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THE MANIFOLD OF THE LAGRANGEAN SUBSPACES
OF A SYMPLECTIC VECTOR SPACE

TAKASHI SAKAI

1. Introduction

Let (E*", ) be a real 2n-dimensional symplectic vector space with symplec-
tic form a, i.e., « is a nondegenerate skew-symmetric bilinear form on E. Then
an n-dimensional subspace 1 of E will be called a Lagrangean subspace if «/;
= 0 holds. The set A(E) of all Lagrangean subspaces of (E*", «) has a structure
of n(n + 1)-dimensional compact connected regular algebraic variety. If we put
A¥Q): = {p e A(E)|dim (2 N p) = k} for 2 ¢ A(E), then A°(2) is a cell (i.e.,
diffeomorphic to R™"**V72) for any 2 € A(E). Moreover }; (1): = ;1 4
is an algebraic subvariety of A(E), and defines an oriented cycle of codimen-
sion one, whose Poincaré dual is a generator of H'(A(E), Z) = Z and defines
the Maslov-Arnold index [1], [3], [4]. This index plays an important role in
the proof of Morse index theorem in the calculus of variations [4]. In the pre-
sent note, we shall give a differential geometric characterization of ), (1), i.e.,
by introducing an appropriate riemannian metric on A(E) we shall show that
21 (1) is the cut locus of some p ¢ A(E) and A°(2) is the interior set of y. In
fact, take a basis {e;, f;} (1 <i,j < n) of E such that a(e;, e;) = a(f;, f;) =0
and ale;, f;) = —d;;. Then with respect to this basis (E, «) may be identified
with (R*", &), where R*® = {(p, @) | p, q € R"} is 2n-dimensional euclidean space
with the canonical inner product <, >, and a((p, @), (p’,q"): =<q,p"> —
<p,q">. Weput 2,: = {(p,0)|p e R"} and y,: = {(0, q)|q € R*} which are of
course Lagrangean subspaces. Then the (real representation of) unitary group
U(n) naturally acts on A(n): = A(R®™) transitively, and its isotropic subgroup
at 2, is given by O(n). Thus A(n) is diffeomorphic to U(n)/O(n). Now M =
U(n)/O(n) has a structure of a compact symmetric space whose riemannian
structure comes from the Killing form of the Lie algebra of U(n). In the pre-
sent note we shall determine the cut locus and the first conjugate locus of a
point of M, from which we may prove the assertion mentioned above. For com-
pact simply connected symmetric spaces, it is known that the cut locus and the
first conjugate locus of any point coincide with each other (see [2]). Note that
7, (M) = Z for our manifold M = U(n)/O(n). Finally we shall determine all
closed geodesics of M and calculate their intersection number with the oriented
cycle Ujs1 4%(n).
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2. Preliminaries

2.1. Let® (resp. §) be the Lie algebra of U(n) (resp. O(n)). We put
By:=E;; —E;, Cy:=v—-UE;+E;), A: = 1/4/2Cy,

where E;; denotes the n X n-matrix whose r-th row and s-th column are given
by 0;,0;,. Then & may be considered as a real Lie algebra with basis {B,;(1
<i<j<n,C;1<i<j<n),A <i<n)}, and we have the vector
space direct sum & = It + §, where we put M : = {4,(1 < i< n),C,;( <}
and §: = {B;;(i < j)}. Now we define an inner product Q on & by Q(X, Y):
= —ygtrace XY. Then {4,, B;;(i <), C;;(i <))} forms an orthonormal basis
of & with respect to Q. We shall give the Lie multiplication table.

[Ai9 Aj] == 0 H

[Ai’ Bjk] = ﬁ{aijcik - 5ikcij} ]

[Ai) Cjk] = —ﬁ{aijBilc + 5ikBij} ’
[Bi/»Bm] = _5ikle + 5quk + 5jkBu - 5leik 5
[Bij, Ciill = —6:Cji — 0uCy + 0;6Ciy + 6;Cu
[Cij’ Ckl] = —5iksz - 5ilBjk - 5jchil - 5szz‘k ’

2.1

If we define an involutive automorphism s: U(n) — U(n) by (‘; _g) —

( _g g), where <‘l;l —§> denotes the real representation of an element

of U(n), then the fixed point set of s is O(n) and ds,; = id,, ds, . = —idy
does hold. Since  is simple, it contains no nonzero ideal of &. Finally Q is
a ds-invariant, ad (§)-invariant positive definite bilinear form on &. We may
define a riemannian structure g on U(n)/O(n) by restricting Q to I X M and
then translating with U(n). Thus (M = U(n)/O(n), g) is a riemannian sym-
metric space with an oila (orthogonal involutive Lie algebra) (®, ds, Q). Note
that A: = {4,(1 < i < n)} forms a Cartan subalgebra of the oila (&, ds, Q)
(i.e., maximal abelian subalgebra in ), and the center of & is generated by
c:=A,+ --- + A,/ n.Nowletn: Un) — U(n)/O(n) be the canonical
projection and put o = =(e) which may be identified with 4,. As usual we shall
identify I and the tangent space T,M via the map dr,. We denote by ¢, the
left translation on U(n)/O(n) by an element g € U(n).

2.2. Lemma. LetV denote the covariant differentiation of Levi-Civita con-
nection of M with respect to g, and let R(X,Y)Z: =V x yiZ — WV, Vy1Z be
the curvature tensor. Then the curvature tensor at o is given as follows:

R(Aia Aj)Ak = R(Aia Aj)Ckl =0,
R(A;, C;0A4, = 2{6:6:,Cri + 6::6::Cj0 — (815041 + 0:10;0C 1} »
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R(A4;,C;,)Cy,, = ﬁ{aijaz’lckm + 0:50imCri + 05405Cim + 0::0:mCii
— (05;0km + 0:0;m)Ci1 — (055041 + 0:x0;)Cin}
R(Cijs Clcl)Am = ﬁ—{—(ajkalm + 5jL51cm)Cim - (5ik51m + 5i15km)ij
+ (5i15jm+5j15im)ckm+(5ik5jm+5jk5im)czm} s
R(Cyj, Ci)Cpy = — (854014 + 011040)Cip — (07401 + 0710xp)Ciq
— (0ix0iq + 030x)Cip — (Bi101p + 0:0x)C 4
+ (0404 + 050:90Crp + (82075 + 6510:p)Crq
+ (0140, + 0;40:)C1p + (0110, + 0;:0:9)Cyq -

2.2)

Proof. Direct calculation by the formula R(X, Y)Z = [[X, Y], Z] for X,
Y,Z eI, [5].

2.3. Proposition. We denote by K(g) the sectional curvature for the plane
section o. Then we have 0 < K(o) < 4 for all .

Proof. Since M is homogeneous, we may restrict our attention to 7,M.
Let {U, V} be an orthonormal basis for ¢, and let 2’ be a Cartan subalgebra
containing U. Then there exists an 4 e SO(n) such that Ad A(A) = A’. We
may assume ¢ = {Ad (W)X, Ad (W)Y}, where X = 3}, a;4,, Y = }; 4, +
Dip<aTpClop G =1, B+ Xocaroe =1, 25 a;8;, = 0. Since Adh acts
on N as an isometry, we get by Lemma 2.2

K(o) = Q(R(U, MU, V) = Q(R(X, Y)X, Y)
=23 (a, — a)r3, 2Max|a, — o, < 4,

p<q

2.3)

where the equality holds if and only if X = (4, — 4,))/+/2 and Y = C,,
for some p < gq.

2.4. Now we shall review the notion of cut locus and conjugate locus of
a point of a riemannian manifold. Let (M, g) be a compact riemannian mani-
fold, and let Exp denote the exponential mapping. Let X be a unit tangent
vector at x e M. Then ¢t — ExptX is a geodesic emanating from x with the
initial direction X and parametrized by the arc length. #X (resp. Exp 7,X) is
called a tangential conjugate point (resp. conjugate point) of x along the geo-
desic t — Exp tX, if there exists a nonzero Jacobi field J(¢) along ¢t — Exp tX
such that J(0) = J(t,) = 0. Next, #,X (resp. Exp #X) will be called a tangen-
tial cut point (resp. cut point) of x along ¢ — Exp tX, if the geodesic segment
t — ExptX (0 < t < s)is a minimal geodesic for any s < t,, but t — Exp tX
(0 < ¢t < s) is not a minimal geodesic for any s > ¢,. Then it is easy to see
the following: Assume that Exp #,X is a cut point of x along a geodesic ¢ —
Exp tX, which is not a conjugate point. Then there exists a unit vector Y e
T,M, Y + X, such that Expt,X = Exp Y. (Tangential) conjugate locus
(resp. (tangential) cut locus) of x is defined as the set of (tangential) conjugate
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points (resp. (tangential) cut points) of x along all the geodesics emanating
from x. Finally the interior set Int (x) of x is defined as M\cut locus of x.
Let a(X) be a positive number such that «(X)X is the tangential cut point of
x along ¢t — Exp tX. Then the exponential mapping Exp maps {tX; X ¢ T M,
gX, X) =1,0 <t < a(X)} diffeomorphically onto Int (x). Thus Int (x) is a
cell for any x e M.

Now for our manifold M = U(n)/O(n), note that every geodesic ¢ — Exp tX
emanating from o with the initial direction dz X(X ¢ M, g(X, X) = 1) may
be expressed in the form ¢ — exp tX -0, where exp denotes the exponential
mapping from the Lie algebra ® to U(n), [5]. Then we get

2.5. Proposition. Tangential conjugate locus (resp. tangential cut locus)
of o is a hypersurface of the revolution about the line generated by ¢ =
(A, + -+ + A,)/+/ 1 and may be obtained by rotating the tangential con-
jugate points (resp. tangential cut points) in U about the above line by the ac-
tion of Ad (SO(n)).

Proof. Weput€: = {C;,(1 <j<k<n)}. Since dro Ad hX = dr, o dr(X)
for A e SO(n) and X ¢ M, Ad (SO(n)) acts on I as an isometry group and
transfers tangential conjugate (resp. cut) points into tangential conjugate (resp.
cut) points. By (2.1) we have ad (9)U = € and consequently Ad (SO(n))A =
M. Moreover since ¢ = (4, + --- + A,)/+/ n belongs to the center of &,
Ad (SO(n)) leaves c invariant and maps the orthogonal complement of ¢ in %
onto the orthogonal complement of ¢ in IN.

3. Conjugate locus

In this section we shall determine the tangential conjugate locus of 0. By
Proposition 2.5, it suffices to consider the tangential conjugate locus along a
geodesic t — Exp #(}; a;A), D05 = 1.

3.1. Proposition. Let X = Y,; a;A; be a unit vector in A. Then the sym-
metric linear transformation of I which is defined by V — R(X, V)X has the
following eigenvalues: O with the eigenspace 9 and 2(a; — a;)* with eigen-
vector C;(1 < j <k < n). The first tangential conjugate point of o along a
geodesic t — Exp t(}]; a;A;) is given by (Min,;_, /(W2 la; — ai)) X

Proof. The first assertion is clear, because by Lemma 2.2 we have

(3.1) RX,A)X =0, R(X,C,0X = 2a; — )’)Cy; -

Next take an orthonormal basis {4;, C;;} of T,M = k. By parallel translat-
ing {4,,C,,} along t — Exp tX, we have an orthonormal frame field {4,(2),
C,()} along the above geodesic. Let J(£) : = 37, a;(0A:(0) + X, bju(OC ()
be a Jacobi field with J(0) = 0. Then since M is a symmetric space, the Jacobi
equation V;,Vs,,J(t) + R(¢(9), J(9)E(2) = 0, where we put c() = Exp ¢X, takes
the form
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(d*/dt¥)a,(t) =0, (@/dt)b; (1) + 2(a; — ap)?b; (1) =0,
with a,(0) = b;,(0) = 0. So we have
JO) =t % a4, + ; b(sin v/ 2 |a; — a;| C;,(0)
) i<k

for some constants a;, b;;. Then J(z,) = O holds for some z, > 0 if and only
ifa,=0(@G=1,---,n)and sin /2 |&; — a;|t, = O for some j < k.

3.2. Remark. Let the multiplicity of the first tangential conjugate point
t,X along ¢t — Exp tX be equal to a, i.e., |a;, — ay,| =+ =la;, — g, | =
Max;; |@; — a;|. Then by variational completeness, {Exp ¢, Ad (h)X |h, =
expsY; Y € (B - -5 Bji) C 9} reduces to a point Exp £,X.

4. Cut locus

First we shall give the following lemma.

4.1. Lemma. Let t,X be the tangential cut point of o along a geodesic t —
ExptX, where X = Y, a;A; € W, 33 of = 1. Then either t,X is a tangential
conjugate point of o along t — EXp tX or there exists a unit Y = 3} g;4; € ¥,
Y +# X, such that Exp t,X = Exp Y.

Proof. Suppose that 7,X is not a conjugate point. Then there exists a unit
vector Z ¢ N such that Exp #,X = Exp,Z and Z + X. We shall show [X, Z]
= 0. In fact, suppose [X, Z] #= 0. We may assume Z ¢ U. Since M is a sym-
metric space, Exp #{,X = = exp t,X holds and we have exp #(,X = exp (t,2)h
for some A € O(n). Then exp (—#,X) exp (sZ) exp (t,X) = Adh ' exp (sZ), and
consequently Ad (exp (—2,X))Z = Ad h~'Z holds. But Ad (exp (—2,X))C;;
= C;, cos a;;, + By, sinay, with a;, = v/ 2 (a; — a)t,. So if we put Z =
222, + 2 i< 2;:C > then we have

[X,Z] = -2 ;kzjk(aj — By, ,
J
Adexp(—4,X)Z = 3] z;4; + X 2;(Bj, sina;, + Cjy cos a;,)
k3 i<k
= Ad h-l(Z ziAi + Z ijcjk) € 933 .
3 i<k
Since [X,Z] # 0, and Z ¢ A, we get for some j < k, sin a;, = 0 with a; —
a, # 0, i.e., ¥/ 2(a; — ) = 7m, where m is a nonzero integer. Thus by
the proof of Proposition 3.1, 7,X is a tangential conjugate point of o which
is a contradiction. So we have [X,Z] = 0. Let &’ be a Cartan subalgebra

which contains X, Z. Then there exists an element k£ € SO(n) such that X =
Ad (k)X and Z = Ad (k)Y for some Y, Y # X. Then we have

7, Exp t,X = Exp ¢, Ad (k)X = Expt,X = ExpZ
= Expt,Ad (k)Y =7, Expt,Y ,
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and consequently we get Exp #t,X = Exp ¢,Y for some Y ¢ %, Y # X.
q.e.d.
Now we shall determine the tangential cut locus of 0. By Proposition 2.5,
it suffices to consider the tangential cut point #,X of o along a geodesic ¢ —
ExptX, where X = )}, w;4; €, 3, o = 1. Then by Lemma 4.1, #,X is a
conjugate point of o or there exists a unit vector Y (#X) in ¥ such that
Exp t,X = Exp Y. Generally, by a direct calculation, Exp tX = Exp tY
holds for some unit vector Y = Y] 8,4, if and only if

(*) ﬁ(ai—ﬁi)tzmin form, e Z

holds. So first, for a given X we shall search for the minimum positive number
f, such that (*) holds for some unit Y ¢ ¥, ¥ # X.

4.2. Lemma. 7, = Min,_,_, 7/(2v/ 2 |a;)).

Proof. We shall use the vector notation ; @ = (ay, « - -, ), B=(By, * - *, B)»
m=(my, ---,m,) e Z" — {0}. Then (*) is equivalent to

—_ ®lmf =1
4.1 t W KamS] la| )
4.2) B=a— Xem
|m[*

So, if we determine m, # O such that the value of ¢ defined by (4.1) takes
the minimum positive value, then 8 is automatically determined by (4.2). Now
we put «: = Max, .., |a;| = Max,, ., |<{a, m)>|/|m[’. Then we get

l<avm>l < log||my| + - -+ + lanHmn| <aim1|+ co 4 my <a.
\mP mi+ -+ om, Tomit et m, T

So Max,,¢ zn_ o, |[{@, m)>|/|m|" = «, and the equality holds only in the following
case: Let o = |ay,| = -+ = |a;,), then m;, = ¢ sgn a;,, - -+, My, = &, SgN ay,
(e, -+ +,e, = 0 or 1) and other m,’s are equal to zoro. Thus we have #, =
Min,,czu_ o 7 |mf /(24 2 |a, m]) = 7/(2v/ 2 a) with « = Max,,_, |«

4.3. Remark. If « = |a;|= -+ = |,/ then 8 which is determined by
(4.2) with above m,’s are given by 8 = (ay, -+ -, —l_-zil, cee izij, cee, izik,
-+, a,). So there exist 2 — 1Y = ), 8;4,(#X) such that Exp #,X = Exp,Y
holds.

Now the tangential cut point ¢, X of o along ¢t — Exp tX is given by

t,: = Min {t > 0|tX is the first tangential conjugate point of o along
t — Exp tX or there exists a unit Z e I (Z + X) such that
ExptX = ExptZ}
= Min {t > 0|¢X is the first tangential conjugate point of o along
t — Exp tX or there exists a unit Y € A (Y # X) such that
ExptX = Exp tY}.
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Since tX is the first tangential conjugate point of o along ¢t — Exp ¢X if and
only if t = Min,, 7/(+/ 2 |a; — a;|) and obviously Min;_, 7/(+v/ 2 |a; — a))
> Min /(24 2 |a;]) holds, the tangential cut point #,X of o along ¢t — Exp tX
X = 3 a;4,) is given by ¢, (=f,) = Min, z/ (24/2 |a;)). Note that the cut
point £,X is the first conjugate point if and only if Max,, ja; — ;| = 2 Max ||,
i.e., there exist some j < k such that |«;| = |a;| = @ and «; + «;, = O hold.
Thus we get

4.4. Proposition. The tangential cut point t,X of o along a geodesic
t - ExptX, where X = ) a;A;, and g(X,X) =1, is given by t,=
Min, .., 7/ 2V 2 |ai).

4.5. Theorem. For X = 3}, w;A;, where Y, of =1, we put a(X): =
Max, ;.. |a;| and t,(X): = Min,_,, 77-'/(2\/7|ai|) = /(2 2a(X)). Then
A¥(n): = {2 e AR™)|dim (2 N p) = k} is given by {Exp Ad (SO(n))t(X)X | X
= YA, Dat=1, with a(X) = |a,| = -+ =|a,l}. In particular, we
have \_J2_, A¥(n) = Cut locus of o, A(n) = Interior set of o.

Proof. First we shall show that for a unit vector X ¢ ¥ with a(X) = |« |
= ... = ||, dim ((Exp £,(X)X) N p) is equal to k. In fact, we may assume
a(X) = |ay| = - =lag| > |exa| = -+ = |ay|. Then we have
Exp t,(X)X = exp t,(X)X - 4,

x, cos v/ 2 a,ty(X)
X, €08 v/ 2 a,t(X)
x, sin v/ 2 a,t,(X)

;(xb "'9xn)eRn

x,8in 4/ 2 a,t,(X)
- 0 3
0

SAPDIP = cos (@ur/2aX) |

X, COS (oz,;n- [2a(X))
+x,

+ x5

. 3 (X, o+ x,) € RY
Xpr Si0 (a7 /20(X))

| x,sin (e, 2a(X))
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From this our assertion is obvious. Since ¢, (7 € SO(n)) leaves y, invariant,
we get

{Exp Ad SOMILXX|X = ¥, aiAi< 5ot = 1)
with a(X) = |a, | = - -+ = |aik|} c M) .
Similary it is easy to show that

Int (0) = {Exp Ad (SOM)tX |0 <t < 1,(X), X e ¥, g(X, X) = 1} C A'(n).

But by Propositions 1.4 and 4.4,

M={Aam> 1) (ExpAdSOmNLXX)

€U, X|
U {Exp Ad (SOM)tX |0 < t < 1,(X)})
= Cut locus of 0 U Int (0) = M.

Thus the proof is completed.
4.5. Corollary. Diameter of M = ,/ nr/(2v 2). Injectivity radius of M
= 7/(24/2) = (Diameter of M)/+/'rank M.
Proof. Diameter of M = Maxy,:_, Min,_;,7/(2v 2 |a;]) = v/ n /(2 2).
Injectivity radius of M = Ming,._, Min, ., 7]V 2 |ag)) = /(24 2).
q.e.d.

5. Closed geodesics

5.1. Theorem. For m: = (m,, ---,m,) e Z" — {0}, we put X(m): =
> (my/lm|)A; € A. Then each of the following holds

(i) c@®:t—ExptX(m),0 <t <|mlx/v/ 2, is a closed geodesic of length
|m|x/+/ 2 with the initial point o. Its multiplicity is equal to the greatest com-
mon divisor of my, - - -, m,.

(ii) Every closed geodesic of M with the initial point o may be expressed
in the form t — Exp t Ad (W)X (m), where h € SO(n) and X(m) = }; (m;/|m))A;,
me Z" — {0}.

(iii) The intersection number of a clesed geodesic t — Exp t Ad (W)X (m),
0<t<|m|z/v2, with the oriented codimension one cycle | Ji_, A*(n) is
given by 3 m;.

Proof. 1°. c(t):t—Exp#(}] a;A;), where Y, o =1and 0 <t < t, is
a geodesic loop & exp (3] a;A,) € O(n)

& ((cos v 2ayt, + V—1sin &/ 2a;t)d;;) e On) & v/ 2ty = my, my e Z
&t=am/(W2a)=mnm|/V2,

a; = m;/|m| with m = (m,, - --,m,) e Z» — {0} .
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Next, since exp (x |m|X(m)/+/ 2) = ((cos m;x)3;;) € O(n), we get

('(71' Iml/ﬁ) = dTexp(n(le(m)/JE)dn'(Z a‘Al)
= dr(Ad ((cos m;m)8; )Y, a;A,)

that is, c(?), 0 < t < = |m|/+/ 2 is a closed geodesic.

2°. Let k be the greatest common divisor of m,, - - -, m, ; i.e., m = kp,
p:= (@, -,p)eZ"— {0} and p,, -- -, p, are relatively prime. Then we
get by 1°, c(z|p|/v 2) = c(0), é(z|p|/+/ 2) = é(0), and consequently c(?),
0<t<nx|m|/v/2, is a closed geodesic of multiplicity k. Conversely let
c®):t—>ExptX(m), 0<t<t =x|m|/v2, meZ" — {0}, be a closed
geodesic of multiplicity k. Then from c(¢,/k) = ¢(0), é(t,/k) = ¢(0), we get
m|m|/(W/ 2k) = x|p|/v' 2, p:/lp| = m;/|m| for some p e Z* — {0} with re-
latively prime p,, - - -, p,. That is m = kp and the greatest common divisor
of m,, - - -, m, is equal to k. Thus we have shown (i). (ii) is obvious from 1°
and the fact that I = Ad (SO(n))A.

3°, Letce(®:t—ExptAd(W)X(m), 0<t < |m|/+/ 2, be a closed geo-
desic. To show (iii), it suffices to consider the case # = e. Then the intersec-
tion number of c(#) with the oriented cycle |_J7_, 4%(n) is given by

et nmo=10) S8 ey (@)

where g, »,,6(#) is the following symmetric form on a subspace c(?) N y,of c(9) :
Let g..,¢(») be the symmetric bilinear form on ¢(z) defined by

0 X; cos &/ 2 a;t\ [y;cos &/ 2 ayt
c (¢ . b .
ey x;sin/ 2a;t) \y;sin«/ 2 a;t

= (W 2/Im) 3 muxy;sin (v 2mgt/|m)) , (e;: = m;/|m)) .

Then q.)n,,6() is defined as the restriction of g.,,¢(f) to the subspace
c(®) N p, of c(t), [4]. Now c(#) N y, # {0} if and only if cos v/ 2 ;¢ = O for at
least one @;. Now put T: = {(m;,r)|1 <i <n,1 <r <|my|,r integer} and
consider the following equivalence relation “~” on T: (m;,r) ~ (m;,s) &
1, =z lml/ (V2 |my)-3Qr — 1) = 1,,,(: = 7 |m|/(¥ 2 |my])-32s — D).
We denote by [(m,, r)] the equivalence class of (m;, r) with respect to “~".
Then c(f) N y, # {0} holds if and only if ¢t = ¢, , sor some (m;, r) € T, and c(¢;,,)
Nuw=1{0,9qg =", -, +x4, -+, x4, ---,0), where i, - - -, i; are de-
termined by [(m;, )] = {(m,, 1)), - - -, (m;,, r)}. Thus we have g, ,,.,¢(t;,) :
= (V2 /|m]) St myx;;, so that sgnq.q, ,n.C(t,) = Y5 sgnm,, and
consequently the intersection number is equal t0 3} (u,.ryjez/~ 2i5=1 SEO My, =

v (sgnmy) |m| = 37, m;, because of T = Y7, [my].

5.2. Corollary. Two closed geodesics t — ExptAd (WX(m), 0 <t <
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|m|x/v/ 2 and t - Expt Ad (k)X(n), 0 <1 < |n|/+ 2, where h, k ¢ SO(n),
are homotopically equivalent if and only if Y7, m; = 3,7, n;.
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