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THE MANDELBROT SET AND rj-AUTOMORPHISMS
OF QUOTIENTS OF THE SHIFT

PAU ÁTELA

Abstract. In this paper we study how certain loops in the parameter space of
quadratic complex polynomials give rise to shift-automorphisms of quotients
of the set Iq of sequences on two symbols. The Mandelbrot set M is the set
of parameter values for which the Julia set of the corresponding polynomial
is connected. Blanchard, Devaney, and Keen have shown that closed loops in
the complement of the Mandelbrot set give rise to shift-automorphisms of JL2 ,
i.e., homeomorphisms of £2 that commute with the shift map. We study what
happens when the loops are not entirely in the complement of the Mandelbrot
set. We consider closed loops that cross the Mandelbrot set at a single main
bifurcation point, surrounding a component of M attached to the main cardioid.
If n is the period of this component, we identify a period- n orbit of Y,2 to a
single point. The loop determines a shift-automorphism of this quotient space
of £2 . We give these maps explicitly.

1. The Mandelbrot set and the external rays

We begin by recalling a few definitions and well-known facts. Let C be the
Riemann sphere C U {00} , and consider the family Pc : C -> C of complex
quadratic polynomials Pc(z) = z2 + c with the parameter c e C. Any complex
quadratic polynomial is conjugate by an affine map az + b to a unique one
in this family. The polynomial Pc has a unique critical point z = 0. Since
Pc(0) = c, the parameter value c is the critical value. For a fixed c we refer to
the z-plane as the dynamical plane for Pc. In this plane, the orbit of a point z
under iteration of Pc is the sequence z, P(z), P2(z) = P(P(z)), ... . We refer
to the c-plane as the parameter plane.

For a fixed c, let Kc be the set of points whose orbit under iteration of Pc
remains bounded. That is, Kc = {zIT^z) /+ 00}. Kc is called the filled-in
Julia set. It is a compact set whose boundary is the Julia set Jc of Pc. Jc can
be defined as the set of z e C where the family of iterates {P"}n€fi fails to
be normal. It turns out that Jc is the closure of the set of repelling periodic
points (see, for example, [B, K]). It is known that if the orbit of the critical
point is bounded (0 e Kc), Jc is connected. Otherwise, if 0 £ Kc, Jc is
totally disconnected and homeomorphic to a Cantor set [J, F, B]. By definition,
the Mandelbrot set M is the set of parameter values c for which 0 e Kc (Jc
connected). For an excellent exposition of the Mandelbrot set see [Br]. As
an introduction to M with beautiful pictures, one could see [PR] and therein
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the paper by A. Douady [Doul]. Douady and Hubbard have shown that M is
connected. It is still an open problem to prove that it is locally connected, as
computer pictures seem to indicate.

The Mandelbrot set M appears as a bifurcation set in regions of parameter
space in many other one-parameter families of maps. Whenever a family of
maps "behaves like" a degree two polynomial, in parameter space, an M-like
object will be present. This is the theory of polynomial-like mappings [DH],
and in this sense the Mandelbrot set is a Universal object.

Douady and Hubbard show that M is connected by constructing an analytic
homeomorphism i> : C - M —> C - Dx tangent to the identity at oc (Dx is
the closed disc of radius 1) [DH1, DH2]. That is, the complement of M in
the Riemann sphere is conformally equivalent to a disk (recall the Riemann
mapping theorem). We briefly describe here the map O.

For every c , oo is a superattracting fixed point of Pc (fixed point with zero
derivative). Therefore, in a neighborhood of oo , Pc behaves like z *-^ z2.
More specifically, there is a unique analytic map <f>c tangent to the identity
at oo such that it conjugates Pc to z2, i.e., 4>c ° Pc ° <t>7x = Po : z h-> z2
in a neighborhood of oo (see, for example, [B]). These are sometimes called
Böttcher coordinates [Bo].

Notice that 0 is the only critical point of Pc. For c e M, 7>"(0) lies in Kc
for all zz, so the conjugacy <f>c can be extended, by successively pulling back
Pc, to an analytic homeomorphism C - Kc —> C - Dx.

For c £ M, if we take successive preimages of a neighborhood of oo we will
eventually hit the critical value c. The next preimage of a "circle" containing c
is a "figure 8". That is, if c f M, 4>c extends to an analytic homeomorphism
C - Lc —► C - DR ( Dr is a closed disk of radius R > 1 ), where Lc is
a compact set whose boundary is a curve homeomorphic to a lemniscate (see
Figure 1).   Jc is contained in the interior of  Lc and c £ Lc.

Douady and Hubbard define the map  <I> : C - M -» C - Dx as

(1.1) <J>(c) = 4>c(c).

With <P(oc) = oo ,   O is an analytic homeomorphism.

Definition. For a fixed angle 8 measured in turns, the external ray 8 of M is
<t>-x({re2*ie | r> 1}).

Douady and Hubbard have proved that if 8 is rational, the external ray

Lc^lf(l)

Figure 1. <f>c extends to the exterior of Lc
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8 has a limit cq e M when r —> 1    [DH2].  The behavior for a general 8
irrational is still an open question.

Figure 2a pictures the Mandelbrot set with some of the external rays and
where they land.

Definition (see Figure 2b). For a fixed parameter c, the dynamic ray of angle
a is 4>fx({re2Kia \ r > R}).

For c e M, 7? = 1 ; for c £ M, R > 1. In §4 we will extend the dynamic
rays to the interior of Lc.

Notice that the external rays live in the parameter plane, while the dynamic
rays live in the dynamic plane. From (1.1) it is clear that if the parameter
c £ M lies in the external ray 8 of M, then, in the dynamic plane, c lies in
the dynamic ray of same angle 8 .

(see [DH1])

Figure 2b. The dynamic rays and Lc, for c ^ M
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2. Coding the Julia set Jc

We have mentioned that if c £ M, the Julia set Jc is totally disconnected,
homeomorphic to a Cantor set. In this section we will show this and the stan-
dard way of associating to each point of Jc a sequence of 0 and 1 (symbolic
dynamics).

Let ~L2 he the set of all binary sequences,

£2 = {{«<}gol«i = 0orl}.

~L2 has a metric defined by

rf(a,b) = >&2 ',        ai = \fa I 1    if a,í bh
which makes it a Cantor set.

Let   a : Z2 -* ^2 be the s/zz/z: zna/z:

<7({«,}£o) = {«<+i}&,

( a just drops the first digit of the sequence). Periodic points, density of periodic
points, sensitivity to initial conditions, and existence of dense orbits (in short,
"chaos"), axe very easily seen for a (see, for example, [D]).

If c £ M, there is a homeomorphism hc : Jc -> I,2 (see construction below)
which we will call a "coding of Jc," such that hc ° Pc\jc — o o hc, i.e., Pc is
topologically conjugate to a on Jc [B], their dynamics are then completely
equivalent.

We briefly sketch the construction of hc. The interior of the lemniscate Lc
(Figure 1) has two connected components which we will arbitrarily label Cn
and Ux . The first preimage of Lc under Pc consists of two more "figure 8"
curves (see Figure 3), one in each of Uq and Ux , and whose interiors again we
will label according to what their image under Pc is.

Figure 3. Lc and its preimages
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There are four of these regions now. We label them Uaoa¡ with a^, ax e
{0,1} according to the rule

(2.1) C/¥lCi/fl0, Pc(Uaoai) = Uai.

It is easy to see that with an induction procedure, one can continue to label 2"+1
such regions in step zz of the process. They will be labeled Uaoaia2--a„, a¡ e
{0, 1} , again according to the rule

L¡aaa\-a„ C Uao...an_t , Fc(Ua0ar-a„) = Ua\-a„-

Notice that everything outside these 2n+x regions will escape to oo, so the
Julia set is confined in the interior of them. By a nesting sets argument (Pc is
expanding in Jc ) [B], these regions limit down to single points in the Julia set
Jc (which is invariant under Pc) :

oo

Therefore, each x e Jc has a unique sequence  {a,-} e X2 assigned to it:

Definition. Let   hc: Jc —> £2   be defined by

M*) = {«/}go*>V/Pc'(x)€tV

That is, the point x e Jc is in t/ao, then under the map Pc it jumps to
U„x, then to Uai, to C/fl3, etc.

This is a standard construction of hc, which is then a homeomorphism that
conjugates PC\JC to the shift map.

3.   (T-AUTOMORPHISMS OF Z2

Recently, Blanchard, Devaney, and Keen [BDK] have shown that a closed
loop y in the exterior of the Mandelbrot set leads to a a-automorphism of
X2 , i.e., a homeomorphism £2 —> £2 that commutes with the shift map a .
They also show the following generalized result: A closed loop in the shift locus
(subset of the space of polynomials of degree d consisting of those which have
all critical points escaping to infinity under iteration) induces an automorphism
of the shift on d symbols. Moreover, any such automorphism can be obtained
in this way. In a recent paper, Boyle, Franks, and Kitchens [BFK] studied the
group of automorphisms of the d-shift. The group is infinitely generated with
very rich structure.

In this section, we sketch an argument in the case of quadratic polynomials.
Let y : [0, 1 ] -» C - M be a path in the complement of the Mandelbrot set

and denote by J¡ the Julia set for y(t) e C - M .
Let us see what is happening in the dynamic plane. The Julia set Jt is

a Cantor set. Since P is expanding on J, and J, depends continuously on
y(t) eC-M [B], the points in the Julia set will be moving continuously without
colliding (remember that Vf J, is totally disconnected), each of them describing
a path in the dynamic plane.

It is clear that for each t there is an induced bijective map Jt —^ Jq . If
we fix a coding  h: Jç, -* I2    for J0, i.e., we make a choice for the labels
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Figure 4

i/o and Ux, then the composition Ao^:7(->X2 gives a coding of Jt (see
Figure 4). If the path y is a closed loop, then   Jx = J0 , and the map

h* = h o y/x : J0 -> L2
will be a second coding of To • That is, we now have two codings of the initial
Julia set Jr, :

h:J0-*l2,        tí:J0^L2.
The discrepancy, the map tí o h"x : X2 —> X2 , is then a a -automorphism. It
commutes with o because both h and h* do. Hedlund has proved in [H] that
there are only two such automorphisms, the one that interchanges the symbols
0 and 1, and the identity. In this context they beautifully correspond to whether
the loop y goes around M or not [BDK].

In the next sections we will see what the corresponding map 77: Z2 -> Z2 is
when the loop y is not entirely in the complement of M. We will take y crossing
the Mandelbrot set M through one of the main bifurcation points, which we
will define later on (see Figure 5).

Figure 5. Two of the loops y through main bifurcation
points
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4. Extension of the dynamic rays
We denote by Sx the unit circle. We will measure the angles in Sx in

turns. Let c e C - M and let 8C e Sx be the angle of the external ray of
the Mandelbrot set containing c. Remember that (1.1) says that also in the
dynamic plane c e dynamic ray(8c).

In § 1 we mentioned that the conjugacy <f>c of Pc to z i-> z2 extends, by
successively pulling back Pc, analytically up to the exterior of a lemniscate Lc
(Figure 1). For a given angle a e Sx, the dynamic ray (a) is so far well defined
(in §1) from oo to the boundary of Lc (see Figure 6). For the moment, we
will refer to these as unextended rays. Notice that they land on Lc.
Proposition 4.1 (see Figure 6). For the unextended rays:

(1) Pc(ray a) c ray(2a) (mod 1).
(2) ray (^J and ray (^ + j) hit the origin.

Proof. ( 1 ) Directly from the definition of dynamic ray.
(2) Just remember that 0 is the critical point, 7>c(0) = c and c e ray(8c).   O

It is our intention now to extend the dynamic rays to the interior of Lc up
to the Julia set.
Definition. Let / : Sx -» Sx be the map a^2a (mod 1). Fix c e C - M.
Let 8C be the external ray of M containing c. A dynamic ray a will be called
branched if the angle a is any of the preimages f~k(8c) of 8C for k > 1.
All the other rays will be called unbranched.

We will see the justification of this definition in the following process.
Extension process. Fix c e C - M. So far, the dynamic rays axe well defined
from oo up to Lc. We now extend them, step by step, taking preimages of
Pc. For the moment, let a he an unbranched ray. As Figure 7 illustrates, in
the first step we extend the ray ( a ) from the boundary of Lc up to one of the
regions t/^a, by taking, out of the two preimages of the ray (2a), the one that
contains ray (a). The ray (2a) is in turn extended by taking a preimage of the
ray(4a).

Figure 6. The dynamic rays from oo to Lc
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Figure 7. First extension of the rays a and 2a

Notice that, by (2.1), if the unextended rays a and 2a are landing on the
first regions Uao and Uax respectively, then the extended ray a will go into the
inner region U^ .

Now we have extended all the unbranched rays from oo up to the inner
second regions {7aoû|. Observe that only the second preimages of 8, that is,
f » f + \ > f + 2 > and f + | » would hit the center of a figure 8. This is so
because these centers are preimages of zero and the first preimages of ray 8 hit
zero (Proposition 4.1). This justifies the above definition.

We repeat this process to further extend the unbranched rays up to the third
regions Uaoa¡a2 and so on. Notice that in the extension process, an unbranched
ray a is successively penetrating nested regions Uao, Ua<¡ax , UaoCha2, ••• ,
and that these indices are given by one of the two big regions Uj which the
unextended rays (2'a), i > 0, axe landing on. That is, we have proved the
following

Lemma 4.2. The ray a extended n times lands on the region Uaoai-a„ & for
each i e {0, I, ... , n} the unextended ray (2la) lands on the first region Ua¡ ■

Definition. The extended dynamic ray (a) will be the infinite union of all the
finite extensions. From now on we will refer to the extended dynamic ray (a)
simply as ray (a).

By the above discussion and definition, we have

Proposition 4.3. If a is an unbranched ray,   Pc(ray a) = ray (2a).

(Compare with Proposition 4.1.)

Theorem 4.4. The unbranched rays land directly on a single point of the Julia
set.

Proof. The nested regions Uaoax...an that the ray (a) is penetrating in the exten-
sion process determine this unique point.    D
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Figure 8a. The branched dynamic rays

Figure 8b. The branched dynamic rays when c on the
external ray |
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To extend the branched rays defined earlier, the process is basically the same
one. Note that the centers of the nested figure 8 curves are the preimages of
0 under Pc. Therefore, at each of these points, two preimages f~k(8) of
the ray 8 will fuse and, thus, more than one angle corresponds to the same
(connected) branched ray (see Figure 8a). If 8C is not periodic under doubling,
a branched ray will branch only once, the two branches going then directly to
points in the Julia set. Just remember that an irrational angle is not periodic
under a >->■ 2a.

If 8C is periodic, each branched ray "branches" infinitely many times at
preimages of 0. See, for example, the branched dynamic rays for c e ray 8C =
2/3 shown in Figure 8b. Recall that 8 is periodic under doubling if and only
if it is a rational 8 = p/q with (p, q) = 1 and q odd. Any such rational can
be written in the form l/(2k - 1) for some / e N , where k is the period.

5. Coding the dynamic rays
In §2 we saw how the points in the Julia set are coded. In this section we will

define a coding of the dynamic rays.
As in §4, fix c e C - M with c e ray(8). For convenience, we will

sometimes write 8 instead of 8C ■ We know that in the dynamic plane, the
rays   §  and § + \   hit the origin.

We divide Sx into two arcs that we label with marks 0 and 1. Let V¡ c
Sx, j = 0, 1, be the closed arcs of Sx divided by § and § + \ (see Figure
9). Of the two possibilities, we will decide on the one that corresponds to the
choice made for the labels  U¡ in §2.

We will code the unbranched rays a e Sx following the dynamics, just as we
coded Jc in §2. Since Pc(raya) = ray(2a) (mod 1), we give the following

Definition (Figure 10). For c on the external ray 8 , we define   Se: Sx —» X2
by

(1) If a is an unbranched ray (not a preimage of 8 ),

Sd(a) = {íz,}^o «• V/    2'o € Va,    (mod 1).

(2) If a is a branched ray,   Sg(a) consists of exactly two sequences:

S+(a) = lim Se(ß)      and      Se~(a) =   lim  Se(ß),
ß—*a+ p—* a

where, of course, the limit should be taken over unbranched ß 's.

s1

Figure 9
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Figure 10. Coding of a ray a.   Ss(a) = 1100...

--e»

Figure 11.   Change of the codings Sgc of S1  as c
moves around M

Note. Part (2) of the above definition makes S g a multivalued function. Do
not be horrified, this is precisely the beauty of it.

It is easy to check that, by construction, the following holds.

Proposition 5.1. Let a be a (branched or unbranched) dynamic ray. Then
(1) Se(2a) = o-Se(a),
(2) Se(2ia) = aiS6(a).

From Theorem 4.4, we know that an unbranched ray lands on a unique point
in the Julia set Jc. The following extremely useful result gives us the relation
between the codings hc of Jc and Se of Sx.

Theorem 5.2. A ray lands on its itinerary. Let c e external ray 8 of M. Let
h: Jc —> X2 be the corresponding coding of Jc (§4), and Sg: Sx —> X2 be the
compatible coding of the dynamic rays (Figure 9). Let a be an unbranched ray.
Then

ray a lands on the point x e Jc -»■ Sgc(a) = hc(x).
Proof. From Theorem 4.4 we know that ray a  does land on a unique x e Jc.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



694 PAU ÁTELA

This point is determined by the nested sequence of regions

which the raya is successively penetrating. From the definition of hc, hc(x) =
{fli}z2o • On the other hand, by Lemma 4.2, the unextended rays 2'a land on
the first regions Ua¡. From Figure 9 it is clear that then 2'a e Va¡, and this
means that   Sgc(a) = {a¿}.   D

Remark. If c moves along the external ray 8, the coding S g (a) of the angle a
remains the same although the dynamic ray a itself (as a subset in the complex
plane) moves.

Figure 11 illustrates how the codings Sdc of Sx changeas c moves around
the Mandelbrot set along a loop y .

Notice that now it is easy to see, after a complete turn around M, the inter-
change between 0 and 1 referred to in §3 of the coding of the Julia set.

6. The maps   77„ : S2 —► L2

In this and the next sections, we will consider only external rays of M of the
form 8n = 2ïrï   (n>2).

The main cardioid in M corresponds to the values of the parameter c for
which there is a fixed point with derivative \X\ = 1. Therefore, a parametriza-
tion of the cardioid is given by

c(w) = z-z2,     where   z = \e2niw , w e [0, 1].

We will call the c values on the cardioid for w = l/n (n > 2) the main
bifurcation points. It is known that there are two external rays, 8„ and 28„ ,
landing on each of these (see Figure 12), and a period-zz component of M is
attached to the cardioid at the point c [DH2], [Dou]. This component contains
values of c for which Pc has a period-zz attracting orbit. Again we refer the
reader to [Br] for an extensive introduction to the Mandelbrot set.

When the parameter c e M crosses the main bifurcation point from the
interior of the cardioid to the attached component, in the dynamic plane a
fixed point gives birth to a period-zz attracting orbit [DH].

Figure 12
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Figure 13. The loop y through one of the main bifur-
cation points

Now fix zz > 2 and let Co e M be the above corresponding bifurcation
point, having   8„ and 28n as external rays.

Let y be a closed loop y = {ct} in C-M through cq oriented as shown in
Figure 13, going along the ray 28„ "before" Co and along the ray 8n "after"
Co • That is, ct e ray(28„) for t < 0, and ct e ray(8n) for t > 0.

The Julia set JCl is totally disconnected except when c = cq. We choose
a labeling (t/n and Ux) (see §2) for a certain ct ^ cq in the loop so that we
have continuous codings hCl : JCl —> £2, t ¿ 0.

It is clear that, in a sense,  JCo inherits a coding when   ct   approaches   cq
along the external ray   28„   and another one when   ct   approaches   en   from
the other side, i.e., along the external ray   8„ (see Figure 11).

These codings are different and our aim is to describe the change via a map
Un '■ £2 —» £2 •

To be precise, as ct moves in the parameter plane along 28n towards Co,
in the dynamic plane we follow an unbranched dynamic ray of angle a with
(unique) endpoint aXl e Jc,.

By Theorem 5.2, the sequence S2gn(a) is the coding hc¡(aXl) of the point
aXl e Jt. Moreover

S2g„ (a) = hc, (aXl )    is constant as  / —► 0~ ,

and similarly
Sgn(a) = hCt(aXl)    is constant as  t -> 0+.

The endpoint aXl of the ray a for ct (unbranched) is continuous with respect
to ct, even when ct passes through Co [L, Theorem, p. 77]. Therefore,

ray a of JCo lands on aXo = lim ax< = lim aXl.

From the above observation, we have that S2gn (a) is the coding that aXo e JCo
inherits from the left and Sgn(a) is the coding that aXo inherits from the
right. Thus, by the above argument, the map 77„ : Z2 —> Z2 can be written as
(i.e., we define it as) (see Figures 11 and 14):

S2d„(a) '-% S8n(a)-
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>2e       °      ï    ê     ¿   ....   ñ    [    ñ  *

i

îe        °      i    i     ¿   ....    A     'i   rt   *4
2

Figure 14. The codings S2e and Sg of 5e

Ao/e We remark that 77„ could be multivalued. We will deal with this later.
We shall see that 77„ is multivalued only at 111..., which corresponds to a
fixed point, and its preimages by a . The image under 77„ of the fixed point is
a group of z? sequences: a period-zz orbit.

7. The dynamic graphs

For convenience, we will drop the index and write 8 (instead of 8n ) for the
angle   8 = ¿¿r in the rest of the paper.

Our goal now is to find explicitly the map

S2g(a) (-=♦ Sg(a).

The angle 8 is periodic of period zz : 2" 8 = 8 (mod 1). The angles 8 =
yrrr* 20, 220, ... , 2"~'0, 2"8 = 8 form a period-zz cycle, and they are
distributed on the interval [0, 1] as illustrated in Figure 14. Thatis, 2"~20 <
1/2   <  2""10   <   0+1/2 and

length(8/2, 8) = length(2"-x8,  8+1/2) = 8/2.

From Figure 14 we can see, for example, that

S~(8)=   0111... 1 0111... 1 Oil 1... 1 ... ,
n n n

Sfe(8)=  1111111... ,
S~(8)=  111111... ,
?4S+(8)=   111... 10 111... 10 111... 10....

Definition. As Figure 15 shows, we define the following partition of Sx =[0, 1]
(mod 1):

Bi = [2i-Xe,2i6],  i=l,... ,n-l,
Bn = [2n-x8,8 + \],
A = [8 + {, f],  i.e.,^ = [0 + i, 1]U[0, f],
C = [f,0].
Notice that A U C = V0 and \J¡ Bt = Vx for S2e, and Au B„ = V0 and

U,<„ 77, U C = Fi for Sg . Note also that C and 7i„ are the only two preimages
of Bx.
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A  ,  C  , A    A     ...   ,      Bn.j       K a

2    e     2e 46 • ■ • í\    \    i\  e+i
1

A      C      B,     B2ii    '   i   ¿ B ■   Bn

U I      6       26   46  • • • f % l      2rè H
Figure 15. Partition of S1

■Vi-2

J26

Figure 16. The dynamic graphs for S2e and Se

Fundamental Remark. Since length(C) = length(Bn) = § , the difference in the
codings S20 and Sg is only that  C   and   77„ interchange marks.

We build now the "dynamic graphs" associated to S2e and Se . We will have
one vertex for each of the partition intervals A, C, 77,. An arrow from vertex
7 to vertex J ( / -> 7 ) means that 27 D 7 (mod 1 ) (i.e., the image of interval
7 under multiplication by 2 (mod 1) contains the entire interval 7). Figure
16 shows these two graphs. A vertex marked o means that the corresponding
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interval is marked with a 0, and a vertex marked • corresponds to an interval
marked with a 1.

Every vertex has two incoming arrows, they correspond to the two preimages
of the corresponding interval.

8. Sequences and paths

Let P be the set of all infinite paths (without coloring) of the dynamic graph
of §7 with any of the vertices as a starting point. (P is the same for both S2e
and S g.)

Proposition 8.1. (1) 7zz both cases (S2g and Se) every path in P generates a
unique sequence in Z2.

(2) Every path {7,}~0 G P represents a unique point x e [0,1] = S1
satisfying 2'x e I¡ Vz > 0.
Proof. A path in P is a sequence of vertices I0, Ix, I2, ... . The marks (0 or
1) on these vertices give a distinct element in Z2. For (2), we give a nested
intervals argument. From the oriented graph, it is clear that in the sequence
h » h, h > • • • at least one of the vertices Bn-X or A appears infinitely many
times. Define

Jk = {xel0\2lxeli   V/e{l,...,*}}.
We have that Jk ^ 0 and 7i D Ji D J3 D ■ • • is a nested sequence with perhaps
equalities but each time that Ik e {Bn_x , A} (which happens infinitely many
times), the length of Jk is reduced by a factor 0 < Sk < 1 with respect to the
length of 7jt_i. This is so because both 77„_i and A are covering more than
one vertex and the map is linear. There are finitely many of these ôk since the
graph is finite. This guarantees that length(Jk) —> 0 as k —► 00, therefore
f)Jk   is a single point x e Iq. Notice that   2'x e 7, Vz > 0.   D

Note. Since the vertices of the graph correspond to closed intervals, the unique
point of part (2) could be one of the partition points.

Definition. As Proposition 8.1 allows us, we define the maps

F2e:P^L2,    Fe:P-+l2,    and   G:P^S'.

Theorem 8.2. The maps F2e , Fe : P —» X2 and G:P -> S1 are onto. Moreover,

S2g o G = F2g     and    Sg o G = Fg.

That is, the following diagram commutes:
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Note: If G(p) is unbranched, the assertion is (S2g o G)(p) = F2e(p). If
G(p) is branched, F2e(p) is one of the two codings of G(p) by S2g, i.e.,
(S26 o G)(p) 9 F2g(p).

Proof. We will prove first that F2e is onto, a completely analogous proof is
valid for Fe . Let a e X2 . A preimage of a under F2e is a path of the graph
of S2g (Figure 16) that produces this sequence as we go along it. Divide the
sequence a by its elements (portion of the sequence from the first digit or a zero
to the last digit before next zero).

Example:
1111 Olli 011111 001 0... .

We will find the portion of the path that each element produces. Let d be the
number of l's in the element:

0 111...10...

Notice that we could have d = 0 ox d = oo. If rf = oo, there are clearly
n choices for a generating path (we will see them in detail in the next section).
Thus, these zz different paths are all the preimages of the sequence under F2g .
If d ^ oo, we will see that the portion of the path "producing" the element is
uniquely determined. The last digit 1 of the element is followed by a digit 0 of
the next element. From Figure 16, it is clear that in the dynamic graph of S2g
the only way to go from a 1 to a 0 is from vertex 77„_i. Therefore, this last
digit 1 corresponds to vertex 77„_i. The previous digit 1 must then correspond
to vertex 77„_2 and so on. So we can easily find the unique portion of the path p
that produces this element. (If d = 0 the vertex is certainly vertex A .)

Repeating this process element after element will give us a path p that pro-
duces the whole sequence a, i.e., F2e(p) = a. Notice that the path p is de-
termined uniquely except if a ends with a string of l's, in which case there are
exactly zz choices. We have then proved that the map F2e is onto.

We will see now that (S2g o G)(p) = F2g(p) (a completely analogous proof is
valid for (Sg o G)(p) = Fg(p) ). A path p e P is a sequence of vertices {7,} =
h, h, h, ■■■ , each with a mark a¡■. e {0, 1} . So /,- C Va¡. By Proposition
8.1 and the subsequent definition, F2e(p) is the sequence Oq, ax, a2, ... , and
the unique point x = G(p) satisfies 2'x e 7, Vz > 0. As 7, c Va¡, we then
have 2'x e Va¡. In case G(p) - x is unbranched, this is enough to assure
S2g(x) = aoaxa2 ■■■ . If x is branched, it is one of the preimages of 20. By
Proposition 5.1 we can assume that x = 8. Therefore 2'0 e 7, Vz > 0. This
can happen only if the sequence a, ends with a string of l's or if it ends with
the period-zz block 0111... 1 repeating. Therefore, we are in one of the two
following cases:

( 1 ) The sequence 7, is BXB2- ■ ■ BnBxB2- ■ ■ BnBxB2- ■ ■ B„- ■ ■ (period-zz group
of vertices BXB2-B„ repeating).

(2) The sequence 7, is CBXB2 ■ ■ ■ B„-X CBXB2 ■ ■ • 77„_i • • • (period-zz group
of vertices CBXB2-B„-X repeating).

In case (1), the sequence {a,} is the right-hand limit S¿(x). In case (2), it
is S^(x).
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Now, as F2g is onto, S2g is also onto. To see that G is onto, let x e S1
and look at the sequence S2g(x). From the above discussion it is clear that for
a path p producing this sequence,   G(p) = x.   □

Remarks. (1) The only sequences that can be generated by different paths are
those ending with a string of l's, i.e.,   1111 ...   and its preimages under o .

(2) Moreover, there are exactly n different paths generating a sequence that
ends with a string of l's and this corresponds to the fact that in the external
"wake" of M enclosed by the rays 0 and 20 (parameter plane), the dynamic
rays   8, ... , 2"_10   are attached to the fixed point 1111... .

9. Realization of the map T7„

Remember that 0 = ¿ïïzt ■ By Theorem 8.2, the translation of sequences
(codes) given by the map

520(a) >—^ Sg(a)
can now be realized as the following rule:

HH(a) = Fe(F^x(a)).
Given a sequence, find on the graph of S2e the path that produces it, then

follow the same path on the graph of Sg (which is the same one except for the
marks of vertices   C and  B„) and see what new sequence is being produced.

In the last section, to find the path that produces a given sequence, we broke
the sequence into its elements. We do the same to "translate" the sequence, i.e.,
to find its image under   77„ . We will be translating it element by element.

Translation of an element (Image under 77„ ). Take an element of the sequence.
Let d he the number of digits 1 in it. It can be of two types:

d d

Type I:      ... 0'llL..f 0... Type II :     Tff^TTo...
Type II can only occur as the first element of the sequence. To "translate" an
element (i.e., to find its image under 77„ ), we first find the path producing it in
the graph of S2g . We then follow the same path in the graph of Sg .
Case (1): d = oo. If the element is of Type I, it is 011111... . There are
exactly zz paths producing it under S2g . These are:

CBXB2--       and      AB¡Bi+x...    for n > i > 1.
Therefore the image of this element consists of a group of zz sequences:

01111...    Ä 111.. .10111... 10111. ..1...
k n n

I 0111... 10111... 10111... 1...   k = 0,...,n-2)
Similarly, if it is of type II:

k n n

1111...       Ä 111...1 0111...1 0111...1 ...     k = 0, ... ,n-l

Notice that 0111... 1 is a period-zz block.
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Starting vertex
A or C

Bnr Kw)
tail of length r

Figure 17. The path that produces the element

Case (2): d < oo. Divide d by n to get d = qn + r, with 0 < r < n.
If d = 0, the element is |0|0... . Therefore it corresponds to vertex A and
thus the translation is to a digit 0. If d ^ 0, we know that the last digit 1 of
the element corresponds to vertex Bn-X. Since d = r (mod n), following the
graph backwards, we will go around it q times until we find that the first digit 1
in the element corresponds to vertex 77„_r (see Figure 17).

To translate it, we need to notice that the vertex Bn is black (marked with
"1") for S2e and white (marked "0") for Sg . For a Type II element, there are
d digits to translate:

q period- n blocks

111_1   0111...1 0111...1.0111...1

For a Type I element, there are d + 1 digits to translate. If r = n - 1, the
starting 0 vertex of the element must be C. If r < n - 1 , the starting 0 vertex
must be A . Therefore the translations are:

q blocks

zz- 1 1 111_1   0111...1 0111...1.0111...1

q blocks

r<zz-l 0111...1   0111...1 0111...1.0111...1

10. The QUOTIENT SPACES

By the symmetry of the graphs, the (multivalued) map 77„ satisfies

H2 = FeoF-x o Fe°F2-gx= Id.
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Notice, for example, that

1111

1111.
This tells us that the image of the fixed point 111... under 77„ is the whole
period-zz orbit 0111... 1 and vice versa. This is important. The external rays
20 and 0 are surrounding a period-zz hyperbolic component of M attached
to the cardioid. The bifurcation taking place when the parameter c moves,
within M, from the cardioid to the component is the following: While c is in
the cardioid, the Julia set 7C has an attracting fixed point. As c goes into the
Hyperbolic component crossing the boundary of the cardioid, this fixed point
changes from being attractive to repelling, and a cycle of period-zz changes from
being repelling to being attractive (see, for example, [Br]).

Definition. The above allows us to pass naturally to a quotient space Z2/~ ,
where ~ is defined as:

a~b^77„(a) = 77„(b).
The equivalence relation identifies the period-zz orbit 0111... 1... , which is
the image of the fixed point 111... to a single point. The loop y considered
leads us then to this quotient space and to an induced map H„ in it. We have

Theorem.  Hn : £2/~ —►   X2/~    is a a-automorphism.
Proof. H„ is clearly continuous, 772 = Id, and as 77„ o a = a o 77„ , it also
commutes with a .   D
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