below.

In theory, all oocytes that come from a chromosomally
normal female should be capable of progressing through
meiosis to become a normal haploid gamete that is capable
of fusing with a haploid sperm to become a normal diploid
embryo. Meiosis in females has several stages as follows:
oocytes enter meiosis during embryogenesis and arrest in
diplotene of meiosis I; after follicle recruitment, oocytes in
antral follicles will reenter meiosis after the LH surge, re-
lease the first polar body but subsequently arrest at meta-
phase of MII; meiosis is completed upon fertilization with
a sperm and release of the second polar body (Fig. 1). This
abrupt stop-and-go pattern in female meiosis would not be
considered advantageous to producing a normal haploid
germ cell. With age, the oocytes in women are more likely
to demonstrate chromosomal defects (733), increasing the
risk of miscarriage, newborn death, or the birth of a child
with chromosomal abnormalities. Although it is impossi-
ble to evaluate these possibilities at the time of oocyte-
sperm fusion in vivo in the fallopian tube, it has become
possible to perform some analysis of the oocytes in vitro in
the ART clinic. Because the majority of aneuploidies arise
in oocytes, the polscope has been used in some ART lab-
oratories for noninvasive analysis of human oocytes over
the last decade (reviewed in Ref. 734). The polscope is a
polarized light microscope that can visualize birefringent
structures in the oocyte. The two major structures that can
be analyzed are the meiotic spindle, an important compo-
nent necessary for producing a normal chromosomal com-
plement, and the zona pellucida, the large, abundant, gly-
coprotein coat that surrounds the oocyte. By visualizing
these two structures, the polscope allows a clinician to
make judgments about the “normality” of an oocyte, and
several groups have been able to make generalities about
the best oocyte. In the original publication by Keefe and
colleagues (735, 736), 61.8% of oocytes were fertilized
when obvious meiotic spindles were observed with the
polscope vs. 44.2% fertilized when the spindles were not
observed with the polscope. Unlike fluorescent labeling
techniques, the short time of exposure (10–20 sec) of the
oocytes to the polarized light does not have any detrimen-
tal effects on the oocyte and its ability to produce viable
embryos. Other studies have demonstrated that oocytes
with longer spindle lengths (�12 nm) and wider inner
zona pellucida layers (10–12 nm) resulted in more ICSI
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fertilized oocytes that progressed to the blastocyst stage
(737). Meta-analysis from multiple studies also confirmed
the above findings that visualization of the meiotic spindle
resulted in higher fertilization rates and better embryos
based on multiple parameters (738). Surprisingly, there
was no correlation with clinical pregnancy or implanta-
tion rate, although the polscope may be useful when there
is a governmental limit to the number of oocytes that can
be fertilized in one cycle.

A second method that has been used to make predic-
tions about oocyte chromosomal quality is polar body
biopsy (reviewed in Ref. 739). Polar body biopsy can be
viewed as noninvasive because the removal of the first
polar body does not alter the oocyte. Removal of the polar
body can subsequently permit the analysis of the chromo-
somal remains after the first meiotic division by methods
such as fluorescent in situ hybridization or comparative
genomic hybridization. Thus, in situations where prenatal
genetic diagnosis of a blastomere is either not permitted or
is unwanted, this could be a viable noninvasive option for
the couple. Similar to other noninvasive methodologies,
this method cannot detect any meiotic defects that result
at the second meiotic division, although biopsies of the
second polar body are also possible, nor can it evaluate
chromosomal defects that may arise from the paternal side
at fertilization. However, first polar body biopsy has been
used in combination with oocyte vitrification, and in this
scenario may allow clinicians to make additional judg-
ments about which oocyte is best (740).

Based on studies of cumulus cell-oocyte interactions in
the mouse, our group and others have evaluated gene ex-
pression patterns of human cumulus cells as another non-
invasive strategy to predict oocyte quality. Our studies
were directed at three of the major targets of the oocyte-
secreted growth factors GDF9 and BMP15, namely
HAS2, PTGS2, and the BMP antagonist gremlin 1
(GREM1) (361). Because cumulus cells are stripped off
the oocyte before ICSI and their gene expression is regu-
lated by these oocyte-secreted growth factors, we hypoth-
esized that poor quality or immature oocytes would not
regulate expression of these cumulus cell genes to the same
extent as high quality or mature oocytes. Our findings
showed that expression of PTGS2, HAS2, and GREM1 in
cumulus cells derived from oocytes that were fertilized and
developed into morphologically high-grade embryos
(grades 3, 4, and 5) were 6-fold, 6-fold, and 15-fold higher,
respectively, compared with cumulus cells derived from
oocytes that gave rise to low-grade embryos (grades 1 and
2). A follow-up study by Cillo et al. (362) confirmed the
HAS2 and GREM1 findings. Several groups have taken
these studies one step further. Sirard’s group (741) used
cDNA microarrays and Affymetrix oligonucleotide mi-

croarrays to correlate gene expression in mural granulosa
cells with oocyte quality and pregnancy. These studies
identified 115 genes associated with competent follicles.
Hamamah and colleagues (742) used Affymetrix microar-
rays to correlate cumulus cell gene expression with preg-
nancy outcome. These authors identified two genes,
BCL2L11 (BCL2-like 11) and PCK1 (phosphoenolpyru-
vate carboxykinase 1), as being up-regulated and NFIB
(nuclear factor I/B) as being down-regulated in cumulus
cells of oocytes that led to a positive pregnancy outcome.

In summary, we believe that all of the above methods
could be used to make the best predictions of oocyte qual-
ity, especially in environments where there are restrictions
on embryo freezing or where all fertilized eggs, regardless
of quality, must be transferred to the mother.

E. Stem cells and nuclear cloning
As mentioned in Section I. D, during embryogenesis

there are sexually dimorphic differences in the pathways
that male and female germ cells take; whereas male PGCs
in the current somatic cell environment will arrest in mi-
tosis, female PGCs will go through one last mitotic divi-
sion and thenenterandarrest inmeiosis.Malegermcellswill
eventually become spermatogonial stem cells that can be iso-
lated and shown to propagate in culture (although not yet
successful for humans). However, because female germ cells
entermeiosis, itmakes itdifficult to imagineascenariowhere
these differentiated cells can be dedifferentiated to become
oocyte stem cells capable of replenishing a new ovarian en-
vironment. This may be one reason for the rapid depletion of
oocytes over time and the eventual entry into menopause,
which is in contrast to spermatogonial stem cells that remain
throughout the lifetime of most male mammals.

Alternative strategies to reproduce “oocytes” in vitro
have now been described (743). These studies demonstrate
that follicle-like structures can form in vitro during mouse
ES cell cultures and that cells that mimic oocytes (i.e.,
express several oocyte markers such as GDF9, FIGLA,
ZP1, ZP2, and ZP3 and can enter meiosis) are observed to
form. Although fertilization and key events to recapitulate
normal oocyte physiology have not been observed, these
observations hold promise for future endeavors into this
area including nuclear cloning (see below). At this point,
studies have not been reported where human “oocytes”
can be derived from human ES cells.

In parallel with the above situation, at least in mice, it
has been possible for many years to convert PGCs into
pluripotent embryonic germ cells (744–746). The growth
factors LIF, KIT ligand, and FGF2 appear to be critical for
this dedifferentiation event (747). Key reprogramming
events during the formation of embryonic germ cells are
the suppression of PRDM1 and the subsequent derepres-
sion of Myc and Klf4 (Krüppel-like factor 4), the move-
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ment of PRMT5 out of the nucleus and into the cytoplasm,
and the early activation of the LIF/STAT3 pathway, with
translocation of STAT3 into the nucleus. These studies not
only make it possible to understand how PGCs form from
embryonic germ cells by studying the process in reverse,
but now also make it possible to go all the way back to
totipotency by starting out with PGCs. Interestingly, it is
now possible to produce pluripotent stem cells from
mouse testis (748, 749) and adult human testis (750). Al-
though not described so far, it is also possible that these
XY stem cells could be used to make “oocytes” for addi-
tional manipulation in vitro.

Major advances in nuclear cloning have occurred re-
cently, and it has even become possible to produce induced
pluripotent stem (iPS) cells from multiple lineages (751,
752). One shortfall for mammalian nuclear cloning stud-
ies and in particular the production of designer ES cells for
each individual has been the scarcity of oocytes for these
studies. The new advances in the development of iPS cells
may help to overcome this deficit. However, if iPS cells are
not viewed as “replacement” for ES cells, the advent of the
above nuclear cloning involves the injection of a diploid
nucleus into an oocyte in which the nucleus was removed.
This strategy was first used to create the sheep Dolly, the
first mammal created via cloning (753). However, de-
scribed techniques for oocyte cryopreservation may now
make it possible to address the availability of oocytes as a
limiting factor for nuclear cloning (754). Thus, continued
advances in the ART laboratory may again help advance
broad areas of medicine and healthcare.

VI. Future Perspectives

This review has focused on genetic models of ovarian de-
velopment and folliculogenesis, and along the way, we
have touched on numerous growth factors and signaling
pathways implicated in these processes. Mouse ES cell
technology has made it possible to study hundreds of genes
in the ovary. By designing conditional alleles and taking
advantage of the numerous transgenic Cre recombinase
lines now available for studying gene function during for-
mation of the germline and the gonad, and in oocytes and
somatic cells of the ovary at different stages of postnatal
development, we will continue to expand our knowledge
of normal and pathological ovarian biology. Using in
silico strategies and online databases to identify candidate
genes with similar expression patterns to known ovarian
genes is one way to find novel genes that may influence
follicular development (755). The Ovarian Kaleidoscope
Database is a useful online resource with up-to-date in-
formation on the expression, function, and regulation of
genes in the ovary (756).

The prevalence of POF increases with age such that one
in 100 women are affected by the time they are 40 yr old
(213, 757). Frustratingly, the causes of POF in the vast
majority of affected women remain unknown. Although
women who are FMR1 (fragile X mental retardation 1)
premutation carriers make up the largest identified group
with POF, they account for only 2% of nonfamilial cases
(758), and the pathogenesis of ovarian failure in this co-
hort is still unknown. It is not even known whether the
abnormalities in the FMR1 premutation carriers leading
to POF are primarily due to hormonal, somatic cell, or
germ cell defects, or a combination of the three.

As reproductive biologists continue to identify genes
with critical functions in folliculogenesis, we may also gain
insight into additional candidate genes that contribute to
POF, which may help physicians diagnose and treat
women with this condition, as well as idiopathic infertil-
ity. Furthermore, the sequencing of the human genome,
the follow-up International HapMap Project that identi-
fied polymorphisms within distinct ethnic populations
(759), and the availability of multiple other tools for ge-
nome-wide analysis of patient DNA will help researchers
and clinicians hone in on genomic regions associated with
fertility disorders. This information, in conjunction with
already available or easily generated mouse models,
should contribute to a better understanding of the etiology
of human infertility and potentially identify therapeutic
targets for treating this condition. For example, the Hap-
Map consortium identified several single nucleotide poly-
morphisms (SNPs) in ACVR1, which encodes a type I re-
ceptor (ALK2) for some TGF� family members, in over
5% of Caucasians. Although there was no difference in the
frequency of ACVR1 SNPs between normovulatory
women and women with polycystic ovarian syndrome, the
SNPs were associated with elevated levels of AMH and
follicle number in the women with polycystic ovarian syn-
drome (195). Thus, although the current approach to de-
termining the etiology of nonsyndromic POF includes
karyotype analysis, testing for premutations in FMR1,
and testing for autoimmune disorders (including adrenal
and thyroid) (213), additional genetic tests may become
available in this postgenomics era.

Although there are many agents that reduce reproduc-
tive life span and induce reproductive senescence (e.g.,
cigarette smoking), one of the major hurdles for repro-
ductive biologists and clinicians is how to prolong and
enhance the reproductive life span of a woman. Although
dietary restriction and low body fat shut down reproduc-
tive cycling, as observed in long-distance runners, it is pos-
sible that these effects may not only prolong somatic life
span but also reproductive (ovarian) life span as recently
suggested (760, 761). Thus, these transient halts may ac-
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tually be advantageous to the body and ovary alike. An
intriguing article by Schmidt et al. (762) showed that male
mice housed with females had a 20% longer reproductive
life span than bachelor males. The reverse experiment has
not been reported, so the question remains: Does the pres-
ence of a man extend a woman’s reproductive life span?

In addition to employing genomic tools when evaluating
fertility disorders, the advent of high-throughput genomic
technologies, particularly next generation sequencing, will
also broaden our knowledge of genetic events that lead to
ovarian cancer. In a search for novel mutations, The Cancer
Genome Atlas has sequenced 6000 candidate oncogenes and
tumor suppressors, including miRNA-encoding loci, in an
extensive panel of human serous epithelial ovarian tumors
and matched normal controls (http://cancergenome.nih.
gov). Large-scale collaborations are also under way to iden-
tify chromosomal aberrations, gene fusions, and cancer-ini-
tiating “stem” cells in serous and other ovarian carcinoma
histotypes. These data will inspire the creation of novel
mouse models to investigate tumorigenic mechanisms, espe-
cially for the less common mucinous and clear cell subtypes
for which there are no genetic models. In parallel to mining
the cancer genome, the merits of sequencing the cancer tran-
scriptome are exemplified by the recent report that FOXL2
mutations are pathognomonic for human adult granulosa
cell tumors (587). Relatively few tumors need to be se-
quenced in the discovery phase of these studies, suggesting
that a similar strategy may lead to the identification of spe-
cificmutations inhumanjuvenilegranulosacell tumors, con-
ceivably in TGF� pathway genes or regions orthologous to
the Gct susceptibility loci, based on insight gleaned from
mouse models.

The discovery of specific functions for miRNAs in ovar-
ian cancer has made them enticing therapeutic targets,
especially as sensitizing agents for existing treatments con-
sidering their ability to modulate chemosensitivity. Al-
though overexpression of miRNAs in vivo might be
accomplished using shRNA constructs along with con-
ventional gene delivery methods (e.g., viral and liposo-
mal), the inhibition of specific cancer-associated miRNAs
may be achieved using modified oligonucleotides with
high affinity for complementary RNA (antimiRs). Several
groups have demonstrated efficient silencing of liver-spe-
cific mir-122 in mice using independently designed anti-
miRs (763–765). Importantly, Kauppinen and colleagues
(766) reported similar results in nonhuman primates with-
out any associated toxicities. By antagonizing mir-122,
hepatitis C replication can be inhibited, thereby uncover-
ing a novel approach to prevent chronic hepatitis C infec-
tion, a major cause of hepatocellular carcinoma (767).
These groundbreaking studies suggest that miRNAs are

promising and tangible molecular targets for the treatment
of human cancers, including ovarian cancer.

Advances in the ART laboratory continue to occur. The
rapidity with which recombinant FSH, LH, and hCG have
become available for clinical use is remarkable, especially
because the first reports demonstrating that these dimers
can be effectively secreted were published in the mid-
1980s. These recombinant proteins have played a major
role in the fertility clinic, and the next generation of long-
acting FSH analogs are making their way onto the scene,
with corifollitropin alfa leading the way. The recent suc-
cesses with the identification and synthesis of orally active
small molecule LH receptor agonists and the findings of
specific small molecule FSHR agonists suggest that a new
arsenal of allosteric drugs may be available in the next
decade to complement and expand existing treatment op-
tions for infertile couples. Future goals of ART should be
to increase births of singletons and reduce multigestation
pregnancies. New noninvasive methodologies could in-
clude identification of cumulus cell gene expression sig-
natures that differentiate good and bad oocytes and the
development of advanced metabolic and proteomic assays
for oocyte- and embryo-secreted substances. All of this
progress will undoubtedly increase the chances of a couple
bringing a healthy newborn into their lives.
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77. Sekido R, Bar I, Narváez V, Penny G, Lovell-Badge R 2004
SOX9 is up-regulated by the transient expression of SRY
specifically in Sertoli cell precursors. Dev Biol 274:271–
279

78. Sekido R, Lovell-Badge R 2008 Sex determination involves
synergistic action of SRY and SF1 on a specific Sox9 en-
hancer. Nature 453:930–934

79. Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C,
Weller PA, Stevanoviæ M, Weissenbach J, Mansour S,
Young ID, Goodfellow PN 1994 Campomelic dysplasia
and autosomal sex reversal caused by mutations in an SRY-
related gene. Nature 372:525–530

80. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J,
Pasantes J, Bricarelli FD, Keutel J, Hustert E, Wolf U,
Tommerup N, Schemp W, Scherer G 1994 Autosomal
sex reversal and campomelic dysplasia are caused by
mutations in and around the SRY-related gene SOX9.
Cell 79:1111–1120

81. Huang B, Wang S, Ning Y, Lamb AN, Bartley J 1999 Au-
tosomal XX sex reversal caused by duplication of SOX9.
Am J Med Genet 87:349–353

82. Shen JH, Ingraham HA 2002 Regulation of the orphan
nuclear receptor steroidogenic factor 1 by Sox proteins.
Mol Endocrinol 16:529–540

83. Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM 2001
Male-to-female sex reversal in mice lacking fibroblast
growth factor 9. Cell 104:875–889

84. Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B 2004
Fgf9 induces proliferation and nuclear localization of
FGFR2 in Sertoli precursors during male sex determina-
tion. Development 131:3627–3636

85. Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J,
Chaboissier MC, Poulat F, Behringer RR, Lovell-Badge R,
Capel B 2006 Fgf9 and Wnt4 act as antagonistic signals to
regulate mammalian sex determination. PLoS Biol 4:e187

86. Kim Y, Bingham N, Sekido R, Parker KL, Lovell-Badge R,
Capel B 2007 Fibroblast growth factor receptor 2 regulates
proliferation and Sertoli differentiation during male sex
determination. Proc Natl Acad Sci USA 104:16558–16563

87. Bagheri-Fam S, Sim H, Bernard P, Jayakody I, Taketo
MM, Scherer G, Harley VR 2008 Loss of Fgfr2 leads to
partial XY sex reversal. Dev Biol 314:71–83

88. McElreavey K, Vilain E, Cotinot C, Payen E, Fellous M
1993 Control of sex determination in animals. Eur J Bio-
chem 218:769–783

89. Goodfellow PN, Lovell-Badge R 1993 SRY and sex deter-
mination in mammals. Annu Rev Genet 27:71–92

90. Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E,
Valentini S, Guerra L, Schedl A, Camerino G 2006
R-spondin1 is essential in sex determination, skin differ-
entiation and malignancy. Nat Genet 38:1304–1309

91. Binnerts ME, Kim KA, Bright JM, Patel SM, Tran K, Zhou
M, Leung JM, Liu Y, Lomas 3rd WE, Dixon M, Hazell SA,
Wagle M, Nie WS, Tomasevic N, Williams J, Zhan X, Levy
MD, Funk WD, Abo A 2007 R-Spondin1 regulates Wnt
signaling by inhibiting internalization of LRP6. Proc Natl
Acad Sci USA 104:14700–14705

92. Wei Q, Yokota C, Semenov MV, Doble B, Woodgett J, He
X 2007 R-spondin1 is a high affinity ligand for LRP6 and
induces LRP6 phosphorylation and �-catenin signaling.
J Biol Chem 282:15903–15911

93. Chassot AA, Ranc F, Gregoire EP, Roepers-Gajadien HL,
Taketo MM, Camerino G, de Rooij DG, Schedl A,
Chaboissier MC 2008 Activation of �-catenin signaling by
Rspo1 controls differentiation of the mammalian ovary.
Hum Mol Genet 17:1264–1277

94. Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y,
Kojima A, Yoshitome A, Yamawaki K, Amagai M, Inoue
A, Oshima T, Kakitani M 2008 R-spondin1 plays an es-
sential role in ovarian development through positively reg-
ulating Wnt-4 signaling. Hum Mol Genet 17:1278–1291
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S 2006 Colony-stimulating factor-1 antibody reverses che-
moresistance in human MCF-7 breast cancer xenografts.
Cancer Res 66:4349–4356

673. Chambers SK, Wang Y, Gertz RE, Kacinski BM 1995
Macrophage colony-stimulating factor mediates invasion
of ovarian cancer cells through urokinase. Cancer Res 55:
1578–1585

674. Toy EP, Azodi M, Folk NL, Zito CM, Zeiss CJ, Chambers
SK 2009 Enhanced ovarian cancer tumorigenesis and me-
tastasis by the macrophage colony-stimulating factor.
Neoplasia 11:136–144
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