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The Manipulability of Voting Systems 

Alan D. Taylor 

1. INTRODUCTION. When one speaks of a mathematical analysis of voting, two 
results spring to the forefront: the voting paradox of Condorcet [7] and Arrow's Impos- 
sibility Theorem [1]. In fact, most mathematicians-although perhaps unable to state 
either precisely-have heard of both, and these two results are finding their way into 
more and more undergraduate textbooks for non-majors; see [6], [28], or [29]. 

But Condorcet's and Arrow's contributions are, we feel, only the first two parts 
in a natural progression that is a trilogy-ending with the remarkable Gibbard- 
SatterthWaite Manipulability Theorem [17], [25]-or perhaps (as we might argue) 
a tetralogy, culminating in the striking generalization recently proved by Duggan and 
Schwartz [9], [10]. 

The basic voting-theoretic context in which we work has ballots that are lists (some- 
times allowing ties, sometimes not) and elections whose outcome is a non-empty set of 
alternatives (again, sometimes allowing ties for the win, and sometimes not). A ballot 
in which there are no ties is called a linear ballot. 

Following standard terminology in the field, a sequence P of ballots is called a 
profile. If P is a profile, then the set of winners, according to some specified voting 
system V, is denoted by V(P). 

Most people are aware of several examples of voting systems in this context. Plu- 
rality, for example, is the system in which the winner is the alternative with the most 
first-place votes. Scoring systems, on the other hand, assign points to alternatives based 
on where they appear on a ballot; the special case in which a first-place vote is worth 
n - 1 points, a second-place vote is worth n - 2, etc. is known as the Borda count. The 
Hare system (respectively, the Coombs method) proceeds by iteratively deleting the al- 
ternatives with the fewest first-place votes (respectively, the most last-place votes). All 
of these voting systems can produce ties for the win. 

There are other voting systems that are less trivial mathematically, but not as well 
known. For example, assume for simplicity that we have n voters and n alternatives. 
Given a profile P, consider the voting system V in which an alternative a fails to be in 
V (P) if and only if there exists a set X of voters and a set B of alternatives such that 
IXl + I B I > n, and every voter in X ranks every alternative in B higher on his ballot 
than a. The intuition here (roughly) is to give sets of voters the power to veto sets of 
alternatives if the set of alternatives is proportionately smaller than the set of voters, 
and to reject any alternative that, if chosen, would trigger the use of such veto power. 
A non-trivial theorem of Moulin (see [21] or [22, p. 122]) asserts (in part) that V(P) 
is always non-empty. 

It turns out that, as far as manipulability is concerned, the issue of whether we 
allow ties in the ballots or not is a relatively minor one. On the other hand, the issue 
of whether we allow ties in the outcome of an election is crucial. It is, in fact, what 
separates the Gibbard-Satterthwaite Theorem (where such ties are not allowed) and 
the Duggan-Schwartz Theorem (where they are allowed). 

Of fundamental importance to our considerations is the question of what it means 
to say that a voter can manipulate a voting system. Intuitively, it means that there is at 
least one situation in which this voter prefers the election outcome resulting from his 
submission of a disingenuous ballot to the outcome resulting from his submission of 
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a ballot corresponding to his true preferences. At an intuitive level, this is fine. But a 
few points require clarification. 

First of all, what do we mean by a "situation"? This is easy-we simply mean a 
sequence of ballots cast by the other voters. Thus, we are assuming that the voter 
in question has complete knowledge of how everyone else voted (or perhaps better: 
will vote), and we are asking if he can take advantage of this knowledge to secure a 
better outcome-better, that is, from his point of view-by submitting an insincere 
ballot. 

More to the point, however, is the question of what it means for our voter to "prefer" 
one election outcome to another. If we demand that our voting procedure produce 
a single winner-disallowing ties in the outcome of any election-things are easy. 
That is, given two ballots, one of which represents this voter's true preferences and 
one of which is disingenuous, we simply compare the two election results using the 
ballot representing his true preferences. These considerations give rise to the notion of 
manipulability on which the Gibbard-Satterthwaite Theorem is based. 

The conclusion of the Gibbard-Satterthwaite Theorem is that (assuming there are 
three or more altermatives, each of which appears as a winner for at least one profile) 
the only voting system that is non-manipulable and always produces a single winner 
is a dictatorship. But this demand that an election never result in a tie is a weakness of 
sorts. For example, few such voting systems (manipulable or not) spring to mind-in 
part because we tend to want voting systems that treat all voters the same (a property 
called anonymity) and all altermatives the same (a property called neutrality), and these 
properties together certainly rule out single winners, as can be seen by considering two 
alteruatives and two voters who rank them opposite ways, or three voters who rank 
three alteruatives with ballots: abc, bca, cab. 

Thus, when single winners are truly needed, one must resort to some kind of 
tie-breaking mechanism. Such a mechanism can be chance or deterministic, and, 
if deterministic, it can be democratic or not. One way to view the content of the 
Gibbard-Satterthwaite Theorem is that it rules out "democratically deterministic" 
as an option-one has to choose between chance resolutions and single-handedly 
imposed ones. 

However, if we allow ties in the outcome of an election, then there certainly exist 
voting systems that treat all voters the same, all alteruatives the same, and are intu- 
itively non-manipulable. For example, one could declare every alteruative to be tied 
for the win regardless of the ballots. Or one could take as a winner any alteruative a 
that is not universally regarded as inferior to some other alteruative b (the so-called 
Pareto-optimal set). Or one could declare an alteruative to be a winner if and only if at 
least one voter ranked it first on his ballot. 

But we have to be careful here. While the first example (everyone tied regardless 
of the ballots) is clearly non-manipulable via any reasonable definition, things are 
less clear with the latter two voting systems. For example, consider an election in 
which three voters have ballots (a, b, c), (a, b, c), and (c, a, b), and assume that these 
represent the voters' true preferences. The winning set is {a, c} according to either of 
the latter two voting systems, but if voter one submits, instead, the insincere ballot 
(b, a, c), the winning set becomes {a, b, c}. If voter one feels that a and b are very 
close in value (with c much worse), one can imagine preferring {a, b, c} to ta, cl-for 
example, if the ultimate winner is to chosen by a random draw from the winning set. 
For a related discussion, see [16]. 

Thus, if we allow ties in the outcome of an election, then there is a question as to 
what we mean by manipulation. Things are much stickier here, because we now must 
compare two sets of winners given only a preference ordering of single alternatives. 
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For example, if our voter ranks a over b over c over d, will he prefer an election 
outcome of fa, d} to an election outcome of {b, c}, or vice versa? 

The intuition behind the notion used in the Duggan-Schwartz generalization is the 
following. Let's assume that, when the dust settles, society needs to have a single win- 
ner, and that this single winner is selected in some way (randomly, by some committee, 
etc.) from those tied for the win according to our voting procedure. 

Now, if a voter is sufficiently optimistic, and if he ranks a over b over c over d, 
then he prefers an election outcome of {a, d} to an election outcome of {b, c}. This is 
because he assumes-optimistically-that a (his top choice overall) results from an 
election outcome of {a, d}, while b (his second choice overall) results from an election 
outcome of {b, c}. In general, a sufficiently optimistic voter compares two election out- 
comes (that is, two sets of alternatives) by asking which has a "larger max" according 
to his true preference ranking of the alternatives. 

On the other hand, if a voter is sufficiently pessimistic, and if he ranks a over b over 
c over d, then he prefers an election outcome of {b, c} to an election outcome of fa, d }. 
This is because he assumes-pessimistically-that d (his worst choice overall) results 
from an election outcome of ta, d}, while c (his third choice overall) results from an 
election outcome of {b, c}. In general, a sufficiently pessimistic voter compares two 
election outcomes (that is, two sets of alternatives) by asking which has a "larger min" 
according to his true preference ranking of the alternatives. 

These considerations give rise to the notion of manipulability on which the Duggan- 
Schwartz Theorem is based. Other notions of manipulability in -the context of elections 
with ties have also been considered; see [2], [3], [4], [11], [12], [15], [18], [19], [20], 
[27], [30], and [32]. Formalizations of the kind of manipulability that we consider here 
occur in Section 2, with further intuitive justification for this notion in Section 6. 

The rest of the paper is organized as follows. In Section 2, we prove the Duggan- 
Schwartz Theorem, pointing out, as we go, what parts of the proof can be ignored 
if one simply wants to obtain the Gibbard-Satterthwaite Theorem. This proof takes 
place in the context in which there are three or more alternatives, no ties in the ballots, 
and every alternative is the unique winner for at least one set of ballots. The Duggan- 
Schwartz conclusion is that there must, in this case, be a dictator in the sense that the 
alternative at the top of his ballot is always among the winners. 

In Section 3, we present some easy consequences of the Gibbard-Satterthwaite 
and Duggan-Schwartz Theorems in which the dictatorship-like consequences of non- 
manipulability co-exist with a quasi-democratic ability of each voter to have a unilat- 
eral effect on the outcome of an election. 

We achieve this co-existence of non-manipulability and quasi-democracy in the 
Gibbard-Satterthwaite setting by considering social welfare functions (wherein, by 
definition, the outcome of an election is a linear ordering of the alternatives instead of a 
single winning alternative). Here, we have a natural notion of manipulability based on 
lexicographic orderings: given a list L (which we think of as a ballot giving a voter's 
true preferences) and two other lists L 1 and L2 (which we think of as possible election 
outcomes according to some social welfare function), we scan down the two lists until 
we reach the first place that they differ-at this point, we see which alternative is bet- 
ter according to the preference list L. It turns out that non-manipulability here is (with 
slight hedging) equivalent to the system being one in which some voter gets to pick 
which alternative is in first place, another voter then gets to specify which is in second 
place, and so on (allowing one voter to play more than one role). 

We achieve a version of this co-existence of non-manipulability and quasi- 
democracy in the Duggan-Schwartz context by adding the additional restriction that 
the voting system treats all voters the same (anonymity). Unlike many theorems of 
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its ilk, this leads not to an impossibility theorem, but to a characterization of a very 
natural voting system: an alternative is one of the winners if and only if it is ranked 
first by at least one voter. 

In Section 4, we consider what happens if we delete the assumption that every al- 
ternative x is the unique winner in at least one election. For the Duggan-Schwartz 
Theorem, this extension is based on an embellishment of their result in [10], and the 
observation that this later Duggan-Schwartz result follows from the main theorem in 
Section 2, which is, in fact, an earlier unpublished result of theirs [9]. The main theo- 
rem in Section 4 generalizes a known result from the Gibbard-Satterthwaite context. 

In Section 5, we extend the basic result in Section 2 to handle the case in which 
ties are allowed in the ballots, again generalizing a known result in the context of 
the Gibbard-Satterthwaite Theorem. Finally, in Section 6, we offer some concluding 
discussion. 

2. THE DUGGAN-SCHWARTZ THEOREM. As a context for a basic version of 
the Duggan-Schwartz Theorem, we take elections in which we have linear ballots, 
three or more alternatives, and in which the outcome of an election is-in contrast to 
what one has with the Gibbard-Satterthwaite Theorem-a non-empty set of winners. 
The kind of manipulation that we explore here is given by the following. 

Definition 2.1. A voting system can be manipulated by an optimistic voter if there 
exists a profile (B1, . . ., Bn) (which we think of as giving the true preferences of the n 
voters) and another ballot Ci (which we think of as a disingenuous ballot from voter i) 
such that at least one of the winners from the profile 

(Bl , ... ., Bi-1, Ci, Bj+19 .. ., Bn) 

is-according to Bi -preferred to the all of the winners from (B1, ..., Bn). Similarly, 
a voting system can be manipulated by a pessimistic voter if there exists a profile 
(B1, ..., Bn) (which we think of as giving the true preferences of the n voters) and 
another ballot Ci (which we think of as a disingenuous ballot from voter i) such that 
all of the winners from the profile 

(Bl, * .. I Bi - 1 Ci 9 Bi + 1 * * Bn) 

are-according to Bi -preferred to at least one of the winners from (B1, ..., Bn) 

More briefly, a voting system can be manipulated by an optimist if there is at least 
one election in which some voter can file a disingenuous ballot and improve the max 
of the set of winners according to his true preferences. Similarly, a voting system can 
be manipulated by a pessimist if there is at least one election in which some voter can 
file a disingenuous ballot and improve the min of the set of winners according to his 
true preferences. 

For the remainder of this section, we fix a context in which there are three or more 
alternatives, n voters for some fixed n, linear ballots (ties in the ballots are handled 
later), and-with the exception of Corollary 2.13-elections in which the outcome is 
a non-empty set of winners. If V is a voting system in this context, we say that an 
alternative x is viable if V(P) = {x} for at least one profile P. 

Theorem 2.2 (Duggan-Schwartz [9]). If V is a voting system that cannot be manip- 
ulated by an optimist or a pessimist and in which every alternative x is viable, then 
there exists at least one voter whose top choice is always among the set of winners. 
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Our proof of Theorem 2.2 (quite different from that of Duggan and Schwartz) re- 
quires several definitions and lemmas. Our starting point, however, is with a slightly 
strengthened version of one of their observations, although it is worth noting that the 
following discussion is not necessary if one is simply trying to prove the Gibbard- 
Satterthwaite Theorem. First, a piece of terminology: if P is a profile, then a set X of 
alternatives is said to be a top set (for P) if each voter prefers (according to his ballot) 
every alternative in X to every alternative not in X. For example, if every voter has x 
at the top of his ballot, then {x} is a top set. 

Suppose now that V is a voting system that cannot be manipulated by an optimist or 
a pessimist, and that P is a profile for which X is a top set. Assume that there is at least 
one profile P' for which V(P') C X. Then we claim that V(P) C X. If not, we could 
convert P to P', one ballot at a time, until the set of winners changes from not being a 
subset of X (which we are assuming is true with P) to being a subset of X (which we 
are assuming is true with P'). If this occurs as we change ballot Bi to Ci, then we can 
take Bi to be the true preferences of voter i and see that his insincere submission of Ci 
has improved the min (from something not in X to something in X). This proves the 
claim. 

The key to our proof of the Duggan-Schwartz Theorem is the following definition. 

Definition 2.3. A voting system V is said to satisfy down-monotonicity for singleton 
winners provided that the following always holds: if P is a profile and I V(P) I = 1, and 
if P' is the profile obtained from P by having one voter move one losing alternative 
down one spot on his ballot, then V(P') = V(P). 

From down-monotonicity for singleton winners, it follows that, if the outcome of an 
election is a singleton, then that outcome is unchanged if any number of voters move 
any number of losing alternatives down any number of spots on their ballots. In the 
Gibbard-Satterthwaite context, this means that whenever we have an election in which 
we are focussing on two alternatives, a and b, one of which is the winner, we can 
assume-with no loss of generality-that all other alternatives appear below a and b, 
and in (say) alphabetical order on all ballots. 

The published proof of the Gibbard-Satterthwaite Theorem that appears to be clos- 
est to the one obtained by specializing what we give here for Theorem 2.2 to the case 
of singleton winners is in [22]. That proof is based on notions called strong positive 
association and strong monotonicity; see [23] and [24]. Both these notions are equiva- 
lent to down-monotonicity for voting systems in which winners are always singletons, 
but incomparable in the more general setting where ties are allowed in the outcome of 
an election and we delete the requirement that I V (P) I = 1 in the definition of down- 
monotonicity. For another proof of the Gibbard-Satterthwaite Theorem, see [16]. 

Lemma 2.4. If a voting system cannot be manipulated by an optimist or a pessimist, 
then it satisfies down-monotonicily for singleton winners. 

Proof. If down-monotonicity for singleton winners fails, then there exist two elections, 
a single voter i, and two alternatives x and y such that: 

In Election #1, voter i has ballot Bi = .... y, x.. .), and some w :A y is the 
only winner (that is, y is a non-winner). 

In Election #2, voter i has ballot Ci = .... x, y.. .), all other ballots are the 
same as in Election #1, and some Y 7 {w} is the set of winners. 
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Choose v E Y such that v :A w. If v is preferred to w on both ballots, then we can 
regard Bi as the true preferences, and see that voter i's disingenuous submission of C, 
improves the max (according to his true preferences) from w to at least v. 

Similarly, if w is preferred to v on both ballots, then we can regard Ci as the true 
preferences, and see that voter i's disingenuous submission of Bi improves the min 
(according to his true preferences) from v or worse to w. 

In the only remaining case, we must have {v, w} = {x, y}, and since w :A y, we 
must have x = w and y = v. But then we can regard Bi as the true preferences, and 
see that voter i's disingenuous submission of Ci improves the max (according to his 
true preferences) from x = w to at least y = v. We could also have regarded Ci as the 
true preferences, and had voter i improve the min. i 

Definition 2.5. If V is a voting system, X is a set of voters, and a and b are distinct 
alternatives, then we write "aXb" to mean that V(P) :A {b} whenever P is a profile in 
which everyone in X has a over b on his ballot. We say that X is a dictating set if aXb 
for every pair of distinct alternatives a and b. 

We really should include the name of the voting system V in the notation "aXb" 
and similarly speak of a "dictating set for V", but our suppression of the name V 
causes no confusion. 

Lemma 2.6. Assume that V is a voting system that satisfies down-monotonicity for 
singleton winners. Then, in order to show that aXb, it suffices to find a single profile 
P in which {a, b} is a top set, everyone in X prefers a to b, everyone else prefers b to 
a, and in which a E V(P). 

In the Gibbard-Satterthwaite setting, one can omit the phrase "{a, b} is a top set" 
and just use down-monotonicity to prove the resulting statement. This change then 
makes the upcoming Lemma 2.8 (a key element of the proof) trivial in the Gibbard- 
Satterthwaite setting. 

Proof of Lemma 2.6. Assume that aXb fails, and choose a profile P' in which every- 
one in X prefers a to b and for which V (P') = {b}. Using down-monotonicity for 
singleton winners, we can convert P' into the profile P that is assumed to exist, and 
get V(P) = {b}. But this is a contradiction since a E V(P). E 

Lemma 2.7. Assume that V is a voting system that satisfies down-monotonicity for 
singleton winners, and for which every alternative is viable. Then the set of all voters 
is a dictating set. 

Proof. Suppose that P is a profile in which every voter has a over b on his bal- 
lot, but V(P) = {b}. Choose a profile P' such that V(P') = {a}. Now, using down- 
monotonicity for singleton winners, we can first move b to the bottom of every ballot in 
P' and then repeat this for each of the other losing alternatives (in some fixed order- 
picture it as being alphabetical: c, d, e, ... ). Similarly, we can move all alternatives 
other than a and b to the bottom (in this same fixed order) of all the ballots in P. But 
then we have identical profiles with two different election outcomes. U 

We can reach the conclusion of Lemma 2.7 with "V(P) = {x}" replaced by the 
weaker assumption "x E V(P)" if we replace down-monotonicity with the direct as- 
sumption that the system cannot be manipulated by an optimist or a pessimist. That is, 
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if every voter has a over b and V(P) = {b}, then we can use down-monotonicity to 
make {a, b} a top set. Now choose P' such that a E V(P'). Convert P to P', one ballot 
at a time, until a becomes a winner. At this point, the voter who just changed his ballot 
has improved his max to his most preferred alternative a. 

For the next four lemmas, we assume that V is a voting system that cannot be 
manipulated by an optimist or a pessimist, and for which every alternative x is viable. 

Lemma 2.8. Suppose that X is a set of voters, a and b are alternatives, and aXb. 
Now assume that c :A a and c :A b, and suppose that X is partitioned into disjoint sets 
Y and Z (one of which may be empty). Then either aYc or cZb. 

Proof. This proof is quite trivial in the Gibbard-Satterthwaite context where we always 
have singleton winners. But here, consider the election in which the profile P is as 
follows: 

Everyone in Y has ballot (a, b, c, . . 

Everyone in Z has ballot (c, a, b, . . 

Everyone else has ballot (b, c, a, . . 

Because {a, b, c} is a top set, our previous discussion guarantees that V(P) C 
{a, b, c}. Because aXb, V(P) :A {b}, and so either a E V(P) or c E V(P). 

Case 1: a E V(P). 

For each voter in Y, we one-by-one move b just below c. As we do this-changing 
a ballot from Bi to Ci-a remains a winner (or else we could regard Ci as the true 
preferences and then have voter i improve his max from something other than his top 
choice to his top choice a). Now, for every voter not in Y or Z ("Everyone else"), we 
one-by-one move b just below a. Again, as we do this-changing a ballot from Bi 
to Ci-a remains a winner (or else we could regard Bi as the true preferences and then 
have voter i improve his min from a to b or c). But now we have produced a profile P' 
in which {a, c} is a top set, everyone in Y prefers a to c, everyone else prefers c to a, 
and in which a E V(P'). Thus, Lemma 2.6 ensures that aYc, as desired. 

Case 2: c E V(P). 

For each voter in Z, we one-by-one move a just below b. As we do this-changing 
a ballot from Bi to Ci-c remains a winner (or else we could regard Ci as the true 
preferences and then have voter i improve his max from something other than his top 
choice to his top choice c). Now, for every voter in Y, we one-by-one move a just 
below c. Again, as we do this-changing a ballot from Bi to Ci-c remains a winner 
(or else we could regard Bi as the true preferences and then have voter i improve his 
min from c to a or b). But now we have produced a profile P' in which {b, c} is a top 
set, everyone in Z prefers c to b, everyone else prefers b to c, and in which c E V(P'). 
Thus, Lemma 2.6 ensures that cZb, as desired. U 

Lemma 2.9. Suppose X is a set of alternatives and that aXb for some a and b. Then 

(i) for all c :A a, we have aXc, and 

(ii) for all c :A b, we have cXb. 

Proof. We never have x 0 y for any x and y, or else, for every profile P, we would 
have V(P) :A {y}. Hence, (i) follows from Lemma 2.8 with Z = 0, and (ii) follows 
from Lemma 2.8 withY =Y0. 
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Lemma 2.10. Suppose X is a set of alternatives and that aXb for some a and b. Then 
X is a dictating set. 

Proof. Assume that x and y are distinct alternatives. Using Lemma 2.9, we have: 

If y :# a, then aXb implies aXy implies xXy. 
If x 0 b, then aXb implies xXb implies xXy. 

If y = a and x = b, then choose some z 0 a, b. Then aXb implies yXx 

implies yXz implies xXz implies xXy. X 

Lemma 2.11. Suppose that X is a dictating set and that X is partitioned into disjoint 
sets Y and Z. Then either Y is a dictating set or Z is a dictating set. 

Proof. This is immediate from Lemmas 2.8 and 2.10. a 

Lemma 2.12. For the kind of voting system that we are considering, there is a voter 
whose top choice is the unique winner whenever the winner is a singleton. 

Proof. It follows from Lemmas 2.7 and 2.11 that there is a voter i such that {i I is a 
dictating set. But this means that the only singleton winner can be the alternative at the 
top of voter i's ballot. a 

In the Gibbard-Satterthwaite context, the proof of Theorem 2.2 is complete at this 
point. In the present context, however, we need one additional observation. Assume, 
then, that V is a voting system that cannot be manipulated by an optimist or a pessimist, 
and for which every alternative x is viable. Suppose voter i's top choice is the unique 
winner whenever the winner is a singleton (as guaranteed by Lemma 2.12). Then, we 
claim that voter i's top choice is always among the set of winners. 

The argument here runs as follows. Suppose not, and choose a profile P such that 
the alternative x that is at the top of voter i's ballot is not in V(P), and such that I V(P) I 
is as small as possible. We can't have I V (P) I = 1 by our assumption that voter i's top 
choice is the unique winner whenever the winner is a singleton. 

Assume that V(P) = {s1, . . ., st Iwith t > 2 and x , V(P), and assume that voter i 
ranks sI over 52 over ... over st. Let P' be any profile in which voter i's ballot is the 
same as in P, but in which all the other voters have sl, . .. , st as a top set in that order. 
Now change P to P' one ballot at a time. 

We first claim that as we change a ballot from Bj to Cj, no new alternative w gets 
added to the set V(P) of winners, since we could then regard Cj as the true preferences 
of that voter, and the disingenuous submission of Bj would then improve the min from 
w or worse to st. This argument covers x = w as well. 

Moreover, no si can be lost from V (P) by the minimality of I V (P) I-this is why we 
needed to observe that x is not added to V(P). But now, starting with P', voter i can 
bring s1 to the top of his ballot and make the set of winners a singleton {is } (because 
{is } is then a top set), thus improving his minimum because t > 2. This completes the 
proof of Theorem 2.2. 

Of course, we immediately have the following, still in the context of linear ballots 
and three or more alternatives. 

Corollary 2.13 (Gibbard-Satterthwaite). Suppose V is a voting system in which the 
outcome of an election is always a single winner, and for which every alternative is 
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viable. Then V is non-manipulable if and only if there exists a single voter whose top 
choice is always the unique winner 

3. THE CO-EXISTENCE OF NON-MANIPULABILITY AND QUASI- 
DEMOCRACY. Our use of the term "quasi-democracy" in the title of this sec- 
tion (and in our remarks in Section 1) is meant to be informal. Roughly, what we 
have in mind is a situation wherein every voter can unilaterally affect the outcome, 
although not necessarily on an equal basis. Let's begin with the Gibbard-Satterthwaite 
Theorem. 

Our approach here is to shift contexts from social choice functions, where the out- 
come of an election is a single alternative, to social welfare functions, where the out- 
come of an election is a linear ordering of the set of alternatives-what we call a "final 
list." We still assume that ballots involve no ties, and we likewise disallow ties in the 
final list produced by a social welfare function. 

Suppose L is a linear ordering of the alternatives that represents a voter's true pref- 
erences, and suppose that L1 and L2 are two linear orderings that can arise in the final 
list using some social welfare function. What does it mean to say that this voter prefers 
one list to the other? The answer that we make use of is the one alluded to in Section 1; 
it is the analogue of a lexicographic ordering. 

Definition 3.1. A social welfare function can be manipulated by a voter if there exists 
a profile (B1, . . ., Bn) (which we think of as giving the true preferences of the n voters) 
and another ballot Ci (which we think of as a disingenuous ballot from voter i) such 
that: 

(1) V((B1, . . ., BO)) = (xI ... xpa ... 

(2) V((B1 * . Bi-, Ci, Bi+, . ., BO)) = (x .* xpb ... 

(3) b is ranked above a on the ballot Bi giving voter i's true~preferences. 

While dictatorships (wherein we fix one of the voters and the final list is simply 
taken to be his ballot) are certainly non-manipulable in this sense, there are more in- 
teresting examples, of which we consider two. For the first, assume that voter 1 gets 
to specify which alternative is at the top of the final list, then voter 2 gets to specify 
which of the remaining alternatives is second, then voter 3 gets a similar say, and so 
on. Of course, we could modify this by returning to voter 1 for a decision as to which 
alternative, for example, is third on the final list. 

But the example that best illustrates the general case is the following. Suppose we 
have three voters and three alternatives: a, b, and c. Voter 1 gets to choose which 
of the three alternatives is at the top of the final list. If voter 1 chooses a, then 
voter 2 gets to choose which alternative is second on the final list. On the other hand, 
if voter 1 chooses b, then voter 3 gets to choose which alternative is second. But, if 
voter 1 chooses c, then which of the remaining two alternatives is second on the final 
list is determined by majority vote based on the ballots cast. 

There are two ways in which the latter example is more complicated than the for- 
mer. First, not all of the alternatives are treated the same in the latter example-the 
question of which voter picks what is second on the final list depends on which al- 
ternative voter 1 has at the top of his ballot. Thus, the system is not neutral. Second, 
the ordering of the bottom two alternatives in the final list in the latter example is not 
decided by a particular voter, but by majority rule. This has no effect on the question 
of manipulability-in spite of the Gibbard-Satterthwaite Theorem-because we are 
dealing with only two alternatives at this point in the process. 
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As to the first complication, we opt for simplicity in what follows and consider 
only social welfare functions that are neutral. There is, however, no getting around the 
second complication, and the general case requires a definition. 

Definition 3.2. A simple game G is a pair (N, W) in which N is a non-empty set and 
W is a collection of subsets of N that is closed under the formation of supersets; G is 
said to be constant sum if for each set X C N, exactly one of X and N - X is in W. 

Simple games are often associated with voting systems in which a single alternative 
is pitted against the status quo. In this context, sets in W are called winning coalitions, 
with the intuition being that a set X is a winning coalition if and only if the issue at 
hand passes when the voters in X are precisely the ones who vote in favor of the issue. 
For more on this, see [13], [29], and [31]. 

But constant-sum simple games can also be used to select a winner from two alter- 
natives based on a profile indexed by N. This is done by declaring that 

a is the winner if {i E N: voter i ranks a over b} E W, 

and 

b is the winner if {i E N: voter i ranks b over a} E W. 

This system is non-manipulable precisely because the collection of winning coalitions 
is closed under the formation of supersets, and it always produces a unique winner 
because exactly one of X and N - X is in W. 

With these preliminaries at hand, we can now state the consequence of the Gibbard- 
Satterthwaite Theorem that shows how non-manipulability can co-exist with a kind of 
quasi-democracy. 

Theorem 3.3. Suppose we have a set A = {X1, . . .X, Xk of alternatives, and a social 
welfare function V that treats all alternatives the same (i.e., that is neutral). Then the 
following are equivalent: 

(1) V is non-manipulable andfor every linear ordering L of the set of alternatives, 
if P= (L,...,L),thenV(P)=L. 

(2) Either: 

(i) there exists a sequence (repetitions aliowed) (il, ..., ik1) such that 
for each p < k - 1, the pth alternative on the final list (x1, .. ., Xk) is 
the alternative in A - {xl, . .. , xp_1} that is ranked highest by voter ip. 

or 

(ii) there exists a sequence (repetitions allowed) (il, ..., ik2) and a 
constant-sum simple game G = (N, W) such thatfor each p < k - 2, 
the pth alternative on the final list (X1, . . ., Xk) is the alternative in 
A - {xl, ... , xp1l I that is ranked highest by voter ip and the order of 
the last two alternatives in the final list is determined by G (i.e., {i: 
voteri ranks Xk-l over XkI E W). 

Proof Clearly, (2) implies (1). We derive the converse from the Gibbard-Satterthwaite 
Theorem. Given a social welfare function V, we begin by inductively constructing a 
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sequence (il, . . ., ik-2) of voters. To obtain iI, consider the voting system V' obtained 
by setting V'(P) equal to the top alternative on the list V(P). If IAI > 3, then V' 
satisfies the hypotheses of the Gibbard-Satterthwaite Theorem in Section 2. Hence, 
there is a voter il such that the top alternative on his ballot is always the top alternative 
on the list V(P). 

Now, fix one alternative a and let V" be the voting system for the set A - {al of 
alternatives that is defined as follows. If P is a profile for A - {a}, then let P' be the 
profile for A that is obtained by placing a at the top of all ballots in P. Now let V"(P) 
be the second alternative on the list V(P'). Note that V"(P) :A a since a is the top 
alternative in the list V (P') because voter i1 has a at the top of his ballot. 

Again, if IA - {all > 3, we claim that V" satisfies the hypotheses of the Gibbard- 
Satterthwaite Theorem in Section 2. To see that it is not manipulable, assume that the 
profile P represents the true preferences over A - fal of the voters, that V"(P) = b, 
that Q is a profile that results from a change by voter j alone, and that V"(Q) = c, 
where c is preferred to b on voter j's ballot in P. Let P' and Q' be obtained by 
placing a at the top of all the ballots. Then voter j can change the outcome with V 
from (ab...) to (ac.. .), and he prefers the second list to the first according to our 
lexicographic definition. 

Hence, there is a voter i2 such that-if all voters have alternative a at the top of their 
ballots-the second alternative of the final list is the alternative that he (voter i2) ranks 
highest among those in A - {al. In the general case, i2 is a function of a (as in our 
three-voter, three-alternative example). But with our assumption of neutrality, i2 must 
be independent of which alternative voter il has at the top of his ballot. 

We now claim that if P is a profile in which voter iI has a at the top, then voter i2's 
top-ranked alternative in A - {a} is in second place on the final list V(P) regardless 
of where any of the other voters (except voter il) place a. To see this, suppose P' is 
a profile showing otherwise; thus, voter i2 has b as the highest ranked alternative in 
A - {a}, but the outcome is a list (ac .. .) with c 7& b. One-by-one move a to the top 
of each ballot in P' until the final list changes so that it begins ax ... with x 0 c (and 
there must be such a point because it is true when everyone has moved a to the top). 
But the last voter to make this change had x and c ranked the same way on both ballots, 
and so he has succeeded in manipulating the outcome according to our lexicographic 
definition. 

We can now consider two fixed alternatives a and b and repeat this argument with 
ballots for A - fa, b}, and an election outcome being the third-ranked alternative in 
the final list arrived at by placing a first and b second on all these ballots. This yields 
voter i3, and we can continue this process until we have only two alternatives left. 
Then, the Gibbard-Satterthwaite Theorem no longer applies. But at this point we can 
obtain the constant-sum simple game G by saying that a set X is in W if and only if the 
final ordering of these two alternatives agrees with the way they are ordered by voters 
in X whenever all the voters in X have them ordered one way and everyone else has 
them ordered the opposite way. A special case of this is when a set is winning if and 
only if it contains some voter ik. This gives us conclusion (i) instead of conclusion (ii). 

U 

Having non-manipulability co-exist with a kind of quasi-democracy in the setting 
of the Duggan-Schwartz Theorem is considerably easier (and, in some ways, more 
satisfying) than in the Gibbard-Satterthwaite context that we have just considered. 
The key here is again to add an assumption about equal treatment-but now with 
reference to the equal treatment of voters (anonymity) instead of to equal treatment of 
alternatives (neutrality). 
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Theorem 3.4. Suppose that a voting system is anonymous, cannot be manipulated by 
an optimist or a pessimist, and has every alternative viable. Then the set of winners 
includes the top ranked alternative of each voter 

Proof. This is immediate from Theorem 2.2. 

All other things being equal, one would like the set of winners in an election to be as 
small as possible. For this reason, let's say that one voting system dominates another 
if they are distinct and the set of winners using the former is always a subset of the set 
of winners using the latter. Then a corollary of Theorem 3.4 is the following. 

Corollary 3.5. Let V be the voting system in which the winners are precisely the al- 
ternatives that receive at least one first-place vote. Then V cannot be manipulated by 
either an optimist or a pessimist, is anonymous, produces each alternative as a single- 
ton winner for at least one profile, and dominates every other voting procedure that 
satisfies these three properties. 

4. CHARACTERIZATIONS. If there are no ties in the ballots and if the winner 
is a single alternative, the version of the Gibbard-Satterthwaite Theorem presented in 
Section 2 (as a corollary of the Duggan-Schwartz Theorem) characterizes dictatorships 
using manipulability and the assumption that every alternative is viable. If we could 
delete this latter assumption, then we'd have a characterization of non-manipulable 
voting systems. In this section, we derive a weakened version of such a result in the 
Duggan-Schwartz context that nevertheless generalizes the known characterization in 
the Gibbard-Satterthwaite context. 

Our starting point is the following definition from [10]. 

Definition 4.1. A voting system V is said to satisfy residual resoluteness (RR) pro- 
vided that I V (P) I = 1 whenever P is a profile in which there are two alternatives x 
and y such that {x, y I is a top set and all but at most one voter has y over x. 

For the next theorem, we are again in the context of linear ballots, three or more 
alternatives, and election outcomes that are non-empty sets of winners. 

Theorem 4.2 (Duggan-Schwartz [10]). Assume that V is a voting system that satis- 
fies RR, cannot be manipulated by an optimist or a pessimist, and for which every 
alternative x is among the winners (but not necessarily a singleton winner) for at least 
one profile. Then there exists a single voter such that, in-every election, the alternative 
at the top of his ballot is the unique winner 

Proof. We first claim that if P' is a profile in which every voter has x at the top and 
y second, then V(P') = {x}. To see this, choose P such that x E V(P), and note that 
if V(P') did not contain x, then we could change P' to P one ballot at a time until 
x appeared as a winner-thus allowing some voter to improve his max to his most 
preferred alternative x. But our assumption now guarantees that I V (P')I = 1. Thus, 
V(P') = {x}. 

Theorem 2.2 now guarantees that there is a voter i whose top choice is among the 
winners. Suppose that there is a profile P such that voter i has x at the top of his ballot, 
but V (P) 0. {x}. Fixing the ballots of the other voters, choose a ballot for voter i such 
that an alternative y occurs in V(P) that is as low on his ballot as possible. Let P' be 
any profile in which voter i has x at the top of his ballot and y second, and every other 
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voter has y at the top and x second. By our assumption, IV(P') I = 1, and, since x is 
at the top of voter i's ballot, x E V(P'). Thus, V(P') = {x}. 

Now change P' to P one ballot at a time for every voter except voter i. If y appears 
at some point then that voter has improved his max to his most preferred alternative y. 
If y never appears, let P" be the resulting profile, and note that P" and P differ only 
because of voter i's ballot. But now, if voter i's ballot in P represents his true pref- 
erences, then he can use the disingenuous ballot in P" to improve his min from y to 
something better (it is better because we chose y to be as low as possible). E 

Corollary 4.3. A voting system V is non-manipulable by optimists and pessimists and 
satisfies RI? if and only if one of the following holds: 

(1) There is a single alternative x for which {x} is the winner regardless of the 
ballots. 

(2) There are two alternatives x and y and two simple games G, = (N, W,) and 
Gy = (N, Wy) that are "pairwise proper" in the sense that if X E W1 and 
Y E W2, then X n Y 0 0, and for which every singleton set is winning in one 
of the games or its complement is winning in the other, and such that {x} wins if 
the set of voters who rank x over y is a winning coalition in Gx, {y} wins if the 
set of voters who rank y over x is a winning coalition in Gy, and {x, yl wins 
otherwise. 

(3) There is a set B containing three or more alternatives, and a particular voter 
such that the unique winner of the election is the element of B that is ranked 
highest by this voter 

Proof. It is easy to see that the voting systems described in Corollary 4.3 are all non- 
manipulable by optimists and pessimists and satisfy RR. For the converse, let B be 
the set of "viable" alternatives in the sense that there is at least one sequence of ballots 
that yields it as one of the winners. If B is a singleton, then the system is as described 
in (1). 

If B has exactly two elements then (2) holds, but the verification of this requires 
using non-manipulability to show that the placement of other alternatives on the ballots 
has no effect on whether x wins or y wins. 

Suppose now that B has at least three alternatives. We first claim that if x E B, then 
V (P) = {x I whenever every voter ranks x first and ranks some other common element 
y second. This is because RR guarantees that I V (P) I = 1, and if the result were {y}, 
we could convert ballots one-by-one until the outcome included x, thus improving the 
max for that voter. 

Let V' be the voting system on the set B obtained by applying the original voting 
system to the result of placing all the alternatives not in B at the bottom (in some 
fixed predetermined order) of all the ballots. Then V' is still non-manipulable, RR 
still holds, and the argument in the previous paragraph shows that for every x in B 
there is at least one profile P such that V'(P) = {x}. 

It now follows from the Duggan-Schwartz Theorem that there is a dictator for V' in 
the sense that the top-ranked alternative on his ballot is among the winners. We claim 
that the winner in the original system is a singleton set consisting of the element of 
B that is ranked highest by the dictator for V'. Suppose not. Then the set of winners 
includes some alternative x, necessarily in B, that is ranked lower on the dictator's list 
than some other element y of B. 

Now move all the alternatives not in B below x. If the winner switches to {yI, then 
the dictator has improved his min. Otherwise, the new min is some x' that is no higher 
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on the dictator's list than x. The result is that y is now at the top of the dictator's list. 
Now we can, one ballot at a time, move x to the top of each of the other ballots. Then 
x remains a winner, or undoing the last change before x became a loser would improve 
the max for that voter. Similarly, if we now move y into second place on each of these 
ballots (other than the dictator's), then x stays a winner. Finally, move x into the second 
spot on the dictator's list. By RR, the winning set is now a singleton. If V(P) = {y}, 
then the dictator has improved his min, and that's impossible. So V(P) = {x}, and 
we can then use down-monotonicity for singleton winners (Lemma 2.4) to place all 
alternatives not in B at the bottom of all the ballots in the correct order. But now 
V(P) = {y}, and this is a contradiction. U 

In the Gibbard-Satterthwaite context, the following consequence of Corollary 4.3 is 
a known result. 

Corollary 4.4. If ballots are linear orderings of a set of three or more alternatives, 
and if the outcome of every election is a single winner, then a voting system V is non- 
manipulable if and only if one of the following holds: 

(1) There is a single alternative x and it is the winner regardless of the ballots. 

(2) There are two alternatives x and y and a simple game G such that x wins if 
and only if the set of voters who rank x over y is a winning coalition in G, and 
otherwise y wins. 

(3) There is a set B containing three or more alternatives, and there is a voter such 
that the winner of the election is the element of B that is ranked highest by this 
voter. 

5. TIES IN THE BALLOTS. In the Gibbard-Satterthwaite context, it is known that 
if ties are allowed in the ballots (but not in the outcome), and if every alternative is vi- 
able, then there is a dictator in the sense that the winner must be one of the alternatives 
that is tied for top position on his ballot. In the Duggan-Schwartz context, we can do a 
similar thing-again assuming that there are three or more alternatives and that every 
alternative is viable. 

Theorem 5.1. Assume that V is a voting system that cannot be manipulated by an 
optimist or a pessimist and in which every alternative is viable. Then-even if ties in 
the ballots are allowed-there exists a voter such that V (P) always contains at least 
one of the alternatives that is tiedfor top position on his ballot. 

Proof. If V is the system postulated let V' be the restriction of V to profiles in which 
no ties occur. Then V' also cannot be manipulated by either an optimist or a pessimist. 
Moreover, we claim that if P is a profile in which every voter has x at the top of his 
ballot, then V(P) = {x}. To see this, choose P' (consisting of ballots that may have 
ties) such that V(P') = {x}. Change P to P' one ballot at a time until the winner 
becomes {x}. At this point some voter has improved the min to be his most preferred 
alternative x. 

It now follows from Theorem 2.2 that if all the ballots are linear orderings, then 
the top alternative on voter i's ballot is among the winners. Assume that P is a profile 
(in which ties occur) such that no alternative from voter i's top block is among the 
winners, and choose such P so that IV (P) I is as small as possible. One ballot at a 
time, move the set V (P) to the top of everyone's (except voter i's) ballot and break all 
ties in these ballots. No new winner w is added as we do this, or we could regard the 

334 ? THE MATHEMATICAL AS SOCIATION OF AMERICA [Monthly 109 



ballots with V(P) at the top (and no ties) as the true preferences, and see that the min 
has been improved from w to something in V(P). Moreover, nothing in V(P) is lost 
by the minimality of I V (P) 1. 

Finally, we can break all the ties in voter i's ballot, in which case some altermative 
that was in his top block becomes one of the winners. At this point, voter i has im- 
proved his max from something not in his top block to something in his top block. 

. 

Corollary 4.4 characterizes the collection of all non-manipulable voting systems in 
the context of no ties in the ballots and no ties in the outcome of an election. One can 
generalize Corollary 4.4 to allow ties in the ballots, but this involves the construction 
of a somewhat elaborate tree. 

6. CONCLUSION. The notion of manipulability by an optimist or a pessimist has, 
in our opinion, a nice feeling of mathematical naturality while still respecting the in- 
tuitions from the real-world problems of voting theory. But some might object to a 
framework wherein the success of a disingenuous ballot depends on the psychological 
state of a voter (his being sufficiently optimistic or pessimistic), as opposed to how he 
feels about the relative value of the alteruatives. 

Indeed, our use of the adjectives "optimistic" and "pessimistic" certainly bring to 
mind a context in which ties are randomly broken and the voter in question has a state 
of mind that is rather extreme in one of two ways. There is nothing inherently wrong 
with this context-the oft-invoked concept of "risk-averse" coincides (roughly) with 
our notion of "pessimism". But there are also interpretations grounded in the reality of 
preferences. 

For example, consider a typical academic setting in which a department is trying to 
decide which of five candidates (all of whom have been interviewed by the department 
and the dean) to hire. One can imagine using a voting system of the kind we have con- 
sidered here and agreeing that, if the outcome based on the ballots of the department 
members is a tie, then the dean (who did not vote) breaks the tie. In this context, an 
optimist is someone who feels that his own values (regarding the importance of teach- 
ing versus research, etc.) are shared by the dean; a pessimist is someone who feels just 
the opposite. 

Duggan and Schwartz also deal with this issue in [10], where they point out the 
following. Suppose that a voter can manipulate an election to secure an outcome 
of A rather than B, and that A has either a better max or min for this voter. Then, 
for any probability distribution over A and for any probability distribution over B- 
assuming that every element of each set gets non-zerQ probability-there is a func- 
tion f mapping A U B to the reals that is consistent with this voter's ordinal prefer- 
ences (f(x) > f(y) if and only if he prefers x to y) and is such that the expected 
utility of A is greater than the expected utility of B. 

Comparing sets based on an ordinal preference of elements is a fairly well-traveled 
road, but the voting-theoretic context is somewhat special; see [5], [14], or [26]. For 
example, one axiom that often arises in such situations is called deFinetti's (additivity) 
axiom [8]. It asserts that if A is preferred to B, and C is disjoint from both A and B, 
then A U C should be preferred to B U C. But if we prefer x to y and y to z, then-in 
the voting context-we clearly prefer {x} to {x, y} and {y, z} to {zl, and so this axiom 
would imply that we prefer Ix, zI to {x, y, zI while-at the same time-we prefer 
{x, y, zi to {x, z}. 

There are, however, other notions of when a voter might prefer one set of winners 
to another. Perhaps the most natural is to say that a voter prefers A to B if A can be 
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written as the disjoint union of A' and A", B can be written as the disjoint union of B' 
and B", there is a bijection f: A' -- B' such that a is equal to or preferred to f (a) 
for every a E A', every element of A" is preferred to every element of A', and every 
element of B' is preferred to every element of B". Exactly which voting systems are 
non-manipulable in this sense seems to be an open question; but see [20] for some 
related work. 
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The man who solicits votes to obtain any office is deprived completely of the 
hope of holding any office at all.... They have very few laws because very few 
are needed for persons so educated.... Moreover, they absolutely banish from 
their country all lawyers, who cleverly manipulate cases and cunningly argue 
legal points. 

St. Thomas More, Utop)ia, Book II 
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