THE MANDELBROT SET AND σ-AUTOMORPHISMS OF QUOTIENTS OF THE SHIFT

PAU ATELA

Abstract

In this paper we study how certain loops in the parameter space of quadratic complex polynomials give rise to shift-automorphisms of quotients of the set Σ_{2} of sequences on two symbols. The Mandelbrot set \mathbf{M} is the set of parameter values for which the Julia set of the corresponding polynomial is connected. Blanchard, Devaney, and Keen have shown that closed loops in the complement of the Mandelbrot set give rise to shift-automorphisms of Σ_{2}, i.e., homeomorphisms of Σ_{2} that commute with the shift map. We study what happens when the loops are not entirely in the complement of the Mandelbrot set. We consider closed loops that cross the Mandelbrot set at a single main bifurcation point, surrounding a component of \mathbf{M} attached to the main cardioid. If n is the period of this component, we identify a period- n orbit of Σ_{2} to a single point. The loop determines a shift-automorphism of this quotient space of Σ_{2}. We give these maps explicitly.

1. The Mandelbrot set and the external rays

We begin by recalling a few definitions and well-known facts. Let $\overline{\mathbb{C}}$ be the Riemann sphere $\mathbb{C} \cup\{\infty\}$, and consider the family $P_{c}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ of complex quadratic polynomials $P_{c}(z)=z^{2}+c$ with the parameter $c \in \mathbb{C}$. Any complex quadratic polynomial is conjugate by an affine map $a z+b$ to a unique one in this family. The polynomial P_{c} has a unique critical point $z=0$. Since $P_{c}(0)=c$, the parameter value c is the critical value. For a fixed c we refer to the z-plane as the dynamical plane for P_{c}. In this plane, the orbit of a point z under iteration of P_{c} is the sequence $z, P(z), P^{2}(z)=P(P(z)), \ldots$ We refer to the c-plane as the parameter plane.

For a fixed c, let K_{c} be the set of points whose orbit under iteration of P_{c} remains bounded. That is, $K_{c}=\left\{z \mid P_{c}^{n}(z) \nrightarrow \infty\right\} . K_{c}$ is called the filled-in Julia set. It is a compact set whose boundary is the Julia set J_{c} of $P_{c} . J_{c}$ can be defined as the set of $z \in \mathbb{C}$ where the family of iterates $\left\{P_{c}^{n}\right\}_{n \in \mathbb{N}}$ fails to be normal. It turns out that J_{c} is the closure of the set of repelling periodic points (see, for example, $[\mathrm{B}, \mathrm{K}]$). It is known that if the orbit of the critical point is bounded $\left(0 \in K_{c}\right), J_{c}$ is connected. Otherwise, if $0 \notin K_{c}, J_{c}$ is totally disconnected and homeomorphic to a Cantor set [J, F, B]. By definition, the Mandelbrot set \mathbf{M} is the set of parameter values c for which $0 \in K_{c} \quad\left(J_{c}\right.$ connected). For an excellent exposition of the Mandelbrot set see [Br]. As an introduction to \mathbf{M} with beautiful pictures, one could see [PR] and therein

[^0]the paper by A. Douady [Doul]. Douady and Hubbard have shown that \mathbf{M} is connected. It is still an open problem to prove that it is locally connected, as computer pictures seem to indicate.

The Mandelbrot set \mathbf{M} appears as a bifurcation set in regions of parameter space in many other one-parameter families of maps. Whenever a family of maps "behaves like" a degree two polynomial, in parameter space, an M-like object will be present. This is the theory of polynomial-like mappings [DH], and in this sense the Mandelbrot set is a Universal object.

Douady and Hubbard show that \mathbf{M} is connected by constructing an analytic homeomorphism $\boldsymbol{\Phi}: \overline{\mathbb{C}}-\mathbf{M} \rightarrow \overline{\mathbb{C}}-D_{1}$ tangent to the identity at $\infty\left(D_{1}\right.$ is the closed disc of radius 1) [DH1, DH2]. That is, the complement of \mathbf{M} in the Riemann sphere is conformally equivalent to a disk (recall the Riemann mapping theorem). We briefly describe here the map Φ.

For every c, ∞ is a superattracting fixed point of P_{c} (fixed point with zero derivative). Therefore, in a neighborhood of $\infty, \quad P_{c}$ behaves like $z \mapsto z^{2}$. More specifically, there is a unique analytic map ϕ_{c} tangent to the identity at ∞ such that it conjugates P_{c} to z^{2}, i.e., $\phi_{c} \circ P_{c} \circ \phi_{c}^{-1}=P_{0}: z \mapsto z^{2}$ in a neighborhood of ∞ (see, for example, [B]). These are sometimes called Böttcher coordinates [Bo].

Notice that 0 is the only critical point of P_{c}. For $c \in \mathbf{M}, P_{c}^{n}(0)$ lies in K_{c} for all n, so the conjugacy ϕ_{c} can be extended, by successively pulling back P_{c}, to an analytic homeomorphism $\overline{\mathbb{C}}-K_{c} \rightarrow \overline{\mathbb{C}}-D_{1}$.

For $c \notin \mathbf{M}$, if we take successive preimages of a neighborhood of ∞ we will eventually hit the critical value c. The next preimage of a "circle" containing c is a "figure 8". That is, if $c \notin \mathbf{M}, \phi_{c}$ extends to an analytic homeomorphism $\overline{\mathbb{C}}-L_{c} \rightarrow \overline{\mathbb{C}}-D_{R} \quad\left(D_{R}\right.$ is a closed disk of radius $\left.R>1\right)$, where L_{c} is a compact set whose boundary is a curve homeomorphic to a lemniscate (see Figure 1). J_{c} is contained in the interior of L_{c} and $c \notin L_{c}$.

Douady and Hubbard define the map $\Phi: \overline{\mathbb{C}}-\mathbf{M} \rightarrow \overline{\mathbb{C}}-D_{1}$ as

$$
\begin{equation*}
\Phi(c)=\phi_{c}(c) . \tag{1.1}
\end{equation*}
$$

With $\Phi(\infty)=\infty, \quad \Phi$ is an analytic homeomorphism.
Definition. For a fixed angle θ measured in turns, the external ray θ of \mathbf{M} is $\Phi^{-1}\left(\left\{r e^{2 \pi i \theta} \mid r>1\right\}\right)$.

Douady and Hubbard have proved that if θ is rational, the external ray

Figure 1. ϕ_{c} extends to the exterior of L_{c}
θ has a limit $c_{0} \in \mathbf{M}$ when $r \rightarrow 1$ [DH2]. The behavior for a general θ irrational is still an open question.

Figure 2a pictures the Mandelbrot set with some of the external rays and where they land.

Definition (see Figure 2b). For a fixed parameter c, the dynamic ray of angle α is $\phi_{c}^{-1}\left(\left\{r e^{2 \pi i \alpha} \mid r>R\right\}\right)$.

For $c \in \mathbf{M}, R=1$; for $c \notin \mathbf{M}, R>1$. In $\S 4$ we will extend the dynamic rays to the interior of L_{c}.

Notice that the external rays live in the parameter plane, while the dynamic rays live in the dynamic plane. From (1.1) it is clear that if the parameter $c \notin \mathbf{M}$ lies in the external ray θ of \mathbf{M}, then, in the dynamic plane, c lies in the dynamic ray of same angle θ.

Figure 2a. The Mandelbrot set and some external rays (see [DH1])

Figure 2b. The dynamic rays and L_{c}, for $c \notin \mathbf{M}$

2. Coding the Julia set J_{c}

We have mentioned that if $c \notin \mathbf{M}$, the Julia set J_{c} is totally disconnected, homeomorphic to a Cantor set. In this section we will show this and the standard way of associating to each point of J_{c} a sequence of 0 and 1 (symbolic dynamics).

Let Σ_{2} be the set of all binary sequences,

$$
\Sigma_{2}=\left\{\left\{a_{i}\right\}_{i=0}^{\infty} \mid a_{i}=0 \text { or } 1\right\}
$$

Σ_{2} has a metric defined by

$$
d(\mathbf{a}, \mathbf{b})=\sum_{i=0}^{\infty} \delta_{i} 2^{-i}, \quad \delta_{i}= \begin{cases}0 & \text { if } a_{i}=b_{i} \\ 1 & \text { if } a_{i} \neq b_{i}\end{cases}
$$

which makes it a Cantor set.
Let $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ be the shift map:

$$
\sigma\left(\left\{a_{i}\right\}_{i=0}^{\infty}\right)=\left\{a_{i+1}\right\}_{i=0}^{\infty}
$$

(σ just drops the first digit of the sequence). Periodic points, density of periodic points, sensitivity to initial conditions, and existence of dense orbits (in short, "chaos"), are very easily seen for σ (see, for example, [D]).

If $c \notin \mathbf{M}$, there is a homeomorphism $h_{c}: J_{c} \rightarrow \Sigma_{2}$ (see construction below) which we will call a "coding of J_{c}," such that $\left.h_{c} \circ P_{c}\right|_{J_{c}}=\sigma \circ h_{c}$, i.e., P_{c} is topologically conjugate to σ on J_{c} [B], their dynamics are then completely equivalent.

We briefly sketch the construction of h_{c}. The interior of the lemniscate L_{c} (Figure 1) has two connected components which we will arbitrarily label U_{0} and U_{1}. The first preimage of L_{c} under P_{c} consists of two more "figure 8" curves (see Figure 3), one in each of U_{0} and U_{1}, and whose interiors again we will label according to what their image under P_{c} is.

Figure 3. L_{c} and its preimages

There are four of these regions now. We label them $U_{a_{0} a_{1}}$ with $a_{0}, a_{1} \in$ $\{0,1\}$ according to the rule

$$
\begin{equation*}
U_{a_{0} a_{1}} \subset U_{a_{0}}, \quad P_{c}\left(U_{a_{0} a_{1}}\right)=U_{a_{1}} \tag{2.1}
\end{equation*}
$$

It is easy to see that with an induction procedure, one can continue to label 2^{n+1} such regions in step n of the process. They will be labeled $U_{a_{0} a_{1} a_{2} \cdots a_{n}}, a_{i} \in$ $\{0,1\}$, again according to the rule

$$
U_{a_{0} a_{1} \cdots a_{n}} \subset U_{a_{0} \cdots a_{n-1}}, \quad P_{c}\left(U_{a_{0} a_{1} \cdots a_{n}}\right)=U_{a_{1} \cdots a_{n}}
$$

Notice that everything outside these 2^{n+1} regions will escape to ∞, so the Julia set is confined in the interior of them. By a nesting sets argument (P_{c} is expanding in J_{c}) $[\mathrm{B}]$, these regions limit down to single points in the Julia set J_{c} (which is invariant under P_{c}):

$$
\bigcap_{n=0}^{\infty} U_{a_{0} a_{1} \cdots a_{n}}=\{x\}
$$

Therefore, each $x \in J_{c}$ has a unique sequence $\left\{a_{i}\right\} \in \Sigma_{2}$ assigned to it:
Definition. Let $h_{c}: J_{c} \rightarrow \Sigma_{2}$ be defined by

$$
h_{c}(x)=\left\{a_{i}\right\}_{i=0}^{\infty} \Leftrightarrow \forall i P_{c}^{i}(x) \in U_{a_{i}}
$$

That is, the point $x \in J_{c}$ is in $U_{a_{0}}$, then under the map P_{c} it jumps to $U_{a_{1}}$, then to $U_{a_{2}}$, to $U_{a_{3}}$, etc.

This is a standard construction of h_{c}, which is then a homeomorphism that conjugates $P_{c} \mid J_{c}$ to the shift map.

3. σ-AUTOMORPHISMS OF Σ_{2}

Recently, Blanchard, Devaney, and Keen [BDK] have shown that a closed loop γ in the exterior of the Mandelbrot set leads to a σ-automorphism of Σ_{2}, i.e., a homeomorphism $\Sigma_{2} \rightarrow \Sigma_{2}$ that commutes with the shift map σ. They also show the following generalized result: A closed loop in the shift locus (subset of the space of polynomials of degree d consisting of those which have all critical points escaping to infinity under iteration) induces an automorphism of the shift on d symbols. Moreover, any such automorphism can be obtained in this way. In a recent paper, Boyle, Franks, and Kitchens [BFK] studied the group of automorphisms of the d-shift. The group is infinitely generated with very rich structure.

In this section, we sketch an argument in the case of quadratic polynomials.
Let $\gamma:[0,1] \rightarrow \mathbf{C}-\mathbf{M}$ be a path in the complement of the Mandelbrot set and denote by J_{t} the Julia set for $\gamma(t) \in \mathbf{C}-\mathbf{M}$.

Let us see what is happening in the dynamic plane. The Julia set J_{t} is a Cantor set. Since P is expanding on J_{t} and J_{t} depends continuously on $\gamma(t) \in \mathbf{C}-\mathbf{M}[\mathrm{B}]$, the points in the Julia set will be moving continuously without colliding (remember that $\forall t J_{l}$ is totally disconnected), each of them describing a path in the dynamic plane.

It is clear that for each t there is an induced bijective map $J_{t} \xrightarrow{\psi_{t}} J_{0}$. If we fix a coding $h: J_{0} \rightarrow \Sigma_{2}$ for J_{0}, i.e., we make a choice for the labels

Figure 4
U_{0} and U_{1}, then the composition $h \circ \psi_{t}: J_{t} \rightarrow \Sigma_{2}$ gives a coding of J_{t} (see Figure 4). If the path γ is a closed loop, then $J_{1}=J_{0}$, and the map

$$
h^{*}=h \circ \psi_{1}: J_{0} \rightarrow \Sigma_{2}
$$

will be a second coding of J_{0}. That is, we now have two codings of the initial Julia set J_{0} :

$$
h: J_{0} \rightarrow \Sigma_{2}, \quad h^{*}: J_{0} \rightarrow \Sigma_{2}
$$

The discrepancy, the map $h^{*} \circ h^{-1}: \Sigma_{2} \rightarrow \Sigma_{2}$, is then a σ-automorphism. It commutes with σ because both h and h^{*} do. Hedlund has proved in [H] that there are only two such automorphisms, the one that interchanges the symbols 0 and 1 , and the identity. In this context they beautifully correspond to whether the loop γ goes around \mathbf{M} or not [BDK].

In the next sections we will see what the corresponding map $H: \Sigma_{2} \rightarrow \Sigma_{2}$ is when the loop γ is not entirely in the complement of \mathbf{M}. We will take γ crossing the Mandelbrot set \mathbf{M} through one of the main bifurcation points, which we will define later on (see Figure 5).

Figure 5. Two of the loops γ through main bifurcation points

4. Extension of the dynamic rays

We denote by S^{1} the unit circle. We will measure the angles in S^{1} in turns. Let $c \in \mathbb{C}-\mathbf{M}$ and let $\theta_{c} \in S^{1}$ be the angle of the external ray of the Mandelbrot set containing c. Remember that (1.1) says that also in the dynamic plane $c \in d y n a m i c \operatorname{ray}\left(\theta_{c}\right)$.

In §1 we mentioned that the conjugacy ϕ_{c} of P_{c} to $z \mapsto z^{2}$ extends, by successively pulling back P_{c}, analytically up to the exterior of a lemniscate L_{c} (Figure 1). For a given angle $\alpha \in S^{1}$, the dynamic ray (α) is so far well defined (in $\S 1$) from ∞ to the boundary of L_{c} (see Figure 6). For the moment, we will refer to these as unextended rays. Notice that they land on L_{c}.
Proposition 4.1 (see Figure 6). For the unextended rays:
(1) $P_{c}(\operatorname{ray} \alpha) \subset \operatorname{ray}(2 \alpha)(\bmod 1)$.
(2) $r a y\left(\frac{\theta_{c}}{2}\right)$ and ray $\left(\frac{\theta_{c}}{2}+\frac{1}{2}\right)$ hit the origin.

Proof. (1) Directly from the definition of dynamic ray.
(2) Just remember that 0 is the critical point, $P_{c}(0)=c$ and $c \in \operatorname{ray}\left(\theta_{c}\right)$.

It is our intention now to extend the dynamic rays to the interior of L_{c} up to the Julia set.
Definition. Let $f: S^{1} \rightarrow S^{1}$ be the map $\alpha \mapsto 2 \alpha(\bmod 1)$. Fix $c \in \mathbb{C}-\mathbf{M}$. Let θ_{c} be the external ray of \mathbf{M} containing c. A dynamic ray α will be called branched if the angle α is any of the preimages $f^{-k}\left(\theta_{c}\right)$ of θ_{c} for $k \geq 1$. All the other rays will be called unbranched.

We will see the justification of this definition in the following process.
Extension process. Fix $c \in \mathbb{C}-\mathbf{M}$. So far, the dynamic rays are well defined from ∞ up to L_{c}. We now extend them, step by step, taking preimages of P_{c}. For the moment, let α be an unbranched ray. As Figure 7 illustrates, in the first step we extend the $\operatorname{ray}(\alpha)$ from the boundary of L_{c} up to one of the regions $U_{a_{0} a_{1}}$ by taking, out of the two preimages of the ray (2α), the one that contains ray (α). The ray (2α) is in turn extended by taking a preimage of the $\operatorname{ray}(4 \alpha)$.

Figure 6. The dynamic rays from ∞ to L_{c}

Figure 7. First extension of the rays α and 2α

Notice that, by (2.1), if the unextended rays α and 2α are landing on the first regions $U_{a_{0}}$ and $U_{a_{1}}$ respectively, then the extended ray α will go into the inner region $U_{a_{0} a_{1}}$.

Now we have extended all the unbranched rays from ∞ up to the inner second regions $U_{a_{0} a_{1}}$. Observe that only the second preimages of θ, that is, $\frac{\theta}{4}, \frac{\theta}{4}+\frac{1}{4}, \frac{\theta}{4}+\frac{1}{2}$, and $\frac{\theta}{4}+\frac{3}{4}$, would hit the center of a figure 8 . This is so because these centers are preimages of zero and the first preimages of ray θ hit zero (Proposition 4.1). This justifies the above definition.

We repeat this process to further extend the unbranched rays up to the third regions $U_{a_{0} a_{1} a_{2}}$ and so on. Notice that in the extension process, an unbranched ray α is successively penetrating nested regions $U_{a_{0}}, U_{a_{0} a_{1}}, U_{a_{0} a_{1} a_{2}}, \ldots$, and that these indices are given by one of the two big regions U_{j} which the unextended rays $\left(2^{i} \alpha\right), i \geq 0$, are landing on. That is, we have proved the following

Lemma 4.2. The ray α extended n times lands on the region $U_{a_{0} a_{1} \cdots a_{n}} \Leftrightarrow$ for each $i \in\{0,1, \ldots, n\}$ the unextended ray $\left(2^{i} \alpha\right)$ lands on the first region $U_{a_{i}}$.

Definition. The extended dynamic ray (α) will be the infinite union of all the finite extensions. From now on we will refer to the extended dynamic ray (α) simply as ray (α).

By the above discussion and definition, we have
Proposition 4.3. If α is an unbranched ray, $\quad P_{c}(\operatorname{ray} \alpha)=\operatorname{ray}(2 \alpha)$.
(Compare with Proposition 4.1.)
Theorem 4.4. The unbranched rays land directly on a single point of the Julia set.
Proof. The nested regions $U_{a_{0} a_{1} \cdots a_{n}}$ that the ray (α) is penetrating in the extension process determine this unique point.

Figure 8a. The branched dynamic rays

Figure 8b. The branched dynamic rays when c on the external ray $\frac{2}{3}$

To extend the branched rays defined earlier, the process is basically the same one. Note that the centers of the nested figure 8 curves are the preimages of 0 under P_{c}. Therefore, at each of these points, two preimages $f^{-k}(\theta)$ of the ray θ will fuse and, thus, more than one angle corresponds to the same (connected) branched ray (see Figure 8a). If θ_{c} is not periodic under doubling, a branched ray will branch only once, the two branches going then directly to points in the Julia set. Just remember that an irrational angle is not periodic under $\alpha \mapsto 2 \alpha$.

If θ_{c} is periodic, each branched ray "branches" infinitely many times at preimages of 0 . See, for example, the branched dynamic rays for $c \in$ ray $\theta_{c}=$ $2 / 3$ shown in Figure $8 b$. Recall that θ is periodic under doubling if and only if it is a rational $\theta=p / q$ with $(p, q)=1$ and q odd. Any such rational can be written in the form $l /\left(2^{k}-1\right)$ for some $l \in \mathbb{N}$, where k is the period.

5. Coding the dynamic rays

In $\S 2$ we saw how the points in the Julia set are coded. In this section we will define a coding of the dynamic rays.

As in $\S 4$, fix $c \in \mathbb{C}-\mathbf{M}$ with $c \in \operatorname{ray}(\theta)$. For convenience, we will sometimes write θ instead of θ_{c}. We know that in the dynamic plane, the rays $\frac{\theta}{2}$ and $\frac{\theta}{2}+\frac{1}{2}$ hit the origin.

We divide S^{1} into two arcs that we label with marks 0 and 1. Let $V_{j} \subset$ $S^{1}, j=0,1$, be the closed arcs of S^{1} divided by $\frac{\theta}{2}$ and $\frac{\theta}{2}+\frac{1}{2}$ (see Figure 9). Of the two possibilities, we will decide on the one that corresponds to the choice made for the labels U_{j} in $\S 2$.

We will code the unbranched rays $\alpha \in S^{1}$ following the dynamics, just as we coded J_{c} in $\S 2$. Since $P_{c}(\operatorname{ray} \alpha)=\operatorname{ray}(2 \alpha)(\bmod 1)$, we give the following

Definition (Figure 10). For c on the external ray θ, we define $S_{\theta}: S^{1} \rightarrow \Sigma_{2}$ by
(1) If α is an unbranched ray (not a preimage of θ),

$$
S_{\theta}(\alpha)=\left\{a_{i}\right\}_{i=0}^{\infty} \Leftrightarrow \forall i \quad 2^{i} \alpha \in V_{a_{i}} \quad(\bmod 1) .
$$

(2) If α is a branched ray, $S_{\theta}(\alpha)$ consists of exactly two sequences:

$$
S_{\theta}^{+}(\alpha)=\lim _{\beta \rightarrow \alpha^{+}} S_{\theta}(\beta) \quad \text { and } \quad S_{\theta}^{-}(\alpha)=\lim _{\beta \rightarrow \alpha^{-}} S_{\theta}(\beta)
$$

where, of course, the limit should be taken over unbranched β 's.

Figure 9

Figure 10. Coding of a ray $\alpha . \quad S_{\theta}(\alpha)=1100 \ldots$

Figure 11. Change of the codings $S_{\theta_{c}}$ of S^{1} as c moves around \mathbf{M}

Note. Part (2) of the above definition makes S_{θ} a multivalued function. Do not be horrified, this is precisely the beauty of it.

It is easy to check that, by construction, the following holds.
Proposition 5.1. Let α be a (branched or unbranched) dynamic ray. Then
(1) $S_{\theta}(2 \alpha)=\sigma S_{\theta}(\alpha)$,
(2) $S_{\theta}\left(2^{i} \alpha\right)=\sigma^{i} S_{\theta}(\alpha)$.

From Theorem 4.4, we know that an unbranched ray lands on a unique point in the Julia set J_{c}. The following extremely useful result gives us the relation between the codings h_{c} of J_{c} and S_{θ} of S^{1}.

Theorem 5.2. A ray lands on its itinerary. Let $c \in$ external ray θ of \mathbf{M}. Let $h: J_{c} \rightarrow \Sigma_{2}$ be the corresponding coding of $J_{c}(\S 4)$, and $S_{\theta}: S^{1} \rightarrow \Sigma_{2}$ be the compatible coding of the dynamic rays (Figure 9). Let α be an unbranched ray. Then

$$
\text { ray } \alpha \text { lands on the point } x \in J_{c} \Leftrightarrow S_{\theta_{c}}(\alpha)=h_{c}(x)
$$

Proof. From Theorem 4.4 we know that ray α does land on a unique $x \in J_{c}$.

This point is determined by the nested sequence of regions

$$
U_{a_{0}}, U_{a_{0} a_{1}}, \quad U_{a_{0} a_{1} a_{2}}, \ldots, U_{a_{0} a_{1} \cdots a_{i}}
$$

which the ray α is successively penetrating. From the definition of $h_{c}, h_{c}(x)=$ $\left\{a_{i}\right\}_{i=0}^{\infty}$. On the other hand, by Lemma 4.2, the unextended rays $2^{i} \alpha$ land on the first regions $U_{a_{i}}$. From Figure 9 it is clear that then $2^{i} \alpha \in V_{a_{i}}$, and this means that $S_{\theta_{c}}(\alpha)=\left\{a_{i}\right\}$.

Remark. If c moves along the external ray θ, the coding $S_{\theta}(\alpha)$ of the angle α remains the same although the dynamic ray α itself (as a subset in the complex plane) moves.

Figure 11 illustrates how the codings $S_{\theta_{c}}$ of S^{1} change as c moves around the Mandelbrot set along a loop γ.

Notice that now it is easy to see, after a complete turn around \mathbf{M}, the interchange between 0 and 1 referred to in $\S 3$ of the coding of the Julia set.

$$
\text { 6. THE MAPS } H_{n}: \Sigma_{2} \rightarrow \Sigma_{2}
$$

In this and the next sections, we will consider only external rays of \mathbf{M} of the form $\theta_{n}=\frac{1}{2^{n}-1} \quad(n \geq 2)$.

The main cardioid in \mathbf{M} corresponds to the values of the parameter c for which there is a fixed point with derivative $|\lambda|=1$. Therefore, a parametrization of the cardioid is given by

$$
c(w)=z-z^{2}, \quad \text { where } \quad z=\frac{1}{2} e^{2 \pi i w}, w \in[0,1]
$$

We will call the c values on the cardioid for $w=1 / n(n \geq 2)$ the main bifurcation points. It is known that there are two external rays, θ_{n} and $2 \theta_{n}$, landing on each of these (see Figure 12), and a period-n component of \mathbf{M} is attached to the cardioid at the point c [DH2], [Dou]. This component contains values of c for which P_{c} has a period-n attracting orbit. Again we refer the reader to $[\mathrm{Br}]$ for an extensive introduction to the Mandelbrot set.

When the parameter $c \in \mathbf{M}$ crosses the main bifurcation point from the interior of the cardioid to the attached component, in the dynamic plane a fixed point gives birth to a period- n attracting orbit [DH].

Figure 12

Figure 13. The loop γ through one of the main bifurcation points

Now fix $n \geq 2$ and let $c_{0} \in \mathbf{M}$ be the above corresponding bifurcation point, having θ_{n} and $2 \theta_{n}$ as external rays.

Let γ be a closed loop $\gamma=\left\{c_{t}\right\}$ in $\mathbb{C}-\mathbf{M}$ through c_{0} oriented as shown in Figure 13 , going along the ray $2 \theta_{n}$ "before" c_{0} and along the ray θ_{n} "after" c_{0}. That is, $c_{t} \in \operatorname{ray}\left(2 \theta_{n}\right)$ for $t<0$, and $c_{t} \in \operatorname{ray}\left(\theta_{n}\right)$ for $t>0$.

The Julia set $J_{c_{t}}$ is totally disconnected except when $c=c_{0}$. We choose a labeling (U_{0} and U_{1}) (see $\S 2$) for a certain $c_{t} \neq c_{0}$ in the loop so that we have continuous codings $h_{c_{1}}: J_{c_{1}} \rightarrow \Sigma_{2}, t \neq 0$.

It is clear that, in a sense, $J_{c_{0}}$ inherits a coding when c_{t} approaches c_{0} along the external ray $2 \theta_{n}$ and another one when c_{t} approaches c_{0} from the other side, i.e., along the external ray θ_{n} (see Figure 11).

These codings are different and our aim is to describe the change via a map $H_{n}: \Sigma_{2} \rightarrow \Sigma_{2}$.

To be precise, as c_{t} moves in the parameter plane along $2 \theta_{n}$ towards c_{0}, in the dynamic plane we follow an unbranched dynamic ray of angle α with (unique) endpoint $\alpha_{x_{t}} \in J_{c_{t}}$.

By Theorem 5.2, the sequence $S_{2 \theta_{n}}(\alpha)$ is the coding $h_{c_{t}}\left(\alpha_{x_{t}}\right)$ of the point $\alpha_{x_{t}} \in J_{t}$. Moreover

$$
S_{2 \theta_{n}}(\alpha)=h_{c_{t}}\left(\alpha_{x_{t}}\right) \quad \text { is constant as } t \rightarrow 0^{-}
$$

and similarly

$$
S_{\theta_{n}}(\alpha)=h_{c_{t}}\left(\alpha_{x_{t}}\right) \quad \text { is constant as } t \rightarrow 0^{+} .
$$

The endpoint $\alpha_{x_{t}}$ of the ray α for c_{t} (unbranched) is continuous with respect to c_{t}, even when c_{t} passes through c_{0} [L, Theorem, p. 77]. Therefore,

$$
\text { ray } \alpha \text { of } J_{c_{0}} \text { lands on } \alpha_{x_{0}}=\lim _{t \rightarrow 0^{-}} \alpha_{x_{t}}=\lim _{t \rightarrow 0^{+}} \alpha_{x_{t}} .
$$

From the above observation, we have that $S_{2 \theta_{n}}(\alpha)$ is the coding that $\alpha_{x_{0}} \in J_{c_{0}}$ inherits from the left and $S_{\theta_{n}}(\alpha)$ is the coding that $\alpha_{x_{0}}$ inherits from the right. Thus, by the above argument, the map $H_{n}: \Sigma_{2} \rightarrow \Sigma_{2}$ can be written as (i.e., we define it as) (see Figures 11 and 14):

$$
S_{2 \theta_{n}}(\alpha) \stackrel{H_{n}}{\longrightarrow} S_{\theta_{n}}(\alpha) .
$$

Figure 14. The codings $S_{2 \theta}$ and S_{θ} of S^{1}

Note. We remark that H_{n} could be multivalued. We will deal with this later. We shall see that H_{n} is multivalued only at $111 \ldots$, which corresponds to a fixed point, and its preimages by σ. The image under H_{n} of the fixed point is a group of n sequences: a period- n orbit.

7. The dynamic graphs

For convenience, we will drop the index and write θ (instead of θ_{n}) for the angle $\theta=\frac{1}{2^{n-1}}$ in the rest of the paper.

Our goal now is to find explicitly the map

$$
S_{2 \theta}(\alpha) \stackrel{H_{n}}{\longrightarrow} S_{\theta}(\alpha) .
$$

The angle θ is periodic of period $n: 2^{n} \theta=\theta(\bmod 1)$. The angles $\theta=$ $\frac{1}{2^{n}-1}, 2 \theta, 2^{2} \theta, \ldots, 2^{n-1} \theta, 2^{n} \theta=\theta$ form a period- n cycle, and they are distributed on the interval [0,1] as illustrated in Figure 14. That is, $2^{n-2} \theta<$ $1 / 2<2^{n-1} \theta<\theta+1 / 2$ and

$$
\text { length }(\theta / 2, \theta)=\operatorname{length}\left(2^{n-1} \theta, \theta+1 / 2\right)=\theta / 2
$$

From Figure 14 we can see, for example, that

$$
\begin{aligned}
& S_{2 \theta}^{-}(\theta)=\underbrace{0111 \ldots 1}_{n} \underbrace{0111 \ldots 1}_{n} \underbrace{0111 \ldots 1}_{n} \ldots, \\
& S_{2 \theta}^{+}(\theta)=1111111 \ldots, \\
& S_{\theta}^{-}(\theta)=111111 \ldots, \\
& S_{\theta}^{+}(\theta)=\underbrace{111 \ldots 10}_{n} \underbrace{111 \ldots 10}_{n} \underbrace{111 \ldots 10}_{n} \cdots
\end{aligned}
$$

Definition. As Figure 15 shows, we define the following partition of $S^{1} \cong[0,1]$ $(\bmod 1):$
$B_{i}=\left[2^{i-1} \theta, 2^{i} \theta\right], i=1, \ldots, n-1$,
$B_{n}=\left[2^{n-1} \theta, \theta+\frac{1}{2}\right]$,
$A=\left[\theta+\frac{1}{2}, \frac{\theta}{2}\right]$, i.e., $A=\left[\theta+\frac{1}{2}, 1\right] \cup\left[0, \frac{\theta}{2}\right]$,
$C=\left[\frac{\theta}{2}, \theta\right]$.
Notice that $A \cup C=V_{0}$ and $\bigcup_{i} B_{i}=V_{1}$ for $S_{2 \theta}$, and $A \cup B_{n}=V_{0}$ and $\bigcup_{i<n} B_{i} \cup C=V_{1}$ for S_{θ}. Note also that C and B_{n} are the only two preimages of B_{1}.

Figure 15. Partition of S^{1}

Figure 16. The dynamic graphs for $S_{2 \theta}$ and S_{θ}

Fundamental Remark. Since length $(C)=$ length $\left(B_{n}\right)=\frac{\theta}{2}$, the difference in the codings $S_{2 \theta}$ and S_{θ} is only that C and B_{n} interchange marks.

We build now the "dynamic graphs" associated to $S_{2 \theta}$ and S_{θ}. We will have one vertex for each of the partition intervals A, C, B_{i}. An arrow from vertex I to vertex $J(I \rightarrow J)$ means that $2 I \supset J(\bmod 1)$ (i.e., the image of interval I under multiplication by $2(\bmod 1)$ contains the entire interval $J)$. Figure 16 shows these two graphs. A vertex marked o means that the corresponding
interval is marked with a 0 , and a vertex marked - corresponds to an interval marked with a 1 .
Every vertex has two incoming arrows, they correspond to the two preimages of the corresponding interval.

8. Sequences and paths

Let \mathbf{P} be the set of all infinite paths (without coloring) of the dynamic graph of $\S 7$ with any of the vertices as a starting point. (\mathbf{P} is the same for both $S_{2 \theta}$ and S_{θ}.)
Proposition 8.1. (1) In both cases ($S_{2 \theta}$ and S_{θ}) every path in \mathbf{P} generates a unique sequence in Σ_{2}.
(2) Every path $\left\{I_{i}\right\}_{i=0}^{\infty} \in \mathbf{P}$ represents a unique point $x \in[0,1] \cong S^{1}$ satisfying $2^{i} x \in I_{i} \forall i \geq 0$.
Proof. A path in \mathbf{P} is a sequence of vertices $I_{0}, I_{1}, I_{2}, \ldots$. The marks (0 or 1) on these vertices give a distinct element in Σ_{2}. For (2), we give a nested intervals argument. From the oriented graph, it is clear that in the sequence $I_{0}, I_{1}, I_{2}, \ldots$ at least one of the vertices B_{n-1} or A appears infinitely many times. Define

$$
J_{k}=\left\{x \in I_{0} \mid 2^{i} x \in I_{i} \quad \forall i \in\{1, \ldots, k\}\right\} .
$$

We have that $J_{k} \neq \varnothing$ and $J_{1} \supset J_{2} \supset J_{3} \supset \cdots$ is a nested sequence with perhaps equalities but each time that $I_{k} \in\left\{B_{n-1}, A\right\}$ (which happens infinitely many times), the length of J_{k} is reduced by a factor $0<\delta_{k}<1$ with respect to the length of J_{k-1}. This is so because both B_{n-1} and A are covering more than one vertex and the map is linear. There are finitely many of these δ_{k} since the graph is finite. This guarantees that length $\left(J_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$, therefore $\bigcap J_{k}$ is a single point $x \in I_{0}$. Notice that $2^{i} x \in I_{i} \forall i \geq 0$.

Note. Since the vertices of the graph correspond to closed intervals, the unique point of part (2) could be one of the partition points.
Definition. As Proposition 8.1 allows us, we define the maps

$$
F_{2 \theta}: \mathbf{P} \rightarrow \Sigma_{2}, \quad F_{\theta}: \mathbf{P} \rightarrow \Sigma_{2}, \quad \text { and } \quad G: \mathbf{P} \rightarrow S^{1} .
$$

Theorem 8.2. The maps $F_{2 \theta}, F_{\theta}: \mathbf{P} \rightarrow \Sigma_{2}$ and $G: \mathbf{P} \rightarrow S^{1}$ are onto. Moreover,

$$
S_{2 \theta} \circ G=F_{2 \theta} \quad \text { and } \quad S_{\theta} \circ G=F_{\theta} \text {. }
$$

That is, the following diagram commutes:

Note: If $G(p)$ is unbranched, the assertion is $\left(S_{2 \theta} \circ G\right)(p)=F_{2 \theta}(p)$. If $G(p)$ is branched, $F_{2 \theta}(p)$ is one of the two codings of $G(p)$ by $S_{2 \theta}$, i.e., $\left(S_{2 \theta} \circ G\right)(p) \ni F_{2 \theta}(p)$.

Proof. We will prove first that $F_{2 \theta}$ is onto, a completely analogous proof is valid for F_{θ}. Let a $\in \Sigma_{2}$. A preimage of a under $F_{2 \theta}$ is a path of the graph of $S_{2 \theta}$ (Figure 16) that produces this sequence as we go along it. Divide the sequence a by its elements (portion of the sequence from the first digit or a zero to the last digit before next zero).

Example:

$$
1111|0111| 011111|0| 01 \mid 0 \ldots
$$

We will find the portion of the path that each element produces. Let d be the number of 1 's in the element:

$$
\ldots|0 \overbrace{111 \ldots 1}^{d}| 0 \ldots
$$

Notice that we could have $d=0$ or $d=\infty$. If $d=\infty$, there are clearly n choices for a generating path (we will see them in detail in the next section). Thus, these n different paths are all the preimages of the sequence under $F_{2 \theta}$. If $d \neq \infty$, we will see that the portion of the path "producing" the element is uniquely determined. The last digit 1 of the element is followed by a digit 0 of the next element. From Figure 16, it is clear that in the dynamic graph of $S_{2 \theta}$ the only way to go from a 1 to a 0 is from vertex B_{n-1}. Therefore, this last digit 1 corresponds to vertex B_{n-1}. The previous digit 1 must then correspond to vertex B_{n-2} and so on. So we can easily find the unique portion of the path p that produces this element. (If $d=0$ the vertex is certainly vertex A.)

Repeating this process element after element will give us a path p that produces the whole sequence a, i.e., $F_{2 \theta}(p)=\mathbf{a}$. Notice that the path p is determined uniquely except if a ends with a string of l's, in which case there are exactly n choices. We have then proved that the map $F_{2 \theta}$ is onto.

We will see now that $\left(S_{2 \theta} \circ G\right)(p)=F_{2 \theta}(p)$ (a completely analogous proof is valid for $\left.\left(S_{\theta} \circ G\right)(p)=F_{\theta}(p)\right)$. A path $p \in \mathbf{P}$ is a sequence of vertices $\left\{I_{i}\right\}=$ $I_{0}, I_{1}, I_{2}, \ldots$, each with a mark $a_{i} \in\{0,1\}$. So $I_{i} \subset V_{a_{i}}$. By Proposition 8.1 and the subsequent definition, $F_{2 \theta}(p)$ is the sequence $a_{0}, a_{1}, a_{2}, \ldots$, and the unique point $x=G(p)$ satisfies $2^{i} x \in I_{i} \forall i \geq 0$. As $I_{i} \subset V_{a_{i}}$, we then have $2^{i} x \in V_{a_{i}}$. In case $G(p)=x$ is unbranched, this is enough to assure $S_{2 \theta}(x)=a_{0} a_{1} a_{2} \cdots$. If x is branched, it is one of the preimages of 2θ. By Proposition 5.1 we can assume that $x=\theta$. Therefore $2^{i} \theta \in I_{i} \forall i \geq 0$. This can happen only if the sequence a_{i} ends with a string of 1 's or if it ends with the period- n block $0111 \ldots 1$ repeating. Therefore, we are in one of the two following cases:
(1) The sequence I_{i} is $B_{1} B_{2} \cdots B_{n} B_{1} B_{2} \cdots B_{n} B_{1} B_{2} \cdots B_{n} \cdots$ (period- n group of vertices $B_{1} B_{2} \cdots B_{n}$ repeating).
(2) The sequence I_{i} is $C B_{1} B_{2} \cdots B_{n-1} C B_{1} B_{2} \cdots B_{n-1} \cdots$ (period-n group of vertices $C B_{1} B_{2} \cdots B_{n-1}$ repeating).

In case (1), the sequence $\left\{a_{i}\right\}$ is the right-hand limit $S_{2 \theta}^{+}(x)$. In case (2), it is $S_{2 \theta}^{-}(x)$.

Now, as $F_{2 \theta}$ is onto, $S_{2 \theta}$ is also onto. To see that G is onto, let $x \in S^{1}$ and look at the sequence $S_{2 \theta}(x)$. From the above discussion it is clear that for a path p producing this sequence, $G(p)=x$.

Remarks. (1) The only sequences that can be generated by different paths are those ending with a string of 1's, i.e., $1111 \ldots$ and its preimages under σ.
(2) Moreover, there are exactly n different paths generating a sequence that ends with a string of 1 's and this corresponds to the fact that in the external "wake" of \mathbf{M} enclosed by the rays θ and 2θ (parameter plane), the dynamic rays $\theta, \ldots, 2^{n-1} \theta$ are attached to the fixed point $1111 \ldots$.

9. Realization of the map H_{n}

Remember that $\theta=\frac{1}{2^{n}-1}$. By Theorem 8.2, the translation of sequences (codes) given by the map

$$
S_{2 \theta}(\alpha) \stackrel{H_{n}}{\longmapsto} S_{\theta}(\alpha)
$$

can now be realized as the following rule:

$$
H_{n}(\mathbf{a})=F_{\theta}\left(F_{2 \theta}^{-1}(\mathbf{a})\right) .
$$

Given a sequence, find on the graph of $S_{2 \theta}$ the path that produces it, then follow the same path on the graph of S_{θ} (which is the same one except for the marks of vertices C and B_{n}) and see what new sequence is being produced.

In the last section, to find the path that produces a given sequence, we broke the sequence into its elements. We do the same to "translate" the sequence, i.e., to find its image under H_{n}. We will be translating it element by element.
Translation of an element (Image under H_{n}). Take an element of the sequence. Let d be the number of digits 1 in it. It can be of two types:

$$
\text { Type I: } \quad \ldots|0 \overbrace{111 \ldots 1}^{d}| 0 \ldots \quad \text { Type II: } \quad \overbrace{111 \ldots 1}^{d} \mid 0 \ldots
$$

Type II can only occur as the first element of the sequence. To "translate" an element (i.e., to find its image under H_{n}), we first find the path producing it in the graph of $S_{2 \theta}$. We then follow the same path in the graph of S_{θ}.
Case (1): $d=\infty$. If the element is of Type I , it is $011111 \ldots$. There are exactly n paths producing it under $S_{2 \theta}$. These are:

$$
C B_{1} B_{2} \cdots \quad \text { and } \quad A B_{i} B_{i+1} \ldots \text { for } n \geq i>1 .
$$

Therefore the image of this element consists of a group of n sequences:

$$
01111 \ldots \stackrel{H}{n}_{H_{n}}\left\{\begin{array}{l}
\overbrace{11 \ldots 1}^{n} \overbrace{0111 \ldots 1}^{n} \overbrace{011 \ldots 1}^{n} \ldots \\
\overbrace{111 \ldots 1}^{k} \overbrace{0111 \ldots 1}^{n} \overbrace{011 \ldots 1}^{n} \ldots k=0, \ldots, n-2
\end{array}\right\}
$$

Similarly, if it is of type II:

$$
1111 \ldots \stackrel{H_{n}}{ }\{\overbrace{111 \ldots 1}^{k} \overbrace{0111 \ldots 1}^{n} \overbrace{0111 \ldots 1}^{n} \ldots \quad k=0, \ldots, n-1\}
$$

Notice that $0111 \ldots 1$ is a period- n block.

Figure 17. The path that produces the element

Case (2): $d<\infty$. Divide d by n to get $d=q n+r$, with $0 \leq r<n$. If $d=0$, the element is $|0| 0 \ldots$. Therefore it corresponds to vertex A and thus the translation is to a digit 0 . If $d \neq 0$, we know that the last digit 1 of the element corresponds to vertex B_{n-1}. Since $d \equiv r(\bmod n)$, following the graph backwards, we will go around it q times until we find that the first digit 1 in the element corresponds to vertex B_{n-r} (see Figure 17).

To translate it, we need to notice that the vertex B_{n} is black (marked with " 1 ") for $S_{2 \theta}$ and white (marked "0") for S_{θ}. For a Type II element, there are d digits to translate:

$$
\underbrace{111 \ldots 1}_{r} \overbrace{\underbrace{0111 \ldots 1}_{n} \underbrace{0111 \ldots 1}_{n} \ldots \ldots \underbrace{0111 \ldots 1}_{n}}^{q \text { period- } n \text { blocks }}
$$

For a Type I element, there are $d+1$ digits to translate. If $r=n-1$, the starting 0 vertex of the element must be C. If $r<n-1$, the starting 0 vertex must be A. Therefore the translations are:

$$
\begin{aligned}
& r=n-1 \quad 1 \underbrace{111 \ldots 1}_{r} \overbrace{\underbrace{0111 \ldots 1}_{n} \underbrace{0111 \ldots 1}_{n} \ldots \ldots \underbrace{0111 \ldots 1}_{n}}^{q \text { blocks }} \\
& r<n-1 \quad 0 \underbrace{111 \ldots 1}_{r} \overbrace{\underbrace{0111 \ldots 1}_{n} \underbrace{0111 \ldots 1}_{n} \ldots \ldots \underbrace{0111 \ldots 1}_{n}}^{q \text { blocks }}
\end{aligned}
$$

10. The quotient spaces

By the symmetry of the graphs, the (multivalued) map H_{n} satisfies

$$
H_{n}^{2}=F_{\theta} \circ F_{2 \theta}^{-1} \circ F_{\theta} \circ F_{2 \theta}^{-1}=\mathrm{Id} .
$$

Notice, for example, that

$$
\begin{aligned}
& \xrightarrow{H_{n}} \quad 1111 \ldots
\end{aligned}
$$

This tells us that the image of the fixed point $111 \ldots$ under H_{n} is the whole period- n orbit $0111 \ldots 1$ and vice versa. This is important. The external rays 2θ and θ are surrounding a period- n hyperbolic component of \mathbf{M} attached to the cardioid. The bifurcation taking place when the parameter c moves, within \mathbf{M}, from the cardioid to the component is the following: While c is in the cardioid, the Julia set J_{c} has an attracting fixed point. As c goes into the Hyperbolic component crossing the boundary of the cardioid, this fixed point changes from being attractive to repelling, and a cycle of period- n changes from being repelling to being attractive (see, for example, $[\mathrm{Br}]$).

Definition. The above allows us to pass naturally to a quotient space Σ_{2} / \sim, where \sim is defined as:

$$
\mathbf{a} \sim \mathbf{b} \Leftrightarrow H_{n}(\mathbf{a})=H_{n}(\mathbf{b}) .
$$

The equivalence relation identifies the period- n orbit $0111 \ldots 1 \ldots$, which is the image of the fixed point $111 \ldots$ to a single point. The loop γ considered leads us then to this quotient space and to an induced map \widehat{H}_{n} in it. We have Theorem. $\hat{H}_{n}: \Sigma_{2} / \sim \rightarrow \Sigma_{2} / \sim$ is a σ-automorphism.
Proof. \widehat{H}_{n} is clearly continuous, $\widehat{H}_{n}^{2}=\mathrm{Id}$, and as $H_{n} \circ \sigma=\sigma \circ H_{n}$, it also commutes with σ.

Acknowledgments

I am infinitely grateful to my advisor R. L. Devaney for his patience, continuous support, and suggestion to study this problem in the second part of my thesis.

References

[B] P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), 85-141.
[BDK] P. Blanchard, R. Devaney, and L. Keen, The dynamics of complex polynomials and automorphisms of the shift, preprint.
[BFK] M. Boyle, J. Franks, and B. Kitchens, Automorphisms of the one-sided shift and subshifts of finite type, Ergodic Theory Dynamical Systems (to appear).
[Bo] Böttcher, Bull. Kasan Math. Soc. 14 (1905), 176.
[Br] B. Branner, The Mandelbrot set, Chaos and Fractals (R. Devaney and L. Keen, eds.), Proc. Sympos. Appl. Math., vol. 39, Amer. Math. Soc., Providence, R.I., 1989.
[D] Robert L. Devaney, An introduction to chaotic dynamical systems, 2nd ed., Addison-Wesley, 1989.
[DH] A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), 287-343.
[DH1] __, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris Sér. I 294.
[DH2] __, Etude dynamique des polynômes complexes, Publ. Math. Orsay, Part I, No. 84-02, 1984, and Part II, No. 85-04, 1985.
[Dou] A. Douady, Algorithms for computing angles in the Mandelbrot set, Collection: Chaotic Dynamics and Fractals (Atlanta, Ga., 1985), Academic Press, Orlando, Fla., 1986, pp. 155-168.
[Doul] __, Julia sets and the Mandelbrot set, The Beauty of Fractals (H.-O. Peitgen and P. Richter, eds.), Springer-Verlag, 1986, pp. 161-173.
[F] P. Fatou, Sur l'itération des fonctions transcendentes entières, Acta Math. 47 (1926), 337370.
[H] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320-375.
[J] G. Julia, Mémoires sur l'iteration des fonctions rationelles, J. Math. Pures Appl. 8 (1915), 47-245.
[K] Linda Keen, Julia sets, Chaos and Fractals (R. Devaney and L. Keen, eds.), Proc. Sympos. Appl. Math., vol. 39, Amer. Math. Soc., Providence, R.I., 1989.
[L] P. Lavaurs, Une propriété de continuité, Expose No. 17, in [DH2].
[PR] H.-O. Peitgen and P. Richter, The beauty of fractals, Springer-Verlag, 1986.
Program in Applied Mathematics, University of Colorado, Boulder, Colorado 80309526

Current address: Department of Mathematics, Smith College, Northampton, Massachusetts 01063

E-mail address: patela@sophia.smith.edu

[^0]: Received by the editors December 12, 1989 and, in revised form, October 22, 1990.
 1991 Mathematics Subject Classification. Primary 30Cxx, 30D05, 58F08.

