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THE MANIFOLD OF THE LAGRANGEAN SUBSPACES
OF A SYMPLECTIC VECTOR SPACE
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1. Introduction

Let (E2n, a) be a real 2n-dimensional symplectic vector space with symplec-
tic form a, i.e., a is a nondegenerate skew-symmetric bilinear form on E. Then
an n-dimensional subspace λ of E will be called a Lagrangean subspace if alλ

= 0 holds. The set Λ(E) of all Lagrangean subspaces of (E2n, a) has a structure
of n(n + l)-dimensional compact connected regular algebraic variety. If we put
A\λ): = [μ 6 Λ(E) I dim (λ Π μ) = k} for λ £ Λ(E), then Λ°U) is a cell (i.e.,
diίϊeomorphic to i r ( n + 1 ) / 2 ) for any λ e Λ(E). Moreover Σ tf): = |J*2>i Λ*W)
is an algebraic subvariety of Λ(E), and defines an oriented cycle of codimen-
sion one, whose Poincare dual is a generator of Hι(Λ(E), Z) = Z and defines
the Maslov-Arnold index [1], [3], [4]. This index plays an important role in
the proof of Morse index theorem in the calculus of variations [4]. In the pre-
sent note, we shall give a differential geometric characterization of 2 U)> i ^ ?
by introducing an appropriate riemannian metric on Λ{E) we shall show that
2 (λ) is the cut locus of some μ e Λ(E) and Λ°(X) is the interior set of μ. In
fact, take a basis {eu fά] (1 < /, / < ή) of E such that a(eί9 βj) = a(fi, fj) = 0
and a(eu j3) = —δ^. Then with respect to this basis (E, a) may be identified
with (R2n, a0), where R2n = {(p, q) \ p, q e Rn} is 2n-dimensional euclidean space
with the canonical inner product <( , >, and ao((p, q), (p\ q')): = (q, p'y —
</?, q'y. We put ^ 0: = {(p,0)|p e Rn} and μ0: = {(0, q)\qe Rn} which are of
course Lagrangean subspaces. Then the (real representation of) unitary group
U(n) naturally acts on Λ(ή): = A(R2n) transitively, and its isotropic subgroup
at Λo is given by O(n). Thus Λ(ή) is diffeomorphic to U(n)/O(n). Now M =
U(n)/O(n) has a structure of a compact symmetric space whose riemannian
structure comes from the Killing form of the Lie algebra of U{ή). In the pre-
sent note we shall determine the cut locus and the first conjugate locus of a
point of M, from which we may prove the assertion mentioned above. For com-
pact simply connected symmetric spaces, it is known that the cut locus and the
first conjugate locus of any point coincide with each other (see [2]). Note that
7Γχ(M) = Z for our manifold M = U(n)/O(n). Finally we shall determine all
closed geodesies of M and calculate their intersection number with the oriented
cycle U**iΛ*(n).

Received October 6, 1975.



556 TAKASHI SAKAI

2. Preliminaries

2.1. Let © (resp. φ) be the Lie algebra of U(n) (resp. O(n)). We put

BtJ: = £ „ - EJt , C o : - / = T ( ^ + £,«) , Λ«: = 1//2C« ,

where Eυ denotes the n x ^-matrix whose r-th row and .s -th column are given
by δίrδjs. Then © may be considered as a real Lie algebra with basis {#^(1
< i < / < «), Q / l < i < j < Λ), /44(1 < Ϊ < n)}, and we have the vector
space direct sum ® = 2K + £>, where we put 3K: = {^(1 < / < w), C^O" < /)}
and φ : = {J5 (̂/ < /)}. Now we define an inner product Q on © by Q(X, Y):
= —^ trace XY. Then {^, B^ii < /), C^(/ < /)} forms an orthonormal basis
of © with respect to Q. We shall give the Lie multiplication table.

.x ί^ U C j k] = ~ V2{^i)fc + δ ikB t j) ,

[Bij,Bkι] = —δikBjl + δuBjk + δJkBu

[5^ , CfcJ = —δίkCji — δuCjk + δjkCu

If we define an involutive automorphism s: U(ri) —> U(n) by ί „ "~ .) —>

Ar w n e r e in A) ^ e n o t e s t n e r e a ^ ^presentation of an element

of U(n), then the fixed point set of s is O(n) and dse,£ = idφ, d^e|aR = — / ^
does hold. Since φ is simple, it contains no nonzero ideal of ©. Finally Q is
a ^-invariant, ad (©-invariant positive definite bilinear form on @. We may
define a riemannian structure g on U(n)/O(n) by restricting Q to 9K x 9K and
then translating with E/(n). Thus (M = U(n)/O(ή),g) is a riemannian sym-
metric space with an oila (orthogonal involutive Lie algebra) (©, ds, Q). Note
that Si: = {Ai(l < i < ή)} forms a Cartan subalgebra of the oila (©, ds, Q)
(i.e., maximal abelian subalgebra in ffll), and the center of © is generated by
c: = (Ax + + A^IJ~n. Now let π: U(ri) -> U(n)/O(n) be the canonical
projection and put o = π(e) which may be identified with λ0. As usual we shall
identify 9K and the tangent space T0M via the map dπe. We denote by τg the
left translation on U(n)/O(n) by an element g e U(n).

2.2. Lemma. Let V denote the covariant differentiation of Levί-Civίta con-
nection of M with respect to g, and let R(X, Y)Z: = FiXiY1Z — [Fx, FY]Z be
the curvature tensor. Then the curvature tensor at o is given as follows:

R(Aί,Aj)Ak=R(Ai,Aj)Ckl = O,

R(Aί,Cjk)Aι = 2{δijδiiCkι + δikδiiCji — (δijδkl + δikδjι)Cu} ,
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R(AuCjk)Clm =

— (δίjδkm + δίkδjm)Cu — (δijδjei + δiΊcδjΊ)Cim} ,

R(Cij9Ckι)Am = J~2{ — (δjkδl7ϊl + δjiδkm)Cim — (δίkδlm + δuδkm)CJm

+ (δiiδjm + δjiδίm)Ckm + (δίkδjm + δjkδίm)Clm} ,

R(Cij,Ckι)Cpq = —(δjkδiq + δjiδkq)Cip — (δjkδιp + δjiδkp)Ciq

— (δikδiq + δuδkq)Cjp — (δίkδιp + δuδkp)Cjq

+ (δuδjq + δjiδίq)Ckv + (δuδjP + δjiδip)Ckq

+ (δikδjq + δjkδiq)Clp + (δikδjp + δjkδίp)Cιq .

Proof. Direct calculation by the formula R(X, Y)Z = [[Z, Y], Z] for Z,
Y,Z<=3W, [5].

2.3. Proposition. TFe denote by K(σ) the sectional curvature for the plane
section σ. Then we have 0 < K(σ) < 4 for all σ.

Proof. Since M is homogeneous, we may restrict our attention to T0M.
Let {[/, F} be an orthonormal basis for σ, and let 2Γ be a Cartan subalgebra
containing £/. Then there exists an h eSO{ή) such that AdΛ(SI) = ST. We
may assume σ = {Ad (h)X, Ad (A)Y}, where X = Σi aiAί> γ = Σ βiAi +
ΣP<q TPqCpq, Σ oc\ = 1, Σ βl + ΣP<q fPq = h Σ α A = 0. Since Aάh acts
on 2K as an isometry, we get by Lemma 2.2

K(σ) = Q(R(U, V)U, V) = Q(R(X, Y)X, Ύ)
( 2 * 3 ) = 2 Σ («p - ^ ) V M 2 Max | α p - ^ | 2 < 4 ,

where the equality holds if and only if X = (Ap — Aq)/\ί2' and Y = Cpq

for some p < q.

2.4. Now we shall review the notion of cut locus and conjugate locus of
a point of a riemannian manifold. Let (M, g) be a compact riemannian mani-
fold, and let Exp denote the exponential mapping. Let X be a unit tangent
vector at x e M. Then t —> Exp tX is a geodesic emanating from x with the
initial direction X and parametrized by the arc length. tQX (resp. Exp t0X) is
called a tangential conjugate point (resp. conjugate point) of x along the geo-
desic t —> Exp tX, if there exists a nonzero Jacobi field J(t) along t —» Exp £λT
such that /(0) = /(ί0) = 0. Next, t0X (resp. Exp tQX) will be called a tangen-
tial cut point (resp. cut point) of JC along t —> Exp ίZ, if the geodesic segment
t —> Exp /Z (0 < t < s) is a minimal geodesic for any s < t0, but ί —> Exp ί Z
(0 < ί < 51) is not a minimal geodesic for any s > ί0. Then it is easy to see
the following: Assume that Exp t0X is a cut point of x along a geodesic t —>
Exp ίZ, which is not a conjugate point. Then there exists a unit vector Y e
TXM, Y Φ Z , such that Exp t0X = Exp ί0Y. (Tangential) conjugate locus
(resp. (tangential) cut locus) of x is defined as the set of (tangential) conjugate
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points (resp. (tangential) cut points) of x along all the geodesies emanating
from x. Finally the interior set Int (x) of x is defined as M\cut locus of x.
Let a(X) be a positive number such that a(X)X is the tangential cut point of
x along t —> Exp tX. Then the exponential mapping Exp maps {tX X e TXM,
g(X9X) = 1,0 < t < a(X)} diffeomorphically onto Int( c). Thus Int( c) is a
cell for any x e M.

Now for our manifold M = U(n)/O(n), note that every geodesic / —> Exp tX
emanating from o with the initial direction dπeX(X e Wl,g(X,X) = 1) may
be expressed in the form t —> exp tX-o, where exp denotes the exponential
mapping from the Lie algebra @ to U(n), [5]. Then we get

2.5. Proposition. Tangential conjugate locus (resp. tangential cut locus)
of o is a hypersurface of the revolution about the line generated by c =
(Aλ + + An)/y/~n and may be obtained by rotating the tangential con-
jugate points (resp. tangential cut points) in 21 about the above line by the ac-
tion of Aά(SO(n)).

Proof. We put S: = {Cjk(l <j<k<n)}. Since dπ oAάhX = dτh o dπ(X)
for h e SO(n) and X e 9K, Ad (SO(n)) acts on 2K as an isometry group and
transfers tangential conjugate (resp. cut) points into tangential conjugate (resp.
cut) points. By (2.1) we have ad Oζ>)21 — © and consequently Ad (5O(n))2ί =
9K. Moreover since c = (Aλ + + A^\^Ίϊ belongs to the center of ©,
Ad (SO(n)) leaves c invariant and maps the orthogonal complement of c in 2ί
onto the orthogonal complement of c in SK.

3. Conjugate locus

In this section we shall determine the tangential conjugate locus of o. By
Proposition 2.5, it suffices to consider the tangential conjugate locus along a
geodesic t -> Exp t(Σi ctiAd, Σ* a\ = ι-

3.1. Proposition. Let X = Σί at^i be a unit vector in SI. Then the sym-
metric linear transformation of Wi which is defined by V —»R(X, V)X has the
following eigenvalues: 0 with the eigenspace SI and 2(aj — ak)

2 with eigen-
vector Cjk(l < j < k < n). The first tangential conjugate point of o along a
geodesic t -> Exp ί(Σ« uAd is given by (MinJ<A. π\(\Γΐ \aά — ak\)) Σz α*4«

Proof. The first assertion is clear, because by Lemma 2.2 we have

(3.1) R(X, Aj)X = 0 , R(X, Cjk)X = 2(aό - ak)
2C jk

Next take an orthonormal basis {Ai9 Cjk) of T0M ̂  9K. By parallel translat-
ing {Ai7 Cjk} along / —> Exp tX, we have an orthonormal frame field {A^t),
Cjk(t)} along the above geodesic. Let J(t): = Σi^i^ίit) + Σj<*bJk(t)CJk(t)
be a Jacobi field with /(0) = 0. Then since M is a symmetric space, the Jacobi
equation VmVmJ(t) + R(c(t), J(t))c(t) = 0, where we put c(t) = Exp tX, takes
the form
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id21dt^aiif) = 0 , (d2/dt2)bjk(t) + 2(aj - ak)
2bJk(f) = 0 ,

with ^(0) = bjk(O) = 0. So we have

J(f) = ί Σ M < ( 0 + Σ 6y*(sin V T |α, - α* | 0 C , t ( 0

for some constants ai9 bjk. Then /(ί0) = 0 holds for some tQ > 0 if and only
if at — 0 (i = 1, , ή) and sin \r2 \aj — ak\t0 = 0 for some / < k.

3.2. Remark. Let the multiplicity of the first tangential conjugate point
toX along t —> Exp tX be equal to α, i.e., l ^ , — akl\ = = \aja — aka\ =
Maxj<k \c£j — ak\. Then by variational completeness, {Exp t0 Ad (A5)Z|/zs =
exp sY Y e {BJlkl, , BiβJfcβ} C £>} reduces to a point Exp t0X.

4. Cut locus

First we shall give the following lemma.
4.1. Lemma. Let t0X be the tangential cut point of o along a geodesic t —>

Exp tX, where X = Σ ai^t e 5Ϊ> Σ aί = l Γ/ẑ n ^///î r ί 0Z w « tangential
conjugate point of o along t —> Exp ίZ or ί/zere exists a unit Y = Σ βί^i € Sί,
y ^ I , 5wc/z /toί Exp t0X = Exp ί0Y.

Proof. Suppose that t0X is not a conjugate point. Then there exists a unit
vector ZeW such that Exp ί0Z = Exp t0Z and Z Φ X. We shall show [Z, Z]
= 0. In fact, suppose [Z, Z] Φθ. We may assume Z $ Sί. Since M is a sym-
metric space, Exp ί0Z = π exp ί0Z holds and we have exp t0X = exp (tQZ)h
for some h e O(n). Then exp (—t0X) exp (sZ) exp (tQX) = Ad /z"1 exp (sZ), and
consequently Ad (exp ( — t0X))Z = Ad A-XZ holds. But Ad (exp ( — t0X))CJk

= CJfc cos αJfc + Bjk sin αjΊfc with α i fc = \f7ϊ{a^ — αfc)ί0 So if we put Z =
Σ z*4« + Σi<* ZjkCjk, then we have

[Z,Z] = —

Ad exp (-tQX)Z = Σ z ^ ί + Σ z ^ ( 5 ^ sin αJfc + Cjk cos α i fc)

Since [Z, Z] ^ 0, and Z $ Sΐ, we get for some / < k, sin aJk — 0 with α^ —
αΛ Φ 0, i.e., \HΣ(βj — tffc) = Trm, where m is a nonzero integer. Thus by
the proof of Proposition 3.1, t0X is a tangential conjugate point of o which
is a contradiction. So we have [Z, Z] = 0. Let Sί' be a Cartan subalgebra
which contains Z , Z. Then there exists an element k e SO(n) such that Z =

and Z = Ad (Λ)Y for some Y, Y Φ X. Then we have

τk Exp ί 0Z = Exp t0 Ad (Λ)Z = Exp t0X = Exp

= Exp t0 Ad (Λ) Y = τk Exp ί0Y ,
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and consequently we get Exp tQX = Exp tQY for some Y e 21, Y Φ X.

q.e.d.
Now we shall determine the tangential cut locus of o. By Proposition 2.5,

it suffices to consider the tangential cut point t0X of o along a geodesic t —>
Exp tX, where X = Σ aί^ι ^ Sί, Σ a\ = l Then by Lemma 4.1, /0Z is a
conjugate point of o or there exists a unit vector Y (ΦX) in SI such that
Exp ί 0Z = Exp t0Y. Generally, by a direct calculation, Exp tX = Exp tY
holds for some unit vector Y = Σ βί^-ΐ if a n d o n l y if

( * ) V T ( α < - ft)* = m,τr for m, g Z

holds. So first, for a given X we shall search for the minimum positive number
t0 such that (*) holds for some unit Y e 2ί, Y Φ X.

4.2. Lemma. t0 = M i n ^ ^ n ττ/(2/T | ^ | ) .
Proo/. We shall use the vector notation α = (α1} , α n ), β = (/31? , j3n),

/n = (m19 - - , mn) e Zn — {0}. Then (*) is equivalent to

(4-1) t= , ^ |

(4.2) /S = o - 2 < α ' W >

/n

So, if we determine w0 φ 0 such that the value of t defined by (4.1) takes
the minimum positive value, then β is automatically determined by (4.2). Now
we put a: = M a x ^ ^ n \at\ = Max | m | = 1 |<α, w>|/|w|2. Then we get

\<μ,m>\ < k i l l ^ i l + •-• + k n l l ^

\mf ~ m\ + ... + ml " ml + + m\

So Maxm€Zn_{0} |<α, /n>|/|w|2 = α, and the equality holds only in the following
case: Let a = \aiχ\ = = \aik\, then mίχ = εx sgn ail9 , mίk = εk sgn αίjb

(e1? . ,εfc = 0 or 1) and other m/s are equal to zoro. Thus we have tQ =
Minm6^-{o} π |m|2/(2vΓ2" |α, m|) = π/(2\ΓΣa) with α = M a x ^ ^ n |α € | .

4.3. Remark. If α: = | ^ J = = \ctik\, then Ŝ which is determined by
ίi ίj iic

(4.2) with above m/s are given by β = (α^, , ±αr ί l 5 , ± ^ . , , ±oriJfc,
. , aJ. So there exist 2k - 1 Y = 2 ^A iφX) such that Exp ί 0 Z = Exp ί0Y
holds.

Now the tangential cut point tQX of o along / —> Exp /Z is given by

ί0: = Min {* > 01 tX is the first tangential conjugate point of o along
t -> Exp tX or there exists a unit Z € SW (Z Φ X) such that
Exp tX = Exp ίZ}

= Min {ί > 01 tX is the first tangential conjugate point of o along
t —> Exp ίΛΓ or there exists a unit Y e SI (Y =£ -3Γ) such that
Exp tX = Exp ίY}.
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Since tX is the first tangential conjugate point of o along t —> Exp tX if and
only if t = M\nj<k π/(\^2 \aj — ak\) and obviously M\nj<k π/(yίϊ'\aJ — ak\)
> Min π/(2\ΓΣ \cci\) holds, the tangential cut point t0X of o along t —> Exp tX
(X = Σ aiAί) i s g i v e n bY h ( = *o) = M i n * πl(2sΓΣ\ai\). Note that the cut
point t0X is the first conjugate point if and only if Maxj<k \aj — ak\ = 2 Max \at\,
i.e., there exist some / < k such that \aj\ = \ak\ = a and aά + ak = 0 hold.
Thus we get

4.4. Proposition. The tangential cut point t0X of o along a geodesic

t —»Exp tX, where X = Σ aί^ί and

4.5. Theorem. For Z = Σ 0Ci Σ o$ — 1,where

n) : = {X e Λ(R2n) \ dim (λ Π //0) = k) is given by {Exp Ad (SO(n))t0(X)X \ X

Σ Σ a\ — 1> w i t n «ffl = = * * = k } In particular, we
have U?=i Λk(n) = Cut locus of o, Λ°(n) = Interior set of o.

Proof. First we shall show that for a unit vector X e 21 with a{X) = | ^ J
= . . . = | ^ J ? dim ((Exp tQ(X)X) Π /i0) is equal to k. In fact, we may assume
a(X) = |«i| = = \ock\ > \ak+1\ > > \an\. Then we have

cos

\xn cos V 2 ant0(X)j

(xι sin

(P, Φ\P =
0

(ak+1π/2a(X))

xn cos (anπ/2a(X))

+ 1sin (ak+1π/2a(X))

xn sin
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From this our assertion is obvious. Since τh (h e SO(ή)) leaves μ0 invariant,
we get

JExp Ad (SO(n))t0(X)X\X =

with a(X) = \aίχ\ = = | ^ j j c Λk(n) .

Similary it is easy to show that

Int (α) = {Exp Ad (SO(n))tX | 0 < t < to(X), X <= 2T, g(X, X) = 1} c Λ\ή).

But by Propositions 1.4 and 4.4,

M = U Λk(n) => U ({Exp Ad (SO(n))t0(X)X}

fc=o xe2i,ixι=i

U {Exp Aά(SO(n))tX\0 < t < to(X)})

= Cut locus of o U Int (o) = M.

Thus the proof is completed.

4.5. Corollary. Diameter of M = ^~nπ/(2\/~2). Injectivity radius of M

= τr/(2/2") = (Diameter of M)/VrankM.
Proof. Diameterof M = MaxΣ α2= 1Min 1< ί<w7r/(2v /T|^|) = ^ΊΓπl{2^/~2).

Injectivity radius of M — MinΣ βj= 1

tMin1^ i^n π/(2\rΣ \at\) = π/(2^ΓΣ).
q.e.d.

5. Closed geodesies

5.1. Theorem. For m: = (m1? , mn) e Z n - {0}, we put X(m): =
Σiί (mί/\^\)^i £ 21 TTjew each of the following holds:

( i ) c(t): t —• Exp tX(m), 0 < t < \m\π/V~2 , w a closed geodesic of length
\m\π\\ΓΣ with the initial point o. Its multiplicity is equal to the greatest com-
mon divisor of mu , mn.

(ii) Every closed geodesic of M with the initial point o may be expressed
in the form ί-^Exp t Ad (h)X(m)9 where h e SO(ή) andXim) = Σi(mί/\mOAi>
meZn - {0}.

(iii) The intersection number of a clesed geodesic t —> Exp t Ad (h)X(m),
0 < t < \m\πl\ΓΣ, with the oriented codimension one cycle U?=α Λk(ri) is
given by Σmί-

Proof. 1 °. c(t): t -> Exp t(Σ cctA^, where Σ αj = 1 and 0 < ί < ί15 is

a geodesic loop ^ exp tx(Σ <*^)

((cos / I α A + V" 1 1 ! sin VTα:^)^./) e O(n) Φ4 VTa^ = mi9 mt e Z

= TΓ | m | / V T ,

α i = mi/I jit I with w = (m1} , mn) z Zn — {0} .
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Next, since exp (π | m \X(m) / \Γΐ) — ((cos ra^)^) e O(n), we get

ί(π\m\l\Γ2) = dτeκV(πlmlX

((cos

= dπ(Σ cttAi) = c(0) ,

that is, c(0, 0 < t < π \m\/V~2' is a closed geodesic.
2°. Let k be the greatest common divisor of mί9 , mn i.e., w = &/?,

j7: = (pu . . ., pn) $ Zn — {0} and pί9 , pn are relatively prime. Then we
get by 1°, c(τr|/?|/\/T) = c(0), c(ττ |/?|/\/T) = c(0), and consequently c(ί),
0 < t < π\m\l\HΣ, is a closed geodesic of multiplicity k. Conversely let
c(t): t -• Exp ίZ(m), 0 < t < tγ = π \m\/VΎ9 m ε Zn - {0}, be a closed
geodesic of multiplicity k. Then from citjk) = c(0), c(tjk) = c(0), we get
π\m\/(V~2k) = τr|/7|/\/T, pj lpl = mjlml for some p € Zn — {0} with re-
latively prime p15 , pn. That is m = kp and the greatest common divisor
of m19 , mn is equal to k. Thus we have shown (i). (ii) is obvious from 1°
and the fact that 2K = Ad (SO(/ι))8I.

3°. Let c{t): ί -> Exp ί Ad (h)X(m), 0 <t<π \m\/\fT, be a closed geo-
desic. To show (Hi), it suffices to consider the case h = e. Then the intersec-
tion number of c(t) with the oriented cycle UZ=i Λk(n) is given by

Δ-l c(t)Γ)μoΦ{O}

where qc(t)Πμoc(t) is the following symmetric form on a subspace c(0 (Ί μ0

Let qc{t)c(i) be the symmetric bilinear form on c(t) defined by

t cos VToΓiA /^i cos

^ sin ^Γΐocitj \yi sin \f~2ait

Then qc(t)f)μoc(i) is defined as the restriction of qc(t)c(ί) to the subspace
c(f) Π ̂ 0 of c(0, [4]. Now c(0 (Ί μ0 Φ {0} if and only if cos VTa € i = 0 for at
least one a^ Now put Γ: = {(mi9 r) \ 1 < / < n, 1 < r < \mt\, r integer} and
consider the following equivalence relation " ~ " on Γ: (mi9r) — (rnj9s) ^
tί>r{: = π |m|/(/ϊ|m,|).K2r - 1)) = tj>s(: = π\m\/(^2\mj\)^(2s - 1)).
We denote by [{mu r)] the equivalence class of (mi9 r) with respect to " ~ " .
Then c(t) Π μQ φ {0} holds if and only if t = tί>r sor some (mu r) e T, and c(ti>r)
Π μ0 = {(0, <?) I ̂  = ^0, , ± ^ 1 ? , ±xik, , 0), where /1? ••-,/* are de-

termined by [(mi9 r)] = {(mίl? rx), , (w i t, rΛ)}. Thus we have qc{t.tr)rιμoc(titr):
= (VΎ/\m\) Σkj=i"1^^, so that sgn^ c ( t i f r ) n ί £ 0c(ί ί i r) = Σ ^ i S g n m , . , and
consequently the intersection number is equal to Σ[(mi.r)]<= τγ~ Σ?=i s S n m z y =
Σ? = 1 ( sgnm,) |m { | = Σ ? = i ^ because of #Γ - ΣU\™t\.

5 . 2 . C o r o l l a r y . T w o c l o s e d g e o d e s i e s t —• E x p ί A d ( h ) X ( m ) , 0 < t <
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I in I π/VΎ and t -> Exp t A d (k)X(n), 0 < t < \n\π/^2, where h,ke SO(ή),

are homotopically equivalent if and only if Σ^rrii = Σί=inί
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