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B 
ob and Alice have discovered that they have a lot in common. For 

example, they both prefer e-mail to the telephone. On a cold winter day, 

Alice sends Bob electronic mail at 10 a.m., saying, “Let’s meet at noon in 
front of La Tryste.” 

The e-mail connection between our two protagonists is known to lose messages. 

but today they are lucky and Alice’s message arrives at Bob’s workstation at lo:20 
a.m. Bob looks at his calendar and sees that he is free for lunch. So he sends an 
acknowledgment. 

Alice receives the acknowledgment at lo:45 a.m. and prepares to go out, when 

a thought occurs to her: “If Bob doesn’t know that I received his acknowledgment, 
he might think I won’t wait for him. I’d better acknowledge his acknowledgment.” 

And so it goes. We can show that. ultimately, neither Bob nor Alice will make 

it to La Tryste unless at least one of them is willing to risk waiting in the cold 
without meeting the other. 

“The Parable of La Tryste” and the consensus 
problem 

This parable holds several lessons for designers of distributed systems. 

l Emirrprohlenz lesson. If the problem was simply that Alice wanted to be sure 

Bob received her original message, then the first acknowledgment would have 
sufficed. The issue is that Bob is not sure Alice knows that the first message arrived. 

Thus. the problem of transmission is easier than this problem of mutually coordi- 
nated action. 

l Rrliuhlr network lesson. A phone call appears to solve the problem: 



A/ice: Let’s meet at noon. 
Bob: Sure, see you then. 

The basis of this solution is the assump- 

tion that one party will hear what the 
other says within a bounded delay or 
that the existence of a problem will be 

evident within a bounded delay. If this 

assumption breaks down, either Bob or 
Alice might get stuck waiting out in the 
cold. 

l Probability lesson. Imagine that 

Alice and Bob each send a flurry of 
duplicate messages instead of a single 
message each time. They might act on 

the assumption that at least one mes- 

sage will arrive. If they were right with 
probabiliiyp for each flurry, then a two- 

message protocol would succeed with 
probabilily$. Here,success means that 

neither would wait in the cold and they 
would lunch together at La Tryste. 

The price of failure is higher in many 

applications. For example, if air traffic 

controllers used computers subject to 
these kinds of faults, we would be much 

more reluctant to use the airlines. For 

this reason. the probabilistic approach- 

es cited in the literature on consensus 
eschew such risks. These approaches 

ensure th,jt a decision will be made within 
a bounded amount of time with high 
probability. However, they insist that if 
a decision is eventually reached, it will 

be correct. 

Consenting adults. In the consensus 

problem a set of agents must all agree 
on a decision based on their initial states. 
Typically,only twodecisionsareallowed. 

0 and 1. (IOnce a protocol for two deci- 
sions is available it can bc extended to 

any number of decisions.) The numbers 

may represent actions. For example. I 
may represent “commit”and0 may rep- 
resent “abort” in a distributed database 
system The agents must all output the 

same value and there must be some 

initial state for which 0 is the output and 
another for which 1 is the output. 

Formally, a consensus protocol is cor- 

rect if it meets the following conditions: 

l Consistency. All agents agree on the 
same value and all decisions are final. 

l Validity. The agreed-upon value 
must have been some agent’s input. 

l Termination. Each agent decideson 
a value within a finite number of steps. 

In our parable, the consistency condi- 
tion would be violated if it was possible 

for either Bob or Alice to wait outside 

in the cold alone. The validity condition 
would be violated if both Bob and Alice 

wanted to meet at La Tryste, but nei- 
ther of them went. (This condition rules 

out the consistent but uninteresting so- 
lution where everyone always decides 

the same thing - for example, “Don’t 

meet.“) The termination condition would 
be violated if they were never to agree. 

The right time and place. A promi- 

nent application of consensus is in com- 
mit protocols for distributed databases. 
In such protocols, all server sites must 

agree whether to commit or abort, and 
if any site wants to abort, then all sites 

must abort. The commit problem is strict- 
ly harder to solve than the consensus 
problem because of this priority in fa- 
vor of aborts. Therefore, any result in- 

dicating the impossibility of consensus 
translates to an impossibility result for 

the commit problem. 

A second important application area 
for consensus is ordered atomic broad- 
cast protocols. Such protocols try to 

guarantee that if two messages, rn and 

m’. are sent, then either every working 
site will receive m first or every working 
site will receive m’ first. As we will show, 

any system that can implement ordered 

atomic broadcast can also achieve con- 
sensus. Consequently. whenever con- 
sensus is impossible,so is ordered atomic 

broadcast. 

In fact, consensus is part of any dis- 
tributed system that embodies coordi- 
nated activity - from the synchroniza- 

tion of clocks. to the election of leaders. 

to the coordination of rocket firings.’ 
Moreover, consensus is closely relat- 

ed to fault tolerance. A system is syn- 

chronous if all processors proceed at 
predictable speeds. Otherwise, the sys- 
tem isusynchronous. A protocol is wait- 

,freeifnoprocessorcanindefinitelyblock 

the progress of any other processor. 
Herlihy’ among others has shown that 

in an environment where n processors 

operate asynchronously, the ability to 

reach consensus among all the proces- 
sors is a necessary condition for wait- 
free implementations of many shared- 

data structures and a sufficient condition 

for wait-free implementations of any 
shared-data structure. In other words, 

any asynchronous distributed system for 
which data sharing is important must be 

capable of consensus if it is to tolerate 
certain kinds of failures. 

Because consensus is fundamental to 

so many distributed operations, its so- 

lution provides a fundamental building 
block to system designers. 

“ . . . begotten by despair upon impos- 

sibility.“* Consensus can be easy or dif- 
ficult to achieve depending on the kind 
of computer system (synchronous or 

asynchronous) and the failure assump- 

tions. In a famous paper, Fischer, Lynch, 
and Paterson’ showed the impossibility 
of deterministic consensus among two 

or more processors in an asynchronous 

distributed system. Since then, the con- 
sensus problem has been examined un- 
der many different synchrony and fail- 

ure assumptions. For example, Fischer, 
Lynch, and Merritt’ showed that con- 
sensus cannot be achieved in a synchro- 
nous environment if even one third of 

the processors are “maliciously” faulty 

-that is, if they act in a way that simu- 
lates an agent that tries to make the 

other processors make inconsistent de- 

cisions. 

Given the role of consensus as a build- 
ing block, these assumptions have a large 

impact on what can be achieved in prac- 
tice. In this article, we survey known 

results regarding consensus, relating 
them to practice and explaining the small 
collection of elegant ideas embodied in 

their proofs. Our goal is to give practi- 
tioners some sense of the system hard- 
ware and software guarantees that are 

required to achieve a given level of reli- 

ability and performance. Our survey 
focuses on two categories of failures: 

l Fail-stop,faillrres. These occur when 

processors fail by stopping. While this is 
not a problem when processors are syn- 

chronous, the combination of asynchro- 

ny and fail-stop failures can make con- 
sensus impossible. We discuss these 
failures in the following section, “Hesi- 
tate and you’re lost.” 

l Byzantinefailures. These occur when 

processors fail by acting maliciously. 
This is a useful, though pessimistic, 

model of software failures. Depending 

on the number of failures in the system, 
consensus may be impossible under 
Byzantine failures even when the sys- 

tem is synchronous. We discuss these 

failures in the section titled “Plotting a 
Byzantine agreement.” 
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Hesitate and you’re lost 

A distributed system is made up of 
processors communicating through a 

shared communications medium, as il- 
lustrated in Figure 1. Sometimes we can 

assume that the communications media 
are reliable (for example. in backplane 

networks). Sometimes we can assume 

that processors are reliable (for exam- 
ple. in quadruple redundant hardware 
configurations). Suppose a given dis- 

tributed system must solve problems at 
least as difficult as consensus. This would 
be true, for example, if the system was 

to include a distributed database. The 

designer should know how reliable the 
components must be in order to solve 
the consensus problem. 

This section looks at how synchrony 
affects the spectrum of possibilities. 

A world of (im)possibilities. Let’s 
return to our original scenario where 

Bob and Alice are sending each other 

messages across a computer network. 
The difficulty in this scenario is that 

network delay has no bounds and mes- 

sages can get lost. We observed that 

consensus is impossible under these con- 
straints. Let’s strengthen the network 
so that messages are never lost though 

they can still be delayed. and let’s add 

the condition that either Bob or Alice 
could be fired at any time. Since the 
network never fails, Alice could send 

Bob a message and then wait for his 

response. But if Bob gets fired before 
he receives Alice’s message, Alice may 
endupwaitingindefinitely. Underthese 

conditions, is consensus possible? 

Fischer, Lynch, and Paterson’showed 
the surprising result that in a distribut- 
ed system with an unbounded but finite 

message delay, there is no protocol that 

Figure 1. A distributed system. 

can guarantee consensus within a finite 

amount of time if even a single proces- 
sor can fail by stopping. This result im- 

plies no possibility of consensus for Bob 
and Alice under the redefined circum- 

stances. (The reasoning behind this is 
discussed later under the subhead “Prov- 

ing the impossible.“) 

While Fischer, Lynch. and Paterson’s 
result shows that a completely asyn- 
chronous system cannot guarantee con- 
sensus, it does not give much sense of 

what can be achieved in practice. More 

optimistic assumptions on the timing 
constraints within the network and 
among processors can yield consensus 

protocols, even in the presence of mul- 

tiple failures. Dolev, Dwork, and Stock- 
meyer‘ addressed this issue by identify- 
ing a set of system parameters for 
classifying asynchronous systems. The 

following items formally define a subset 

of those parameters: 

l Processors can be either synchro- 
no~r or asynchronous. Processors are 

synchronous if and only if there exists a 
constant s 2 1 such that for every s + I 

steps taken by any processor, every oth- 
er processor will have taken at least one 

step. 
l Communication delay can be either 

bounded or unbounded. Delay is bound- 

ed if and only if every message sent by a 

Table 1. Conditions under which consensus is possible. 

Processors 

Message Order 

Unordered Ordered Communication 

i Unbounded 

~ Unbounded 
I I 

~ Point- 
1 to-point 

Broadcast Point- 
to-point 

Transmission 
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processor arrives at its destination within 

t real-time steps, for some predeter- 

mined t. 
l Messages can be either ordered or 

unordered. Messages are ordered if and 

only if processor P,receives message m, 

before message mz when P, sends m, to 
P, at real time t,, Pz sends mz to P, at real 

time t:, and t, < t’. (For ordered atomic 

broadcasts, as described earlier in “The 
right time and place”and used below in 

case 2. the slightly weaker condition 
that either all sites either receive m’ 

before m or all sites receive m before m’ 
will suffice.) 

l Transmission mechanism can be ei- 
ther point-to-point or broadcast. The 

transmission mechanism is point-to- 
point if a processor can send a message 

in an atomic step to at most one other 
processor. It is broadcast if a processor 

can send a message to all the processors 

in an atomic step. 

Table 1 summarizes the possibilities for 

consensus presented by Dolev, Dwork, 
and Stockmeyer. In the system Fischer, 
Lynch, and Paterson studied, messages 

were unordered, communication was 

unbounded, and processors were asyn- 
chronous. As the table shows, consen- 
sus is impossible under these conditions. 
It is possible, however, in three minimal 

cases: 

l Case I. Processors are synchronous 
and communication is bounded. 

l Case 2. Messages are ordered and 
the transmission mechanism is broad- 

cast. 

l Case 3. Processors are synchronous 

and messages are ordered. 

We have included the third case for 

completeness. However, the best known 
algorithm for achieving consensus in 
this case requires an exponential num- 

ber of messages and is therefore of little 

practical interest. 
Case 1 describes the situation in which 

every processor can use time-outs to 

tell if another has failed. This assump- 

tion is the basis of the standard commit 
protocols that work under the fail-stop 

assumption, such as three-phase com- 

mit.’ 
Case 2 describes a situation in which 

processors can be asynchronous and 
some of them can also fail. However, 

they have an ordered atomic broadcast 
primitive (perhaps because they share a 



reliable bus). To achieve consensus, each 

processor broadcasts its initial value to 
all other processors. The processors then 

read messages from the network and 

note the first value received. Since mes- 

sages are ordered, all the processors 
will agree as to which was the first value 
placed on the network. 

A variation of case 2 is k-casting. This 
variation assumes that the transmission 
mechanism allows broadcast to at most 

k other processors. Dolev, Dwork, and 

Stockmeyer show that if k-casting is 

possible and messages are ordered, the 
system can achieve deterministic con- 

sensus in the presence of up to k - 1 
failures. 

Another variant assumes that pro- 
cessors are “nearly” synchronous. If a 

processor can read, process, and write 
to the network in one atomic step, the 

addition of bounded communication 
delay and broadcast transmission will 
be sufficient for achieving consensus. 

The idea is that if processors can exe- 

cute a critical section of code within a 
predictable amount of time, then the 

problems associated with processor asyn- 
chrony can be overcome. This can often 
be achieved in practice by having pro- 

cessors disable interrupts during the 
critical code section. 

Agreeing on shared memory. Does 
consensus become easier to implement 
in a system with a reliable shared mem- 

ory? Intuition might suggest that the 
inherent broadcast capabilities and re- 
liability of shared memory could suf- 

fice for consensus. While this is true for 

the Byzantine failures in synchronous 
systems that we will discuss later, it is 

not the case for asynchronous systems. 

Herlihy’ showed the impossibility of 
consensus in a distributed system with 
asynchronous processors and a shared 
memory that supports only reads and 

writes. Achieving consensus requires 
adding synchronization primitives to the 
shared memory. In fact, Herlihy showed 

the existence of a hierarchy of increas- 

ingly more powerful synchronization 
primitives that allow processors to 
achieve consensus in the presence of 

increasingly many faults. 

To understand why shared memory is 

not enough, recall the minimum condi- 
tions presented by Dolev, Dwork, and 

Stockmeyer. Shared memory with read 
and write provides the equivalent of a 
broadcast mechanism, but does not of- 
fer the equivalent of ordered messages. 

fetcb&add(m, v) 
begin /*Atomic action*/ 

oldm t m 

mtm+v; 
return(oldm); 

end; /*Atomic action*/ 

Figure 2. Fetch&add (consensus num- 
ber = 2). 

compare&swap(m, new, old) 
begin /*Atomic action*/ 

if (m = old) then 
begin 

m t new; 
return (true) 

end 
else return (&he); 

end; /*Atomk action*/ 
I I 

Figure 3. Compare&swap (consensus 

number = n). 

Once two processors have written their 
messages to the shared memory, there 

is no way for a third processor to deter- 

mine which one wrote its message first. 
Actually, because of the asynchronous 
nature of the processors, even two writ- 
ing processors can’t agree which wrote 

its message first. 
Given an asynchronous shared-mem- 

ory system prone to fail-stop failures, 

Herlihy defines the consensus number 
of a synchronization primitive. A prim- 
itive with a consensus number n can 

achieve consensus among an arbitrary 

number of processors even if up to n - 1 
processors stop. By definition, a primi- 
tive with a consensus number n - 1, but 

not n, cannot simulate a primitive with 

a consensus number n (otherwise, it too 
would have consensus number n). Con- 
versely, a primitive with consensus num- 

ber n can simulate a primitive with con- 
sensus number n - 1. 

For example, atomic read and write 
operations have a consensus number of 
1, but not 2. Therefore, in a shared 

memory allowing only reads and writes, 

no deterministic algorithm can achieve 
consensus among two or more proces- 
sors even if only one of the processors is 

allowed to fail. 
Figure 2 presents fetch&add, a prim- 

itive that reads and increments a loca- 
tion from memory in one atomic step. 

Fetch&add has a consensus number of 

2, but not 3. Therefore, adding it or a 

variant to the shared memory pushes 
the impossibility result out to three or 
more processors in the presence of two 

or more failures. 
The notion of a universal primitive is 

important. Such a primitive has a con- 
sensus number of n for arbitrary n (that 
is, all but one of the processors can stop 

and consensus will still be reached). Fig- 

ure 3 shows a universal primitive called 
compare&swap. It replaces the value in 

memory location m with new if and only 

if the old value in memory is equal to 
old. It is not difficult to see that 
compare&swap is universal. Assume 

that a specified memory location, m, 

has an initial value of 1. Each proces- 
sor, P,, proceeds as follows: 

(1) Writeinitialvaluetolocationa[i]. 

(2) Compare&swap(v, I, i). (That 
is, attempt to replace the I in location 

v with the processor ID.) 

(3) Decide a[v]. 

Only one processor, P, will succeed with 
the compare&swap. All processors will 

decide on the value that P places in v. 
Herlihy’s work shows that the 

compare&swap is a more powerful syn- 
chronization primitive for achieving 

consensus than are the test&set and 
the fetch&add, thereby dispelling a 

popular myth on the relative power of 

the latter two primitives. Of course, this 
does not preclude their usefulness; tech- 

niques such as combining can make them 
more efficient than compare&swap. It 

just turns out that there are certain things 
they cannot do. 

Recall that a wait-free protocol is one 

in which no processor can be held up 

indefinitely by the actions, or failures, 
of other processors. Since consensus in 

the presence of an arbitrary number of 
failures cannot be achieved without us- 

ing a universal primitive, it follows that 
there are computations that cannot be 

performed in a wait-free manner in a 

distributed system without a universal 

primitive. Herlihy showed that in the 
presence of a universal primitive, any 

computation can be performed in await- 
free fashion. Thus, the ability to achieve 

consensus is necessary for any general- 
purpose distributed system that pur- 
ports to tolerate failures. 

Proving the impossible. Here we de- 
scribe the proof of Fischer, Lynch, and 
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Paterson’s impossibility result3 Name- 
ly, in a completely asynchronous mes- 
sage-passing system (that is, one in which 

messages have unbounded but finite 
transit times), no deterministic consen- 
sus protocol can tolerate even a single 

processor failure. 

Processor Inputs tu processors 

PI c= 0 11 . . . 1 1 
pz e= 0 0 1 . . . 11 
p3 c= 0 0 0 *.. 1 1 

The state of a system, denoted a con- 
figuration, is defined by the messages 
that have not yet been delivered to their 

destinations and the individual states 

(that is. program counter and internal 
memory) of the individual processors. 

If at some point in the computation 

either 0 or 1 can still be reached, the 
system is said to be in a bivalent state. 
Otherwise, the system is said to be in a 

univalent state. We say the system is O- 
valent if 0 has been decided and 1 -valent 

if 1 has been decided. 

Pm., c= 0 
P, e= 0 

Decides Ol?l?l... I?11 

Figure 4. Initial inputs to processors 
and the resulting decisions. 

An event, e, is defined as the receipt 

of a message, m, by a processor. For the 

sake of generality, m may be an empty 
message. Since we assume the protocol 
is deterministic, the processors can be 
said to make decisions only when an 

event occurs. A sequence, or subse- 

quence. of events is called a schedule. 
The proof shows that an adversary can 
keep the protocol going forever by slow- 
ing processors down or killing a single 

processor. Specifically, the following two 
lemmas prove the theorem: 

l Lemma 1. There exists an initial Figure 5. 

configuration that is bivalent. another. 

l Lemma 2. Given a bivalent configu- 
ration, there exists a nonempty sched- 

ule leading to another bivalent configu- 

ration. 

Lemma 1 is best described by a vari- 

ation on the bald man’s paradox. A man 
with a full head of hair is not bald. A 
man with little or no hair is bald. A man 

can be either bald or not bald (for exam- 

ple, if he has 1,000 or more hairs, he is 
not bald; otherwise, he is bald). If we 
removed each hair one at a time from a 

man with a full head of hair, then we will 

reach a point where pulling one more 
hair will cause us to change our descrip- 
tion of him. However, if he was wearing 

a hat and only, say, 999 strands of his 
hair were showing, it would be impossi- 
ble to determine whether he was bald or 

not bald. 
If all processors start with an initial 

value of 0, then the system must decide 
0 to satisfy the validity condition on 

consensus. Likewise, if all processors 

start with an initial value of 1, then the 

system should decide 1. As shown in 

Figure 4, it is possible to go from a 
configuration in which all processors 
start with an input value of 0 to a config- 

uration in which all processors start with 
an input value of 1 by flipping each 
processor’s input value one at a time. 

Assume that there is no initial bivalent 

state. As with the bald man’s paradox, 
there must be a single processor where- 

by flipping that input bit shifts the deci- 

sion from a 0 to a 1. If an adversary 
caused the processor corresponding to 
that bit to fail before the protocol even 

began, then the two configurations would 

be impossible to distinguish from each 
other and would reach the same deci- 
sion. This contradicts the assumption 

that one configuration could only have 
yielded a 0 and the other a 1. 

To prove lemma 2, assume that the 
system is currently in a bivalent config- 

uration, C. If a schedule exists that takes 

the system to another bivalent configu- 

12 

0 
0 

0 
0 

1 
0 

1 

bivalent state to 

ration, then we are done. Otherwise, 

since the system was in a bivalent con- 
figuration, there exist at least two events, 

e and e’, whereby e takes the system to a 
0-valent configuration D, and e’ takes 

the system to a I-valent configuration 
D’ (see Figure 5). No events lead to 

another bivalent state. Call e and e’ the 

deciding events. There are two cases: 

l Deciding events e and e’ occur on 

different processors. Since events de- 

note message receptions, applying e and 
e’in either order yields the same config- 

uration F. By assumption, if e is applied 
first, then F is 0-valent. If e’ is applied 

first, then F is 1-valent. This is clearly 
absurd. Hence, in a deterministic con- 

sensus protocol, any pair of deciding 
events yielding different valences must 

occur on the same processor. 
l Deciding events e and e’ both occur 

on someprocessor P. If e occurs first and 

then P fails, the resulting configuration 
should be 0-valent. If e’ occurs first and 
then P fails, the resulting configuration 

should be I-valent. But there is no per- 
ceivable difference between these con- 
figurations. Again, we get a contradic- 

tion. 

Since an initial bivalent state exists and 
the adversary can keep the system in a 

bivalent state for an arbitrary period, 

there is no way of guaranteeing consen- 

sus in an asynchronous distributed sys- 
tem in which one processor can fail. 

A different approach to understand- 
ing the issues and difficulties of the con- 

sensus problem uses a formalism called 
knowledge logic. A good reference to 

knowledge logic is the set of ACM con- 

ference proceedings from 1986 and 1988 
entitled Theoretical Aspects of Reason- 
ing About Knowledge. 

Sharing messages. Herlihy proved 
that asynchronous processors, commu- 
nicating via a shared memory, cannot 

achieve deterministic consensus in the 

presence of one faulty processor. He 
used a technique similar to the one used 

by Fischer, Lynch, and Paterson. Here, 

we relate the two results using a differ- 
ent kind of glue. 

Even though consensus cannot be 
achieved in an asynchronous message- 

passing environment with faults or in an 
asynchronous shared-memory environ- 

ment with faults, it would still seem that 

shared memory provides a more power- 

ful primitive than message passing. In 
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one sense, this is true. Shared-memory 

systems can solve some problems even 
if a majority of the processors fail - 

problems that cannot be solved in a 
message-passing environment under the 

same conditions. 
But what if fewer than half of the 

processors are allowed to fail? Attiya, 
Bar-Noy. and Dolev’ have shown that 
under these circumstances the message- 

passing system of Fischer, Lynch, and 

Paterson can reliably emulate a shared- 
memory environment. This immediate- 

ly lets us apply results from the Fisher, 

Lynch, and Paterson message-passing 
model to the read-write shared-memo- 
ry model. Thus, the Fischer, Lynch, and 

Paterson impossibility result implies 

Herlihy’s result and shows the impossi- 
bility of achieving consensus in the pres- 
ence of even one fault in an asynchro- 

nous, read-write, shared-memory 

system. 

One failure too many. The emulation 

result also provides an easier frame- 

work for implementing protocols in asyn- 
chronous message-passing systems, but 
before we show how to implement a 

shared memory, we will briefly discuss 

what we expect from a shared memory 
and why we cannot reliably emulate 
shared memory in a message-passing 
system in which a majority of the pro- 

cessors are allowed to fail. 
To tolerate k failures, a system must 

maintain at least one copy of an object 

at k + 1 different processors. Otherwise, 

the k failures could occur at the proces- 

sors containing the copies of the object, 
and the object’s value would be lost. 
However. maintaining at least one copy 

does not solve all our problems. Since 
the processors holding the copies may 

be slow to respond, two processors (or 
even the same processor) reading a copy 

of an object might not be reading the 
same copy. The fact that a 
writer may not have complet- 

ed its write operation means 

that the later of two read op- 
erations may actually access 
an “earlier”version of the ob- 

ject. This leads to inconsis- 
tent executions. 

Time step Processor 1 Processor 2 Processor 3 

fW*) (4) W 

The correctness criterion 
that we expect from a shared 

memory is the ability to im- 

plement shared atomic regis- 
ters. An atomic register satis- 

ing the register before processor P, be- 
gins accessing the register and one of 

the accesses is a write, then P, reads or 
writes a “later” version than P,. Specif- 

ically, assume that each value written 

To see why no algorithm could toler- 

into the register has a unique version 

ate even half of the processors failing, 

consider a scenario in which the proces- 

number, then P, will see (write) a ver- 

sors are partitioned into two groups of 
exactly equal size. Messages from one 

sion number that is equal to or greater 

group to the other are “slow” while 

messages within each of the groups pro- 

than that seen (written) by P,. 

ceed at predictable rates. Given this 
scenario, processors in one group can- 

not distinguish between the situations 

in which all the processors in the other 
group are being slow or have failed. If 
the protocol assumes that the proces- 

sors are slow, an adversary could cause 

the processors in the other group to fail. 
The protocol would not terminate and 
therefore would not be correct. If the 

protocol assumes that the processors in 
the other group have failed, then the 
two groups could come to different de- 

cisions, thus violating the consistency of 

the shared memory. 

Two majorities always intersect. The 

critical problem in the previous subsec- 
tion is that if the network can partition 
the set of processors, then two indepen- 
dent system components can proceed 

independently. Gifford* captured this 

observation in 1979 when he presented 

the idea of a quorum consensus. His 
algorithm shows how to reliably main- 
tain several replicas of a data item in a 

synchronous distributed system prone 
only to fail-stop failures. 

The idea is to make m copies of a data 
object X, (X,, X,, . , X,,,). Writing 

proceeds by writing w > k copies of X, 

where k is the number of failures that 
can be tolerated. This set of writes is 
called a write quorum. Reading pro- 

ceeds by reading r copies of X. This set 

of reads is called a read quorum. The 

Attiya, Bar-Noy, and Dolev’used this 
idea to show how to emulate a reliable 

sum of the read and write quorums, w + 

shared memory in an asynchronous 

message-passing system in which fewer 

r, must be greater than m to ensure an 

than half the processors can fail. To 

illustrate the algorithm, we first give an 

intersection between every pair of reads 

algorithm to emulate shared memory in 

a synchronous message-passing system. 

and writes. 

Associated with each copy is a version 

number. At any point in time, the copy 
(or copies) with the largest version num- 

ber defines the current version. A read 
is executed as follows: 

(1) Retrieve a read quorum of X. 

(2) Select the copy with the largest 

version number. 

A write is executed as follows: 

(1) Retrieve thecurrentlylargestver- 

sion number using the read procedure. 

(2) Increment the version number. 
(3) Send the new value along with the 

new version number to a write quorum. 

The processors receiving the new value 
will replace the “old” value in their 

local memory if and only if the version 

number of the new value is larger than 

the version number of the old value. 
Some care must be taken if multiple 

writers are allowed. To avoid confu- 

sion, all writers must write unique ver- 
sion numbers. We can guarantee this by 
concatenating the version number with 

the writing processor’s ID. 

While this algorithm for emulating 

Write X, 

Write X, 

Read X, 
Read X, 

Read X, 
Read X, 

fies the following property: If Figure 6. Example showing 

processor P, finishes access- chronous environments. 
quorums can fail in asyn- 

the reading and writing of 
shared memory works well 
in a synchronous system, it 

will not work in an asynchro- 
nous system. The primary dif- 

ficulty is the impossibility of 

guaranteeing that the copies 

will be read in the correct 
order. Figure 6 shows one 

such situation. There are 
three replicas - X,, X,, X, 
- of an object, X. A writer, 
IV,, could succeed in writing 

to X, before slowing down. 
A subsequent reader, R,, 
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might read a quorum contain- 

ing X, and X3, thereby get- 

ting the new version of X 
written by W,. Later, another 
reader, R,, might read a quo- 

rum consisting of X2 and X3. 
This quorum does not con- 

tain the new version of X. R, 
therefore gets an earlier ver- 

sion than R,, violating the con- 
ditions required for atomic 

registers. 

randcon 
begin 

if in= 1 

globalcount t g~vbalcvunt + 1; 
else 

globalcount t glvbalcvunt - 1; 
while -II c glvbalcvunt < n 
begin 

Attiya, Bar-Noy, and Dolev 

get around this problem us- 
ing a technique that turns out 
to be quite powerful in de- 
signing protocols for asyn- 
chronous distributed sys- 

tems: altruism. Rather than 

being greedy and trying to 
complete its own operation 

as quickly as possible, each 
process acts altruistically. If 
it sees that some other pro- 

cess may not have completed 
its operation, it takes time 

out to help the process com- 
plete. In this case, the read- 
ers help the writer. When a 

reader reads a quorum and 
realizes that the writer did 
not finish its job, the reader 

plays the role of the writer 

and writes a quorum with the 

current value and version 
number. For this approach 

to tolerate k failures, the read 
and write quorum sizes will 

if globalcvunt > 0 decide(l); 
else decide(O); 

end, 

Figure 7. Simplified algorithm for randomized consensus. 

kr. 
Figure 8. Regions for coin tosses in randomized consensus. 

each be at least k + 1, and the system 
must have at least 2k + 1 processors. 

if globalcount < 0 
glvbalcvunt t globalcount - 1; 

else if glvbatcvunt > 0 
globalcount t globalcount + 1; 

else 
begin /*Atomic action*/ 

if flip0 = 1 
globalcount t globalcvunt + 1; 

else 
globalcount t globalcount - 1; 

end; /*Atomic action*/ 

end; 

algorithm. Assume that pro- 
cessors can flip a coin and 

either add or subtract 1 from 
a global counter in one atomic 

step. Under this condition, 
Figure 7 shows the basic al- 

gorithm for randomized con- 

sensus on n processors. 
Since the adversary has no 

control over the coin flips 

(or the order in which they 

are added to the global 
counter), the time required 
to hit one of the absorbing 

boundaries at either n or-n 
corresponds to Bob’s random 
walk. Once one of the bound- 

aries has been reached, the 
remaining processors will 

eventually make the same 

decision. 
To make the algorithm 

work even when it is not pas- 

sible to flip a coin and incre- 
ment the counter in one 
atomic step requires extend- 

ing the region in which a coin 

can be flipped. Figure 8 shows 
these regions. 

The proposed adversary is 

more powerful than what one 

would encounter in practice. 
In fact, the adversary will not 

maliciously adjust the speeds 

of processors. Rather, the 
speeds will be affected ran- 

domly. Aspnes and Herlihy” 

give an algorithm with the 

Foiling your adversary. We have al- 

ready seen that deterministic consensus 
cannot be achieved in an asynchronous 
system in which even one processor is 

allowed to fail. Here we show that prob- 
ability provides a powerful tool in this 

context. Each processor is allowed to 

flip a coin. The adversary cannot affect 
the result of this random coin toss, but 
in all other ways it remains unaffected. 

For example, it can still slow down pro- 
cessors at will. The algorithm we present 

guarantees both validity and consisten- 
cy upon termination. Therefore, the ad- 
versary can only affect when the final 

decision is reached - not its correct- 

ness. 

To simplify presentation, we show an 
algorithm from Aspnes’ that works in 

shared memory. From the previous 
section, we know that any such algo- 
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rithm can be converted into an algo- 
rithm that will function in a message- 

passing system. The algorithm takes its 
inspiration from a one-dimensional 
random walk, which brings us back to 

Bob and Alice. 

Unable to agree on a meeting time 
with Alice, Bob consoles himself by going 
out drinking. He becomes intoxicated. 

His house lies at the end of the road on 

which the bar is located. Alice’s house is 
about the same distance in the other 
direction. He is undecided whether to 

go home and sleep or go to Alice’s house 

and chat. Assume that every time he 

takes a step he will stagger in the direc- 
tion of his house or Alice’s house with 
equal probability. If both houses lie n 

steps from the bar, how many steps will 

Bob take before reaching one of the two 
possible destinations? 

The answer is on the order of n2 (de- 
noted O(n2)). The walk provides us with 

the basis of the randomized consensus 

same running time as the algorithm in 
Figure 7, but theirs uses a weakly biased 

coin that will land on the same side at all 

the processors with high probability. 
Since the correctness of that algorithm 
is not particularly intuitive, we omit the 

details. In practice, the biased coin can 

be replaced by a shared table of “ran- 
dom” coin flips that the processors read 

to get the ith coin flip. With a failure 

model in which delays occur randomly, 
this modification to their consensus pro- 
tocol yields an O(n) algorithm. 

Plotting a Byzantine 
agreement 

Bob, Alice, and Joan are trying to get 
together for lunch. To simplify commu- 

nication, they have decided to use a 
reliable medium-the telephone. Con- 
ference calling is not available, so at any 
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one time Bob can talk with either Alice 

or Joan, but not both. Mistrust and in- 
sincerity abound; however, at most one 

member of the trio is truly malicious 

(we do not know which one) and trying 
to make one of the other two wait in the 

snow. 
Is there some protocol that the three 

can adopt such that (1) the two honest 
individuals will agree on whether or not 
to meet; (2) if all honest ones want to 

meet, then they will meet; and (3) if no 

honest ones want to meet, then they 
won’t meet? 

This problem is equivalent to the 

Byzantine generals problem studied by 

Lamport, Shostak, and Pease.” In their 
parable, several divisions of the Byzan- 
tine army are posted outside an enemy 

camp. Each division, headed by its own 
general, is trying to decide whether or 
not to attack the enemy camp. Howev- 

er, some of the generals are traitors and 
will try to keep the honest generals from 
reaching an agreement. A Byzantine 

failure is one in which a processor be- 
comes traitorous and acts maliciously. 
The problem of reaching consensus in a 

distributed system prone to Byzantine 
failures is known as Byzantine agree- 

ment. 
Byzantine failures were originally used 

to model hardware failures (or inher- 
ent flakiness) in avionics sensors, but 
they can also model software failures. If 

the software fails, we have no idea what 

it might do. Since it could do anything, 
the only fully general assumption to 
make is that it will do the worst thing 

possible. For it to do that, we 

assume that it is omniscient 
with respect to the state of 

the other (honest) processors. 

This section discusses the 
conditions under which a 

synchronous distributed sys- 
tem can tolerate Byzantine 

failures. 

Avoiding traitors. Given a 

synchronous message-passing 
system, is it possible to reach 

consensus in the presence of 
Byzantine failures? To an- 

swer this question, we need 

to be more specific regarding 
what the processors can do. 

If Bob, Alice, and Joan 

were to make a conference 
call, then all three would hear 
the same message and it 

would be impossible for the 

Figure 9. Graph with connectivity two. 

traitor to lie to one person and not the 
other. Thus, Byzantine failures are not 

a problem under a communication me- 
dium that “broadcasts” messages to all 

the processors. Therefore, because of 
the inherent broadcast capabilities of 
shared memory, Byzantine failures do 

not constitute a serious problem in that 
environment. (The ability to verify the 
authenticity of messages partially simu- 

lates this broadcast ability and is dis- 
cussed later under “Sign on the dotted 

line.“) 

When authentication is not available, 
Lamport, Shostak, and Pease show that 

Byzantine agreement is possible if and 
only if there are at least 3k + 1 proces- 

sors when k of the processors can fail. In 
other words, if one third or more of the 

processors are malicious, no determin- 
istic algorithm can guarantee consensus 
among the honest processors. (We give 
their proof of this result under “The 

masquerade.“) 
When fewer than one third of the 

processors in a complete network are 

traitorous, deterministic agreement 

without authentication is possible. The 

solution given in Lamport, Shostak, and 
Pease requires a number of messages 

that is exponential in the number of 

individuals. Other researchers later 
showed that a polynomial number of 
messages will suffice for solving the prob- 

lem under the same constraints. 
Fischer, Lynch, and Merritt4 extend 

the Lamport, Shostak, and Pease result 
to show that additional problems arise 

when the communication network is not 

complete. They define a graph’s con- 
nectivity as the minimum number of 

nodes whose removal partitions the 

graph into two separate components. 
For example, Figure 9 shows a graph 
with connectivity two. The nodes repre- 

sent processors, and the lines indicate 

communication between processors. A 
minimum of two nodes and their com- 

munications lines must be removed to 
partition the graph into separate com- 

ponents. 
Fischer, Lynch, and Merritt showed 

that Byzantine agreement is possible if 

and only if the graph representing the 

communications network between the 
processors has connectivity greater than 

2k + 1, where k is the number of Byzan- 
tine failures that can occur. In other 

words, if removing half the individuals 
can partition the remaining individuals 

into two or more noncommunicating 
groups, Byzantine agreement will not 

be possible. 

The masquerade. When Joan decid- 
ed to join Bob and Alice for 

lunch, without the ability to 

conduct a conference call, no- 

body could be sure who was 
honest. We first show that 
with three agents and at most 

one possibly faulty agent, the 

other two agents cannot 

agree on whether or not to 
meet. Intuitively, the diffi- 

culty is that Bob, assuming 
he is honest, cannot distin- 

guish between the case where 
Alice is lying and the case 

where Joan is lying. 

Figure 10. Scenarios leading to failure of Byzantine agree- 
ment. 

Fischer, Lynch, and Mer- 
ritt give a simple proof of 

this idea. Suppose there was 
an algorithm that solved the 

problem at hand. Figure 10 
illustrates three scenarios 

leading to the failure of any 
Byzantine agreement proto- 
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Table 2. Conditions required for consensus. 

Networks 
Ordered 

Reliable 
Time-Bounded Reliable Reliable 

Broadcast Time-Bounded Unbounded Unreliable 

Processors 
never fail Yes Yes Yes No 

Site failures 
Diagnostic 
time-out Yes Yes No No 

Site failures 

No diagnostic 
time-out Yes No No No 

. 

co1 that does not use authentication. 
There are three agents, A, B, and C. In 
scenario 1, A is faulty. B and C start with 

the same input value, 0. B sees A start- 
ing with a value of 0, and C sees A 

starting with a value of 1. By the validity 
condition, the algorithm should ensure 
that B and C both decide 0. 

In the second scenario, B is faulty, A 
starts with a 1, and C starts with a 0. If B 
sends the same messages to C as it did in 
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the first scenario, C will see the same 
situation as in the first scenario. (We 
assume that in the first scenario A, the 

traitor, sent the same messages to C as 

in this scenario.) Therefore, the algo- 

rithm must once again decide 0. 
The third scenario is one in which A 

starts with a 1, B starts with a 1, and C is 
faulty. If C sends the same messages to 
A as it did in the second scenario, then 
A sees the same situation as in the sec- 

ond scenario. (We assume that in the 

second scenario B, the traitor, sent the 

same messages to A as in this scenario.) 
Again, the algorithm must decide 0. 

However, the two nonfaulty processors 
both have an input value of 1, so the 

decision of Oviolates validity. This proves 
that consensus is impossible. 

This result can be extended to an 

arbitrary number of processors by di- 
viding the processors into three equally 
sized groups of processors. Allowing 

one of the groups to contain all the 

faulty processors, the three scenarios 
can again be simulated. The simulation 

proves the general result that Byzan- 
tine agreement is not possible if one 

third of the processors are faulty. 

Sign on the dotted line. As we saw, if 

one of either Joan, Bob, or Alice is 

malicious, then the malicious one can 
send conflicting messages to the other 

two. Suppose Joan is the malicious one. 
Even if Alice forwarded Joan’s message 

to Bob, Bob would not know if Alice 
was forging Joan’s message or if Joan 

was being insincere. Therefore, he does 

not know whom to agree with. 
However, if Alice forwards a photo- 

copy of Joan’s message, Bob can see 

that the writing is truly Joan’s and will 

become immediately aware of the fact 
that Joan is the malicious individual. So 

he agrees with Alice. Joan is foiled. 
This approach avoids problems be- 

cause the traitorous agent can no longer 
send any message he or she wishes, since 
signatures cannot be forged. In comput- 

er systems, algorithms that guarantee 

that signatures are not corrupted are 
calledauthentication algorithms. Encryp- 
tion provides the basis for authentica- 

tion. Lamport, Shostak, and Pease give 
a simple authentication algorithm. 

For the sake of simplicity, we assume 
the existence of a unique coordinator, 

C. When the coordinator is honest, all 

honest agents will output the coordina- 

tor’s initial input. When the coordina- 
tor is dishonest, all honest agents will 

output a 0. The algorithm proceeds in t 
+ 1 phases. Each message sent by a 

processor carries the signatures of all 
processors that have seen and transmit- 
ted the message. In phase i, there should 

be i signatures (in addition to the coor- 
dinator’s) and no duplicates. That makes 

the message legitimate. 

l Phase 1. The coordinator signs and 

sends an initial value to all agents. This 
constitutes their input. Note that the 

coordinator may send different initial 

values to different processors or may 
fail before sending messages to all pro- 

cessors. 
l Phase 2 through t + 1. First, each 

agent signs and sends all legitimate 
messages received in the previous phase 

to all the processors. If the message is 

legitimate, then the agent records the 
value contained in the message. 

l At the end of phase t + I. An agent 

decides v if v is the only legitimate value 

it received. Otherwise, it decides 0. 

The algorithm satisfies termination: 

It ends after t + 1 phases. The algorithm 
satisfies validity: If all processors func- 
tion correctly and all have the same 

input, then they will agree on their ini- 

tial input. The algorithm satisfies con- 
sistency: All correctly functioning pro- 
cessors will see the same values as all 

other correctly functioning processors 
and therefore will reach the same deci- 
sion. With less than t + 1 phases, it is 
possible for an adversary to force dif- 

ferent processors to reach different de- 

cisions. 

Dolev and Strongi improved this ex- 
ponential algorithm by noticing that old 
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messages do not have to be present. 

Their algorithm sends a number of mes- 

sages that is quadratic in the number of 
processors. 

I 
n summary, for a group of proces- 
sors to arrive at a common deci- 

sion, they must solve the consen- 

sus problem. Distributed-system design- 
ers can save time by knowing the situa- 
tions in which no algorithm is possible 

for consensus and those in which algo- 

rithms have already been discovered. 
The fine line between impossibility 

and possibility tradesprocessorreliabil- 

ity against network reliability. The more 
reliable the processors, the less reliable 
the network must be. 

l In a synchronous distributed system 

with reliable message delivery and pro- 
cessors subject to Byzantine failures, 

consensus is possible as long as fewer 
than one third of the processors fail. 

l In an asynchronous distributed sys- 

tem with reliable message delivery and 

processors subject to failure by stop- 
ping, consensus is not possible even if 

only one processor can fail. (Table 2 
summarizes the conditions under which 

consensus is possible in different asyn- 
chronous systems.) 

l In a synchronous distributed system 
in which messages can be dropped, con- 
sensus is not possible even if none of the 

processors fail. 

Shared memory increases the reli- 

ability of the communications medium. 

It is essentially equivalent to adding a 

broadcast capability to a network. This 
avoids many of the problems created by 

Byzantine failures, but not the prob- 
lems created by asynchrony. To solve 
these problems requires adding syn- 
chronization primitives such as 

compare&swap. The power of shared 
memory depends on the primitives it 
supports. 

Finally. techniques such as random- 
ization and authentication offer ways to 

overcome many impossibility results and 

often yield efficient algorithms. 
Besides being useful, the consensus 

problem has resulted in many elegant 

impossibility proofs. These proofs teach 
a simple moral that we should all take to 
heart: Global knowledge is much stron- 

ger than local knowledge. 
Or to put it in terms of our parable, 
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Bob and Alice should ask to share an 

office. n 
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