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Abstract
Gastrointestinal stromal tumours (GISTs) are the most common gastrointestinal tract mesenchymal tumours. Tyrosine kinase 
inhibitors (TKIs) have transformed the management of advanced GIST. Imatinib was the first TKI to gain approval as man‑
agement for patients with advanced GIST, establishing a new standard of care. Since then, as a result of several trials includ‑
ing the GRID and INVICTUS studies, we now have five lines of approved targeted therapy, including imatinib, sunitinib, 
regorafenib, ripretinib and avapritinib for the treatment of unresectable, advanced GISTs. In this review, the Australasian 
Gastrointestinal Trials Group (AGITG) provide an overview of the key trials that have changed clinical practice, discuss the 
molecular drivers of GISTs, the importance of molecular testing and directing therapy according to molecular targets, as 
well as future strategies in the management of advanced GISTs.
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Key Points 

The development of tyrosine kinase inhibitors (TKIs) has 
led to significant improvements in the management of 
inoperable, advanced gastrointestinal stromal tumours.

Despite an initial response to TKIs, disease progression 
often occurs due to resistance mutations.

Next‑generation TKIs targeting secondary KIT mutations 
and other therapeutic targets are being investigated to 
overcome these resistance mutations.

1 Introduction

Gastrointestinal stromal tumours (GISTs) originate from 
interstitial cells of Cajal (ICC) and constitute the most com‑
mon gastrointestinal (GI) tract mesenchymal tumours. As 
such, GISTs are rare malignancies, accounting for 1–2% of 
all GI neoplasms [1–3]. GISTs can occur anywhere along 
the GI tract and are most commonly found in the stomach 
(55%), followed by small bowel (32%), large bowel (6%) and 
oesophagus (1%). Six percent of GIST cases occur outside 
of these locations  [3].

The median age at diagnosis is 67 years. Rarely, GISTs 
can occur in the paediatric population and in young adults, 
where a genetic predisposition to the disease is often found 
[4–6].

2  Molecular Drivers of Gastrointestinal 
Stromal Tumours (GISTs)

Molecular alterations in GIST play an important role in the 
clinical management of patients with advanced disease. The 
response to tyrosine kinase inhibitor (TKI) therapy is often 
determined by the primary kinase genotype.

2.1  KIT Mutations

KIT is a proto‑oncogene and a type III receptor tyrosine 
kinase that belongs to a family that includes platelet‑derived 
growth factor receptor alpha (PDGFRA), platelet‑derived 
growth factor receptor beta (PDGFRB), colony‑stimulating 
factor 1 receptor (CSF1R), and FI cytokine receptor (FLT3) 
[7]. An activating KIT alteration is the driver event for 
approximately 80% of all GISTs (Fig. 1) [8–10]. KIT muta‑
tions in GISTs can occur in different exons of the gene. 
Exon 11, which encodes the juxtamembrane domain, is most 
commonly mutated in GISTs. Mutations (in‑frame deletions, 
insertions and substitutions) in exon 11 lead to a disruption 
of the autoinhibitory domain of the receptor, which results 
in ongoing kinase activation [7]. GISTs harbouring KIT exon 
11 mutations occur most commonly in the stomach. His‑
tologically, KIT exon 11‑mutated GISTs also tend to have 
spindled instead of epithelioid cell morphology and have a 
higher rate of recurrence following surgery [11]. The type 
of mutation in KIT exon 11 also has implications on the 
prognosis. GISTs harbouring exon 11 point mutations tend 
to have a better prognosis than deletions. A retrospective 
study from the Spanish Group for Sarcoma Research (GEIS) 

Fig. 1  Driver genes in GIST. Created with BioRender.com. GIST gastrointestinal stromal tumours, SDH succinate dehydrogenase
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registry showed that GISTs harbouring KIT exon 11 deletion 
involving codons 557 and/or 558 tend to be more aggressive 
and have a poorer prognosis in untreated patients [12].

A mutation in exon 9 that encodes the extracellular 
domain of KIT occurs in approximately 10% of all GISTs 
[7, 13, 14]. The majority of KIT exon 9‑mutated GISTs occur 
in the intestine and rarely in the stomach. Approximately 
30% of intestinal GISTs harbour a KIT exon 9 mutation [7, 
11]. Mutations in exon 9 (typically due to nucleotide dupli‑
cations) mimic the conformational change that the extracel‑
lular domain of the KIT receptor undergoes when bound 
to a ligand, resulting in constitutive kinase activation [11].

Mutations in KIT exon 13 and 17 are rare, occurring in 
1–2% of all untreated GISTs. Exon 13 encodes the ATP‑
binding region of KIT, and the most common mutation is 
1945A>G substitutions, which replace lysine with glutamic 
acid at codon 642 of the KIT protein [15]. GISTs harbouring 
exon 13 mutations arise from the stomach but can also occur 
anywhere along the GI tract. Exon 17 encodes the activation 
loop and the most common mutation is 2487T>A substitu‑
tions, leading to the replacement of asparagine with lysine at 
codon 822 of the KIT protein [15]. Exon 17‑mutated GISTs 
are most commonly found in the small bowel [16].

2.2  Platelet‑Derived Growth Factor Receptor Alpha 
(PDGFRA) Mutations

PDGFRA mutation is the second most common driver muta‑
tion in GISTs, seen in approximately 10% of all GISTs [17]. 
KIT and PDGFRA mutations are also mutually exclusive in 
GISTs [11].

The majority of GISTs with a PDGFRA mutation will 
harbour a mutation in exon 18, which encodes the activa‑
tion loop. PDGFRA exon 18 D842V mutations make up 
approximately 70% of GISTs with a PDGFRA mutation. 
GISTs harbouring PDGFRA D842V mutations are also gen‑
erally resistant towards conventional TKIs [18]. Although 
rare, PDGFRA mutations can also occur in exon 12, which 
encodes the activation loop, and exon 14, which encodes 
the ATP‑binding domain [9, 17]. PDGFRA-mutated GISTs 
typically arise from the stomach and have an epithelioid or 
mixed epithelioid and spindle cell histology [19, 20].

2.3  Other Driver Mutations

GISTs that lack KIT and PDGFR mutation make up 10–15% 
of all GISTs and are sometimes referred to as receptor tyros‑
ine kinase wild‑type (RTK‑WT) GISTs [11]. This is an het‑
erogenous and genetically diverse group. RTK‑WT GISTs 
may be due to succinate dehydrogenase (SDH) deficiency 
or alterations in the RAS‑MAPK pathway.

One of the first descriptions of wild‑type GISTs was 
provided by Carney in 1977 when he described a series of 

young patients (predominantly female) with gastric GISTs 
and concurrent paragangliomas or chondromas. This triad 
of gastric GISTs (initially referred to as gastric leiomyo‑
sarcoma), extra‑adrenal paraganglioma and pulmonary 
chondroma was later referred to as the Carney triad [21, 
22]. Subsequently, in 2002, Carney and Stratakis identified 
a separate familial condition (Carney–Stratakis syndrome) 
whereby individuals appear to be affected by GISTs and 
paraganglioma in an autosomal dominant pattern [23]. The 
Carney triad is often due to the result of hypermethylation 
of the SDHC gene [24], whereas Carney–Stratakis syndrome 
is a result of a pathogenic germline alteration in genes that 
encode the SDH complex (SDHA, SDHB, SDHC and 
SDHD subunits) [25, 26]. SDH‑deficient GISTs comprise 
the majority of paediatric GISTs. Pathogenic germline alter‑
ations in genes that encode the SDH complex result in SDH 
dysfunction, and SDH deficiency leads to the intracellular 
accumulation of succinate. Succinate competitively inhibits 
hypoxia‑inducible factor (HIF), which results in the stabi‑
lisation of HIF1a. In turn, the stabilisation of HIF1a leads 
to tumorigenesis and increases the risk of the development 
of GISTs [4, 27]. SDH‑deficient GISTs arise predominantly 
from the stomach [4].

Activation of the RAS‑RAF‑MEK‑ERK pathway due 
to gain‑of‑function RAS/BRAF mutations or loss‑of‑func‑
tion neurofibromatosis type 1 mutations increases the risk 
of GISTs. Neurofibromin, which is encoded by NF1, is a 
tumour suppressor gene that downregulates the RAS‑RAF‑
MEK‑ERK signalling pathway. Most NF1-mutated GISTs 
arise in the small intestine [28], and GISTs with BRAF muta‑
tions also arise predominantly in the small intestine [29, 30].

In this review, we focus on the current evidence for the 
management of unresectable, advanced GIST. The timeline 
and published results for selected key studies of TKIs that 
have been approved by the US FDA for the treatment of 
unresectable or metastatic GISTs are summarised in Table 1 
and Fig. 2. There are several excellent resources and guide‑
line documents covering diagnosis, treatment and follow‑up 
of GIST at all stages, including updated clinical practice 
guidelines from the European Society for Medical Oncol‑
ogy/European Reference Network for Rare Adult Solid 
Cancers/European Reference Network for Genetic Tumour 
Risk Syndromes (ESMO/EURACAN/GENTURIS) groups 
and the National Comprehensive Cancer Network (NCCN) 
[31, 32].

3  First‑Line Management of Advanced 
or Metastatic Imatinib‑Sensitive GIST

Imatinib was the first effective treatment for advanced GIST 
and has remained the standard treatment for over 20 years 
[31]. Prior to imatinib, chemotherapy and radiotherapy 
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were often used, however clinical benefit was low [33]. 
Imatinib mesylate is a small‑molecule TKI that was ini‑
tially developed for the treatment of chronic myeloid leu‑
kaemia (CML). Efficacy in CML was mediated through 
inhibition of the fusion of the oncoprotein BCR‑ABL [34]. 
It was then observed that imatinib also inhibits the trans‑
membrane receptors KIT and PDGFR. Imatinib binds to the 
ATP‑binding site, and thus competitively inhibits ATP bind‑
ing and inhibits KIT signalling. In March 2000, a patient 
from Helsinki University Central Hospital with metastatic 
GIST who had not responded to numerous lines of cyto‑
toxic chemotherapy was put on a trial of imatinib 400 mg 
daily. Within 1 month of treatment, the patient had signifi‑
cant radiological and histopathological response (proven on 
biopsy). While this was a single‑patient study, this led to 
the development of several trials [35]. In 2001, a phase I 
trial provided evidence that imatinib at a dose of 400 mg 
twice daily was well tolerated [36]. The following year, 
the results of a phase II multicentre, randomised study of 

imatinib (400 mg vs. 600 mg) showed that imatinib resulted 
in a sustained objective response in approximately half of 
the patients with advanced unresectable or metastatic GISTs, 
with no significant differences in response rate between the 
two doses [37]. This pivotal study led to the FDA approval 
of imatinib for patients with advanced unresectable or meta‑
static GIST [38].

Two subsequent phase III trials confirmed this promising 
result. Overall, 946 patients were randomised in a 1:1 ratio 
in the European Organisation for Research and Treatment 
of Cancer (EORTC) 62005 trial to receive imatinib 400 mg 
daily or 400 mg twice daily. Response rates were similar in 
both arms. Complete response (CR) was 5% and 6% in the 
400 mg daily arm and 400 mg twice‑daily arm, respectively; 
however, toxicity was increased with the higher dose, and 
progression‑free survival (PFS) was marginally higher in 
the twice‑daily arm. At 760 days, 56% of patients in the 
once‑daily arm developed progressive disease versus 50% 
of patients in the twice‑daily arm, with a hazard ratio (HR) 

Table 1  Published results for selected key studies of TKIs that have been approved by the US FDA for the treatment of unresectable or meta‑
static GISTs

TKIs tyrosine kinase inhibitors, ORR objective response rate, PFS progression‑free survival, OS overall survival, GISTs gastrointestinal stromal 
tumours, NA not available

TKIs Study Phase No. of prior 
lines of 
therapy

Treatment arms Results

ORR (%) PFS (months) OS (months)

First‑line
 Imatinib Demetri et al. (2002) 

[37]
II Any Imatinib 400 mg vs. 

600 mg daily
53.7 – –

 Imatinib EORTC 62005 
(2004) [39, 40]

III Any Imatinib 400 mg vs. 
800 mg daily

52 – 85% vs. 86% at 1 
year, and 69% 
vs. 74% at 2 
years

 Imatinib SWOG S00 (2008) 
[41]

III Any Imatinib 400 mg vs. 
800 mg daily

45 18 vs. 20 55 vs. 51

Second‑line
 Sunitinib Demetri et al. (2006) 

[63]
III 1 Sunitinib 50 mg 

daily for 28 days 
followed by a 
14‑day break vs. 
placebo

7 vs. 0 27.3 weeks vs. 6.4 
weeks

–

 Sunitinib George et al. (2009) 
[65]

II 1 Sunitinib 37.5 mg 
daily

13% 34 weeks 107 weeks

Third‑line
 Regorafenib GRID study (2013) 

[70]
III 2 Regorafenib 160 mg 

daily vs/ placebo
4.5 vs. 1.5 4.8 vs. 0.9 –

Fourth‑line
 Ripretinib INVICTUS (2020) 

[76]
III ≥3 Ripretinib 150 mg 

daily vs/ placebo
9 vs. 0 6.3 vs. 1.0 –

PDGFRA D842V 
mutant—first‑
line

 Avapritinib NAVIGA‑
TOR (2020) [49]

III Any Avapritinib (dose 
escalation)

88% NA NA
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of 0.82 (p = 0.026) [39]. After a median follow‑up of 10.9 
years, the PFS observed was similar, i.e. 1.7 years in the 
400 mg daily arm and 2.0 years in the 400 mg twice‑daily 
arm. The median overall survival (OS) was 3.9 years in both 
arms [40].

The Southwest Oncology Group (SWOG) S0033/Cancer 
and Leukemia Group B (CALGB) 15105 was a similarly 
designed trial as the EORTC 62005. In this multicentre, 
randomised, phase III study, 694 patients with inoper‑
able, advanced or metastatic GISTs were randomised to 
receive imatinib 400 mg daily or 400 mg twice daily [41]. 
The trial was designed to compare the PFS and OS rates 
for conventional dose imatinib versus a higher dose. The 
response rates were similar across both arms, with an 
overall response rate (ORR) of 45% in both cohorts; PFS 
was also similar in both arms. The median PFS was 18 
months (95% confidence interval [CI] 16–21 months) and 
20 months (95% CI 17–25 months) in the conventional‑
dose and higher‑dose cohorts, respectively [41]. A further 
analysis showed that KIT exon 11‑mutated GISTs had an 
improved treatment outcome when compared with GISTs 
with a KIT exon 9 mutant or wild‑type GIST [42]; 71.7% 

of patients with a KIT exon 11‑mutated GIST had a CR or 
partial response (PR) versus 44.4% of patients with KIT 
exon 9‑mutated GISTs (p = 0.007) and 44.6% of wild‑type 
GISTs (p = 0.0002). The median OS was 60.0 months ver‑
sus 38.4 and 49.0 months, respectively. Improved response 
rates were seen in patients with exon 9‑mutated GISTs 
treated with higher doses of imatinib (800 mg) versus a 
standard dose (400 mg), with a CR and PR rate of 67% and 
17%, respectively (p = 0.02) [43].

Based on the results from the EORTC 62005 and SWOG 
S0033 trials, the standard dose of imatinib in the first‑line 
setting for unresectable advanced GIST is 400 mg daily; 
however, in patients with GISTs that harbour KIT exon 9 
mutations, a higher dose (800 mg daily) may result in a 
longer PFS [32]. A meta‑analysis by the Gastrointestinal 
Stromal Tumor Meta‑Analysis Group (MetaGIST) con‑
firmed that patients with KIT exon 9‑mutated disease derive 
a PFS benefit if they received a higher dose of imatinib [39, 
41, 44]. As described earlier, exon 9 encodes the extracellu‑
lar domain of KIT, and the kinase domain in exon 9‑mutant 
KIT is similar to wild‑type KIT, which may have an effect 
on inhibitor sensitivity [7]. Thus, the ESMO guidelines 

2002 2006 2012 2020 2020

Ima�nib
Approved for the 
treatment of 
unresectable, 
advanced or 
metasta�c GIST

Suni�nib
Approved for the 
treatment of 
unresectable or 
metasta�c GIST a�er 
disease progression 
or intolerance to 
ima�nib

Regorafenib 
Approved for the 
management of 
unresectable, 
metasta�c GIST a�er 
failure of ima�nib 
and suni�nib

Avapri�nib 
Approved for the 
treatment of 
unresectable or 
metasta�c GIST 
with PDGFRA exon 18 
muta�ons, including
D842V muta�on 

Ripre�nib 
Approved  for the 
management of 
unresectable or 
metasta�c GIST a�er 
failure of three or 
more kinase inhibitors

Fig. 2  Timeline of US FDA approval for tyrosine kinase inhibitors for the treatment of advanced or metastatic GISTs. GISTs gastrointestinal 
stromal tumours
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recommend starting patients with advanced GIST with an 
exon 9 mutation on imatinib 400 mg twice daily [45].

Further analysis performed on the EORTC 62005 trial 
also suggested that patients who progressed on a 400 mg 
daily dose may benefit from a dose escalation of their 
imatinib [46]. At the time of analysis, 247 of the 473 patients 
who were randomised to the 400 mg daily arm had disease 
progression, of whom 133 (55%) crossed over to receive 
imatinib 800 mg daily. Among those who crossed over to 
receive a higher dose of imatinib, 3 patients had a PR and 
36 had stable disease (SD). Following crossover, the PFS 
was 81 days. Anaemia and fatigue were the most commonly 
reported adverse events. While this analysis has several limi‑
tations, there are some benefits in response rate and PFS in 
those who had dose escalation of their imatinib following 
disease progression.

It is important to stress that treatment with imatinib 
should continue until disease progression or if patients 
experience significant toxicities. Treatment interruption 
will often lead to disease progression. A prospective, ran‑
domised study that compared the PFS of patients who had 
treatment interruption with those who had ongoing treat‑
ment with imatinib for advanced GISTs demonstrated that 
treatment discontinuation or interruption may lead to rapid 
progression of disease [47]. The ESMO/EUROCAN/GEN‑
TURIS groups also recommend treatment with imatinib to 
be continued indefinitely, unless the patient progressed on 
treatment, because treatment interruption often results in 
rapid tumour progression [31].

4  Management of Imatinib‑Resistant GIST

Resistance to treatment with a TKI such as imatinib can be 
divided into two categories: primary and secondary resist‑
ance [7].

4.1  Primary Resistance

PDGFRA D842V in exon 18 is the most common PDGFRA 
mutation in GIST and is resistant to imatinib and all other 
earlier approved KIT‑targeted TKIs based on prior in vitro 
studies [17, 43, 48]. PDGFRA D842V mutation results in 
the active conformation of the kinase domain and this results 
in resistance to TKIs such as imatinib, which preferentially 
binds to the inactive conformation [18, 49]. Several stud‑
ies have also provided evidence that a PDGFRA D842V 
mutation confers resistance to imatinib [39, 51]. Although 
PDGFRA D842V‑mutated GIST tends to be more indolent, 
its resistance towards imatinib and other TKIs meant that 
there was no approved effective treatment for this molecular 
subtype of GIST until the recent development of avapritinib.

RTK‑WT GISTs are also resistant to imatinib and may 
respond better to other targeted therapy. Examples include 
vascular endothelial growth factor receptor (VEGFR) inhibi‑
tors for SDH-mutant GIST, and BRAF‑MEK inhibitors for 
GISTs with a BRAF mutation [31, 52].

4.2  Management of PDGFRA D842V‑Mutated GIST

Avapritinib is a potent, highly selective oral inhibitor that 
targets the active conformation of KIT and PDGFRA. In 
2020, results from the NAVIGATOR trial (a multicentre, 
phase I, dose‑escalation/dose‑expansion study) were pub‑
lished, confirming that avapritinib has clinical activity 
towards PDGFRA D842V‑mutated GIST. In the PDGFRA 
D842V‑mutated population, the ORR was 88%, with 9% of 
patients achieving a CR and 79% of patients achieving a PR. 
The recommended phase II dose was 300 mg daily [49]. 
Avapritinib is generally well tolerated, with a manageable 
adverse effect profile. The most common grade 3 or higher 
adverse event is anaemia, however avapritinib is associated 
with a higher frequency (40%) of cognitive effects, of which 
5% are grade 3 or higher, with two patients having intracra‑
nial haemorrhage that improved upon treatment discontinu‑
ation [49].

The positive results from the NAVIGATOR study resulted 
in the FDA approval of avapritinib in January 2020 for adults 
with inoperable or metastatic GIST with PDGFRA exon 18 
mutations, including the D842V mutation [53]. However, 
there are many limitations in that study. First, the sample 
size was small due to the rarity of PDGFRA D842V‑mutant 
GISTs, and, second, this was a single‑arm trial with no con‑
trol group. We await randomised trials comparing avapri‑
tinib with other standard therapies to confirm these results.

4.3  Secondary Resistance

Despite an initial response to imatinib, patients often 
develop disease progression or secondary resistance towards 
imatinib. Acquired mutations in KIT account for most of the 
secondary resistance. Chen and colleagues first described 
a novel missense alteration in KIT kinase domain 1 which 
correlates with imatinib resistance in GIST. This was the 
first time an acquired KIT mutation in imatinib‑resistant 
GISTs was described [54]. In 2006, Heinrich and col‑
leagues published an analysis of the genomic mechanisms 
of imatinib resistance in a cohort of patients who were part 
of a randomised phase II study. In that study, 43 of the 92 
patients with disease‑related treatment failures consented 
to have their tumour samples studied. Sixty‑seven percent 
of these patients had at least one secondary kinase mutation 
and these secondary mutations were not identified in the 
pretreatment specimens [43].
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There has also been significant development in the way 
we assess radiological response with GISTs. Computed 
tomography (CT) has been used for diagnosis and therapy 
monitoring. The use of Response Evaluation Criteria in 
Solid Tumours (RECIST), which only takes into account 
the tumour size, has its limitations when it comes to moni‑
toring response to TKIs because treatment with TKIs in 
GIST can result in only a small volume of tumour reduction 
on imaging, even when there is response to treatment [55]. 
Therefore, modified response criteria that takes into account 
tumour density and metabolic and functional parameters 
such as the Choi criteria has been developed [56]. F‑fluoro‑
deoxyglucose/positron emission tomography (FDG/PET) is 
also a useful imaging modality to assess tumour response 
but it should not be used in patients whose baseline scans 
are FDG‑avid [56].

In an effort to delay resistance to imatinib, the Australasian 
Gastrointestinal Trials Group (AGITG) also conducted a phase 
II randomised study (ALT‑GIST) to review whether alternat‑
ing the regimen of imatinib and regorafenib delays resistance 
to imatinib and improves outcomes. Seventy‑six patients were 
randomised to receive 21–25 days of oral imatinib 400 mg 
daily followed by a 3‑ to 7‑day gap for washout, then followed 
by 21 days of oral regorafenib 160 mg daily and a 7‑day gap for 
washout, or the control arm, i.e. continuous imatinib 400 mg 
daily. This was a negative study as there was no statistical or 
clinically meaningful benefit [57].

4.4  Management of Advanced, Imatinib‑Resistant 
GISTs: Second‑Line Setting

Sunitinib malate, an oral multitargeted receptor TKI, is a 
second‑line option for patients who have disease progres‑
sion while receiving imatinib or are intolerant to imatinib. 
However, for patients who have progressive disease but are 
tolerating standard dose imatinib and do not harbor resist‑
ant mutation, a dose increment of imatinib is recommended 
before switching therapy [45].

Sunitinib blocks receptor tyrosine kinase signalling by 
KIT, PDGFRs, all three isoforms of the VEGFRs (VEGFR 
1–3), FMS‑related tyrosine kinase‑3 receptor (FLT3), and 
RET. As a result, sunitinib has demonstrated antiangiogenic 
and antitumour activities [58–61]. A phase I/II study of 97 
patients demonstrated clinical benefit when sunitinib was 
used in imatinib‑resistance GIST, although the objective 
rates of anti‑tumour response were low [62]. Following this 
study, a randomised, phase III trial was designed to pro‑
spectively confirm the findings [63]. In this double‑blind, 
placebo‑controlled, clinical trial, patients with unresectable 
advanced GIST with confirmed treatment failure to pre‑
vious imatinib therapy were randomised in a 2:1 ratio to 
receive sunitinib 50 mg or placebo daily for 4 consecutive 
weeks followed by a 2‑week treatment break. Upon disease 

progression, participants were unblinded, and those found to 
be receiving placebo were allowed to crossover to open‑label 
sunitinib treatment. This study met its primary endpoint. 
The median time to tumour progression was 27.3 week in 
the sunitinib arm versus 6.4 weeks in the placebo arm, with 
a clinically meaningful and statistically significant HR of 
0.33 (95% CI 0.23–0.47; p < 0.0001). Patients in the suni‑
tinib arm also had a much longer PFS of 24.1 weeks com‑
pared with 6 weeks in the placebo arm (HR 0.33, 95% CI 
0.24–0.47; p < 0.0001). This trial led to the FDA approval of 
sunitinib for the treatment of GIST after disease progression 
or intolerance to imatinib [64].

Based on the phase III study by Demetri and colleagues, 
the approved treatment schedule for sunitinib is 50 mg daily 
for 4 consecutive weeks followed by a 2‑week treatment 
break, comprising a 6‑week cycle [63]. However, in 2009, a 
phase II study demonstrated that continuous daily oral suni‑
tinib at a lower daily dose of 37.5 mg is not only effective 
but also well tolerated [65]. While no randomised trial has 
ever been carried out to compare both dosing strategies, con‑
tinuous daily sunitinib dosing appears to be an acceptable 
alternative dosing strategy [45].

While biopsy of GIST upon imatinib progression is 
often not performed, it may be valuable to evaluate sec‑
ondary mutations in imatinib‑resistant disease. Second‑
ary KIT mutations often arise in KIT exons 13/14 or exons 
17/18. Sunitinib has demonstrated reduced activity against 
KIT exon 11 mutations coupled with secondary mutations 
in exon 17 or exon 18, whereas regorafenib has shown 
increased activity for secondary exon 17/18 mutations [66]. 
However, patients with exon 13 or 14 secondary KIT muta‑
tions treated with sunitinib had a longer PFS and OS [67].

4.5  Management of Advanced, Imatinib‑Resistant 
GISTs: Third‑Line Setting

For patients who develop progressive disease on imatinib 
and sunitinib, regorafenib is standard third‑line therapy. 
Regorafenib is an oral multikinase inhibitor that inhibits 
the activity of angiogenic (VEGFR1–3 and TEK), stromal 
(PDGFR and fibroblast growth factor receptor [FGFR]) and 
oncogenic (KIT, RET, RAF1, BRAF, and BRAFV600E) 
receptor tyrosine kinases [68]. In preclinical models, 
regorafenib demonstrated anti‑tumour activity, including 
growth inhibition of GIST cell lines [68]. In a multicen‑
tre, phase II study, regorafenib showed activity against 
imatinib‑ and sunitinib‑resistant GIST. In this study, patients 
with advanced GIST who developed disease progression on 
imatinib and sunitinib received oral regorafenib 160 mg 
daily for 21 days of a planned 28‑day cycle [69]. Clinical 
benefit (defined as CR, PR, and SD ≥16 weeks) was docu‑
mented in approximately 75% of patients and the median 
PFS was 10 months.
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The follow‑on GRID study was an international, ran‑
domised, placebo‑controlled, phase III trial investigat‑
ing the efficacy and safety of regorafenib in patients with 
advanced GIST who did not respond to imatinib and suni‑
tinib [70]. Overall, 199 patients with advanced GIST who 
progressed on prior imatinib and sunitinib treatment were 
randomised (2:1) to receive either regorafenib and best sup‑
portive care (BSC), or placebo and BSC. If disease progres‑
sion occurred while on the trial, participants were unblinded 
and crossover was offered to those who were in the placebo 
arm. Participants who were in the regorafenib arm could 
continue on regorafenib even upon disease progression. The 
primary endpoint was PFS per modified Response Evalua‑
tion Criteria In Solid Tumors (RECIST) 1·1. Prospectively 
defined RECIST modifications were developed specifically 
for GISTs in this trial. These modified RECIST criteria 
were subsequently used by other GIST trials. The study 
met its primary endpoint, with a PFS of 4.8 months in the 
regorafenib arm and 0.9 months in the placebo arm (HR 
0.27, 95% CI 0.19–0.39; p < 0.0001). The safety profile 
of regorafenib was similar to previous clinical trials. These 
results led to the FDA approval of regorafenib for the man‑
agement of unresectable metastatic GIST after failure of 
imatinib and sunitinib [71].

Following this, the VOYAGER study compared avapri‑
tinib with regorafenib in patients with KIT/PDGRFA‑mutant 
GIST who had disease progression after two or three lines 
of treatment. This randomised, open‑label, phase III study 
enrolled 476 patients. The study did not meet its primary 
endpoint, with PFS in the avapritinib and regorafenib arms 
of 4.2 months and 5.6 months, respectively (HR 1.25, 95% 
CI 0.99–1.57) [72]. Regorafenib remains the standard third‑
line treatment for the management of unresectable, meta‑
static GISTs.

4.6  Management of Advanced, Imatinib‑Resistant 
GISTs: Fourth‑Line Setting and Beyond

In 2020, ripretinib was approved by the FDA for patients 
with advanced GIST who have received prior treatment 
with three or more kinase inhibitors [73]. Ripretinib is a 
switch‑control TKI that locks the kinase in an inactive state 
by binding to both the switch pocket and the activation loop. 
This prevents downstream signalling and hence prevents cell 
proliferation [74].

The first‑in‑human, phase I study of ripretinib dem‑
onstrated promising activity in patients with refractory 
advanced GIST. Ripretinib is also well tolerated and the rec‑
ommended phase II dose was 150 mg daily [75]. At a dose of 
150 mg daily, the most frequent treatment‑related toxicities 
were alopecia, fatigue, myalgia, nausea and palmar‑plantar 
erythrodysaesthesia [75].

Following that, the INVICTUS trial, a double‑blind, ran‑
domised, placebo‑controlled, phase III trial was designed 
to evaluate the efficacy and safety of ripretinib as fourth 
or greater lines of therapy in patients with unresectable or 
metastatic GISTs [76]. The results from this trial were statis‑
tically and clinically significant. Overall, 129 patients with 
unresectable metastatic GIST with disease progression on 
at least imatinib, sunitinib and regorafenib were randomised 
in a 2:1 ratio to receive ripretinib 150 mg daily (n = 85) or 
placebo (n = 44). At the time of progressive disease, partici‑
pants were unblinded therefore patients in the placebo arm 
could crossover to receive ripretinib. The study met its PFS 
primary endpoint of PFS, with a PFS of 6.3 months (95% CI 
4.6–6.9) for ripretinib versus 1.0 month (95% CI 0.9–1.7) for 
placebo, and an HR of 0.15 (95% CI 0.09–0.25; p < 0.0001). 
The PFS at 6 months was estimated to be 51% (95% CI 
39.4–61.4) for ripretinib and 3.2% (95% CI 0.2–13.8) for 
placebo. Eight patients who received ripretinib had PRs as 
assessed by blinded independent central review (BICR). 
The median OS was 15.1 months (95% CI 12.3–15.1) in the 
ripretinib arm versus 6.6 months (95% CI 4.1–11.6) in the 
placebo arm (HR 0.36, 95% CI 0.21–0.62), inclusive of the 
double‑blind and open‑label periods [76]. For the patients 
who crossed over to the ripretinib group from the placebo 
group, the median OS was 11.6 months versus 1.8 months 
in patients who did not crossover. The adverse effects of 
ripretinib were tolerable. Grade 3 or 4 treatment‑related 
adverse events included elevated lipase, hypertension, 
fatigue, and hypophosphataemia. Patients in the INVIC‑
TUS study who had progressive disease on ripretinib 150 mg 
daily were also provided with the option of ripretinib dose 
escalation to 150 mg twice daily [77]. Forty‑three patients 
underwent ripretinib intrapatient dose escalation (IPDE) to 
150 mg twice daily. The median PFS was 4.6 months before 
(95% CI 2.7–6.4) and 3.7 months after (95% CI 3.1–5.3) 
ripretinib IPDE with an acceptable safety profile, indicating 
that dose escalation upon progression may provide addi‑
tional clinical benefit [77].

The INVICTUS study also demonstrated that patients 
in the placebo arm had a rapid clinical deterioration in the 
absence of any TKI; hence, we recommend the short wash‑
out time from previous treatment. We also recommend not 
stopping the patient’s current TKI even in the presence of 
progressive disease while waiting for the next‑line TKI to 
become available.

Ripretinib was also recently compared with sunitinib in 
the second‑line setting in a randomised, multicentre, phase 
III trial [78]. Overall, 453 patients were randomised to either 
ripretinib 150 mg daily or sunitinib 50 mg daily for 4 weeks 
followed by 2 weeks without sunitinib. The INTRIGUE 
study in the second‑line setting did not meet its primary 
endpoint of PFS [79]. We await the final publication of the 
results.
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The promising results from the INVINCTUS study dem‑
onstrated that ripretinib is an appropriate treatment option 
for patients with advanced GISTs whose disease has pro‑
gressed on imatinib, sunitinib and regorafenib.

5  Other Therapeutic Targets

Several therapeutic strategies focusing on the combined 
inhibition of KIT/PDGFRA and other targets have pre‑
viously been studied. Inhibition of the mTOR pathway 
together with imatinib was studied in a phase I–II study. In 
the phase II part of the study, 70 patients received a com‑
bination of imatinib 600 mg daily and everolimus 2.5 mg 
daily [80]. Everolimus inhibits AKT/mTOR signalling 
downstream of KIT and PDGFRA. Patients were divided 
into two cohorts: those who received only one prior line of 
treatment (Cohort 1) and those who have received two or 
more lines of treatment (Cohort 2). The results were mod‑
est, with a median PFS of 1.9 months (95% CI 1.8–3.7) 
and 3.5 months (95% CI 1.9–5.2) in Cohorts 1 and 2, 
respectively. While the study was in progress, sunitinib 
was approved for treatment in the second‑line setting for 
imatinib‑resistant GIST, hence, this combination was not 
furthered explored.

A phase Ib, multicentre study also investigated the inhibi‑
tion of the PI3K/AKT pathway together with imatinib [81]. 
Sixty patients with GISTs refractory to imatinib and suni‑
tinib were enrolled in this study. Unfortunately, buparlisib 
(an oral PI3K inhibitor) in combination with imatinib failed 
to demonstrate additional clinical benefit, hence further 
development of buparlisib with imatinib was not recom‑
mended [81]. However, the combination of a PI3K inhibi‑
tor with imatinib has demonstrated anti‑tumour activity in 
several preclinical studies involving patient‑derived GIST 
xenograft models [82–84], highlighting the role of PI3K 
inhibitors in the management of advanced GISTs. Further 
studies exploring the inhibition of this pathway should be 
undertaken.

Despite preclinical rationale to suggest the use of com‑
bination treatment, several of these combination trials have 
had limited success in the clinical setting. One theory is 
that the use of imatinib combination therapy in imatinib‑
resistant disease may have resulted in the lack of clinical 
results. Future clinical trials may explore combination trials 
with a pan‑KIT inhibitor such as ripretinib [85].

Another strategy used in overcoming KIT secondary 
mutations is by targeting important biological mechanisms 
involved in KIT oncoprotein stabilisation. Heat shock pro‑
tein 90 (HSP90) is required for the function and stability 
of several conditionally activated and/or expressed signal‑
ling proteins. Several oncogenes such as KIT, PDGFRA and 
BRAF are client proteins of HSP90 [86, 87], and several 

HSP90 inhibitors have demonstrated preclinical activity in 
the management of GIST [8].

Pimitespib is a novel, oral selective HSP90α and HSP90β 
inhibitor that has anti‑tumour effects. The first‑in‑human 
phase I study of pimetespib demonstrated that pimetespib is 
well tolerated, with adverse events including liver enzyme 
elevation, diarrhoea and some ocular toxicity [89]. In this 
study of 60 patients with solid organ malignancies, three 
confirmed PRs were seen, including a GIST case with no 
detectable KIT mutations. HSP90 inhibition was also con‑
firmed by the induction of HSP70 expression. The recom‑
mended dose for phase II was determined to be 160 mg 
daily, with a dosing schedule of 5 days on, 2 days off per 
week [89].

A subsequent single‑arm, phase II study was conducted 
in Japan, with 40 patients with unresectable or metastatic 
GISTs refractory to imatinib, sunitinib and regorafenib 
receiving 160 mg daily of pimitespib [90]. The centrally 
assessed median PFS was 4.4 months (95% CI 2.8–6.0). At 
≥6 weeks, 34 (85%) patients still had SD. The median OS 
was 11.5 months (95% CI 7.0–not reached).

CHAPTER‑GIST‑301 is a randomised, double‑blind, 
phase III trial comparing pimitespib with placebo in patients 
with GIST refractory to imatinib, sunitinib and regorafenib. 
The results from this study were recently reported [87]. 
Eighty‑six patients were randomised in a 2:1 ratio to receive 
pimitespib or placebo, with the study yielding positive 
results. The median PFS was 2.8 months for the pimitespib 
arm compared with 1.4 months in the placebo arm (HR 
0.51; p = 006). The median OS was not reached in both 
arms, although there was also an improvement in OS, with 
a median OS of 13.8 months (95% CI 9.2–not reached) in 
the pimitespib arm versus 9.6 months in the placebo arm 
(95% CI 5.5–not reached) [HR 0.63; p = 0.081). Among 
those who received placebo, 60.7% of patients crossed over 
to pimitespib, with a secondary PFS of 2.7 months (95% CI 
0.7–4.1). Treatment‑related adverse events included diar‑
rhoea, with 13.8% of patients receiving pimitespib having 
grade 3 or higher diarrhoea [87]. The use of a different thera‑
peutic approach should be further explored in patients with 
advanced, unresectable GISTs.

Lastly, next‑generation TKIs targeting secondary KIT 
mutations are being investigated and have had some suc‑
cess in early‑phase trials. As discussed above, despite an 
initial response to TKIs, disease progression often occurs 
due to resistance mutations. Currently approved TKIs such 
as imatinib, sunitinib and regorafenib are type II kinase 
inhibitors, which bind to the inactive conformation of the 
KIT kinase. PLX9486, a selective type I KIT inhibitor, har‑
bours activities against primary KIT mutations and second‑
ary mutations (exons 17 and 18). An early‑phase Ib/II trial 
investigated the combination of PLX9486, and sunitinib 
demonstrated that patients with refractory GIST may derive 
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Table 2  Ongoing clinical trials for advanced GISTs

GISTs gastrointestinal stromal tumours, CYP cytochrome P450

Trial identifier Phase Drug Description

NCT04530981 [92] I Ripretinib
Repaglinide

An open‑label, multicentre study to evaluate the effect of ripretinib on the 
pharmacokinetics of a CYP2C8 probe substrate (repaglinide) in patients 
with advanced GIST

NCT04633122 [78] II Ripretinib A multicentre, single‑arm, open‑label study of DCC‑2618 and suni‑
tinib to assess efficacy, safety, and pharmacokinetics in patients with 
advanced GIST who have progressed on imatinib

NCT03594422 [93] I HQP1351 A study to assess the safety, tolerability, pharmacokinetic and pharmaco‑
dynamic properties of oral HQP1351 in patients with GIST or other solid 
tumours

NCT02638766 [94] II Regorafenib A single‑arm, non‑randomised, multicentre clinical trial of regorafenib as 
a single agent in the first‑line setting for patients with metastatic and/or 
unresectable KIT/PDGFR wild‑type GIST

NCT04193553 [95] II Lenvatinib A multicentre, comparative, placebo‑controlled, double‑blinded, phase II 
study of the efficacy of lenvatinib in patients with locally advanced or meta‑
static GIST after failure of imatinib and sunitinib

NCT02401815 [102] I/II CGT9486
Pexidartinib
Sunitinib

A study to assess CGT9486 (formerly known as PLX9486) as a single agent 
and in combination with PLX3397 (pexidartinib) or sunitinib in partici‑
pants with advanced solid tumours (including GIST)

NCT03609424 [103] Ib/II Spartalizumab A study of spartalizumab and imatinib for metastatic or unresectable GIST 
with prior failure of imatinib, sunitinib and regorafenib

NCT03944304 [104] II Paclitaxel A study of paclitaxel in patients with metastatic or advanced GIST with low 
P‑glycoprotein expression after failure of at least imatinib, sunitinib and 
regorafenib.

NCT03556384 [105] II Temozolomide An open‑label, phase II efficacy study of temozolomide (TMZ) in advanced 
succinate dehydrogenase (SDH)‑mutant/deficient GIST

NCT04595747 [106] II Rogaratinib A study of rogaratinib (BAY 1163877) in the treatment of patients with 
sarcoma harbouring alterations in fibroblast growth factor receptor (FGFR) 
1‑4 and SDH‑deficient gastrointestinal stromal tumour (GIST)

NCT02880020 [107] II Nivolumab Ipilimumab A randomised study of nivolumab monotherapy versus nivolumab combined 
with ipilimumab in patients with metastatic or unresectable GIST

NCT00756509 [108] II Nilotinib An open‑label, multicentre, single‑arm study to evaluate the efficacy of nilo‑
tinib in adult patients with metastatic or unresectable GIST

NCT04254939 [109] I/II Avapritinib A clinical study of avapritinib in Chinese subjects with unresectable or 
metastatic GIST

NCT04409223 [110] III Famitinib An open label, randomised, controlled, multicentre study to assess the effi‑
cacy and safety of famitinib versus sunitinib in the treatment of advanced 
GIST patients after failure of imatinib

NCT04258956 [96] II Avelumab Axitinib A single‑arm study of avelumab in combination with axitinib in patients with 
unresectable/metastatic after failure of standard therapy—AXAGIST

NCT04138381 [97] Ib/II Selinexor A multicentre trial of selinexor as a single agent and in combination with 
imatinib in patients with metastatic and/or unresectable GISTs

NCT04000529 [98] Ib TNO155 Spartalizumab Ribociclib An open‑label, multicentre study to characterise the safety, tolerability, and 
preliminary efficacy of TNO155 in combination with spartalizumab or 
ribociclib in selected malignancies

NCT03475953 [99] Ib Regorafenib
Avelumab

A multicentre, prospective, open‑labelled trial assessing three dose levels of 
regorafenib given in combination with avelumab in patients with advanced 
solid tumours

NCT01738139 [100] I Ipilimumab
Imatinib

A trial of ipilimumab and imatinib mesylate in patients with advanced malig‑
nancies

NCT02834013 [101] II Nivolumab
Ipilimumab

A study of nivolumab and ipilimumab in treating patients with rare tumours
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clinical benefit from combination treatment [91]. In part 1 
of this trial, 21 patients received PLX9486 monotherapy 
at a dose of 250, 350, 500 or 1000 mg daily. In part 2 of 
the trial, 18 patients received PLX9486 at a dose of 500 or 
1000 mg combined with sunitinib at 25 or 37.5 mg daily 
[91]. Patients who received monotherapy with PLX9486 at 
a dose of 500 mg or less (n = 7) had no objective responses 
and the median PFS was 1.74 months (95% CI 1.55–1.84). 
The median PFS of those receiving PLX9486 monotherapy 
1000 mg daily (n = 12) was 5.75 (95% CI 0.99–11.0). The 
combination of sunitinib 25 or 37.5 mg with PLX9486 500 
or 1000 mg resulted in a longer median PFS of 12.1 months 
(95% CI 1.35–not available) [91]. The results from this study 
suggest that PLX9486 can be safely combined with suni‑
tinib. Further randomised clinical trials of PLX9486 and 
sunitinib will determine if a combination of type 1 and type 
II TKIs leads to improved clinical outcomes.

Several trials are ongoing to investigate other therapeutic 
options for the management of advanced GISTs, as summa‑
rised in Table 2 [78, 92, 93, 94, 95, 96–99, 104–108].

6  Conclusion

In the last two decades, clinical and translational research 
have contributed to the growing understanding of the 
molecular biology of GISTs and has resulted in significant 
achievements made in the treatment of GISTs. GISTs are a 
heterogenous group of tumours with distinct clinical and 
molecular characteristics. The use of tumour genotype has 
helped determine the optimal treatment of GISTs.

The last  two decades have seen the introduction of 
imatinib followed by the second‑, third‑ and fourth‑line TKIs 
sunitinib, regorafenib and ripretinib for the management of 
advanced GISTs, and avapritinib for GISTs with an exon 
18 PDGFRA D842V mutation. However, imatinib‑sensi‑
tive GISTs often develop secondary resistance caused by 
acquired mutations, and the median time to progression is 24 
months [40, 41]. For patients who have progressed on cur‑
rently available treatments, options are limited, making this 
setting an area of unmet need. Future research should focus 
on overcoming resistance towards these TKIs or exploring 
other therapeutic approaches such as targeting biological 
mechanisms involved in KIT oncoprotein stabilisation.

Lastly, patients with GISTs with mutations in BRAF, NF1 
and FGFR, as well as SDH-deficient GISTs, do not respond 
to imatinib. The management of this subset of patients 
should be different. However, only a small population of 
patients with GISTs have an SDH deficiency or a mutation in 
BRAF, NF1 and FGFR. These patients are often eligible for 
the same clinical trials as these are more common molecular 
subtypes. This approach, as well as the rarity of these can‑
cers, make it challenging to define their treatment strategies. 

A phase II clinical trial investigating the mitogen‑activated 
protein kinase (MEK1/2) inhibitor selumetinib (AZD6244 
hydrogen sulfate) in patients with NF1-mutated GISTs was 
withdrawn due to slow accrual 111. Similarly, a phase II 
trial investigating the DNA methyltransferase inhibitor gua‑
decitabine (SGI‑110) in children and adults with wild‑type 
GIST, pheochromocytoma and paraganglioma associated 
with SDH deficiency and hereditary leiomyomatosis and 
renal cell carcinoma (HLRCC)‑associated kidney cancer was 
also withdrawn due to slow accrual 112. There is a pressing 
need for international collaborations to help determine the 
best treatment strategy for this subset of patients.
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